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Web clients have evolved into user−level operating systems. They
run applications from friendly and hostile providers side by side,
often within a single process address space. This presents a poor
match for legacy operating systems that assign application privileges
based on local user identities, and that implement isolation domains
with process granularity. This report reviews a number of techniques
for contemporary systems that can partition an application into
trusted and untrusted parts. These techniques can enforce different
policies for different applications that run on behalf of the same user,
even when the applications become corrupted.

1 Introduction

Web browsers have become a universal platform to execute applications such as
email, other social interaction, multimedia, and commerce. Web browsers provide
OS−independent execution environments, and threaten existing monopolies on
application suites. Unfortunately, web browsers also offer plenty opportunity for
penetration of the client platform.

Web browsers are large monolithic programs built from millions of lines of
source code. Most of this code is written in unsafe implementation languages
such as C or C++. From January 2008 through November 2008, the Mozilla
foundation released 53 advisories for the Firefox 2.0 browser, of which 23
were rated critical, meaning that they could "be used to run attacker code and
install software, requiring no user interaction beyond normal browsing"
[Mozilla 2008].

• 

Third−party extensions are written in unsafe implementation languages, and
are often distributed as closed−source binary code. This code is linked into
the browser process address space via the Windows dynamic−link library
(DLL) mechanism or via the Netscape plug−in API (NPAPI). Unpatched
vulnerabilities in third−party extensions are a major contributor to web client
compromises [Provos 2008].

• 

Active content such as Java applets, JavaScript and VBScript code is
downloaded on request of web pages, and executes inside the web browser.
On Windows systems, such code may directly attack code in any local DLL
file that is marked as safe for scripting.

• 

Different web applications execute side by side in the same browser. Often
these applications run inside a single process address space and rely entirely

• 
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on the browser to enforce isolation.

Authorization models of legacy operating systems assign privileges based on
a local user's identity. The models do not distinguish between web
applications from different parties that run on behalf of the same local user.

• 

Mashups aggregate content from multiple providers into a single web page,
and introduce further challenges to isolating applications from different
providers [Wang 2007; de Keukelaere 2007].

• 

Web browsers have evolved from document rendering engines into multi−user
operating systems that need to isolate untrusted applications from each other and
from the local system. To make this task even more challenging, browsers must
implement their isolation policies entirely in user−land code, without assistance from
the underlying operating system.

This report reviews a number of isolation mechanisms that are available for
contemporary operating systems. The mechanisms may be used to partition web
browsers into subsystems that execute web applications in isolation from each other
and from the host platform. Covert channels are not discussed in this report; the
primary focus is on preventing web applications from corrupting other applications or
the host platform itself.

The organization of this report is as follows: after the remainder of the introduction,
section 2 gives an overview of sandboxing mechanisms. Sections 3−6 follow with
more detailed discussions. Section 7 looks at solutions that were developed for other
system architectures. Section 8 discusses findings, and section 9 concludes this
report.

1.1 Current status

Recent system−level efforts partition the browser, and run the partitions under control
of a trusted monitor that enforces policies as it manages communication between
partitions, with the network, with local storage and with the user interface.

Figure 1. Basic partitioned web browser architecture.
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Specific implementations differ in the degree of isolation, and range from the
Tahoma browser with one virtual machine per website [Cox 2006]; the OP browser
with sandboxed processes per website, per browser subsystem, and per browser
extension [Grier 2008]; to Google's Chromium browser with sandboxed processes per
website and non−sandboxed processes per browser extension [Barth 2008]. Others
have proposed an approach that is explicitly inspired by microkernel−based operating
systems [Singh 2008]. This report will focus on the underlying mechanisms that can
be used in such designs, and the limitations of those mechanisms.

At the language level, boundaries between applications have been pioneered recently
by rewriting HTML and JavaScript on the fly [Reis 2006], and by proposing HTML
tags that introduce the concept of a sandbox that limits the resources available to web
applications [Wang 2007]. These approaches will not be discussed in this report.

2 Sandboxing

All mechanisms discussed in this report execute code inside an isolated environment,
also called a sandbox. Sandboxes come in different sizes: a sandbox may be a small
portion of a process address space, it may contain an entire process or group of
related processes, or it may even contain a complete operating system instance. Code
that executes inside a sandbox has no direct access to data or code outside; however,
non−sandboxed code may have access to data or code inside a sandbox.

When sandboxed code wants to access an external resource such as a file or other
application, control switches to a trusted sandbox monitor that either denies the
request or forwards the request on behalf of the sandboxed code. Effectively, the
sandbox monitor interposes on all communication between the sandboxed code and
the world outside, and enforces an access policy. Software that implements this role
is a special case of a reference monitor.

Figure 2. Basic sandbox architecture. The reader beware: not all
sandboxes discussed in this report actually implement this model.

To give the reader a quick idea of the types of technology and their applicability, we
present a brief summary of isolation techniques. Many of these techniques will be
discussed in more detail later in this report.

2.1 Managed code

Some programming systems compile application program statements into executable
code for a virtual machine. These pseudo−machine instructions execute under control
by software. That software not only manages application resources, but also provides
complete mediation between the application and its host environment. Contemporary
examples of managed−code environments are the Java Virtual Machine (JVM) which
executes Java bytecodes [SUN Java 2008], and Microsoft's Common Language
Runtime (CLR) which executes Common Intermediate Language (CIL) bytecodes
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produced by C#, VB.NET, and other compilers [Microsoft CLR 2008]. According to
an older estimate, typical JVMs contain about 105 lines of trusted code [Appel 2002].

Compared to applications that are implemented in unsafe languages such as C or
C++, managed−code applications are relatively immune to memory and control
corruption problems. As long as managed code does not manipulate memory
addresses, corruption problems are limited to the unmanaged code that implements
virtual machine itself and the interface to the host environment. The best−performing
managed−code environments compile pseudo−machine instructions into native code,
and have a runtime overhead of the order of 10% compared to unmanaged code.

The obvious limitation of managed−code systems is that they support only
applications that are implemented in the supported programming languages.
However, a large body of code is written in these languages, so they deserve serious
consideration.

2.2 In−line reference monitor

The second option is to integrate the access policy within the application code itself,
such that the policy is enforced even when the application code has bugs. This is the
goal of software isolation (XFI), discussed in section 3.

In brief, the idea of software isolation is to enforce memory access policies in
software similar to a hardware memory−management unit. This is usually
implemented by performing a static analysis of binary code and inserting run−time
checks with each load, store or jump instruction that cannot be verified statically. The
primary goal is to confine memory access to specific memory address ranges; often,
this also requires some form of control−flow enforcement.

All interactions between the isolated application and its environment are mediated by
trusted code in a separate memory region. The run−time checks may be inserted at
compile time by a dedicated compiler stage, at program startup time, or on−demand
at program runtime. With a run−time overhead of the order of 10%, the running time
of software−isolated code is comparable to that of managed−code virtual machines
with a just−in−time code generator.

2.3 System call sandbox

With modern systems, privileged operating system code handles all interactions
between a process and its environment. Even communication via shared memory or
memory−mapped files requires systems calls to set up the memory mappings. System
call interposition is a popular approach to monitor application activity and to augment
operating system policies, and is discussed in section 4.

System call sandboxes are typically implemented by invoking monitoring code before
and after execution of each system call of interest. The monitoring code examines
system call arguments and application state, and may restrict, modify or audit
application activity. However, this approach also introduces opportunities for race
conditions. Implementors have devised a number of solutions or workarounds, not all
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of which work.

2.4 Hardware memory isolation

Hardware memory management is normally under exclusive control of an operating
system. However, modern ix86−based versions of Linux, BSD, Mac OS X, and
Microsoft Windows implement system calls that provide applications with limited
control over memory segments (contiguous memory ranges with their own protection
settings).

By using memory segments as isolation domains, it becomes possible to safely
execute untrusted code without the overhead of address checking instructions, and to
switch between isolation domains without the cost of a hardware context switch. This
approach requires minor application code modifications to prevent untrusted
applications from executing unsafe instructions, such as system calls, instructions that
manipulate memory segments, or instructions that can jump into the middle of
variable−length instructions. These modifications can be applied on the fly at
runtime, or in advance at application compile time.

Hardware memory isolation is discussed in section 5.

2.5 Resource virtualization

Interposition has uses beyond application confinement. It may also be used to
virtualize an application's view of its environment. With some architectures, the
interposition mechanism hides resources that aren't supposed to be visible from inside
a sandbox. From a sandboxed application's point of view, such resources simply do
not exist. This is the basis for BSD jails and Solaris zones. With other architectures,
the interposition mechanism translates between virtual names inside the sandbox and
physical names outside; this is the basis for API virtualization and hardware
virtualization. Resource virtualization is the subject of section 6.

After this high−level overview we now discuss isolation mechanisms in more detail.

3 In−line reference monitors

Hardware memory protection comes at a price. Besides providing isolation between
memory domains, it also increases the cost of communication between domains. The
Singularity project has measured the cost of virtual memory, hardware isolation, and
privilege levels on ix86 hardware. They find a factor of 3 slowdown in
microbenchmarks with frequent calls from unprivileged code into a monolithic
kernel, compared to calls between real−mode code that executes with "ring 0"
privileges [Aiken 2006].

To avoid the cost of hardware cross−domain communication, many operating
systems and applications load native−code extensions into their address spaces
without any form of isolation. The resulting gain in performance comes at the cost of
stability. According to older studies, Windows/XP device driver bugs are the cause of
85% of system crashes [Switch 2003], and Linux device driver bugs have up to seven
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times the frequency of other kernel bugs [Chou 2001]. At the application level, bugs
in third−party extensions are a frequent cause of web browser failures.

Software fault isolation (SFI) avoids the cost of hardware cross−domain
communication by implementing memory domain boundaries in software. It enforces
memory isolation by inserting run−time checks before load, store and jump
instructions. Just like hardware isolation, SFI only confines memory access to
specific memory ranges. It does not stop an attacker from overwriting arbitrary
portions of memory within a range, or from changing the flow of program execution.

XFI stands for SFI combined with control−flow integrity (CFI). CFI assures that
program execution follows a pre−determined control−flow graph. This has obvious
benefits for stopping control hijacking via memory corruption attacks (for example,
overwriting a function return address on the runtime stack). CFI also provides
opportunities to make SFI more efficient. For example, SFI memory safety checks
may be moved outside loops.

Software isolation relies on correct instrumentation of the untrusted code, plus correct
implementation of the trusted code that implements the interface between the
sandboxed code and its environment. The program that instruments the application
does not need to be trusted, as long as it is possible to statically verify that the
instrumented code is safe.

The next sections discuss SFI and CFI in more detail, including specific
implementations.

3.1 SFI − Software fault isolation

With SFI, a compiler or loader instruments code, such that all memory accesses are
confined to specific code and data address ranges, which are called sandboxes. The
idea is to do a static analysis of load, store and jump instructions, and to insert
run−time checks whenever the target of an instruction cannot be verified statically.
Since the instrumentation is applied at the machine instruction level, it is independent
of higher−level implementation languages.

Separation of code and data sandboxes prevents instrumented code from modifying
its own instructions. In the absence of control−flow integrity (to be discussed below),
the code/data sandbox separation also prevents extensions from jumping into data and
thus executing arbitrary instructions.

Software that runs inside a software fault isolation sandbox must not be allowed to
make direct system calls; this would allow errant or malicious code to manipulate
resources, such as memory or file handles, that belong to code outside its sandbox.
Instead, sandboxed code needs to invoke trusted code that mediates system calls, calls
across software isolation domains, and calls into non−sandboxed code. The trusted
code enforces the sandbox policy on function call arguments and results, and properly
saves and restores processor registers across calls.

The practical cost of software fault isolation is a trade−off between complexity,
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performance, safety, and ease of debugging. Some implementations force code and
data addresses to "wrap around" within their respective sandboxes; this simplifies
implementation, but complicates debugging. Some implementations do not sandbox
load instructions; this can be acceptable in environments without secrets or
destructive read operations. Other implementations allow function call returns and
other jumps to any address within a code sandbox; this simplifies the code sandbox
implementation, but increases the cost of the sandbox, especially with processors that
execute non−aligned instructions, or that have variable−length instructions. With
such processors, jumping into the middle of a multi−byte instruction could result in
the execution of instructions that violate sandbox policy.

3.1.1 Classic SFI

SFI [Wahbe 1993] has two primary motivations: to confine less trusted guest
software that runs in the address space of more trusted host software, and to
implement low−cost communication between protection domains. Security is not one
of the primary goals.

The idea is to introduce software fault domains as subsets of hardware protection
domains. Each software fault domain is allowed to access only its own code and data
address ranges. The implementation uses a special compiler to instrument "unsafe"
loads, stores and jumps. This paper introduces the address "wrap around" technique
to confine data and memory address within their respective sandboxes.

The implementation by Wahbe et al. targets the RISC−based MIPS and ALPHA
processors, and reserves 4 to 5 processor registers. The run−time overhead of a
jump/store sandbox is 5% in macro benchmarks. The run−time overhead increases to
20% when load instructions are sandboxed, too.

; opcode    dest, source
load        data−reg, address
and         data−reg, data−mask
or          data−reg, data−prefix
store       [data−reg], value

Figure 3. Traditional SFI sandbox address wrap−around technique.
By reserving register data−reg for address calculations, the SFI
implementation guarantees that data−reg always contains an address
within the data sandbox, even when execution jumps directly into the
store instruction.

A drawback of this approach is that it is non−trivial to implement on processors with
a limited number of registers, or with variable−length instructions, such as the ix86
processor family.

3.1.2 PittSFIeld − SFI for CISC processors

The PittSFIeld system [McCamant 2006] overcomes the problems with the ix86's
limited registers and variable−length instructions. The implementation consists of two
parts: an untrusted compiler stage, and a trusted load−time verifier of approximately
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800 lines of C code.

The compiler stage breaks up the assembly−level instruction stream into blocks of up
to 16 bytes, and requires that jump destination addresses are multiples of 16. Each
block contains both the memory access check and the instruction that it protects.
Short instruction blocks are padded with NOP instructions. As the result of clever
optimizations, PittSFIeld requires only one reserved register, for the address prefix of
the separate code and data address "wrap around" sandboxes.

n n+16 n+32

Figure 4. Example of machine instructions aligned to 16−byte
blocks. NOP padding is shown in white. Call instructions are placed
at the end of 16−byte blocks, so that return instructions will jump to
the start of the next block.

The run−time overhead of a jump/store sandbox is 21% for SPECint2000
benchmarks; program sizes increase by 70% on average. Roughly half the run−time
overhead is due to the padding with NOP instructions. These instructions not only
take time to execute, but also decrease cache efficiency. In a macro performance
comparison with VXA archive decompressors [Ford 2005], the run−time overhead is
2.8% with VX32's ix86 segment−based sandboxing, and 28% with PittSFIeld's
jump/store sandboxing. VX32 is introduced in section 5.2.

As described, PittSFIeld does not sandbox memory load instructions. This is not a
fundamental limitation. Adding load sandboxing would, however, slow down
execution further. PittSFIeld would have to be re−architected if it were to be
implemented as a trusted program loader instead of a compiler stage plus load−time
verifier.

Erlingsson et al. [Erlingsson 2006] observe that the PittSFIeld implementation is
subject to TOCTOU race conditions when it dereferences return addresses, or when it
loads processor flags from memory. These are not fundamental limitations.

3.1.3 Other SFI approaches

MiSFIT implements SFI for C++ program extensions on ix86 processors [Small
1998]. It is implemented as a compiler stage that transforms assembly language.
MiSFIT provides a limited form of control−flow integrity: virtual function pointers
must match a table of function entry points, and a shadow stack contains copies of
function return addresses and callee−saved registers. The shadow stack is protected
by placing it outside the data sandbox.

There is no explicit code verification step: an extension is either distributed as source
code and compiled before installation, or it is distributed as digitally−signed
sandboxed code. The runtime overhead for a collection of operating extensions
[Small 1996] ranges from 11−22% for a call/store sandbox to 144% for a
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call/store/load sandbox. Selected SPECint 1992 and SPECint 1995 benchmarks show
a run−time overhead of 30−60% (call/store sandbox) and 70−90% (call/store/load
sandbox). As pointed out in [McCamant 2006], MiSFIT allows the call stack to
overwrite non−stack memory.

3.2 CFI − Control−flow integrity

CFI provides assurance that program execution follows a pre−determined
control−flow graph [Abadi 2005a]. As with SFI, the assurance does not rely on data
memory integrity. The implementation uses a combination of intra−procedural static
analysis, plus run−time checks to ensure that jumps (including calls and returns)
follow the control−flow graph, even when function pointers are used. The run−time
checks compare numeric labels which are inserted at both jump instructions and jump
targets. A more formal background for CFI is given in [Abadi 2005b], based on a
generic RISC architecture, though the CFI implementation is for ix86.

In practice, one function may be called from different locations, and one location may
call different functions through a function pointer. Because of this, the same numeric
label will appear at multiple jump destinations. To ensure that function calls return to
their most recent calling sites, CFI uses a shadow call stack. The shadow stack is
protected with ix86 segmentation, and eliminates the need to check function call
return addresses.

SPEC2000 macro performance benchmarks of CFI without protected call stack show
an average memory size overhead of 8%, and an average run−time overhead of 16%.
CFI with protected shadow call stack has a run−time overhead of 21%; no memory
size overhead is given, but the difference will not matter in real life.

CFI has benefits for SFI implementations. For example, SFI memory address checks
can be moved outside a loop, because CFI ensures that a loop can be entered only via
one path. Comparison with a kernel extension benchmark [Small 1996] shows that
CFI+SFI call/load/store protection has 10x less run−time overhead than MiSFIT
[Small 1998]. The comparisons with PittSFIeld appear to be invalid because
PittSFIeld does not sandbox memory load instructions [McCamant 2006].

3.3 XFI − CFI plus SFI and more

XFI [Erlingsson 2006] generalizes earlier work on CFI by the same group. It
introduces a more flexible data memory model than the SFI address "wrap around"
approach; one sandbox can have multiple code and data memory ranges, and different
memory ranges can have different access permissions. This flexibility simplifies
cross−domain communication, but increases run−time overhead and program size.

The XFI implementation uses two stacks. The execution stack is for variables and
call/return linkage information, and is not addressable with pointers; variables are
accessed with constant offsets relative to the stack. As with CFI, the protected stack
eliminates the need to check return addresses. The allocation stack is for items that
may be accessed via pointers, and can therefore become corrupted just like the heap.
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XFI has been used to implement kernel drivers, codecs and DLLs for Windows on
ix86 hardware. The run−time overhead of an earlier benchmark [Small 1996] is
comparable to MiSFIT [Small 1998]. In contrast, the CFI paper from the same group
claimed a factor 10 less overhead than MiSFIT. The XFI memory size overhead is of
the order of 100%, comparable of that of SFI for CISC [McCamant 2006].

3.4 WIT − Write integrity tests

Sofar, software isolation has ensured that memory writes happen only in designated
memory ranges, without regard for the boundaries between individual data objects in
those ranges. This leaves software exposed to non−control−data attacks that corrupt
memory by overwriting user credentials, configuration data, or other
decision−making information [Chen 2005]. To block memory corruption attacks,
WIT [Akritidis 2008] uses a combination of write integrity and control−flow
integrity.

Based on inter−procedural static analysis of C or C++ source code, memory write
instructions are considered safe when they cannot violate data or control−flow
integrity; data objects are considered safe only when all their writes are safe. Unsafe
write instructions and unsafe data objects are given colors; runtime checks ensure that
each unsafe write instruction matches the color of the written−to memory location.
Coloring is also used to match indirect jumps with jump targets. To compensate for
limited precision of static analysis, guard regions with a reserved color are inserted
around unsafe data objects; these guard regions are used to detect buffer overflow or
underflow errors that have a sequential access pattern.

The average runtime overhead for a number of SPEC CPU 2000 benchmarks is about
10%, and the memory size overhead is about 13%. The memory overhead is mostly
due to the color map which uses one byte for every 8 bytes of memory. Due to the
8−byte granularity of protection, unsafe memory objects need to be padded to align
their boundaries with the color map.

WIT uses wrappers around system calls to ensure that arguments have the colors that
the wrapper is allowed to write, and it uses a WIT−instrumented version of the
(Windows) C library.

Besides the limitation that it requires source code, WIT has several other limitations.
Library code is compiled separately from the application, and treats all caller's unsafe
colors as if they were the same. In principle this could be overcome with a wrapper
technique as used with system calls. For ABI compatibility reasons, WIT does not
insert guard regions between member fields within a data structure. Combined with
WIT's use of one color for all members within a data structure, this leaves
opportunities for non−control−data attacks. WIT's color map does, however, limit the
damage that may result from data pointer or function pointer corruption.

4 System−call sandboxes

With modern operating systems, system calls handle all interactions between a
process and its environment. Even communication via shared memory or
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memory−mapped files requires systems calls to set up the memory mappings. System
call interposition is therefore a popular approach to monitor application activity and
to augment operating system policies.

4.1 UNIX System−call wrappers

Many UNIX system call interposition implementations use the same basic
architecture; they are implemented as a wrapper around the generic process/kernel
system call entry point. The general course of events is as follows:

A process makes a system call and passes control to the kernel.1. 
The system call wrapper passes control to a system call monitor which can
inspect the system call arguments and application memory. The monitor may
deny the call and return control to the monitored process, or it may modify
the system call's type or arguments.

2. 

The system call wrapper passes control to the kernel code that implements
the system call.

3. 

The system call wrapper passes control to the system call monitor which can
inspect system call arguments, application memory, and results.

4. 

The system call wrapper passes control to the monitored process.5. 

With early implementations, the system call monitor runs as a user−level process;
examples are Janus [Goldberg 1996], MAPbox [Acharya 2000], and [Jaing 2000].
Janus's footprint is about 2100 lines of code. These implementations use the ptrace()
process debugging interface. This approach has an obvious handicap: the monitoring
process has no access to in−kernel information such as the monitored process's
current directory or its effective privileges. Instead, the monitor has to duplicate
kernel behavior as it witnesses system calls.

Figure 5. Control flow between application A, wrapper W, monitor M
and system call S. The numbers in the figure correspond to the
discussion in the text.

Later wrapper−based system call monitors are implemented in the kernel, typically as
a kernel module, and sometimes with a user−level decision−making process;
examples are GSWTK [Fraser 1999], BlueBoX [Chari 2002], Systrace [Provos 2003]
and Ostia [Garfinkel, 2004]. Ostia's footprint is about 200 lines in the kernel and 3200
lines in the monitor. A kernel−based implementation has the potential for better
performance, some of which will be lost with callouts to user−land helpers.
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Unfortunately, the system call wrapper architecture is prone to race conditions,
because monitors and system calls make their decisions independently [Garfinkel
2003; Watson 2007]. Race conditions may be external to the monitored process: for
example, monitors and system calls resolve application pathnames at different points
in time. Conspiring threads or processes can exploit this by playing games in the file
system with hardlinks or symlinks.

Race conditions may also be internal to the monitored process: this happens when
monitors and system calls read from user−land memory at different points in time.
Conspiring threads or processes can exploit this behavior, for example by changing
the contents of a pathname or network address data structure in shared memory.
Memory races can be won easily even on uniprocessors, by placing data partially on a
non−resident memory page [Watson 2007].

The first problem, resolving pathnames at different points in time, can be solved only
with architectural changes. The solution is to invoke the system call monitor after
user−land information is copied into the kernel and after pathnames etc. have been
resolved to the underlying system objects. Of course, this solution eliminates the next
problem, too.

The second problem, reading user−land memory at different points in time, can be
worked around by using a protected copy of that information. The initial Systrace
implementation saves normalized pathname arguments to a look−aside buffer in
kernel memory [Provos 2003]; Ostia uses system call delegation, where a trusted
monitor process receives a copy of the arguments and makes the system call on
behalf of the monitored process [Garfinkel 2004].

4.2 Google Chromium sandbox

The Google Chromium browser executes processes in low−privilege sandboxes
[Chromium Sandbox 2008], where each sandbox delegates Windows API calls to a
monitoring process (the Windows API is implemented by libraries that make
undocumented kernel calls). The initial Chrome version does not sandbox browser
extensions.

In 2007, Google acquired GreenBorder's patented sandboxing technology which was
used in a Windows web browser security product (e.g., [Erlingsson 2007]).
Reportedly, several members of the Chromium developer team are former
GreenBorder employees [InformationWeek 2008; Kennedy, 2008].

To prevent processes from sidestepping the reference monitor, the Chromium
sandbox revokes privileges during process initialization. This is achieved either with
Windows Vista integrity levels, or with Windows XP security tokens. The latter will
not revoke access to so−called "zero−security" resources such as FAT/FAT32 file
systems or TCP/IP networking [Chromium Sandbox 2008].

Windows versions before Vista do not enforce security on communication between
applications that share the same desktop. For this reason, Chromium sandboxes share
an alternate desktop, and thus can't be used for multimedia applications. Windows
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Vista and later enforce integrity−level checks that can isolate less trusted applications
from other applications that share the same desktop.

4.3 System−call domains

The system call monitors in the previous sections make no structural changes to the
kernel. This limits them to relatively simple policies. The approaches in this section
introduce kernel mechanisms that implement a notion of domains, where different
domains can enforce different policies on processes that share the same domain.

TRON [Berman 1995] executes a process in a domain with reduced file system
access permissions. A process enters a TRON domain with the tron_fork() system
call; child processes inherit the domain attribute from their parent. The tron_fork()
system call may be used recursively, but only if the child domain's privileges don't
exceed the parent domains's privileges. TRON also supports transitive delegation of
permissions from one process to another domain, and supports non−transitive
revocation of delegated permissions. TRON is implemented for Ultrix, a BSD UNIX
descendant.

Peterson et al. describe a more extensive design that also covers non−file resources,
and evaluate a partial implementation for Linux [Peterson 2003]. In this work,
system−call domains may nest, and effective permissions are computed by
intersection with parent domain permissions. As with TRON, a sandbox−aware
process may create a nested domain to delegate a subset of its permissions. Run−time
performance depends on the number of nested domains that need to be checked, and
on whether or not decisions are delegated to a user−land process.

5 Hardware isolation

Hardware memory management is normally under exclusive control of an operating
system. There are two major approaches to manage virtual memory on a system:
paging and segmentation. Paging−based systems divide virtual memory into
equal−size pages, only some of which need to reside in main memory in order to
execute a program. Segmentation−based systems use variable−length segments, only
some of which need to reside in main memory. Some systems use a combination of
both paging and segmentation, so that only some pages of some segments need to
reside in main memory. Both paging and segmentation have been in use for almost 50
years [Fotheringham 1961; Burroughs 1961].

5.1 ix86 Memory segmentation

The ix86 architecture supports both memory paging and segmentation [Intel 2008].
Each memory address space consists of one or more memory segments, where a
memory segment is defined by an entry in a local descriptor table (LDT) with a base
address, segment length, and access permissions (see figure 6). Physical addresses are
computed by using the appropriate segment register value as an index into the LDT
and adding the corresponding base address to the virtual address (the ix86 has
separate segment registers for code, data, stack, plus three other segments). While
updating the LDT is a privileged operation, updating segment registers is not.
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Early work on ix86 sandboxing by Chiueh et al. required kernel modifications
[Chiueh 1999]. Modern versions of Linux, BSD, Mac OS X, and Microsoft Windows
implement system calls that provide an unprivileged application with limited control
over its LDT. By using memory segments as isolation domains, it becomes possible
to safely execute untrusted code without the overhead of address checking
instructions, and to switch between isolation domains without the cost of a hardware
context switch.

Figure 6. ix86 Local descriptor table and memory organization (after
[Irvine 2007]).

The ix86 segmentation feature is available only in 32−bit mode; 64−bit host
applications can still use this to run 32−bit code.

5.2 VX32 − User−level sandbox with hardware support

VX32 implements a sandbox that runs in the context of a host application [Ford
2008]. It uses a combination of ix86 segmentation and light−weight binary
instrumentation to isolate a less trusted guest application from its host. VX32
supports multiple threads: each thread executes its own sandbox, and sandboxes may
share data memory. This approach is independent of the application implementation
language.

A light−weight on−the−fly code translator enforces confinement: guest applications
are not allowed to manipulate segment registers or to make direct system calls. VX32
ensures that jumps, calls and returns go to the start of translated code blocks, which
are kept in a separate segment. In guest applications, data access (including stack)
happens at native speed, while indirect jumps (including function returns) and Linux
system calls are 4−5x slower. The sandbox footprint is 3800 lines of C and 500 lines
of assembly, half of which make up the code translator.

Besides isolating guest memory accesses from its host, VX32 virtualizes the guest's
system call API including signals, and delegates system call execution and signal
delivery to the host application. This can be used not only to confine application
code, but also to implement application binary portability, i.e. to run the same
application binary code on different host OS environments. VX32 host
implementations exist for Linux, FreeBSD and MacOS X.

14



Figure 7. VX32 Memory organization (from [Ford 2008]).

Examples of application binary portability are VXA, an archival system that provides
portable extraction utilities [Ford 2005]; Alpaca, an extensible PKI framework
[Lesniewski−Laas 2007]; and Plan9 VX, a user−level port of the Plan 9 operating
system [Pike 1995] that can run unmodified Plan 9 binaries on any system that has a
VX32 implementation.

SPEC CPU2006 application benchmarks show a run−time overhead that varies with
the CPU model; the worst case is less than 10% for tests with few indirect branches,
and 50−70% otherwise. Due to improved code locality, some benchmarks run up to
20% faster. Macro performance tests with VXA decoders show runtime overheads
from −30% to +30% on a variety of CPU models.

To protect the sandbox, VX32 does not allow guest applications to manipulate
segmentation registers. Thus, VX32 is not compatible with applications that
manipulate segment registers such as 16−bit applications, and with VX32 itself.
VX32 is also not compatible with thread libraries that use segments to store
thread−local data. It would have to be extended to allow guests to create new
segments in a controlled manner.

Like many systems that translate code, VX32 is currently not compatible with some
applications that generate code at run−time. It translates such code into a safe version
for execution, but there is currently no mechanism to invalidate cached translations
when the application changes the original.

5.3 Google Native Client

The Google native client (NaCl) implements an unprivileged sandbox for ix86 mobile
web applications [Yee 2008]. Sandbox implementations exist for Linux, Windows
and MacOS X host environments. NaCl relies on a combination of SFI for CISC
(section 3.1.2) plus ix86 segmentation−based hardware isolation (section 5.1). Like
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VX32, the sandbox provides an OS−independent system call interface and can run
the same application binary on different host OS environments.

The implementation consists of an untrusted compiler toolchain that produces
statically−linked executables, a trusted verifier that inspects guest binary code at load
time, and trusted runtime support code that manages the sandbox and that provides an
infrastructure for communication with web applications and other NaCl sandboxes.
The amount of trusted code is about 25000 lines, of which the trusted verifier takes
up about 500 statements. Guest binary code must adhere to a simple format, so that
all "forbidden" instructions can be found in one monotic scan over the code memory
segment. A second scan verifies that all direct jump instructions will transfer control
to instructions that were found during the first scan.

Figure 8. Memory layout for native−client guest applications. The
untrusted regions contain guest application read−only code,
read−write data and per−thread stacks. The trusted region contains
read−only code to enter and return from system calls; the trusted
read−write data and per−thread stacks are outside guest−accessible
memory.

The NaCl implementation makes the following performance−oriented changes over
the SFI−for−CISC implementation discussed in section 3.1.2. 1) To restrict the
targets of indirect jumps, calls and returns, NaCl increases the instruction memory
block size from 16 to 32 bytes, and forces indirect jump target addresses to be
multiples of 32; the larger instruction memory block size reduces the amount of
instruction padding. 2) The data and code sandboxes are implemented with ix86
segmentation−based hardware isolation. This eliminates the need for address "wrap
around" instructions.

Thanks to this implementation, NaCl performance compares favorably with that of
section 3.1.2. With SPEC2000 benchmarks, application code expansion is reduced
from an average of 70% to less than 50%; the run−time overhead is reduced from an
average of 21% for load/jump sandboxing to 5% on average for full sandboxing (i.e.
load/store/jump). The NaCl implementation uses an external system−call sandbox
(section 4) as a safety net, in case the segmentation−based sandbox fails.

6 Resource Virtualization

The preceding sections focused on interposition as a means to confine program
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execution, by forbidding direct access to external resources. Here we discuss
interposition as a means to virtualize a sandboxed program's view of its environment.

The simplest approach hides resources that must not be visible from inside a sandbox;
from the sandboxed code's point of view, the hidden resources do not exist. A more
sophisticated approach translates between virtual names inside the sandbox and
physical names outside. We will discuss examples of both approaches.

Resource virtualization may be achieved at any suitable interface in the system
architecture. Virtualization at the library interface is suitable only for cooperative
applications, and won't be discussed in this report. Instead we will focus on
virtualization techniques that can be enforced at the operating system and hardware
interfaces.

6.1 Operating system−level virtualization

With virtualization at the operating system interface, multiple execution
environments can exist side by side on top of the same operating system kernel. Each
execution environment provides processes with its own view of the file system,
network, and other resources. Execution environments can have their own
super−users, although only the default execution environment can perform operations
that affect global system properties such as kernel and network configuration.

As a general rule, the runtime cost of kernel−based implementations is only a few
percent, while user−land implementations are an order of magnitude more expensive
due to the additional control transfers to a user−land monitor process.

By avoiding the need for one operating system instance per execution environment,
OS−level virtualization can achieve better scalability than hardware virtualization,
especially when execution environments contain only a limited number of processes
and files. For OS−level virtualization to be successful in production settings, the
underlying system needs to be able to provide strong performance guarantees.

Non−jail program

Non−jail library

Jail 1 program

Jail 1 library

System call
interface

Kernel

Hardware

Figure 8. Operating system−level virtualization showing the default
(non−jail) execution environment and one "jail" execution
environment.

Without system call translation, OS−level virtualization is limited to applications that
can run directly on the host operating system. For example, BSD or Solaris systems
can run executables from a limited number of other operating systems including
Linux. With system call translation, a wider range of application software can be
supported.
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6.1.1 UNIX chroot

The UNIX chroot (change root) system call is a privileged operation that changes the
root directory of the calling process. Although chroot is often used to harden systems,
security was not its initial purpose [Kamp 2002]. To enter a chroot tree, a privileged
process invokes the chroot system call with the pathname of the new root directory,
and changes its current directory to a location under the new root directory. chroot
does not change the semantics of non−file system calls, such as calls that manipulate
processes, networking, or kernel configuration. For this reason, chroot is not suitable
to confine hostile privileged users. Noteworthy applications of chroot are the
anonymous FTP service and the Postfix mail server.

6.1.2 FreeBSD 4.0 Jails

The FreeBSD jail system call [Kamp 2000] takes the chroot concept further, and
provides support for multiple execution environments on the same kernel instance.
Each jail hides processes and files outside the jail, and stamps network packets with
the IP address that is assigned to the jail. To instantiate and enter a jail, a privileged
process specifies a root directory, hostname, and IP address; a privileged process may
also enter an existing jail by specifying its name. There is no "boot" procedure as
with Solaris zones (next section). The name hiding mechanism affects only processes
that execute inside jails, and does not hide resources inside jails from non−jailed
processes. The code footprint is about 400 new lines of kernel code with negligible
performance impact.

Jails confine privileged processes by disallowing system calls that change kernel
configuration, network configuration, and that create device entry points in the file
system. In practice, jails have a few limitations that are direct consequences of their
design. Since jails are primarily based on name hiding instead of name translation,
they don't prevent name clashes in the global System V IPC name space. Another
limitation is that jails must share an IP address with the non−jail environment, in
order to communicate with the network. Thus, network applications in the non−jail
environment may accept or create connections on the IP address that is shared with a
jail.

6.1.3 Solaris 10 zones

Solaris zones [Price 2004] are implemented with name hiding similar to FreeBSD
jails. Unlike jails, Solaris zones contain an entire file system tree (with the exception
of kernel files). Each running zone has a kernel−resident process (zsched) which
holds zone−specific state, and a user−land process (init) which executes the zone's
startup and shutdown procedures. Solaris comes with tools to configure and
instantiate zones, and its package manager is made zone−aware so that package
management works as expected.

As with FreeBSD jails, super−users in zones are not allowed to make system calls
that would be harmful to other zones, and resources inside zones are visible from the
default zone. Unlike FreeBSD jails, resources inside zones are not accessible to
unprivileged users in the default zone, nor can processes in the default zone listen on
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the IP address that is assigned to a zone. The initial Solaris zone implementation
supports CPU resource control per zone, while later versions also support memory
resource control.

According to [Price 2004], runtime overhead for applications inside is zones less than
1%; in practice, the performance is dominated by other factors such as the use of
loop−back file system mounts to conserve disk space.

6.1.4 PeaPod − namespaces and sandboxes

PeaPod uses a combination of private name spaces (Pods) and system call sandboxes
(Peas) to implement least privilege execution on Linux [Potter 2007]. The
implementation has a typical runtime overhead of 4% for popular servers. In many
respects, the PeaPod functionality is similar to that of Systrace plus a FreeBSD jail.

Pods (process domains) implement private name spaces by translating virtual names
in system calls into physical names for the underlying host system, and vice versa.
The translation involves a combination of chroot, system call interposition, and file
system stacking. A pod name space is available only to processes that execute within
that pod, and processes or files outside a pod are inaccessible from inside. For
example, a web service can be implemented with a pod that contains only the
necessary processes and files.

Peas (protection and encapsulation abstractions) enforce restrictions on system calls,
but do not affect the visibility of virtual names inside the same pod. Peas label a pod's
virtual identifiers with the identifier of the pea, by exploiting a combination of system
call interposition and file system stacking. By default, processes within a pea can
manipulate only processes within the same pea. Transition rules specify how a
process can enter a different pea within the same pod, by executing a specific file. For
example, the http daemon of the aforementioned web service can use this transition
mechanism to run cgi programs under control of a different pea.

Peas take advantage of file system stacking to avoid file system race conditions.
Stacking provides a way to hook into the file system's lookup and permission
functions; this ensures that pea policies and system calls apply to the same file system
objects. However, this does not eliminate memory race problems with non−file
system calls that have pointer−valued arguments, such as pointers to network address
data structures.

6.1.5 System call translation

Besides hiding or translating resource names, system call interposition can also be
used to translate system call APIs from alien operating system environments into
their local equivalents. System call translation has a long history. See [Jones 1993]
for earlier examples of implementations that provide one operating system interface
on top of a different one. What follows is a short list of contemporary open source
implementations.

Wine [Winehq 2008] implements the Windows API on top of UNIX−like• 
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systems via API translation, and comes with its own versions of Windows
DLL files, registry and other infrastructure.

The VX32 sandbox [Ford 2008], introduced in Section 5.2, implements
system call delegation with system call translation. Although its primary goal
is to support portable applications that use only a few operating system
services, VX32 has also been used to implement an execution environment
for software that was built to run on the Plan 9 operating system.

• 

The Native Client (NaCl) sandbox [Yee 2008], introduced in section 5.3,
implements system call delegation with system call translation. In this case
the purpose is to run portable guest code that is part of a web application,
where the web browser provides most of the infrastructure and policies to
access remote sites and local resources.

• 

6.1.6 Other OS−level virtualization approaches

Sysjail [Dzonsons 2006] implements FreeBSD jail−style execution environments on
NetBSD and OpenBSD kernels; this is a user−land implementation that builds on the
Systrace system call monitoring infrastructure.

Linux OpenVZ [OpenVZ 2008] and Linux−VServer [VServer 2008] implement
multiple execution environments on Linux kernels; like FreeBSD jails and Solaris
zones, these are kernel−based implementations. Noteworthy is that OpenVZ
implements name translation for process identifiers.

FVM [Yu 2006] is a prototype that implements multiple execution environments on
Windows; it uses copy−on−write name space translation and is implemented as a
kernel−level system call wrapper plus user−level library wrapper.

This area is also covered by commercial browser virtualization products such as
GreenBorder (acquired by Google), as well as products that implement application
virtualization, also known as "application streaming".

6.2 Host−level virtualization

Virtual machine monitors (VMMs) provide virtual hardware environments for guest
operating systems, with (mostly) the same CPU instruction set architecture as the
underlying host's physical hardware. Host virtualization has recently become popular
on commodity hardware with implementations such as VMware [Sugerman 2001],
Xen [Barham 2003], User−mode Linux [Dike 2001], Denali [Whitaker 2002] and
QEMU [Bellard 2005].

Conceptually, VMMs implement virtualization via resource name translation at the
OS/hardware boundary. VMMs interpose on requests for memory, disk and other
hardware resources, and translate between virtual names in the guest and physical
names in the host. Isolation of guest resources is necessary, because operating
systems do not expect to write−share their low−level resources such as disk blocks or
memory pages with other operating system instances.
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Figure 9. Typical software virtual machine architecture. Some
implementations such as Xen [Barham 2003] run the virtual machine
monitor on bare hardware with assistance of a privileged partition
that contains a conventional operating system, and some
implementations such as VMware workstation [Sugerman 2001] run
as an application on top of a conventional host operating system.

6.2.1 VMM security

In practice, resource isolation is not only a matter of resource name translation.
VMMs for commodity platforms are complex systems that run at the highest
privilege level, and that unavoidably introduce vulnerabilities of their own.
According to a recent study, current VMM implementations are particularly prone to
have errors in their handling of malformed requests from guests to emulated hardware
devices [Ormandy 2007].

VMM security can significantly suffer from dependencies on other software.
Implementations such as Xen and VMware workstation target a wide range of
hardware, and rely on a conventional operating system to provide the necessary
device driver support. This increases the privileged code footprint with millions of
lines of code. The security of these VMM's is therefore no stronger than the security
of the conventional operating system that supports the VMM [Wojtczuk 2008,
Karger, 2008].

6.2.2 VMM performance

VMMs maintain control over physical hardware by trapping interrupts and privileged
instructions. Some VMM implementations require guest software modifications, an
approach that is called paravirtualization. Other implementations support unmodified
guest operating systems; this approach is called full virtualization. The two
approaches differ in performance and in complexity.

Paravirtualization can work around non−virtualizable instructions (sensitive
instructions that aren't trapped by the CPU) and can eliminate performance
bottlenecks by replacing multiple traps by a single call into the VMM. Full
virtualization requires dynamic binary translation of non−virtualizable instructions in
kernel code; this instrumentation of kernel code is called on−the−fly
paravirtualization.

21



Virtualization introduces significant overhead when it is implemented by trapping
every individual privileged instruction. For this reason alone, binary translation and
paravirtualization remain relevant solutions even after fully virtualizable CPUs have
become available. Both Xen and VMware currently promote paravirtualization
interfaces.

6.2.3 Video performance

One area that can benefit from paravirtualization is video output. Graphics processing
units (GPUs) provide accelerated performance for demanding tasks such as
three−dimensional rendering or streaming video, but their hardware is not always
documented in public, and open−source drivers are not always available.

Lagar−Cavilla et al. [Lagar−Cavilla 2007] find that 86% or more of non−virtual
performance can be achieved by virtualizing the high−level OpenGL library API
[OpenGL 2008], instead of virtualizing low−level and poorly−standardized hardware
interfaces. VMware Workstation takes a similar approach with DirectX [Microsoft
DirectX 2008; VMware Direct3D 2008].

With Tahoma [Cox 2006], guest machines use a special version of the Qt graphics
library to achieve 60% of local−application streaming video throughput. Other work
on video performance in distributed environments has found improved display
performance up to LAN speeds by hooking intermediate−level primitives [Baratto
2005].

The above approaches communicate requests over conventional network protocols.
With everything running on the same physical hardware, VMware's SVGA guest
driver takes advantage of shared memory and uses virtual DMA to speed up
communication with the host's GPU [Dowty 2008].

6.2.4 The Tahoma web browser

The Tahoma web browser [Cox 2006] uses host virtualization to isolate different web
applications that run on behalf of the same user. Each web domain runs in its own
unprivileged Linux guest machine under the Xen VMM. The privileged "domain 0"
guest machine runs a monitor that manages resources on behalf of web applications,
and runs the browser's window manager. The code footprint is about 10,000 lines.

Besides security, attention is given to application responsiveness and video
performance. Given the heavy isolation mechanisms used, this is not a trivial matter.
Tahoma uses pre−forked virtual machines with stock browsers that can open a new
URL in 1.06 seconds (the latency is 0.84 seconds with the same browser on native
Linux). With a special version of the Qt graphics library, Tahoma achieves about
60% of the streaming video throughput compared to local X11 applications; without
these modifications, the same application in a virtual machine achieves only 5% of
the video throughput with generic X11 over TCP/IP.
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7 Other architectures

Although this report focuses on isolation techniques that may be used with today's
applications and operating systems, it is worthwhile to draw lessons from work on
related problems in other environments. This section lists a number of approaches
that the author encountered during the research for this report.

The subject of multiple protection domains per address space has received attention
from opposing camps; some propose to abandon hardware isolation altogether
because of the cost of cross−domain communication; others firmly believe that
hardware isolation is the only thing that really works; and some see opportunities to
improve cross−domain communication performance without throwing out the child
with the bath−water.

Singularity [Aiken 2006] implements an operating system with software
isolated processes, where memory safety is enforced by a combination of
language type safety and runtime checks. Singularity's processes have
non−overlapping memory ranges. Processes exchange messages by passing
the exclusive use of references to memory blocks in an exchange heap.

The absence of hardware isolation places high demands on the correctness of
the compiler and of its application runtime support, including the in−process
memory garbage collector and the IPC mechanism. Singularity's performance
comes at the price of having to use a type−safe language with reduced
functionality. With conventional systems, unsafe implementation languages
make software isolation much more expensive.

• 

Mondriaan [Witchel 2005] is a hardware and software design for
fine−grained memory protection between multiple protection domains within
a single linear address space. If these features were to become available on
commodity systems, they would benefit the safety of both kernel−level and
application−level extensions.

• 

The authors of Opal [Chase 1992] see the advent of 64−bit computing as an
opportunity to abandon per−process virtual address spaces, which they
consider an artifact of architectures with limited address ranges. Instead, they
advocate the use of one global virtual address space with multiple protection
domains for persistent and non−persistent information.

The idea is to separate the naming (the addresses) from the protection of
those addresses. By making memory address translations context
independent, the authors argue they can simplify the hardware memory
management implementation. If this idea were to be implemented in
commodity hardware, it would help to reduce the cost of cross−domain
communication.

• 

Another related field of research is concerned with information flow policies. Sofar,
mandatory policies have not made much impact on commodity systems. What
follows are examples of mandatory policies based on contamination labels.
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SubOS [Ioannidis 2001] explicitly targets web client security. It implements
isolation by labeling downloaded files according to their origin, and by
contaminating browser helper programs upon access to those files. Once
contaminated, the helper's access rights are determined by the contamination
label instead of the invoking user's identity. SubOS was implemented by
making changes to an OpenBSD kernel.

• 

Asbestos [VanDeBogart 2007] uses mandatory and discretionary labels to
control which services a process can invoke, and which processes it can
communicate with. The labels are used to enforce information flow policies,
by contaminating event−driven threads with the labels of the resources that
they have accessed in the past.

• 

The ideas behind Asbestos are developed in the context of large−scale server
applications that handle information on behalf of many different users. However, the
basic problem is similar to the one that SubOS targets: enforcing isolation policies on
software that manipulates information on behalf of different parties.

8 Discussion

As mentioned in the introduction, the purpose of this report is to review mechanisms
that are compatible with conventional operating systems, and that may be used to
execute web applications in isolation from each other and from the host platform.
Instead of covert channels, the primary focus is on preventing untrusted web
applications from corrupting other applications or the host platform itself. Table 1
summarizes the findings for commodity desktop platforms.

Sandboxing
level

Maturity Generality Performance Security

Host medium OS−independent medium
high privilege,
105 lines

Language
runtime

high language−dependent high with JIT
unprivileged,
105 lines

Operating
system

high to
medium

OS−dependent high to medium103 lines

In−process low language−independenthigh to medium
unprivileged,
104 lines

Table 1. Summary of sandbox approaches. See text for discussion.

Host−level sandboxes use virtualized hardware to encapsulate an entire host,
including operating system and applications. This is the approach taken by the
Tahoma web browser [Cox 2006]. However, from a security point of view, using a
host−level sandbox violates the principle of least privilege, as it encapsulates an
unprivileged application with a complex virtual machine monitor that runs at the
highest privilege level. With contemporary VMM implementations, the poor handling
of malformed guest requests to virtual devices is a cause for concern [Ormandy
2007], as is the critical dependency of such VMMs on conventional operating

24



systems [Wojtczuk 2008; Karger 2008].

Language−runtime sandboxes encapsulate an application within a software virtual
machine. This approach deserves serious consideration especially where major web
browser components are already available in Java [SUN Java 2008] or in languages
supported by Microsoft's CLR [Microsoft CLR 2008]. This approach avoids the need
for high−privileged code, although the trusted code footprint can be of the order of
105 lines [Appel 2002]. The author has insufficient implementation experience in this
area to judge the practicality of these languages for general browser infrastructure
programming.

Operating system−level sandboxes encapsulate applications at the operating system
kernel interface, and share same the kernel with sandboxed and non−sandboxed
applications. This approach is less mature, but it introduces only a small amount of
trusted code, and is therefore attractive from a security point of view. This is the
approach taken by the OP browser [Grier 2008], Google Chromium [Chromium
Sandbox 2008], and Ostia [Garfinkel 2004]. OS−level sandboxes can have code
footprints as small as several thousand lines.

In−process sandboxes encapsulate an untrusted guest application within the address
space of a trusted host application. This approach is the least mature. It requires no
privileged code, and can deliver good performance especially when combined with
hardware segmentation support [Ford 2008, Yee 2008]. Some implementations
provide a generic OS−independent system call API that allows the same binary
application to run on multiple host OS environments. The amount of trusted code can
be as small as several thousand lines. However, in−process sandboxing can be
incompatible with software that generates executable code on the fly, a trend that is
becoming popular with, for example, high−performance JavaScript implementations.
Both the Flash and Acrobat multimedia plugins contain JavaScript engines, in
addition to the JavaScript engines that already reside in the web browsers themselves.

9 Conclusion

This report looked at mechanisms that can harden web browsers for contemporary
operating systems, by partitioning browsers into subsystems that execute with
reduced privileges. The sobering finding is that operating system security, in the form
of OS−level sandboxes, provides a comparatively good return on investment.

Although virtual machine monitors can provide a high degree of isolation [Karger
1991], VMM implementations for desktop environments are far from small, they run
with the highest privilege level, and they critically depend on conventional operating
systems for device driver and management support. It makes little sense to use such
VMMs to sandbox unprivileged application code.

Recent applications of legacy ix86 segmentation have led to a revival of techniques
from mainframe days to run a binary application on top of an alien host operating
system [Ford 2008, Yee 2008]. This is ongoing research, and it will take a few years
before the technology is suitable for general use.
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