Open Trace Format API Specification
Version 1.1

Andreas Knupfer, Holger Brunst

Center for High Performance Computing
University of Dresden, Germany

{knuepfer| brunst}@hr.tu-dresden. de

Allen D. Malony, Sameer S. Shende
ParaTools, Inc.

{mal ony, saneer} @ar at ool s. com

November 13, 2006

Abstract

The Open Trace Format (OTF) is a new trace definition and septation for use with large-
scale parallel platforms. OTF addresses three objecto@snness, flexibility, and performance.
The OTF specification is provided by this document and regmsshe first milestone deliverable
of the University of California (UC), Lawrence Livermore titmal Laboratory (LLNL), subcon-
tract #B548849. The second and third phases of the UC/LLMiept will use this specification

to implement OTF writing and reading libraries, as part ofoaplete tracing solution for the
LLNL IBM BGI/L system.

Contents
1 Introduction

2 OTF Design
2.1 ASCIHFormat
22 Streamsand Files
2.3 StateMachine
2.4 Sorted Streams L
2.5 Binary Searchfor Time Stamps iiie ..
2.6 Definition Record Types e e e
2.7 EventRecord Types i i e e
2.8 SnapshotRecord Types i i e e
2.9 Statistical Summary Record Types i e

3 Application Programming Interface
3.1 Trace Write Interface e
3.2 Trace ReadInterface
3.3 Stream Management Interface L e
3.4 HandlerClass e

4 Application Examples
4.1 Tracelibrary e e
4.2 Trace Merging o v i e e e
4.3 Parallel Readingand Searching aaa.....

w w

o o0~ M N

a1

Conclusion

Global Trace Record Output Handler Interface

A.1 Function Documentation

Global Trace Record Input Handler Interface

B.1 Detailed Description

B.2 Function Documentation

Changelog

18

19
20

36
37
37

50

1 Introduction

The development of scalable tracing tools for high-per@amoe computing (HPC) platforms with
thousands of processors requires both a low-overheadrtraasurement system to generate the trace
data and efficient trace analysis tools to process the ddtataDimportance to tracing tool develop-
ment is an open specification of the trace information thavides a target for trace generation and
enables trace analysis and visualization tools to opefétéeatly at large scale. The integration of
facilities for trace generation with trace analysis andi@igation tools is facilitated by a well-defined
trace format with open, public domain libraries for writiagd reading the trace in that format. In
addition, features of the trace format can directly supaodlysis tool capabilities to speedup up trace
data access and processing. These two benefits combinezsseksiiconcerns for a format that can
target future cross-platform tracing solutions for higldeASC production systems.

The current document gives a detailed specification of thenOpace Format (OTF), created specif-
ically to support the development of scalable performanaeirg tools for the IBM BG/L machine.
The specifications covers the trace storage and processidglprecord types, and an API specifi-
cation for reading and writing OTF event traces. The forntatrasses large applications written in
an arbitrary combination of Fortran77, Fortran (90/95)et€, and C++. The trace representation
supports efficient scalable access and information proaeby structural mechanisms for fast query
and features to increase trace processing flexibility.

The OTF specification shall form the basis for a trace measeméand analysis toolset. In particular,
the OTF will be demonstrated by its use in the TAU performasystem for trace conversion and the
Vampir NG (VNG) for trace analysis and visualization. Figudrshows the integration of OTF in this
suite of tools. TAU presently generates VTF3, EPILOG, andlpe profile files from TAU-formatted
traces. The VTE3 files can be input to Vampir/VNG, but OTF puieed to enable its full efficiency
and performance features. Notice, STF is readable by VAW, but lacks the openess of the
format.

vesld TAU VTF3
i races —
Tracing _ _ G_|_(>Nampih
- :*>\/ VNG/
Trace — |
FEost—process | OTF -
B OTF writing library — parallel
0 OTF reading library __J profiles

Figure 1: Integration of OTF in the TAU Performance Systemd dampir/VNG.

The remainder of the document is organized in two main sestiSection 2 discusses the design and
architecture of OTF. Section 3 presents the applicatiognaraming interface for OTF, consisting of
seven components for reading, writing, managing, and bo§eOTF traces. Then the definition of
specific records types are listed in Section B. The documamtiades with a few OTF application
examples in Section 4.

2 OTF Design

The design of OTF is directed at three objectives: openrilesghility, and performance. The open
format defines the record types and file structure so that @EE files can be both generated and read
correctly. A OTF writing and reading library will be providdater for these purposes. The flexibility
objective in the OTF design comes from choices made withrdsgt trace data representation and
storage, as well as parameters that OTF tools can contralgemze and work with OTF traces.
Performance is determine by how efficient and fast OTF traezygand manipulation can be done.
This section discusses the components of the OTF desige icotfitext of these objectives.

2.1 ASCIl Format

OTF uses a special ASCII data representation to encodetasitéans. ASCIl encoding allows re-

duced storage sizes for small values as leading zeros camitiech All numbers and tokens are
encoded in hexadecimal without the need of a special prefigkhwdilows for a more efficient back

and forth transformation compared to decimal numbers. g&liioer, this enables a very efficient for-
mat with respect to storage size, human readability, andtisemapabilities on timed event records.
Furthermore, it avoids platform dependent byte orderisgés.

2.2 Streams and Files

In order to support fast and selective access to large amofiperformance trace data, OTF is based
on astream-modeli. e. single separate units representing segments of gralbdata. OTF streams
may contain multiple independent processes whereas agsrbetongs to a single stream exclusively.
The latter is needed for consistency reasons and cannotldbedewithout reducing the format's
expressiveness.

Each stream is represented by multiple files which store itiefirecords (see Section 2.6), perfor-
mance events (see Section 2.7), status information (sé®$2®8), and event summaries (see Section
2.9) separately. A single globalaster fileholds the necessary information for the process to stream
mappings.

The names of trace file parts follow a strict naming conventiach file name starts with an arbitrary
common prefix which can be defined by the user. It is followed lbgken identifier used for internal
purposes (process mapping) and a suffix according to theyfile tOTF files araot intended to be
accessed directly but through the OTF library’s API. This istrict requirement to guarantee future
compatibility.

The master file is always namedrane>. otf’. The global definition file is named
'<nanme>. 0. def’. Events and local definitions are placed in filesmnane>. x. event s’ and
‘<nanme>. x. def s’ where the latter files are optional. Snapshots and siistie placed in files
named &nane>. X. snaps’and '<nane>. x. st at s’ which are optional, too.

When copying, moving or deleting traces it is important teetall according files into account. Delet-
ing or modifying single files of a trace will render the whalade invalid!

The OTF library allows to transparently read and write trdeé independently of the underlying
partitioning of streams. Yet, if requested partitioninggraeters can be queried and altered. This

[index [name.otf] [events

global definitions
[name.0.def] L2MapsTots :

Figure 2: Files belonging to an OTF trace.

additional information can be used for various purposesoddgexample is the tuning of the parallel
loading process which obviously depends on the inherermgssoto stream mapping.

Merging with respect to the temporal order of the traced &ssdone on the fly by the library. Apart
from that, the OTF library is able to access trace data ctingisf » files by using a given number
of m file descriptors withl < m < n. This is an important feature to maintain scalability onyver
complex traces.

Figure 3 gives a high-level view of the OTF architecture simgwstreams and files used by the trace
generation and analysis components.

2.3 State Machine

Within every OTF file, records are arranged as single lineextf whereas the detailed structure of
every record type is defined separately.

However, some very frequently used properties are notdieciun the record lines but are handled by
a state machine. This includes time stamp information, gssithread information and maybe others.
For those there are special record types internally thaheekspective property to a value. This value
is then going to be valid for all following records until reggned. With this approach, for example,
time stamps need to be stored only once when multiple reaefds to them. The read and write
handlers for all record types are not affected by this antramhain as known by existing trace format
libraries like VTF3.

2.4 Sorted Streams

Every OTF file needs to be sorted in temporal order. Unsorled &re regarded invalid and no
sorting operation will be made available. There is no needgrite unsorted traces in the first place.

/_E-\ ~
8 S
TAU 28] /Vampir
Tracing £T — \ /NG
o
o
TAU _a)
trace — _
master file
B OTF writing library
0 OTF reading library OTF
streams

Figure 3: OTF Streams and File Architecture

Furthermore, OTF is designed to handle very huge traces>giitily sorting streams won't scale
well for very big streams.

2.5 Binary Search for Time Stamps

All OTF files can be searched very efficiently for time stamp®ider to support fast selective ac-
cess. As records are always sorted by time stamps such tteat/lsearch is applicable. The search
mechanism is based on the fact that record boundaries camdidygdentified in the ASCII format.

2.6 Definition Record Types

As usual with trace formats, there is always a number of di&finrecords. Such records carry some
global properties like timer resolution, process count, efurthermore, they define tokens to be
referenced by event records, which allows for a more effi@acoding.

Definitions can be contained in single streams or globallgessred. There will always be a separate
file for definition records. This makes it possible to defineetts late without disturbing the sorting
order of events. All definitions are accompanied by a stregantifier which tells the scope of the
definition - stream specific or global.

With OTF, all identifiers are tokens, not indices. That measst of N identifiers is not restricted to
{0,1,..., N — 1}. The value of zero (0) is always a reserved token used foria@pmaposes. Apart
from that, actual numerical values of identifiers are notongnt. Identifiers are only compared with
respect to= resp. #, where<, > and hashing operations might be used for internal optiroizaif
table lookup and so on. Tokens are always of tyjpe32_t, i. e. unsigned integers of 32 bit size.

2.7 Event Record Types

Event records are the actual payload for traces. There i@ file per stream, which is sorted in
temporal order.

2.8 Snapshot Record Types

Usually, traces are read linearly from the beginning. As GfitFoduces the possibility to access
arbitrary time stamps fast, some auxiliary informationdrees necessary.

In order to start reading from an arbitrary time stamp, theeni state of all participating processes
needs to be known. If this information is not available froaving read all preceding records as well,
it needs to be stored explicitly. This is whatapshot recordare designed for.

Snapshots provide the call stack (i.e. all active functialtsg, a list of pending messages, ongoing
I/O activities, current OpenMP regions, etc... at a poirttnme (not including events at that very time
stamp itself). Based on this information one can start repdivent records at that very time stamp.

Snapshots are not generated by the OTF library itself but exicitly be added. However, because
they live in a separate file, it is possible to add/manipdlefgace/delete snapshots of a stream without
affecting event data.

It is suggested to create snapshot information for time gsaom regular time distances. Different
granularities for different phases of a trace might be coiarég as well. Snapshots can be added right
after trace file generation as an automated batch job ordatbased on specific preferences.

2.9 Statistical Summary Record Types

A second class of auxiliary information is provided siynmmary recordsThey provide an overview
over a whole interval of time, which might serve as a hint wiketo read all events of that interval of
time or not.

The data provided for this purpose is not explicit valuegpfarticular intervals of time but in a differ-
ential fashion like follows:

In order to provide summary information about a monotonaeseiasing property(¢) for a time
interval [a, b], store the values(a) andp(b). The resulip(]a, b]) can be computed as

p([a,b]) := p(b) — p(a).

With n points in timety, ...t,,_1, there aren x (n — 1) possible interval results([t;, t;]),i # j of
varying granularity that can be queried directly.

In comparison, withn explicit intervals potentially expensive accumulationnadiltiple (small) time
intervals would be necessary to query for more thamtbasic intervals.

Like snapshots, summaries can be added/modified/reptidetéd without affecting events. Also,
they need to be created explicitly and are not generatedeb@i library.

3 Application Programming Interface

The application programming interface (API) consists ofesecomponents as shown in Figure 4.
There are high level trace read and write interfaces c&tkmider andW i t er that address whole

traces. Both refer to the stream management inteiVasd er . For dealing with single streams, read
and write access is handled Bt r eamandWst r eam Finally, the low level access to single files

5

is left to theRBuf f er resp.\\Buf f er . The five high level interfaces are intended to be publicjevhi
the two low level interfaces are for internal use only.

All seven components are described below. See Section #dimal application examples for them.
All OTF components and interfaces are in pure C.

Writer HandlerArray Reader
+streams: WBtreant* +processXyzRecord(this:void*, ...): int +streams: RStreant*
+open(namest ub, m +open(nanest ub)
+cl ose(this) +readDef i ni tions(this, handlers)
+assi gnProcess(this, process, stream +readEvent s(thi s, handl ers)
+mapProcess(this, process) +r eadSnapshot s(t hi s, handl ers)
+Hnt witeXyZ(this,...) +readStatistics(this, handl ers)
T +di sabl eProcess(this, process)
1 +set Ti mel nterval (this, mnTi ne, maxTi ne)
1 T
1 1
R i I i I) 4
(| 1
\' y A
WStream Master RStream
+def Buf fer: WBuffer* +append(§ his: VTF4Mast er Cont r_ul *,in argunent:uint32_t, "
+event Buf fer: WBuffer* invalue:uint32_t): int open()
+cl ose()

+snapshot Buf fer: WBuf f er*

t AbcBuf f
+statisticsBuffer: WBuffer* +ge C;J er()
+get AbcBuf f er (t hi s)
+witeXyz(this,...)

1

1
T 1
1 -
1 1
1 1
1 1

+open()

+cl ose()

+ unp(this,filepos)
+searchTi ne(this, tine)

Figure 4: OTF API Classes Overview

3.1 Trace Write Interface

OTF has a low level and a high level trace writing interfaceattér is for simultaneous writing of
multiple streams (files). The low level interface targetingle streams only.

3.1.1 Global Write Interface

The clas®OTF_Writer and the associated functions are for writing traces withtiplal streams.

OTF_Writer* OTF_Witer_open(char* fil eNanePrefix, uint32_t
nunber O St r eans, OTF_FileManager* fi | eManager);

Open a new OTF_Writer witmunber O St r eans automatic streamsjunber O St r eans=0
means unlimited. Processes are assigned to uputober Of St r eans streams on demand.
If processes are assigned with a call @F_Witer_assi gnProcess() explicitly after
nunber OF St r eans streams are present already, this limit could be exceeded.

int OTF_Witer_close(OTF_Writer* witer);
Close all files and delete the OTF_Writer object.

6

void OTF_Witer_setFormat(OTF_Writer* writer,
uint32_t format);

Set the default ouput format. The format is applied to a##atns opened by the writdror mat may
be OTF_WSTREAM _FORMAT_SHORT or OTF_WSTREAM_FORVAT_LONG

int OTF_W i ter_set Conpression(OTF_Writer* witer,
OTF_FileCompression conpr essi on) ;

Set the standard compression method for all buffers managé#us writer.conpr essi on may be
OTF_FI LECOVPRESSI ON_UNCOVPRESSEDor OTF_FI LECOVPRESSI ON_COVPRESSED. The
function returns 1 on success or 0 on error.

uint32_t OTF_W i ter_assi gnProcess(OTF_Writer* witer,
uint32_t process, uint32_t stream);

Assign the given 'process’ to the specified 'stream’ expiiciMind that O is not a valid stream id but
areserved value. Return error code, where 0 marks success.

int OTF_Witer_ wite<RecordType>(OTF_Writer* witer, ...);

Writes a record of type <Record Type> to an open stream. Tiserspecific version for every record
type with customized signature. See Appendix A for a coneplietscription. Every record is written
to the proper stream and to the appropriate file inside eaeart

3.1.2 Local Write Interface

The clas®OTF_WStream and the associated functions are for writing single streafnastrace.

OTF_WStream* OTF_WSt r eam open(constchar* nanmest ub,
uint32_t id,
OTF_FileManager* fi | eManager);

Open a new writer stream with name prefix ‘'namestub’ and takiémwhich must be unique.

int OTF_W6t ream cl ose(OTF_WStream* wstream);
Close and delete an op@TF_WStream object.

OTF_WBuffer* OTF_W5t r eam get Def Buf f er (
OTF_WStream* wstream);

Return the current streams definitions buffer, which iscalted on demand if not already existing.

OTF_WBuffer* OTF_W5t r eam get Event Buf f er (
OTF_WStream* wstream);

Return the current streams events buffer, which is allacatedemand if not already existing.

OTF_WBuffer* OTF_WS5t r eam get Snapshot Buf f er (
OTF_WStream* wstream);

Return the current streams snapshots buffer, which isabdcon demand if not already existing.

OTF_WBuffer* OTF_Wst r eam get St at sBuf f er (
OTF_WStream* wstream);

Return the current streams summaries buffer, which isaiéston demand if not already existing.

int OTF_WStream write<Record Type>(OTF_WStream* wstream ...);

Write a record of type <Record Type> to the stream 'wstrediwery record is written to the appro-
priate file inside the current stream.

3.1.3 Low Level File Write Interface

The clas®OTF_WABuffer and the associated functions are for writing single files stfeam. This is
for internal use only.

OTF_WBuffer* OTF_WBuf f er _open(constchar* fil enane,
OTF_FileManager* fi | eManager);

constructor - internal use only

int OTF_WBuffer_cl ose(OTF_WBuffer* wbuffer);

destructor - internal use only

int OTF_WBuffer_set Si ze(OTF_WBuffer* wbuffer, size tsize);

Set the size of the memory buffer. Cannot shrink buffer bily extend afterwards.

int OTF_WBuffer _flush(OTF_WBuffer* wbuffer);

Writes the buffer contents to file and marks the buffer empgira

int OTF_\WBuf f er _guar ant ee(OTF_WBuffer* wbuf f er,
size t space);

Ask the buffer to guarantee at least 'space’ bytes at cukseiting position before the next flush is
necessary. Return 1 on success.

int OTF_WBuf f er _set Ti meAndPr ocess(OTF_WBuffer* wbuffer,
uinté4 t t, uint32_t p);

Set process state machine to 'p’ and time stamp state mathitielf 'p’ is the current process and
‘" is the current time stamp, nothing is done. If the prochas changed, a process record will be

written. If the time has changed, the new time stamp and themuprocess will be written. If 't is
lower than the current time stamp, it is regarded as an éReturn != 1 on success and 0 on error.

Furthermore, there are basic write operations modifyirgnttemory buffer:

uint32_t OTF_WBuffer_writeKeyword(OTF_WBuffer* wbuffer,
const char* keyword) ;

Append a keyword to the write buffer. A key word is a stringhwitit quotes. Buffer flush is done if
necessary. Return the number of bytes written.

uint32_t OTF_WBuffer_writeString(OTF_WBuffer* wbuffer,
constchar* string);

Append a string to the write buffer. A string is surroundedjoptes. Buffer flush is done if necessary.
Return the number of bytes written.

uint32_t OTF_WBuffer_writeChar(OTF_WBuffer* wbuffer,
const char character);

Append a char to the write buffer. Buffer flush is done if nsegg. Return the number of bytes
written (=1).

uint32_t OTF_WBuffer_writeU nt32(OTF_WBuffer* wbuffer,
uint32_t val ue);

This function appends an unsigned integer 'value’ in hexnftrto the write buffer. Buffer flush is
done if necessary. The return value is the number of chasastéiten.

uint32_t OTF_WBuffer_witeUi nt64(OTF_WBuffer* wbuffer,
uinté4_t val ue);

This function appends an 64bit unsigned integer 'value'dr format to the write buffer. Buffer flush
is done if necessary. The return value is the number of ctasawritten.

uint32_t OTF_WBuffer_writeNew i ne(OTF_WBuffer* wbuffer);

Append a newline character to the buffer. Buffer flush is didmecessary. Return the number of
bytes written.

3.2 Trace Read Interface

Similar to the writing interface, OTF comes with a dual layeading interface. The global inter-
face provides transparent access to multiple streams wigléocal interface allows access to single
streams only.

3.2.1 Global Read Interface

The clas€OTF_Readerand the associated functions are for reading traces withigleutreams.

OTF_Reader* OTF_Reader _open(constchar* namest ub,
OTF_FileManager* fi | eManager);

Open OTF trace.

int OTF_Reader _cl ose(OTF_Reader* reader);
Close OTF trace and delete tbFF _Reader* object.

int OTF_Reader readDefinitions(OTF_Reader* r eader,
OTF_HandlerArray* handl ers);

This function reads definition records from trace and cdlis appropriate handlers from the
OTF_HandlerArray object given. The default valumunt=0 will read all available records.

Inside the call-back, handlers may return several pre-g@foonstants in order to influence he ba-
haviour of OTF, likeOTF_RETURN_OK, OTF_RETURN_BREAK, OTF_RETURN_ABORT.

int OTF_Reader _readEvents(OTF_Reader* r eader,
OTF_HandlerArray* handl ers);

This function reads event records from trace and calls thprogpiate handlers from the
OTF_HandlerArray object given.

CompareOTF_Reader_readDefinitions()

int OTF_Reader readSnapshot s(OTF_Reader* r eader,
OTF_HandlerArray* handl ers);

This function reads snapshot records from trace and caélsajppropriate handlers from the
OTF_HandlerArray object given.

CompareOTF_Reader_readDefinitions()

int OTF_Reader readStatistics(OTF_Reader* reader,
OTF_HandlerArray* handl ers);

This function reads summary records from trace and callsajmgropriate handlers from the
OTF_HandlerArray object given.

CompareOTF_Reader_readDefinitions()
OTF_RStream* OTF_Reader _get Strean(OTF_Reader* r eader,
uint32_t id);

Search the stream with the given 'id’ and return it.

10

int OTF_Reader _di sabl eProcess(OTF_Reader* reader,
uint32_t processid);

Remove the process with the given 'processid’ from activecess. That means filtering out this
process from reading - no records associated with this psoaee delivered anymore. Return 1 on
success.

voi d OTF_Reader _setTi nel nterval (OTF_Reader* r eader,
uinté4_t m nTi me, uint64_t maxTi ne);

Set 'minTime’ and 'maxTime’ of OTF_Reader. That means fertreading is restricted resp. filtered
according to this time interval.

void OTF_Reader _reset(OTF_Reader* reader);

Reset all processes active and the time interval to the ld€auo].

3.2.2 Local Read Interface

The clas®OTF_RStream and the associated functions are for reading single strefmsrace.

OTF_RStream* OTF_RSt r eam open(const char* namest ub,
uint32_t id,
OTF_FileManager* fi | eManager);

Open an existing stream with ’id’.

int OTF_RSt ream cl ose(OTF_RStream* rstream);

Close and delete an open stream reader object.

int OTF_RStream readDefinitions(OTF_RStream* rstream
OTF_HandlerArray* handl ers);

This function reads definition records from stream and cties appropriate handlers from the
OTF_HandlerArray object given. The default valumunt=0 will read all available records.

Inside the call-back, handlers may return several pre-ge@ficonstants in order to in-
fluence he bahaviour of OTF, likeOTF_RETURN_NULL, OTF_RETURN_BREAK,
OTF_RETURN_ABORT.

int OTF_RSt ream readEvent s(OTF_RStream* rstream
OTF_HandlerArray* handl ers);

This function reads event records from stream and calls th@oariate handlers from the
OTF_HandlerArray object given.

CompareOTF_RStream_readDefinitions()

11

int OTF_RSt ream r eadSnapshot s(OTF_RStream* r stream
OTF_HandlerArray* handl ers);

This function reads snapshot records from stream and dadlsappropriate handlers from the
OTF_HandlerArray object given.

CompareOTF_RStream_readDefinitions()

int OTF_RStream readStatistics(OTF_RStream* rstream
OTF_HandlerArray* handl ers);

This function reads summary records from stream and cadisaibpropriate handlers from the
OTF_HandlerArray object given.

CompareOTF_RStream_readDefinitions()

OTF_RBuffer* OTF_RSt r eam get Def Buf f er (
OTF_RStream* rstream);

Return the streams definition buffer, opened on demand.

OTF_RBuffer* OTF_RSt ream get Event Buf f er (
OTF_RStream* rstream);

Return the streams event buffer, opened on demand.

OTF_RBuffer* OTF_RSt r eam get SnapsBuf f er (
OTF_RStream* rstream);

Return the streams snapshots buffer, opened on demand.

OTF_RBuffer* OTF_RSt ream get St at sBuf f er (
OTF_RStream* rstream);

Return the streams summary buffer, opened on demand.
3.2.3 Low Level File Read Interface

The clas€OTF_RBuffer and the associated functions are for reading single filesstleam. This is
for internal use only.

OTF_RBuffer* OTF_RBuf f er _open(constchar* fil enane,
OTF_FileManager* fi | eManager);

constructor - internal use only

int OTF_RBuf fer_cl ose(OTF_RBuffer* rbuffer);

destructor - internal use only

12

int OTF_RBuf fer_set Si ze(OTF_RBuffer* rbuffer, size tsize);

Set memory buffer size. Cannot shrink buffer but only extend

int OTF_RBuf fer_setJunpSi ze(OTF_RBuffer* rbuffer,
size t size);

Set 'jumpsize’, a parameter for binary searchin a file. Re@uif 'size’ is greater than the buffer size.

char* OTF_RBuf fer get Record(OTF_RBuffer* rbuffer);

Make the next record availabe from the buffer. Return thateoito the record string which is termi-

nated by \n’ not '\0’ ! This function must be called before any record accesensures the record

is available completely in the buffer. Furthermore, timel @nocess information is kept track of. It

is recommended to use the 'OTF_RBuffer_readXXX()’ funcidelow to read record components
instead of parsing manually. In any case, after reading 'GRBuffer_readNewline()’ needs to be
called which proceeds to the next record begin no matteetftlare still characters from the current
record present or not.

int OTF_RBuf f er _guar ant eeRecord(OTF_RBuffer* rbuffer);

Ask the buffer to guarantee at least one complete recorceaittirent read position inside the buffer.
This means one line, e.g\ri’ character. If no complete record is found the buffer haseg@dvanced
by reading new contents from file. Return 1 on success, 0 nibarfde is exceeded.

voi d OTF_RBuffer _printRecord(OTF_RBuffer* rbuffer);

Print the record at the current buffer position, i.e. urité hext newline character. This is for debug-
ging purposes only and won't modify the buffer in any way.

int OTF_RBuf fer_junp(OTF_RBuffer rbuffer, uinté4 t fil epos);

Jump to the given file position and restore buffer and ref@sras if the buffer had reached the
position by advancing through the file linearly. In partemjifind the next record start, then find next
time stamp and process specification in order to set 'timd’’process’ to true values. Return error
code 1 on success. Otherwise, the file is not that large oe e no appropriate time and process
specifications on the tail of the file. In that case the buftertents is undefined.

uinté4_t OTF_RBuf fer _readU nt 64(OTF_RBuffer* rbuffer);

Read an 64bit unsigned integer in hex format from buffer atdrn it.

uint32_t OTF_RBuf fer _readU nt 32(OTF_RBuffer* rbuffer);

Read an unsigned integer in hex format from buffer and raturn

const char* OTF_RBuf fer _readString(OTF_RBuffer* rbuffer);

Read a string from buffer and return it.

13

uint32_t OTF_RBuffer _readArray(OTF_RBuffer* rbuffer,
uint32_t* array);

Read a array afiint32_t integers from buffer and return the number of elements.

int OTF_RBuf f er _test Char(OTF_RBuffer* rbuffer, char ¢);

Test if the next character equals the given one (leadingespaie ignored). If the right character is
found, return 1, and advance by 1 step. If the character wefuaond, keep the buffer position such
that the test can be repeated for another character.

int OTF_RBuffer_testString(OTF_RBuffer* rbuffer,
constchar* string);

Test if the next string equals the given one (leading spaeegaored). If the right string is found,
return 1, and advance the buffer position. If the string watsfound, keep the buffer position such
that the test can be repeated for another string.

int OTF_RBuf fer_readNew i ne(OTF_RBuffer rbuffer);

Read a newline such that the buffer position is at the nexirdelseginning. Skip all characters found,
assume they are to be ignored. Return 1 on success, 0 on error.

voi d OTF_RBuf fer _ski pSpaces(OTF_RBuffer* rbuffer);

Advance the buffer position while there are spaces.

voi d OTF_RBuf f er _ski pKeyword(OTF_RBuffer* rbuffer);

Advance the buffer position while there are capital letters

uinté4_t OTF_RBuffer_get Current Ti mne(OTF_RBuffer rbuffer);

Return the current time of the buffer from state machine.

voi d OTF_RBuffer_setCurrent Ti ne(OTF_RBuffer* rbuffer,
uinté4_t tine);

Set the current time of the buffers state machine to the givien

uint32_t OTF_RBuf f er _get Current Process(
OTF_RBuffer* rbuffer);

Return the current process of the buffer from state machine.

voi d OTF_RBuffer_set Current Process(OTF_RBuffer* rbuffer,
uint32_t process);

Set the current process of the buffers state machine to vikee gne.

14

int OTF_RBuf fer _sear chTi ne(OTF_RBuffer* rbuffer,
uinté4_t tinme);

Search the buffer for the given time and set the buffer posiid the next record after that time. Return
1 on success, 0 on error.

int OTF_RBuf fer _get FirstLastTi me(OTF_RBuffer* rbuffer,
uinté4_t fil esi ze);

Determine buffers firstTime and lastTime if not already &aturn 1 on success, 0 on error.

3.3 Stream Management Interface

The clas9OTF_MasterControl handles the mapping from processes to streams and vice Veisa
intended for internal use only as its functionality can beessed by higher level interfaces. This is
the basic interface (not complete):

OTF_MasterControl* OTF_Mast er Control _new();

Create an emptyOTF_MasterControl structure. The returned object must be freed by
OTF_MasterControl_finish().

OTF_MasterControl* OTF_Mast er Cont rol _read(
const char* nanestub);

Read a master control file according to namestub and iazidalthe newly created
OTF_MasterControl structure accordingly. The returned object must be freed by
OTF_MasterControl_finish().

int OTF_MasterControl finish(OTF_MasterControl* masterCirl);

Destructor, delet®©TF_MasterControl object.

int OTF_MasterControl _write(OTF_MasterControl* masterCtrl,
const char* nanestub);

Write a master control file with the current contents of theegiobject, return 1 on success.

int OTF_Mast er Control _append(OTF_MasterControl* masterCtrl,
uint32_t argunent, uint32_t val ue);

Append the mappingrgument to valuéo the master control structure, return 0 if this conflictshwi
the current mapping.

uint32_t OTF_Mast er Contr ol _get NewSt r eanl d(
OTF_MasterControl* masterCtrl);

Return a previously unused argument. Of course, one camoimt eollisions with arguments explic-
itly defined later on.

15

OTF_MapEntry* OTF_Mast er Contr ol _get Entry(
OTF_MasterControl* master Ctrl, uint32_t argunent);

Return entry for the given argument or NULL.

uint32_t OTF_Mast er Control _mapRever se(OTF_MasterControl* nasterCtrl,
uint32_t val ue);

Return the argument to the given value. If no mapping was eefinake up a new one.

int OTF_Mast er Control _check(OTF_MasterControl* nasterCtrl);

Check if the current mapping is consistent in itself. Retuion success.

3.4 Handler Class

The clasOTF_HandlerArray contains a list of record type specific handlers with custeahisig-
natures.

OTF_HandlerArray* OTF_Handl er Array_open() ;

Open a new array of handlers.

int OTF_Handl er Array_cl ose(OTF_HandlerArray* handl ers);
Close and delete a OTF_HandlerArray object.

int OTF_Handl er Array_set Handl er (OTF_HandlerArray* handl er s,
OTFFunctionPointer* poi nter, uint32_t recordtype);

Assign the function pointer to your own handler of the givenard type. Appendix B lists all sup-
ported record types and their respective handler paraizatiens.

All call-back handlers have anmnt return value which is supposed to deliyierOther return values
are regarded as an error and reading will terminate immadgliat

int OTF_Handl er Array_get CopyHandl er (OTF_HandlerArray* handl ers,
OTF_Writer* writer);

Provide copy handlers directly to all record types that beegivenOTF_Writer* object for output.

int OTF_Handl er Array_set Fi r st Handl er Ar g(
OTF_HandlerArray* handl ers, void* firsthandl erarg,
uint32_t recordtype);

Assign thefirst argumentto your own handler of the given record type. Timst argumentis an
arbitrary pointer of typevoid*. This pointer provides a user data structure inside the laarmdll
without the necessity of using a global variable. The usppked data structure has to be casted to
void* forth and back in order to comply with generic interface.

16

4 Application Examples

Some typical application examples shall emphasize theeustiie different interfaces.

4.1 Trace Library

Within a trace library, the OTF library will be used in orderftush in-memory event buffers to trace
file once in a while. Usually this is performed by every pratésead independently. Communication
inside the trace library should be avoided if possible.

Under those conditions, the local write interface is mosivenient. Every process/thread will open
an exclusive strear®@TF_WStream with an unique identifier. Thus, alV processes can write their
events taV different stream independently.

Definition records can be added at any time: in the beginmlngng tracing or in the end. If there are
local (process/thread specific) definitions, they go thedlpective stream. Global definitions can be
written to the special stream with identifi@rwhich is reserved for such purposes.

Finally, one process (the master) has to write the masteradile, which states the mapping of
processes/threads to streams. In this case, it will be deihpl mapping. So, there is a valid trace
without merging or reprocessing. The event data need nat tolrhed again.

However, reprocessing might be necessary in order to sgndwe timers, translate different local
token sets to a single consistent global token set or otls¥ocessing steps. Furthermore, snapshot
and summary information are to be added to this trace latkis might be combined with explicit
merging like explained in the next scenario.

4.2 Trace Merging

Merging is not strictly necessary if traces are generatiesl dutlined above. However, one might
want to create a different granularity with the mapping aiqasses/thread to streams. For example,
one wants to have fixed number df < N streams such that efficient parallel input is possible on
a parallel analysis environment witf nodes. Or a fixed number @& processes/threads might be
desirable.

The actual merging operation is supported by the OTF libitagjf already. Everything that is left to
do is reading a trace with the given granularity and writinggain with another. Therefore, reading
should be performed via the global read interface. Otherwigerging is not handled by OTF.

The copy handlers provided by the read interface can be ussdlg It requires just a®@TF_Writer
object of the global write interface. It has to be initiatizeith the number of output streams. Alter-
natively, the mapping can also be defined explicitly.

If, besides merging, additional translation or filteringtasbe performed, customized handlers that
receive the records, manipulate them and pass them o@id-aWriter object, should be used.

It is possible to do merging in parallel if the input streams @istributed in a disjoint way.

17

4.3 Parallel Reading and Searching

Reading a trace for analysis provides a number of new pdisibiwith OTF. Of course, classical
linear reading from beginning to end is supported.

First, every analysis application will read definitionselghl as well as all local ones. This is supposed
to be done by every process of an parallel/distributed arsabypplication. All further reading can
take advantage of efficient parallel input. Every analysit@ss can select only a subset of the trace
processes to read. For best efficiency, this mapping shaulaligned to the existing processes to
streams mapping such that every reader process accesseisraiminumber of different streams.

Second, it might refer to summary records (provided theetcamtains some) in order to find interest-
ing spots for selective access.

Third, the application might decide to read a selected timervall = tg,¢; only. Then it has to
search for the latest snapshot time stahp: I. This search is performed by OTF via binary search
which is very fast and efficient.

Processing that snapshot enables the analysis applidatisiart reading from time* in the event
time stamp. This time stamp inside the event stream is aga@ttbd by OTF via binary search. Now,
event by event is delivered by the callback handlers as uddaltiple select and search operations
can be performed subsequently or in parallel.

5 Conclusion

This document represents the first milestone deliverabléhef University of California (UC),
Lawrence Livermore National Laboratory (LLNL), subcontratB548849. The OTF specification
reported here will be updated during the course of the UC/ALIpkbject as necessary to reflect deci-
sions made in the second and third implementation phasé® girbject. No substantial changes to
the specification are anticipated.

18

A Global Trace Record Output Handler Interface

Functions

e OTF_Writer « OTF_Writer_open (charxfileNamePrefix, uint32_t numberOfStreams, OTF_-
FileManagerfileManager)

e int OTF_Writer_close (OTF_Writer swriter)

e int OTF_Writer_closeAllStreams (OTF_Writer swriter)

e int OTF_Writer_setCompression (OTF_Writer swriter, OTF_FileCompression compres-
sion)

e OTF_FileCompressio®@TF_Writer_getCompression (OTF_Writer xwriter)

e void OTF_Writer_setBufferSizes (OTF_Writer swriter, uint32_t size)

e Uint32_tOTF_Writer_getBufferSizes (OTF_Writer swriter)

e void OTF_Writer_setZBufferSizes (OTF_Writer «writer, uint32_t size)

e Uint32_tOTF_Writer_getZBufferSizes (OTF_Writer xwriter)

e void OTF_Writer_setFormat (OTF_Writer swriter, uint32_t format)

e Uint32_tOTF_Writer_getFormat (OTF_Writer swriter)

e UiNt32_t OTF_Writer_assignProcess (OTF_Writer swriter, uint32_t process, uint32_-
t stream)

e OTF_MasterControk OTF_Writer_getMasterControl (OTF_Writer swriter)

e void OTF_Writer_setMasterControl (OTF_Writer swriter, OTF_MasterControtmc)

e int OTF_Writer_writeDefinitionComment (OTF_Writer swriter, uint32_t stream, const
charxcomment)

e int OTF_Writer_writeDefTimerResolution (OTF_Writer swriter, uint32_t stream, uint64_t
ticksPerSecond)

e int OTF_Writer_writeDefProcess (OTF_Writer xwriter, uint32_t stream, uint32_t process,
const chakname, uint32_t parent)

e int OTF_Writer_writeDefProcessGroup (OTF_Writer sxwriter, uint32_t stream, uint32_-
t procGroup, const chaname, uint32_t numberOfProcs, const uint3itocs)

e int OTF_Writer_writeDefFunction (OTF_Writer swriter, uint32_t stream, uint32_t func,
const chaxname, uint32_t funcGroup, uint32_t source)

e int OTF_Writer_writeDefFunctionGroup (OTF_Writer swriter, uint32_t stream, uint32_t
funcGroup, const chamame)

e int OTF_Writer_writeDefCollectiveOperation (OTF_Writer «writer, uint32_t stream,
uint32_t collOp, const chamame, uint32_t type)

e int OTF_Writer_writeDefCounter (OTF_Writer swriter, uint32_t stream, uint32_t counter,
const chakxname, uint32_t properties, uint32_t counterGroup, colmateunit)

e int OTF_Writer_writeDefCounterGroup (OTF_Writer swriter, uint32_t stream, uint32_t
counterGroup, const chaname)

e int OTF_Writer_writeDefScl (OTF_Writer xwriter, uint32_t stream, uint32_t source,
uint32_t sourceFile, uint32_t line)

e intOTF_Writer_writeDefSclFile (OTF_Writer swriter, uint32_t stream, uint32_t sourceFile,
const chakxname)

e int OTF_Writer_writeOtf\Version (OTF_Writer swriter, uint32_t stream)

19

e int OTF_Writer_writeDefCreator (OTF_Writer sxwriter, uint32_t stream, const char
xcreator)

e int OTF_Writer_writeEnter (OTF_Writer xwriter, uint64_t time, uint32_t function, uint32_t
process, uint32_t source)

e intOTF_Writer_writeLeave (OTF_Writer xwriter, uint64_t time, uint32_t function, uint32_t
process, uint32_t source)

e int OTF_Writer_writeRecvMsg (OTF_Writer swriter, uint64_t time, uint32_t receiver,
uint32_t sender, uint32_t procGroup, uint32_t tag, uint3@ngth, uint32_t source)

e int OTF_Writer_writeSendMsg (OTF_Writer swriter, uint64 t time, uint32_t sender,
uint32_t receiver, uint32_t procGroup, uint32_t tag, 8itt length, uint32_t source)

e int OTF_Writer_writeCounter (OTF_Writer xwriter, uint64 _t time, uint32_t process,
uint32_t counter, uint64_t value)

e int OTF_Writer_writeCollectiveOperation (OTF_Writer «writer, uint64_t time, uint32_-
t process, uint32_t collective, uint32_t procGroup, untlrootProc, uint32_t sent, uint32_t
received, uint64_t duration, uint32_t source)

e int OTF_Writer_writeEventComment (OTF_Writer swriter, uint64_t time, uint32_t pro-
cess, const chacomment)

e int OTF_Writer_writeBeginProcess (OTF_Writer swriter, uinté64 _t time, uint32_t process)

e int OTF_Writer_writeEndProcess (OTF_Writer swriter, uint64_t time, uint32_t process)

e int OTF_Writer_writeSnapshotComment (OTF_Writer swriter, uint64_t time, uint32_-
t process, const chacomment)

e int OTF_Writer_writeEnterSnapshot (OTF_Writer swriter, uinté4_t time, uinté4_t orig-
inaltime, uint32_t function, uint32_t process, uint32otice)

e int OTF_Writer_writeSendSnapshot(OTF_Writer swriter, uint64_t time, uint64_t original-
time, uint32_t sender, uint32_t receiver, uint32_t pramd; uint32_t tag, uint32_t source)

e int OTF_Writer_writeSummaryComment (OTF_Writer swriter, uint64_t time, uint32_-
t process, const chacomment)

e int OTF_Writer_writeFunctionSummary (OTF_Writer swriter, uint64_t time, uint32_-
t function, uint32_t process, uint64 _t count, uint64 _tléxe, uint64 _t incltime)

e int OTF_Writer_writeFunctionGroupSummary (OTF_Writer swriter, uint64_t time,
uint32_t functiongroup, uint32_t process, uinté4_t coumt64 _t excltime, uint64_t incltime)

e int OTF_Writer_writeMessageSummary (OTF_Writer swriter, uinté4_t time, uint32_t pro-
cess, uint32_t peer, uint32_t comm, uint32_t tag, uintGurhber_sent, uint64_t number_-
recved, uint64_t bytes sent, uint64_t bytes_recved)

A.1 Function Documentation

A.1.1 OTF_Writer «+ OTF_Writer_open (char * fleNamePrefix uint32_t numberOfStreams
OTF_FileManager « fileManagen
Create a new OTF_Writer instance with a given number of aatmnstreams.

Setting the number of streams to 0 causes the OTF_Writeciolecreate a separate stream for
each process. Important! Explicit calls@'F_Writer_assignProcess(p. 23) can lead to an overall
number of streams which exceeds the initial number of stsdarthis call. OTF can reduce its file

20

handle usage to a given number. Therefore, an initializedrfdnager instance is needed as parameter.
See OTF_FileManager for further details.

Parameters:

fileNamePrefix File name prefix which is going to be used by all sub-files whielong to the
trace.

numberOfStreamsinitial number of independent data streams to be generated.
fileManager File handle manager.

Returns:
Initialized OTF_Writer instance or 0O if a failure occurred.

A.1.2 int OTF_Writer_close (OTF_Writer « writer)
Close an OTF_Writer instance and all its related files.

Parameters:
writer Pointer to an initialized OTF_Writer object. See a8dF Writer_open()(p. 20).

Returns:
1 ifinstance was closed successfully and 0 otherwise.

A.1.3 int OTF_Writer_closeAllStreams (OTF_Writer « writer)
Close all streams that are open in this writer instance.

Parameters:
writer Pointer to an initialized OTF_Writer object. See a80F_ Writer_open()(p. 20).

Returns:
1 on success, 0 if an error occurs.

A.1.4 int OTF_Writer_setCompression (OTF_Writer « writer, OTF_FileCompression
compressiof

Set the standard compression method for all buffers manag#ds writer

Parameters:
writer Pointer to an initialized OTF_Writer object. See aBdF_Writer_open()(p. 20).

compressioncompression level to apply to all following streams 0-9, veéh@ means no com-
pression is applied, and 9 is the highest level of comprassio

Returns:
1 on success, 0 if an error occurs.

21

A.1.5 OTF_FileCompression OTF_Writer_getCompression (OF_Writer « writer)

Return the standard compression method for all buffers gethly this writer

Parameters:
writer Pointer to an initialized OTF_Writer object. See aB0F_Writer_open()(p. 20).

Returns:

Standard compression level for all buffers managed by thiemw

A.1.6 void OTF_Writer_setBufferSizes (OTF_Writer x writer, uint32_t sizg

Set the default buffer size for all buffers managed by thist&¥r This is only effective for future
buffers and will not change already allocated buffers. Ehwen be changed with the buffers directly.

Parameters:
writer Pointer to an initialized OTF_Writer object. See a80F_ Writer_open()(p. 20).

size Intended buffer size.

A.1.7 uint32_t OTF_Writer_getBufferSizes (OTF_Writer « writer)

Get the default buffer size for all buffers managed by thist&vr

Parameters:
writer Pointer to an initialized OTF_Writer object. See a8dF Writer_open()(p. 20).

Returns:

Default buffer size for all buffers managed by this Writer.

A.1.8 void OTF_Writer_setZBufferSizes (OTF_Writer x writer, uint32_t sizg

Set the default zbuffer size for all buffers managed by theader. This is only effective for future
files and will not change already allocated zbuffers. Th@sele changed with the files directly.

Parameters:
writer Pointer to an initialized OTF_Writer object. See a80F_Writer_open()(p. 20).

size Intended zbuffer size.
A.1.9 uint32_t OTF_Writer_getZBufferSizes (OTF_Writer * writer)

Get the default zbuffer size.

Parameters:
writer Pointer to an initialized OTF_Writer object. See a8dF_ Writer_open()(p. 20).

Returns:
zbuffer size.

22

A.1.10 void OTF_Writer_setFormat (OTF_Writer « writer, uint32_t format)

Set the default ouput format. The format is applied to aélatns opened by the writer.

Parameters:
writer Pointer to an initialized OTF_Writer object. See a80F_ Writer_open()(p. 20).

format Intended output format (OTF_WSTREAM_FORMAT_{LONG,SHORT
A.1.11 uint32_t OTF_Writer_getFormat (OTF_Writer « writer)

Get the default output format of all streams managed by thiem

Parameters:
writer Pointer to an initialized OTF_Writer object. See a86F Writer_open()(p. 20).

Returns:
Default output format.

A.1.12 uint32_t OTF_Writer_assignProcess (OTF_Writerx writer, uint32_t processuint32_t
stream)
Explicitly assign a given process to a specific stream.

Mind that O is not a valid stream or process identifier but @ame=d value. By default, processes are
automatically assigned to streams. Therefore, this calpi®nal.

Parameters:
writer Pointer to an initialized OTF_Writer object. See a80F_Writer_open()(p. 20).

processProcess identifier. See al&I'F_Writer_writeDefProcess()(p. 25).

stream Target stream identifier with €& stream<= number of streams as defined @TF_-
Writer_open()(p. 20).

Returns:
1 on success, 0 if an error occurs.

A.1.13 OTF_MasterControlx OTF_Writer_getMasterControl (OTF_Writer s« writer)

Get a pointer to the master control object of the given wiristance.

Parameters:
writer Pointer to an initialized OTF_Writer object. See a@0F_Writer_open()(p. 20).

Returns:
Pointer to a master control object. See OTF_MasterControl.

23

A.1.14 void OTF_Writer_setMasterControl (OTF_Writer * writer, OTF_MasterControl
mCc)

Set an alternative master control object. Use this onlyt rditer initialization but never after having
written some records already!

Parameters:
writer Pointer to an initialized OTF_Writer object. See a80F_Writer_open()(p. 20).

mc new master control object

A.1.15 int OTF_Writer_writeDefinitionComment (OTF_Write r x writer, uint32_t stream
const char* commeny

Write a comment record.

Parameters:
writer Initialized OTF_Writer instance.

stream Target stream identifier with €& stream<= number of streams as defined @TF_-
Writer_open()(p. 20).

comment Arbitrary comment string.

Returns:
1 on success, 0 if an error occurs.

A.1.16 int OTF_Writer_writeDefTimerResolution (OTF_Wri ter x writer, uint32_t stream
uint64_t ticksPerSecony

Write the timer resolution definition record. All timed eteacords will be interpreted according to
this definition. By default, a timer resultion of 1 us i.e. @QQ000 clock ticks is assumed.

Parameters:
writer Pointer to an initialized OTF_Writer object. See a80F_Writer_open()(p. 20).

stream Target stream identifier with & stream<= number of streams as defined @TF_-
Writer_open()(p. 20).

ticksPerSecondClock ticks per second of the timer.

Returns:
1 on success, 0 if an error occurs.

24

A.1.17 int OTF_Writer_writeDefProcess (OTF_Writer « writer, uint32_t stream uint32_t
processconst charx name uint32_t pareny

Write a process definition record.

Parameters:
writer Pointer to an initialized OTF_Writer object. See a8dF Writer_open()(p. 20).

stream Target stream identifier with & stream<= number of streams as defined @TF_-
Writer_open()(p. 20).

processArbitrary but unique process identifier 0.
name Name of the process e.g. "Process X".
parent Previously declared parent process identifier or O if pre¢es no parent.

Returns:
1 on success, 0 if an error occurs.

A.1.18 int OTF_Writer_writeDefProcessGroup (OTF_Writer s writer, uint32_t stream
uint32_t procGroup const charx name uint32_t numberOfProcs const uint32_tx
procs

Write a process group definition record.

OTF supports groups of processes. Their main objectivedassify processes depending on arbitrary
characteristics. Processes can reside in multiple grags.record type is optional.

Parameters:
writer Pointer to an initialized OTF_Writer object. See aB0F_Writer_open()(p. 20).

stream Target stream identifier with & stream<= number of streams as defined @TF_-
Writer_open()(p. 20).

procGroup Arbitrary but unique process group identifierO.
name Name of the process group e.g. "Well Balanced".
numberOfProcs The number of processes in the process group.

procs Vector of process identifiers or previously defined processgidentifiers as defined with
OTF_Writer_writeDefProcess()p. 25) resp. OTF_Writer_writeDefProcessGroup.

Returns:
1 on success, 0 if an error occurs.

A.1.19 int OTF_Writer_writeDefFunction (OTF_Writer s writer, uint32_t stream uint32_t
func, const charx name uint32_t funcGroup, uint32_t source
Write a function definition record.

Defines a function of the given name. Functions can optigria@long to a certain function group
to be defined with th©TF_Writer_writeDefFunctionGroup() (p. 26) call. A source code reference
can be added to the definition aswell.

25

Parameters:
writer Pointer to an initialized OTF_Writer object. See a80F_Writer_open()(p. 20).

stream Target stream identifier with & stream<= number of streams as defined @TF_-
Writer_open()(p. 20).

func Arbitrary but unique function identifier O.
name Name of the function e.g. "DoSomething".

funcGroup A function group identifier preliminary defined witl©TF_ Writer writeDef-
FunctionGroup()(p. 26) or O for no function group assignment.

source Reference to the function’s source code location prelinyidafined withOTF_Writer_-
writeDefScl()(p. 28) or 0 for no source code location assignment.

Returns:
1 on success, 0 if an error occurs.

A.1.20 int OTF_Writer_writeDefFunctionGroup (OTF_Write r « writer, uint32_t stream
uint32_t funcGroup, const charx name

Write a function group definition record.

Parameters:
writer Pointer to an initialized OTF_Writer object. See a80F_ Writer_open()(p. 20).

stream Target stream identifier with €& stream<= number of streams as defined @TF_-
Writer_open()(p. 20).

funcGroup An arbitrary but unique function group identifier 0.
name Name of the function group e.g. "Computation".

Returns:
1 on success, 0 if an error occurs.

A.1.21 int OTF_Writer_writeDefCollectiveOperation (OTF _Writer * writer, uint32_t stream
uint32_t collOp, const charx name uint32_t type

Write a collective operation definition record.

Parameters:

writer Initialized OTF_Writer instance.

stream Target stream identifier with & stream<= number of streams as defined @TF_-
Writer_open()(p. 20).

collOp An arbitrary but unique collective op. identifier O.

name Name of the collective operation e.g. "MPI_Bcast".

type One of the five supported collective classes: OTF_COLLEEIVYPE _UNKNOWN
(default), OTF_COLLECTIVE_TYPE_BARRIER, OTF_COLLECTE/TYPE_-

ONE2ALL, OTF_COLLECTIVE_TYPE_ALL20ONE, OTF_COLLECTIVETYPE_-
ALL2ALL.

Returns:
1 on success, 0 if an error occurs.

26

A.1.22 int OTF_Writer_writeDefCounter (OTF_Writer s writer, uint32_t stream uint32_t
counter, const charx name uint32_t properties uint32_t counterGroup const char
unit)

Write a counter definition record.

Parameters:
writer Initialized OTF_Writer instance.

stream Target stream identifier with €& stream<= number of streams as defined @TF_-
Writer_open()(p. 20).

counter An arbitrary but unique counter identifier.

name Name of the counter e.g. "Cache Misses".

properties A combination of a type and scope counter property. OTF_COBER _TYPE_ACC
(default) represents a counter with monotonously incregsalues e.g. a FLOP counter.
OTF_COUNTER_TYPE_ABS on the other hand defines a countdr aliernating abso-
lute values e.g. the memory usage of a process. The folloggngter measurement scopes
are supported: OTF_COUNTER_SCOPE_START (default) alwefgss to the start of the
process, OTF_COUNTER_SCOPE_POINT refers to exactly tlusent in time, OTF_-
COUNTER_SCOPE_LAST relates to the previous measuremedtOdF COUNTER_-
SCOPE_NEXT to the next measurement. Examples: OTF_COUNTEKRE_ACC +
OTF_COUNTER_SCOPE_START should be used for most standardware (PAPI)
counters. OTF_COUNTER_TYPE_ABS + OTF_COUNTER_SCOPENICdould be
used to record information 'spikes’. OTF_COUNTER_TYPE &B OTF_COUNTER_-
SCOPE_NEXT works for memory allocation recording.

counterGroup A previously defined counter group identifier or O for no group
unit Unit of the counter e.g. "#" for "number of..." or O for no unit

Returns:
1 on success, 0 if an error occurs.

A.1.23 int OTF_Writer_writeDefCounterGroup (OTF_Writer =« writer, uint32_t stream
uint32_t counterGroup const charx name

Write a counter group definition record.

Parameters:
writer Initialized OTF_Writer instance.

stream Target stream identifier with €& stream<= number of streams as defined @TF_-
Writer_open()(p. 20).

counterGroup An arbitrary but unique counter group identifier.
name Counter group name.

Returns:
1 on success, 0 if an error occurs.

27

A.1.24 int OTF_Writer_writeDefScl (OTF_Writer x writer, uint32_t stream uint32_t source
uint32_t sourceFile uint32_tline)

Write a source code location (SCL) record.

Parameters:
writer Initialized OTF_Writer instance.

stream Target stream identifier with & stream<= number of streams as defined @TF_-
Writer_open()(p. 20).

source Arbitrary but unique source code location identifie©.
sourceFile Previously defined source file identifier. S8€F_Writer_writeDefSclFile() (p. 28).
line Line number.

Returns:
1 on success, 0 if an error occurs.

A.1.25 int OTF_Writer_writeDefSclFile (OTF_Writer x writer, uint32_t stream uint32_t
sourceFile const charx name

Write a source code location (SCL) file record.

Parameters:
writer Initialized OTF_Writer instance.

stream Target stream identifier with & stream<= number of streams as defined @TF_-
Writer_open()(p. 20).

sourceFile Arbitrary but unique source code location identifier != 0.
name File name.

Returns:
1 on success, 0 if an error occurs.

A.1.26 int OTF_Writer_writeOtfVersion (OTF_Writer * writer, uint32_t stream

Write a version record. There are no value parameters be¢heOTF version is determined by the
currently used library itself.

Parameters:
writer Initialized OTF_Writer instance.

stream Target stream identifier with €& stream<= number of streams as defined @TF_-
Writer_open()(p. 20).

Returns:
1 on success, 0 if an error occurs.

28

A.1.27 int OTF_Writer_writeDefCreator (OTF_Writer « writer, uint32_t stream const char
creator)

Write a creator record.

Parameters:
writer Initialized OTF_Writer instance.

stream Target stream identifier with €& stream<= number of streams as defined @TF_-
Writer_open()(p. 20).

creator String which identifies the creator of the file e.g. "TAU Versix.y.z".

Returns:
1 on success, 0 if an error occurs.

A.1.28 int OTF_Writer_writeEnter (OTF_Writer s writer, uinté4_t time, uint32_t function,
uint32_t processuint32_t source

Write a function entry record.

Parameters:
writer Initialized OTF_Writer instance.

time The time when the function entry took place.

function Function to be entered as defined with OTF_Writer_defFancti
processProcess where action took place.

source Optional reference to source code.

Returns:
1 on success, 0 if an error occurs.

A.1.29 int OTF_Writer_writeLeave (OTF_Writer x writer, uint64_t time, uint32_t function,
uint32_t processuint32_t source

Write a function leave record.

Parameters:
writer Initialized OTF_Writer instance.

time The time when the function leave took place.

function Function which was left or O if stack integrety checking i$ needed.
processProcess where action took place.

source Explicit source code location or O.

Returns:
1 on success, 0 if an error occurs.

29

A.1.30 int OTF_Writer_writeRecvMsg (OTF_Writer x writer, uint64_t time, uint32_t
receiver uint32_t sender uint32_t procGroup uint32_t tag, uint32_t length, uint32_t
source

Write a message retrieval record.

Parameters:
writer Initialized OTF_Writer instance.

time The time when the message was received.

receiver ldentifier of receiving process.

sender ldentifier of sending process.

procGroup Optional process-group sender and receiver belong topid group.
tag Optional message type information.

length Optional message length information.

source Optional reference to source code.

Returns:
1 on success, 0 if an error occurs.

A.1.31 int OTF_Writer_writeSendMsg (OTF_Writer * writer, uinté4_t time, uint32_t sender
uint32_t receiver uint32_t procGroup uint32_t tag, uint32_t length, uint32_t source

Write a message send record.

Parameters:
writer Initialized OTF_Writer instance.

time The time when the message was send.

sender Sender of the message.

receiver Receiver of the message.

procGroup Optional process-group sender and receiver belong topihd group.
tag Optional message type information.

length Optional message length information.

source Optional reference to source code.

Returns:
1 on success, 0 if an error occurs.

30

A.1.32 int OTF_Writer_writeCounter (OTF_Writer =« writer, uint64_t time, uint32_t process
uint32_t counter, uint64_t value)

Write a counter measurement record.

Parameters:
writer Initialized OTF_Writer instance.

time Time when counter was measured.
processProcess where counter measurment took place.
counter Counter which was measured.

value Counter value.

Returns:
1 on success, 0 if an error occurs.

A.1.33 int OTF_Writer_writeCollectiveOperation (OTF_Wr iter « writer, uinté4_t time,
uint32_t processuint32_t collective uint32_t procGroup uint32_t rootProg uint32_t
sent uint32_t received uint64 _t duration, uint32_t source

Write a collective operation member record.

Parameters:
writer Initialized OTF_Writer instance.

time Time when collective operation was entered by member.
processProcess identifier i.e. collective member.

collective Collective identifier to be defined withOTF_Writer writeDefCollective-
Operation()(p. 26).

procGroup Group of processes participating in this collective.
rootProc Root process if I= 0.

sent Data volume sent by member or O.

received Data volumd received by member or O.

duration Time spent in collective operation.

source Explicit source code location or O.

Returns:
1 on success, 0 if an error occurs.

A.1.34 int OTF_Writer_writeEventComment (OTF_Writer « writer, uint64_t time, uint32_t
process const charx commeny

Write a comment record.

31

Parameters:
writer Initialized OTF_Writer instance.

time Comments need a timestamp for a proper positioning in tlee tra
processComments also need a process identifier for a proper pasigon the trace.
comment Arbitrary comment string.

Returns:
1 on success, 0 if an error occurs.

A.1.35 int OTF_Writer_writeBeginProcess (OTF_Writer * writer, uint64_t time, uint32_t
proces$

Write a begin process record

Parameters:
writer Initialized OTF_Writer instance.

time Time when process was referenced for the first time.
processProcess identifier O.

Returns:
1 on success, 0 if an error occurs.

A.1.36 int OTF_Writer_writeEndProcess (OTF_Writer « writer, uint64_t time, uint32_t
proces$

Write a end process record

Parameters:
writer Initialized OTF_Writer instance.

time Time when process was referenced for the last time.
processProcess identifier O.

Returns:
1 on success, 0 if an error occurs.

A.1.37 int OTF_Writer_writeSnapshotComment (OTF_Writer * writer, uint64_t time,
uint32_t processconst charsx commeny

Write a snapshot comment record.

Parameters:
writer Initialized OTF_Writer instance.

time Comments need a timestamp for a proper positioning in tlee tra
processComments also need a process identifier for a proper pasigion the trace.
comment Arbitrary comment string.

Returns:
1 on success, 0 if an error occurs.

32

A.1.38 int OTF_Writer_writeEnterSnapshot (OTF_Writer « writer, uint64_t time, uint64_t
originaltime, uint32_t function, uint32_t processuint32_t source

Write an enter snapshot which provides information abowdst function call

Parameters:
writer Initialized OTF_Writer instance.

time Time when the snapshot was written(current time).

originaltime Time when the according enter record was entered. Thiscalili on the stack.(It
has not been left yet)

function Function that the has been entered OTF_Writer_defFunction
processProcess where action took place.
source Optional reference to source code.

Returns:
1 on success, 0 if an error occurs.

A.1.39 int OTF_Writer_writeSendSnapshot (OTF_Writer * writer, uint64_t time, uint64_t
originaltime, uint32_t sender uint32_t receiver uint32_t procGroup uint32_t tag,
uint32_t source

Write a send snapshot which provides information about &passage send operation that is still
pending, i.e. not yet received

Parameters:
writer Initialized OTF_Writer instance.

time Time when the snapshot was written(current time).

originaltime Time when the message was sent

sender Sender of the message.

receiver Receiver of the message.

procGroup Optional process-group sender and receiver belong topihd group.
tag Optional message type information.

source Optional reference to source code.

Returns:
1 on success, 0 if an error occurs.

A.1.40 int OTF_Writer_writeSummaryComment (OTF_Writer * writer, uint64_t time,
uint32_t processconst charx commeny

Write a summary comment record.

33

Parameters:
writer Initialized OTF_Writer instance.

time Comments need a timestamp for a proper positioning in tlee tra

processComments also need a process identifier for a proper pasigon the trace.
comment Arbitrary comment string.

Returns:
1 on success, 0 if an error occurs.

A.1.41 int OTF_Writer_writeFunctionSummary (OTF_Writer * writer, uint64_t time,
uint32_t function, uint32_t process uinté4 _t count, uint64_t excltime uint64_t
incltime)

Write a function summary record.

Parameters:
writer Initialized OTF_Writer instance.

time Time when summary was computed.

function Function as defined with OTF_Handler_DefFunction.
processProcess of the given function.

count Number of invocations.

excltime Time spent exclusively in the given function.

incltime Time spent in the given function including all sub-routirel.

Returns:
1 on success, 0 if an error occurs.

A.1.42 int OTF_Writer_writeFunctionGroupSummary (OTF_W riter « writer, uint64_t time,

uint32_t functiongroup, uint32_t processuint64_t count, uint64_t excltime uint64_t
incltime)

Write a functiongroup summary record.

Parameters:
writer Initialized OTF_Writer instance.

time Time when summary was computed.

functiongroup Function group as defined with OTF_Handler_DefFunction@ro
processProcess of the given function group.

count Number of invocations.

excltime Time spent exclusively in the given function group.

incltime Time spent in the given function group including all subtmoe calls.

Returns:
1 on success, 0 if an error occurs.

34

A.1.43 int OTF_Writer_writeMessageSummary (OTF_Writer « writer, uinté4_t time,
uint32_t processuint32_t peer;, uint32_t comm uint32_t tag, uinté4_t number_sent
uint64_t number_recveduint64_t bytes_sentuint64_t bytes recved

Write a message summary record.

Parameters:
writer Initialized OTF_Writer instance.

time Time when summary was computed.

processProcess where messages originated.

peer Process where the message is sent to

comm Communicator of message summary

tag Message type/tag.

number_sentThe number of messages sent.

number_recvedThe number of messages received.

bytes_sentThe number of bytes sent via messages of the given type.
bytes_recvedlrhe number of bytes received through messages of the gipen ty

Returns:
1 on success, 0 if an error occurs.

35

B Global Trace Record Input Handler Interface

Functions

e int OTF_Handler_DefinitionComment (void xuserData, uint32_t stream, const char
xcomment)

e int OTF_Handler_DefTimerResolution (void xuserData, uint32_t stream, uint64_t ticksPer-
Second)

e int OTF_Handler_DefProcesgvoid xuserData, uint32_t stream, uint32_t process, const char
xname, uint32_t parent)

e int OTF_Handler_DefProcessGroup(void xuserData, uint32_t stream, uint32_t procGroup,
const chaxname, uint32_t numberOfProcs, const uint32procs)

e int OTF_Handler_DefFunction (void xuserData, uint32_t stream, uint32_t func, const char
xname, uint32_t funcGroup, uint32_t source)

e int OTF_Handler_DefFunctionGroup (void xuserData, uint32_t stream, uint32_t funcGroup,
const chakname)

e int OTF_Handler_DefCollectiveOperation (void xuserData, uint32_t stream, uint32_t coll-
Op, const chakname, uint32_t type)

e int OTF_Handler_DefCounter (void xuserData, uint32_t stream, uint32_t counter, const char
xname, uint32_t properties, uint32_t counterGroup, comat-aunit)

e int OTF_Handler_DefCounterGroup (void xuserData, uint32_t stream, uint32_t counter-
Group, const charname)

e int OTF_Handler_DefScl(void xuserData, uint32_t stream, uint32_t source, uint32_tcaaur
File, uint32_t line)

e int OTF_Handler_DefSclFile (void xuserData, uint32_t stream, uint32_t sourceFile, const
charxname)

e int OTF_Handler_DefCreator (void xuserData, uint32_t stream, const clhereator)

e int OTF_Handler_Enter (void xuserData, uint64_t time, uint32_t function, uint32_t @es
uint32_t source)

e int OTF_Handler_Leave (void xuserData, uint64 _t time, uint32_t function, uint32_t @es
uint32_t source)

e int OTF_Handler_SendMsg (void xuserData, uint64_t time, uint32_t sender, uint32_t re-
ceiver, uint32_t group, uint32_t type, uint32_t lengtmtBR_t source)

e int OTF_Handler_RecvMsg(void xuserData, uint64_t time, uint32_t recvProc, uint32_t send
Proc, uint32_t group, uint32_t type, uint32_t length, 8ihtt source)

e int OTF_Handler_Counter (void xuserData, uint64_t time, uint32_t process, uint32_t cenint
uinté4_t value)

e int OTF_Handler_CollectiveOperation (void xuserData, uint64_t time, uint32_t process,
uint32_t collective, uint32_t procGroup, uint32_t roa®r uint32_t sent, uint32_t received,
uinté4_t duration, uint32_t source)

e int OTF_Handler_EventComment (void xuserData, uint64_t time, uint32_t process, const
charxcomment)

e int OTF_Handler_BeginProcesqvoid xuserData, uint64_t time, uint32_t process)

e int OTF_Handler_EndProcess(void xuserData, uint64_t time, uint32_t process)

36

e int OTF_Handler_SnapshotCommeni{void xuserData, uint64_t time, uint32_t process, const
charxcomment)

e int OTF_Handler_EnterSnapshot (void xuserData, uint64_t time, uint64_t originaltime,
uint32_t function, uint32_t process, uint32_t source)

e int OTF_Handler_SendSnapshot(void xuserData, uint64 t time, uint64_t originaltime,
uint32_t sender, uint32_t receiver, uint32_t procGroupt32_t tag, uint32_t source)

e int OTF_Handler_SummaryComment (void xuserData, uint64 _t time, uint32_t process,
const chakcomment)

e int OTF_Handler_FunctionSummary (void xuserData, uint64 t time, uint32_t function,
uint32_t process, uint64_t invocations, uint64_t excl@imint64_t inclTime)

e int OTF_Handler_FunctionGroupSummary (void xuserData, uint64_t time, uint32_t func-
Group, uint32_t process, uinté4_t invocations, uint6kdBme, uint64_t inclTime)

e int OTF_Handler_MessageSummary(void xuserData, uint64 t time, uint32_t process,
uint32_t peer, uint32_t comm, uint32_t type, uint64_t Blemhber, uint64_t receivedNumber,
uinté4_t sentBytes, uint64_t receivedBytes)

e int OTF_Handler_UnknownRecord (void xuserData, uint64_t time, uint32_t process, const
charxrecord)

B.1 Detailed Description

In the following, the handler interfaces for all record tgpme specified. The signature of callback
handler functions is equal to the signature of correspandatord write functions except for the
first argument. The first argument common to all callback karfdnctions isuserData— a generic
pointer to custom user data. The second common argumentdallabck hander functions sream
which identifies the stream where the definition occurredir@agn parameter = 0 indicates a global
definition which is the default.

B.2 Function Documentation

B.2.1 int OTF_Handler_DefinitionComment (void x userDatg uint32_t stream const charx
commen}

Provides a comment record.

Parameters:
userData Pointer to user data which can be set wdiF_HandlerArray_setFirstHandler-

Arg() (p- 7).
stream ldentifies the stream to which this definition belongs toeastn = O represents a global
definition.

comment Arbitrary comment string.

Returns:
OTF_RETURN_ABORT for aborting the reading process immtetyaOTF_RETURN_OK for
continue reading

37

B.2.2 int OTF_Handler_DefTimerResolution (void « userDatg uint32_t stream uint64_t
ticksPerSecony

Provides the timer resolution. All timed event records nigelle interpreted according to this defini-
tion. By default, a timer resolution of 1 us i.e. 1,000,000c&l ticks is assumed.

Parameters:
userData Pointer to user data which can be set w@iF_HandlerArray_setFirstHandler-
Arg() (p.??).
stream ldentifies the stream to which this definition belongs toeastn = O represents a global
definition.

ticksPerSecondClock ticks per second of the timer.

Returns:
OTF_RETURN_ABORT for aborting the reading process immtetaOTF RETURN_OK for
continue reading

B.2.3 int OTF_Handler_DefProcess (voidk userDatg uint32_t stream uint32_t processconst
char x name uint32_t paren

Provides a process definition.

Parameters:
userData Pointer to user data which can be set wiF_HandlerArray_setFirstHandler-
Arg() (p.??).
stream ldentifies the stream to which this definition belongs toeastn = O represents a global
definition.

processArbitrary but unique process identifier 0.
name Name of the process e.g. "Process X".
parent Previously declared parent process identifier or O if pre¢es no parent.

Returns:
OTF_RETURN_ABORT for aborting the reading process immtetjaOTF_RETURN_OK for
continue reading

B.2.4 int OTF_Handler_DefProcessGroup (voidk userDatg uint32_t stream uint32_t
procGroup const charx hame uint32_t numberOfProcs const uint32_t* proc9

Provides a process group definition.
OTF supports groups of processes. Their main objectivedkasify processes depending on arbitrary
characteristics. Processes can reside in multiple grags.record type is optional.

Parameters:
userData Pointer to user data which can be set w@iF_HandlerArray_setFirstHandler-
Arg() (p. ??).

38

stream ldentifies the stream to which this definition belongs toeastn = O represents a global
definition.

procGroup Arbitrary but unique process group identifierO.

name Name of the process group e.g. "Well Balanced".

numberOfProcs The number of processes in the process group.

procs Vector of process identifiers as provided ®yF_Handler_DefProcess(p. 38).

Returns:

OTF_RETURN_ABORT for aborting the reading process immtetaOTF RETURN_OK for
continue reading

B.2.5 int OTF_Handler_DefFunction (void x userDatg uint32_t stream uint32_t func, const
char x name uint32_t funcGroup, uint32_t source

Provides a function definition.

Defines a function of the given name. Functions can optigrtadlong to a certain function group

provided by theOTF_Handler_DefFunctionGroup()(p. 39) handler. A source code reference can
be provided aswell.

Parameters:
userData Pointer to user data which can be set w@iF_HandlerArray_setFirstHandler-
Arg() (p.??).

stream ldentifies the stream to which this definition belongs toeastn = O represents a global
definition.

func Arbitrary but unique function identifier O.
name Name of the function e.g. "DoSomething".

funcGroup A function group identifier preliminary provided BYTF_Handler_DefFunction-
Group()(p. 39) or 0 for no function group assignment.

source Reference to the function’s source code location prelinyinarovided by OTF_-
Handler_DefScl()Xp. 41) or O for no source code location assignment.

Returns:

OTF_RETURN_ABORT for aborting the reading process immtetaOTF RETURN_OK for
continue reading

B.2.6 int OTF_Handler_DefFunctionGroup (void * userDatg uint32_t stream uint32_t
funcGroup, const charx name

Provides a function group definition.

Parameters:
userData Pointer to user data which can be set w@i'F_HandlerArray_setFirstHandler-
Arg() (p. ??).

39

stream ldentifies the stream to which this definition belongs toeastn = O represents a global
definition.

funcGroup An arbitrary but unique function group identifier Q.
name Name of the function group e.g. "Computation".

Returns:

OTF_RETURN_ABORT for aborting the reading process immtetyaOTF_RETURN_OK for
continue reading

B.2.7 int OTF_Handler_DefCollectiveOperation (voidx userDatg uint32_t stream uint32_t
collOp, const charx name uint32_t type

Provides a collective operation definition.

Parameters:

userData Pointer to user data which can be set w@iF_HandlerArray_setFirstHandler-
Arg() (p.??).

stream ldentifies the stream to which this definition belongs toeastn = O represents a global
definition.

collOp An arbitrary but unique collective op. identifier O.
name Name of the collective operation e.g. "MPI_Bcast".

type One of the five supported collective classes: OTF_COLLEEIVYPE_UNKNOWN
(default), OTF_COLLECTIVE_TYPE_BARRIER, OTF_COLLECTE/TYPE_-

ONE2ALL, OTF_COLLECTIVE_TYPE_ALL20ONE, OTF_COLLECTIVETYPE_-
ALL2ALL.

Returns:

OTF_RETURN_ABORT for aborting the reading process immtetaOTF RETURN_OK for
continue reading

B.2.8 int OTF_Handler_DefCounter (void x userDatg uint32_t stream uint32_t counter,
const charx name uint32_t properties uint32_t counterGroup const charx unit)

Provides a counter definition.

Parameters:
userData Pointer to user data which can be set wdiF_HandlerArray_setFirstHandler-
Arg() (p.?7?).

stream ldentifies the stream to which this definition belongs toeastn = O represents a global
definition.

counter An arbitrary but unique counter identifier.
name Name of the counter e.g. "Cache Misses".

40

properties A combination of a type and scope counter property. OTF_COBER _TYPE_ACC
(default) represents a counter with monotonously incregsalues e.g. a FLOP counter.
OTF_COUNTER_TYPE_ABS on the other hand defines a countér aliernating abso-
lute values e.g. the memory usage of a process. The follogongter measurement scopes
are supported: OTF_COUNTER_SCOPE_START (default) alwefgs's to the start of the
process, OTF_COUNTER_SCOPE_POINT refers to exactly tlusent in time, OTF_-
COUNTER_SCOPE_LAST relates to the previous measuremedtOdF COUNTER_-
SCOPE_NEXT to the next measurement. Examples: OTF_COUNTEKRE_ACC +
OTF_COUNTER_SCOPE_START should be used for most standardware (PAPI)
counters. OTF_COUNTER_TYPE_ABS + OTF_COUNTER_SCOPE NICtould be
used to record information 'spikes’. OTF_COUNTER_TYPE &B OTF_COUNTER_-
SCOPE_NEXT works for memory allocation recording.

counterGroup A previously defined counter group identifier or O for no group
unit Unit of the counter e.g. "#" for "number of..." or O for no unit

Returns:
OTF_RETURN_ABORT for aborting the reading process immtetaOTF RETURN_OK for
continue reading

B.2.9 int OTF_Handler_DefCounterGroup (void * userDatg uint32_t stream uint32_t
counterGroup const charx name

Provides a counter group definition.

Parameters:
userData Pointer to user data which can be set wdiF_HandlerArray_setFirstHandler-

Arg() (p.?7?).
stream ldentifies the stream to which this definition belongs toeastn = O represents a global
definition.

counterGroup An arbitrary but unique counter group identifter0.
name Counter group name.

Returns:

OTF_RETURN_ABORT for aborting the reading process immtetyaOTF_RETURN_OK for
continue reading

B.2.10 int OTF_Handler_DefScl (voidx userDatg uint32_t stream uint32_t source uint32_t
sourceFilg uint32_tline)

Provides a source code location (SCL).

Parameters:
userData Pointer to user data which can be set w@i'F_HandlerArray_setFirstHandler-

Arg() (p. ??).

41

stream ldentifies the stream to which this definition belongs toeastn = O represents a global
definition.

source Arbitrary but unique source code location identifie©.
sourceFile Previously defined source file identifier. See OTW_HandlefSpIFile().
line Line number.

Returns:
OTF_RETURN_ABORT for aborting the reading process immtetaOTF RETURN_OK for
continue reading

B.2.11 int OTF_Handler_DefSclFile (void« userDatg uint32_t stream uint32_t sourceFile
const charx name

Provides a source code location (SCL) file.

Parameters:
userData Pointer to user data which can be set widiF_HandlerArray_setFirstHandler-
Arg() (p.??).

stream ldentifies the stream to which this definition belongs toeastn = O represents a global
definition.

sourceFile Arbitrary but unique source code location identifier != 0.
name File name.

Returns:
OTF_RETURN_ABORT for aborting the reading process immtetaOTF RETURN_OK for
continue reading

B.2.12 int OTF_Handler_DefCreator (void x userDatg uint32_t stream const charx creator)
Provides file creator information.

Parameters:
userData Pointer to user data which can be set wdiF_HandlerArray_setFirstHandler-
Arg() (p.??).
stream ldentifies the stream to which this definition belongs toeatn = O represents a global
definition.

creator String which identifies the creator of the file e.g. "TAU Versix.y.z".

Returns:
OTF_RETURN_ABORT for aborting the reading process immtetaOTF RETURN_OK for
continue reading

42

B.2.13 int OTF_Handler_Enter (void x userDatg uint64_t time, uint32_t function, uint32_t
processuint32_t source

Provides a function entry event.

Parameters:
userData Pointer to user data which can be set w@iF_HandlerArray_setFirstHandler-
Arg() (p.??).
time The time when the function entry took place.
function Function which has been entered as defined with OTF_WriggFwhction.
processProcess where action took place.

source Explicit source code location identifier O or O if no source information available.

Returns:

OTF_RETURN_ABORT for aborting the reading process immtetaOTF RETURN_OK for
continue reading

B.2.14 int OTF_Handler_Leave (voidx userDatg uint64 _t time, uint32_t function, uint32_t
processuint32_t source

Provides a function leave event.

Parameters:
userData Pointer to user data which can be set wdiF_HandlerArray_setFirstHandler-
Arg() (p.??).
time The time when the function leave took place.
function Function which was left or O if stack integrety checking i$ agailable.
processProcess where action took place.

source Explicit source code location identifier O or O if no source information available.

Returns:

OTF_RETURN_ABORT for aborting the reading process immtetjaOTF RETURN_OK for
continue reading

B.2.15 int OTF_Handler_SendMsg (void« userDatg uint64_t time, uint32_t sender uint32_t
receiver uint32_t group, uint32_t type uint32_t length, uint32_t source

Provides a message send event.

Parameters:
userData Pointer to user data which can be set wdiF_HandlerArray_setFirstHandler-
Arg() (p.?7?).
time The time when the message was send.

43

sender Sender of the message.

receiver Receiver of the message.

group Process-group to which sender and receiver belong to oriofgroup assignment.
type Message type information O or O for no information.

length Optional message length information.

source Explicit source code location identifier O or O if no source information available.

Returns:

OTF_RETURN_ABORT for aborting the reading process immtetaOTF RETURN_OK for
continue reading

B.2.16 int OTF_Handler_RecvMsg (void« userDatg uint64_t time, uint32_t recvProg
uint32_t sendProg uint32_t group, uint32_t type uint32_t length, uint32_t source

Provides a message retrieval event.

Parameters:
userData Pointer to user data which can be set w@iF_HandlerArray_setFirstHandler-
Arg() (p.??).
time The time when the message was received.
recvProc ldentifier of receiving process.
sendProc Identifier of sending process.
group Process-group to which sender and receiver belong to orriofgroup assignment.
type Message type informatiorn O or O for no information.
length Optional message length information.

source Explicit source code location identifier O or O if no source information available.

Returns:

OTF_RETURN_ABORT for aborting the reading process immtetjaOTF_RETURN_OK for
continue reading

B.2.17 int OTF_Handler_Counter (void x userData uint64 _t time, uint32_t processuint32_t
counter, uinté4_t value)

Provides a counter measurement.

Parameters:
userData Pointer to user data which can be set w@i'F_HandlerArray_setFirstHandler-
Arg() (p.?7?).
time Time when counter was measured.
processProcess where counter measurment took place.

44

counter Counter which was measured.
value Counter value.

Returns:
OTF_RETURN_ABORT for aborting the reading process immtetyaOTF_RETURN_OK for
continue reading

B.2.18 int OTF_Handler_CollectiveOperation (void* userDatg uint64 _t time, uint32_t
process uint32_t collective uint32_t procGroup uint32_t rootProg uint32_t sent
uint32_t received uint64 _t duration, uint32_t source

Provides a collective operation member event.

Parameters:
userData Pointer to user data which can be set w@iF_HandlerArray_setFirstHandler-

Arg() (p. ??).
time Time when collective operation was entered by member.
processProcess identifier i.e. collective member.
collective Collective identifier as defined with OTF_Handler_eDef€dliveOperation().
procGroup Group of processes participating in this collective.
rootProc Root process if I= 0.
sent Data volume sent by member or 0.
received Data volume received by member or 0.
duration Time spent in collective operation.
source Explicit source code location or O.

Returns:
OTF_RETURN_ABORT for aborting the reading process immtetaOTF RETURN_OK for
continue reading

B.2.19 int OTF_Handler_EventComment (voidx userDatg uint64_t time, uint32_t process
const charx commen}

Provide a comment record.

Parameters:
userData Pointer to user data which can be set wiF_HandlerArray_setFirstHandler-

Arg() (p.?7?).
time Comments need a timestamp for a proper positioning in tlee tra
processComments also need a process identifier for a proper pasigion the trace.
comment Arbitrary comment string.

Returns:
OTF_RETURN_ABORT for aborting the reading process immtetaOTF RETURN_OK for
continue reading

45

B.2.20 int OTF_Handler_BeginProcess (voic userDatg uint64_t time, uint32_t proces$

Provides a process creation event.

Marks the explicit begin of a process. This event precedesety first event of the respective process
and should carry the same time stamp. This is especiallpluaéh on-line analysis. It tells whether
there will be additional records for the given process or Miithout this record type, it could only
be guessed that there might not follow more events after @epmohas reached the bottom of the call
stack.

Parameters:
userData Pointer to user data which can be set wdiF_HandlerArray_setFirstHandler-
Arg() (p.?7?).
time Time when process was referenced for the first time.
processProcess identifier O.

Returns:
OTF_RETURN_ABORT for aborting the reading process immtetaOTF RETURN_OK for
continue reading

B.2.21 int OTF_Handler_EndProcess (void: userDatg uint64_t time, uint32_t proces$

Provides a process destruction event.

Parameters:
userData Pointer to user data which can be set w@i'F_HandlerArray_setFirstHandler-
Arg() (p.??).
time Time when process is referenced for the last time. Procestifigrs must not be recycled!
processProcess identifier O.

Returns:
OTF_RETURN_ABORT for aborting the reading process immtetyaOTF_RETURN_OK for
continue reading

B.2.22 int OTF_Handler_SnapshotComment (void« userDatg uint64_t time, uint32_t
process const charx commeny

Provides a snapshot comment.

Parameters:
userData Pointer to user data which can be set w@iF_HandlerArray_setFirstHandler-
Arg() (p.??).
time Comments need a timestamp for a proper positioning in tlee tra
processComments also need a process identifier for a proper pasigon the trace.
comment Arbitrary comment string.

Returns:
OTF_RETURN_ABORT for aborting the reading process immtetaOTF RETURN_OK for
continue reading

46

B.2.23 int OTF_Handler_EnterSnapshot (void« userDatg uint64_t time, uint64_t
originaltime, uint32_t function, uint32_t processuint32_t sourcg

provides information about a past function call at the tinoeiginaltime’. Parameters ’time’,
function’, 'process’ ,'source’ and the return value have tsame meaning as @TF_Handler_-
Enter()(p. 43).

B.2.24 int OTF_Handler_SendSnapshot (voic userDatg uint64_ttime, uint64 _t originaltime,
uint32_t sender uint32_t receiver uint32_t procGroup uint32_t tag, uint32_t source

provides information about a past message send operatitre dime ’originaltime’. Parameters
‘time’, 'sender’, receiver’, 'procGroup’, 'tag’, 'soure’ and the return value have the same meaning
as inOTF_Handler_SendMsg(]p. 43).

B.2.25 int OTF_Handler_SummaryComment (void« userDatg uint64_t time, uint32_t
process const charx commen}

Provides a summary comment.

Parameters:
userData Pointer to user data which can be set w@i'F_HandlerArray_setFirstHandler-

Arg() (p. ??).
time Comments need a timestamp for a proper positioning in tlee tra
processComments also need a process identifier for a proper pasigion the trace.
comment Arbitrary comment string.

Returns:
OTF_RETURN_ABORT for aborting the reading process immtetaOTF RETURN_OK for
continue reading

B.2.26 int OTF_Handler_FunctionSummary (void x userDatg uint64 _t time, uint32_t
function, uint32_t processuint64_t invocations uint64_t exclTime uint64_tinclTime)

Provides summarized information for a given function.

Parameters:
userData Pointer to user data which can be set w@i'F_HandlerArray_setFirstHandler-

Arg() (p. ??).
time Time when summary was computed.
function Function as defined with OTF_Handler_DefFunction.
processProcess of the given function.
invocations Number of invocations.
exclTime Time spent exclusively in the given function.

47

inclTime Time spent in the given function including all sub-routirsis.

Returns:

OTF_RETURN_ABORT for aborting the reading process immtetaOTF RETURN_OK for
continue reading

B.2.27 int OTF_Handler_FunctionGroupSummary (void x userDatg uint64_t time, uint32_t

funcGroup, uint32_t process uint64_t invocations uint64_t exclTime uint64_t
inclTime)

Provides summarized information for a given group of fusragiroups.

Parameters:
userData Pointer to user data which can be set wdiF_HandlerArray_setFirstHandler-
Arg() (p.?7?).
time Time when summary was computed.
funcGroup Function group as defined with OTF_Handler_DefFunction@ro
processProcess of the given function group.
invocations Number of invocations.
exclTime Time spent exclusively in the given function group.
inclTime Time spent in the given function group including all subtnoe calls.

Returns:

OTF_RETURN_ABORT for aborting the reading process immtetyaOTF_RETURN_OK for
continue reading

B.2.28 int OTF_Handler_MessageSummary (voidk userDatg uint64_t time, uint32_t
process uint32_t peer, uint32_t comm uint32_t type uint64_t sentNumber uinté4 t
receivedNumberuint64_t sentBytesuint64 _t receivedBytes

Provides summarized information for a given message type.

Parameters:
userData Pointer to user data which can be set w@iF_HandlerArray_setFirstHandler-
Arg() (p.??).
time Time when summary was computed.
processProcess where messages originated.
peer Process where the message is sent to
comm Communicator of message summary
type Message type/tag.
sentNumber The number of messages sent.
receivedNumberThe number of messages received.

48

sentBytesThe number of bytes sent via messages of the given type.
receivedBytesThe number of bytes received through messages of the gipen ty

Returns:

OTF_RETURN_ABORT for aborting the reading process immtetaOTF RETURN_OK for
continue reading

B.2.29 int OTF_Handler_UnknownRecord (void* userDatg uint64 _t time, uint32_t process
const charx record)

Can be used to handle records which cannot be read.

Parameters:

userData Pointer to user data which can be set wa@iF_HandlerArray_setFirstHandler-
Arg() (p.??).

time Time when summary was computed.
processlf 'time’ equals (uin64_t) -1, the unknown record is a defnitrecord and 'process’ rep-

resents the streamid of the record. If 'time’ has a valid @dlaot (uint64)-1) the unknown

record is an event-, statistics- or snapshotrecord anagss) represents the processid of
the record.

record string which contains the record.
Returns:

OTF_RETURN_ABORT for aborting the reading process immtetaOTF RETURN_OK for
continue reading

49

C Changelog

1.0.x
- initial version

1.1.1

- OTF_Reader now considers the return values of the handlers

- added OTF_VERBOSE, OTF _DEBUG macro for error treatnent

- introduced ' UnknownRecord’ handler which allows to catch
unknown record types

1.1.2

- inverted return value of call-back handl ers:
0" is non-error, '!'=0" is regarded as an error, now
(this makes OTF conformwi th the VTF3 schene.)

1.1.3
- fixed a mnor bug in otfaux

1.1.4

- fixed a bug in OTF_Reader which nm ght have caused the very first

tinme stanp of a trace to be not properly sorted

- introduced '--snapshots’ and '--statistics’ switches to do only
snapshots or statistics. for statistics a selective node is allowed

whi ch regards only sonme streans. By this neans statistics can be created
in parallel by calling otfaux multiple tines.

1.1.5
- have UnknownRecord report handle inconplete records or additional bytes at
the end of a file.

1.2.0
- introduce transparent zlib conpression

1.2.1
- added progress functions using read bytes instead of tinestanps

1.2.2
- inportant bugfix: definitionstreamO was ignored since version 1.2.0

1.2.3
- bugfix: provided copy handl ers returned wong val ue

1.2.4
- bugfix: zlib conpression bug, wong sanity check fixed

50

=

.2.5

bugfi x: correctly handl e process groups with nore than 1000 entries

.2.6

support shared libraries

2.7

added progress functions to OIF_RStream

added a progress counter to otfnerge

.2.8

allow suffix ’.dylib" for zlib library file (fromMac OS X)
renmoved confi gure warni ng

.2.9
changeabl e zl eve
changeabl e zbuffersize

.2.10
bugfi x: otfnmerge does no | onger accept traces with | ocal streans

.2.11
changed OTF_RETURN+(O=success, !0 = error)
added these macros to all internal functions and tools for better

consi st ency

fixed various nenoryl eaks in otf and otfnerge

added otfconfig to tools. otfconfig shows installationparaneters
i mportant for devel opers

updat ed docunent ati on

.2.12

renoved intel conpiler warnings in otfnerge
renoved debug out put

fixed 64bit issue

.2.13

removed intel conpiler warnings
changed OTF_FI LETYPE_ *- nacr os
fixed issues with OTF_getFil enanme()

.2.14
do not linke with "-1z" if "--with-zlibsynbols’ was specified
added zlib include line to otfli b/ Makefil e.am

.2.15

.2.16

fixed a problemwi th corments in otfnerge

.2.17

bugfi xed parser (wong treatnent of unknown records)

51

- bugfixed otfnerge

1.2.18

- fixed autotools problens with otfdunp

- added fwite check for witting | ess bytes than expected

52

