
The SOS Reference Manual
Edition 2.13 for SOS 1.9

2011-10-14

by Chris Hanson

This manual documents SOS 1.9.

Copyright c© 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013,
2014, 2015, 2016, 2017, 2018, 2019 Massachusetts Institute of Technology

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License.”

i

Table of Contents

Introduction . 1

1 Classes . 2
1.1 Class Datatype . 2
1.2 Predefined Classes . 7
1.3 Record Classes . 8
1.4 Specializers . 9

2 Instances . 10

3 Slots . 12
3.1 Slot Descriptors . 12
3.2 Slot Access Methods . 13
3.3 Slot Access Constructors . 14
3.4 Slot Access Procedures . 14

4 Generic Procedures . 16
4.1 Generic Procedure Datatype . 16
4.2 Method Storage . 17
4.3 Effective Method Procedure . 17

5 Methods . 19
5.1 Method Datatype . 19
5.2 Method Syntax . 19
5.3 Chained Methods . 20
5.4 Computed Methods . 21

6 Printing . 23

Appendix A GNU Free Documentation License . . 24
A.1 ADDENDUM: How to use this License for your documents 30

Appendix B Binding Index . 31

Appendix C Concept Index . 33

1

Introduction

sos is a Scheme object system derived from Tiny clos1, which in turn was loosely derived
from clos, the Common Lisp Object System. Its basic design and philosophy is closely
related to Tiny clos, but there are differences in naming and interface.

This document is a reference manual, and as such does not attempt to teach the reader
about object-oriented programming. It is assumed that you already have a passing famil-
iarity with clos and with Scheme.

In the procedure descriptions that follow, certain argument names imply restrictions on
the corresponding argument. Here is a table of those names. The parenthesised name in
each entry is the name of the predicate procedure that the argument must satisfy.

class The argument must be a class (class?).

instance The argument must be an instance (instance?).

name The argument must be a symbol (symbol?); sometimes this is also allowed to
be #f (false?).

generic-procedure
The argument must be a generic procedure (generic-procedure?).

method The argument must be a method (method?).

specializer The argument must be a method specializer (specializer?).

procedure The argument must be a procedure (procedure?).

slot The argument must be a slot descriptor (slot-descriptor?).

1 Tiny clos was written by Gregor Kiczales of Xerox parc; sos is derived from version 1.2 of Tiny clos.

2 SOS 1.9

1 Classes

A class is an object that determines the structure and behavior of a set of other objects,
which are called its instances. However, in this document, the word instance usually means
an instance of the class <instance>.

A class can inherit structure and behavior from other classes. A class whose definition
refers to other classes for the purpose of inheriting from them is said to be a subclass of
each of those classes. The classes that are designated for purposes of inheritance are said
to be superclasses of the inheriting class.

A class can have a name. The procedure class-name takes a class object and returns
its name. The name of an anonymous class is #f.

A class C 1 is a direct superclass of a class C 2 if C 2 explicitly designates C 1 as a
superclass in its definition. In this case, C 2 is a direct subclass of C 1. A class C n is a
superclass of a class C 1 if there exists a series of classes C 2, . . . , C n-1 such that C i+1
is a direct superclass of C i for all i between 1 and n. In this case, C 1 is a subclass of
C n. A class is considered neither a superclass nor a subclass of itself. That is, if C 1 is
a superclass of C 2, then C 1 is different from C 2. The set of classes consisting of some
given class C along with all of its superclasses is called “C and its superclasses.”

Each class has a class precedence list, which is a total ordering on the set of the given
class and its superclasses. The total ordering is expressed as a list ordered from the most
specific to the least specific. The class precedence list is used in several ways. In general,
more specific classes can shadow, or override, features that would otherwise be inherited
from less specific classes. The method selection and combination process uses the class
precedence list to order methods from most specific to least specific.

When a class is defined, the order in which its direct superclasses are mentioned in the
defining form is important. Each class has a local precedence order, which is a list consisting
of the class followed by its direct superclasses in the order mentioned in the defining form.

A class precedence list is always consistent with the local precedence order of each class
in the list. The classes in each local precedence order appear within the class precedence
list in the same order. If the local precedence orders are inconsistent with each other, no
class precedence list can be constructed, and an error is signalled.

Classes are organized into a directed acyclic graph. There are two distinguished classes,
named <object> and <instance>. The class named <object> has no superclasses. It is a
superclass of every class except itself. The class named <instance> is a direct subclass of
<object> and is the base class for instance objects. Instances are special because sos has
efficient mechanisms for dispatching on them and for accessing their slots.

1.1 Class Datatype

The procedures in this section may be used to construct and inspect classes.

[Procedure]make-class name direct-superclasses direct-slots
Creates and returns a new class object.

Name is used for debugging: it is a symbol that appears in the printed representation
of the class and has no role in the semantics of the class. Alternatively, name may be
#f to indicate that the class is anonymous.

Chapter 1: Classes 3

Direct-superclasses must be a list of class objects. The new class inherits both
methods and slots from the classes in this list. Specifying the empty list for direct-
superclasses is equivalent to specifying (list <instance>).

Direct-slots describes additional slots that instances of this class will have. It is a list,
each element of which must have one of the following forms:

name

(name . plist)

where name is a symbol, and plist is a property list. The first of these two forms is
equivalent to the second with an empty plist.

Each of the elements of direct-slots defines one slot named name. Plist is used to
describe additional properties of that slot. The following properties are recognized:

initial-value

This property specifies the default initial value for the slot, i.e. the value
stored in the slot when an instance is created and no value is explicitly
specified by the instance constructor. If neither the initial-value nor
the initializer property is specified, the slot has no default initial value.

initializer

This property specifies a procedure of no arguments that is called by an
instance constructor whenever an instance containing this slot is created.
The value returned by the initializer procedure is the initial value of
the slot.

accessor This property specifies a generic procedure; make-class will add an
accessor method for this slot to the procedure. See Chapter 3 [Slots],
page 12.

modifier This property specifies a generic procedure; make-class will add a modi-
fier method for this slot to the procedure. See Chapter 3 [Slots], page 12.

initpred This property specifies a generic procedure; make-class will add an “ini-
tialized?” predicate method for this slot to the procedure. See Chapter 3
[Slots], page 12.

Slot properties are combined in slightly complicated ways.

• It is not allowed to specify both initial-value and initializer for a slot in
a given call to make-class; at most one of these properties may be given.

• If a slot is specified for a given class, and a slot of the same name is inherited
from a superclass, then the slot properties for the two slots are combined. Slot
properties from the subclass shadow those of the superclass. However, if a su-
perclass has a slot property, and the subclass does not, the property is inherited.
The resulting class never has more than one slot of a given name.

• When combining superclass and subclass slots, initial-value and initializer

shadow one another. In other words, regardless of the inherited slot properties,
the resulting slot has at most one of these two properties.

Examples of make-class:

(define <cell>

(make-class ’<cell> ’() ’()))

4 SOS 1.9

(define-generic cell-name (cell))

(define-generic cell-width (cell))

(define-generic cell-height (cell))

(define-generic cell-components (cell))

(define-generic set-cell-components! (cell components))

(define <contact>

(make-class ’<contact>

(list <cell>)

‘((name accessor ,cell-name))))

(define <compound-cell>

(make-class ’<compound-cell>

(list <cell>)

‘((width accessor ,cell-width)

(height accessor ,cell-height)

(components accessor ,cell-components

modifier ,set-cell-components!

initial-value ()))))

[Syntax]define-class name direct-superclasses direct-slot . . .
Define name to be a class. In its basic form, define-class might have been defined
by

(define-syntax define-class

(syntax-rules ()

((define-class name (class ...) slot ...)

(define name

(make-class (quote name)

(list class ...)

(quote (slot ...)))))))

Note that slot properties are handled specially by define-class. If a direct-slot
specifies a slot properties property list, the keys of the property list (i.e. the even-
numbered elements) are not evaluated, while the datums of the property list are
evaluated. The expansion above does not show the proper treatment of slot properties.

In addition to the slot properties recognized by make-class, define-class recognizes
a special slot property, called define. The define property specifies that some or
all of the slot accessors should be defined here; that is, generic procedures should be
constructed and bound to variables, and then the accessor methods added to them.

The argument to the define property is a list containing any combination of the
symbols accessor, modifier, and initpred. As an abbreviation, the argument may
be one of these symbols by itself, which is equivalent to the list containing that symbol.
Also, the argument may be the symbol standard, which is equivalent to (accessor

modifier).

The argument to define specifies the accessors that will be defined by this form.
The accessors are defined using default names, unless the names are overridden by

Chapter 1: Classes 5

the corresponding slot property. The default names for a class <foo> and a slot
bar are foo-bar, set-foo-bar!, and foo-bar-initialized?, respectively for the
accessor, modifier, and initpred. For example,

(define-class foo ()

(bar define accessor))

defines an accessor called foo-bar, but

(define-class foo ()

(bar define accessor accessor foo/bar))

instead defines an accessor called foo/bar. Finally,

(define-class foo ()

(bar accessor foo/bar))

doesn’t define any accessor, but assumes that foo/bar is a previously-defined generic
procedure and adds an accessor method to it.

define-class permits the specification of class options, which are options that per-
tain to the class as a whole. Class options are specified by overloading name: instead
of a symbol, specify a pair whose car is a symbol and whose cdr is an alist. The
following class options are recognized:

(predicate [name])

Specifies that a predicate procedure should be defined for this class. Name
must be either a symbol or #f: a symbol specifies the name that will be
bound to the predicate procedure, and #f specifies that no predicate
procedure should be defined. If name is omitted, or if no predicate

option is specified, a predicate procedure is defined by appending ? to
the name of the class. If the class name is surrounded by angle brackets,
they are stripped off first. For example, the default predicate name for
the class <foo> is foo?.

(constructor [name] slot-names [n-init-args])

Specifies that a constructor procedure should be defined for this class.
Name must be a symbol, which is the name that will be bound to the
constructor procedure; if omitted, a default name is formed by prepending
make- to the name of the class. If the class name is surrounded by angle
brackets, they are stripped off first. For example, the default constructor
name for the class <foo> is make-foo.

Slot-names and n-init-args correspond to the arguments of the respec-
tive names accepted by instance-constructor, and can take any of the
allowed forms for those arguments.

(separator string)

Specifies how names for slot accessors are constructed. If this option isn’t
given, the name of a slot accessor is formed by concatenating the name of
the class with the name of the slot, with a hyphen between them. When
this option is given, string is used instead of the hyphen. For example,
normally a slot accessor for the slot bar in the class foo is called foo-bar.
A class option (separator ".") will cause the slot accessor to be called

6 SOS 1.9

foo.bar, the modifier to be called set-foo.bar!, and the initialization
predicate to be called foo.bar?.

Examples of define-class (compare these to the similar examples for make-class):

(define-class <cell> ())

(define-generic cell-name (cell))

(define-generic cell-width (cell))

(define-generic cell-height (cell))

(define-generic cell-components (cell))

(define-generic set-cell-components! (cell components))

(define-class (<contact> (constructor (name) no-init)) (<cell>)

(name accessor cell-name))

(define-class (<compound-cell> (constructor ())) (<cell>)

(width accessor cell-width)

(height accessor cell-height)

(components accessor cell-components

modifier set-cell-components!

initial-value ’()))

[Procedure]make-trivial-subclass superclass1 superclass2 . . .
This convenience procedure makes a subclass that defines no new slots, and that
inherits from the given superclasses. It is equivalent to the following

(make-class (class-name superclass1)

(list superclass1 superclass2 ...)

’())

[Procedure]class? object
Returns #t if object is a class, otherwise returns #f.

[Procedure]subclass? class specializer
Returns #t if class is a subclass of specializer, otherwise returns #f. If specializer is
a class, the result follows from the above definition of subclass, except that a class is
a subclass of itself. If specializer is a record type, it is equivalent to having used the
record-type-class of the record type. Finally, if specializer is a union specializer,
subclass? is true if class is a subclass of one or more of the component classes of
specializer.

[Procedure]object-class object
Returns the class of object. Object may be any Scheme object; if object is known to
be an instance, instance-class is faster than object-class.

[Procedure]class-name class
Returns the name of class. This is the name argument passed to make-class when
class was created.

Chapter 1: Classes 7

[Procedure]class-direct-superclasses class
Returns a list of the direct superclasses of class. If a non-empty direct-superclasses
argument was passed to make-class when class was created, this list is equal? to
that argument. The returned value must not be modified.

[Procedure]class-direct-slot-names class
Returns a list of symbols that are the names of the direct slots of class. This list
contains only those slots that were defined in the call to make-class that created
class; it does not contain slots that were inherited. The returned value must not be
modified.

[Procedure]class-precedence-list class
Returns a list of the superclasses of class. The order of this list is significant: it is
the method resolution order. This list will always have class as its first element, and
<object> as its last element. The returned value must not be modified.

1.2 Predefined Classes

sos provides a rich set of predefined classes that can be used to specialize methods to any
of Scheme’s built-in datatypes.

[Class]<object>
This is the class of all Scheme objects. It has no direct superclasses, and all other
classes are subclasses of this class.

[Class]<instance>
This is the class of instances. It is a direct subclass of <object>. The members of
this class are the objects that satisfy the predicate instance?.

[Class]<boolean>
[Class]<char>
[Class]<entity>
[Class]<pair>
[Class]<procedure>
[Class]<record>
[Class]<string>
[Class]<symbol>
[Class]<vector>

These are the classes of their respective Scheme objects. They are all direct subclasses
of <object>. The members of each class are the objects that satisfy the corresponding
predicate; for example, the members of <procedure> are the objects that satisfy
procedure?.

[Class]<generic-procedure>
This is the class of generic procedure instances. It is a direct subclass of <procedure>.

[Class]<method>
This is the class of method objects. It is a direct subclass of <instance>.

8 SOS 1.9

[Class]<chained-method>
[Class]<computed-method>
[Class]<computed-emp>

These classes specify additional method objects with special properties. Each class is
a subclass of <method>.

The following are the classes of Scheme numbers. Note that object-class will never
return one of these classes; instead it returns an implementation-specific class that is as-
sociated with a particular numeric representation. The implementation-specific class is a
subclass of one or more of these implementation-independent classes, so you should use
these classes for specialization.

[Class]<number>
[Class]<complex>
[Class]<real>
[Class]<rational>
[Class]<integer>

These are the classes of the Scheme numeric tower. <number> is a direct subclass
of <math-object>, <complex> is a direct subclass of <number>, <real> is a direct
subclass of <complex>, etc.

[Class]<exact>
[Class]<exact-complex>
[Class]<exact-real>
[Class]<exact-rational>
[Class]<exact-integer>

These are the classes of exact numbers. <exact> is a direct subclass of <number>,
<exact-complex> is a direct subclass of <exact> and <complex>, and in general,
each is a direct subclass of preceding class and of the class without the exact- prefix.

[Class]<inexact>
[Class]<inexact-complex>
[Class]<inexact-real>
[Class]<inexact-rational>
[Class]<inexact-integer>

These are the classes of inexact numbers. <inexact> is a direct subclass of <number>,
<inexact-complex> is a direct subclass of <inexact> and <complex>, and in general,
each is a direct subclass of preceding class and of the class without the inexact-

prefix.

1.3 Record Classes

sos allows generic procedures to discriminate on record types. This means that a record
structure defined by means of make-record-type or define-structure can be passed as
an argument to a generic procedure, and the generic procedure can use the record’s type to
determine which method to be invoked.1

1 If the type option of define-structure is used, the resulting data structure is not a record and thus
cannot be used in this manner.

Chapter 1: Classes 9

In order to support this, sos accepts record type descriptors in all contexts that accept
classes. Additionally, every record type descriptor has an associated sos class; either the
class or the record type can be used with equivalent results.

[Procedure]record-type-class record-type
Record-type must be a record type descriptor (in other words, it must satisfy the
predicate record-type?). Returns the class associated with record-type.

[Procedure]record-class record
Record must be a record (in other words, it must satisfy the predicate record?).
Returns the class associated with record. This is equivalent to

(record-type-class (record-type-descriptor record))

1.4 Specializers

A specializer is a generalization of a class. A specializer is any one of the following:

• A class.

• A record type, which is equivalent to its associated class.

• A union specializer, which is a set of classes.

A specializer may be used in many contexts where a class is required, specifically, as a
method specializer (hence the name), as the second argument to subclass?, and elsewhere.

[Procedure]specializer? object
Returns #t if object is a specializer, otherwise returns #f.

[Procedure]specializer-classes specializer
Returns a list of the classes in specializer. If specializer is a class, the result is a list
of that class. If specializer is a record type, the result is a list of the record type’s
class. If specializer is a union specializer, the result is a list of the component classes
of the specializer.

[Procedure]specializer=? specializer1 specializer2
Returns #t if specializer1 and specializer2 are equivalent, otherwise returns #f. Two
specializers are equivalent if the lists returned by specializer-classes contain the
same elements.

[Procedure]union-specializer specializer . . .
Returns a union specializer consisting of the union of the classes of the arguments.
This is equivalent to converting all of the specializer arguments to sets of classes, then
taking the union of those sets.

[Procedure]union-specializer? object
Returns #t if object is a union specializer, otherwise returns #f.

[Procedure]specializers? object
Returns #t if object is a list of specializers, otherwise returns #f.

[Procedure]specializers=? specializers1 specializers2
Specializers1 and specializers2 must be lists of specializers. Returns #t if specializers1
and specializers2 are equivalent, otherwise returns #f. Two specializers lists are
equivalent if each of their corresponding elements is equivalent.

10 SOS 1.9

2 Instances

An instance is a compound data structure much like a record, except that it is defined by
a class rather than a record type descriptor. Instances are more powerful than records,
because their representation is designed to support inheritance, while the representation of
records is not.

[Procedure]instance-constructor class slot-names [n-init-args]
Creates and returns a procedure that, when called, will create and return a newly
allocated instance of class.

Class must be a subclass of <instance>. Slot-names must be a list of symbols, each
of which must be the name of a slot in class. N-init-args will be described below.

In its basic operation, instance-constructor works much like record-constructor:
the slot-names argument specifies how many arguments the returned constructor
accepts, and each of those arguments is stored in the corresponding slot of the returned
instance. Any slots that are not specified in slot-names are given their initial values,
as specified by the initial-value or initializer slot properties; otherwise they
are left uninitialized.

After the new instance is created and its slots filled in, but before it is
returned, it is passed to the generic procedure initialize-instance. Normally,
initialize-instance does nothing, but because it is always called, the programmer
can add methods to it to specify an initialization that is to be performed on every
instance of the class.

By default, initialize-instance is called with one argument, the newly created
instance. However, the optional argument n-init-args can be used to specify additional
arguments that will be passed to initialize-instance.

The way this works is that the returned constructor procedure accepts additional ar-
guments after the specified number of slot values, and passes these extra arguments to
initialize-instance. When n-init-args is not supplied or is #t, any number of extra
arguments are accepted and passed along. When n-init-args is an exact non-negative
integer, exactly that number of extra arguments must be supplied when the construc-
tor is called. Finally, if n-init-args is the symbol no-initialize-instance, then the
constructor accepts no extra arguments and does not call initialize-instance at
all; this is desirable when initialize-instance is not needed, because it makes the
constructor significantly faster.

For notational convenience, n-init-args may take two other forms. First, it may be
a list of symbols, which is equivalent to the integer that is the length of the list.
Second, it may be the symbol no-init, which is an abbreviation for no-initialize-
instance.

Note that the default method on initialize-instance accepts no extra arguments
and does nothing.

Examples of instance-constructor:

11

(define-class <simple-reference> (<reference>)

(from accessor reference-from)

(to accessor reference-to)

(cx accessor reference-cx)

(cy accessor reference-cy))

(define make-simple-reference

(instance-constructor <simple-reference>

’(from to cx cy)

’no-init))

(define-class <simple-wirenet> (<wirenet>)

(cell accessor wirenet-cell)

(wires accessor wirenet-wires

modifier set-wirenet-wires!

initial-value ’()))

(define make-simple-wirenet

(instance-constructor <simple-wirenet> ’(cell)))

[Procedure]instance? object
Returns #t if object is an instance, otherwise returns #f.

[Procedure]instance-class instance
Returns the class of instance. This is faster than object-class, but it works only
for instances, and not for other objects.

[Procedure]instance-of? object specializer
Returns #t if object is a general instance of specializer, otherwise returns #f. This is
equivalent to

(subclass? (object-class object) specializer)

[Procedure]instance-predicate specializer
Returns a predicate procedure for specializer. The returned procedure accepts one
argument and returns #t if the argument is an instance of specializer and #f otherwise.

12 SOS 1.9

3 Slots

An instance has zero or more named slots; the name of a slot is a symbol. The slots of an
instance are determined by its class.

Each slot can hold one value. When a slot does not have a value, the slot is said to
be uninitialized. The default initial value for a slot is defined by the initial-value and
initializer slot properties.

A slot is said to be accessible in an instance of a class if the slot is defined by the class
of the instance or is inherited from a superclass of that class. At most one slot of a given
name can be accessible in an instance. Slots are accessed by means of slot-access methods
(usually generated by make-class).

3.1 Slot Descriptors

Slots are represented by slot descriptors, which are data structures providing information
about the slots, such as their name. Slot descriptors are stored inside of classes, and may
be retrieved from there and subsequently inspected.

[Procedure]class-slots class
Returns a list of the slot descriptors for class. This contains all slots for class, both
direct slots and inherited slots. The returned value must not be modified.

[Procedure]class-slot class name error?
Returns the slot descriptor for the slot named name in class. If there is no such slot:
if error? is #f, returns #f, otherwise signals an error of type condition-type:no-

such-slot.

[Procedure]slot-descriptor? object
Returns #t if object is a slot descriptor, otherwise returns #f.

[Procedure]slot-name slot
Returns the name of slot.

[Procedure]slot-class slot
Returns the class of slot. This is the class with which slot is associated. This is not
necessarily the class that defines slot; it could also be a subclass of that class. If the
slot was returned from class-slots or class-slot, then this class is the argument
passed to that procedure.

[Procedure]slot-properties slot
Returns an alist of the properties of slot. This list must not be modified.

[Procedure]slot-property slot name default
If slot has a property named name, it is returned; otherwise default is returned.

[Procedure]slot-initial-value? slot
Returns #t if slot has an initial value, and #f otherwise. The initial value is specified
by the initial-value slot property when a class is made.

Chapter 3: Slots 13

[Procedure]slot-initial-value slot
Returns the initial value for slot, if it has one; otherwise it returns an unspecified
value. The initial value is specified by the initial-value slot property when a class
is made.

[Procedure]slot-initializer slot
Returns the initializer for slot; the initializer is specified by the initializer slot
property when a class is made. This is a procedure of no arguments that is called to
produce an initial value for slot. The result may also be #f meaning that the slot has
no initializer.

3.2 Slot Access Methods

The procedure make-class provides slot properties that generate methods to read and write
slots. If an accessor is requested, a method is automatically generated for reading the value
of the slot. If a modifier is requested, a method is automatically generated for storing a
value into the slot. When an accessor or modifier is specified for a slot, the generic procedure
to which the generated method belongs is directly specified. The procedure specified for the
accessor takes one argument, the instance. The procedure specified for the modifier takes
two arguments, the instance and the new value, in that order.

All of the procedures described here signal an error of type condition-type:no-such-
slot if the given class or object does not have a slot of the given name.

Slot-access methods can be generated by the procedures slot-accessor-method,
slot-modifier-method, and slot-initpred-method. These methods may be added to a
generic procedure by passing them as arguments to add-method. The methods generated
by these procedures are equivalent to those generated by the slot properties in make-class.

[Procedure]slot-accessor-method class name
Returns an accessor method for the slot name in class. The returned method has one
required argument, an instance of class, and the specializer for that argument is class.
When invoked, the method returns the contents of the slot specified by name in the in-
stance; if the slot is uninitialized, an error of type condition-type:uninitialized-
slot is signalled.

(define-generic get-bar (object))

(add-method get-bar

(slot-accessor-method <foo> ’bar))

[Procedure]slot-modifier-method class name
Returns a modifier method for the slot name in class. The returned method has two
required arguments, an instance of class and an object. The specializer for the first
argument is class and the second argument is not specialized. When invoked, the
method stores the second argument in the slot specified by name in the instance.

(define-generic set-bar! (object bar))

(add-method set-bar!

(slot-modifier-method <foo> ’bar))

14 SOS 1.9

[Procedure]slot-initpred-method class name
Returns an “initialized?” predicate method for the slot name in class. The returned
method has one required argument, an instance of class, and the specializer for that
argument is class. When invoked, the method returns #t if the slot specified by name
is initialized in the instance; otherwise it returns #f.

(define-generic has-bar? (object))

(add-method has-bar?

(slot-initpred-method <foo> ’bar))

3.3 Slot Access Constructors

For convenience, and for consistency with the record-accessor procedures record-accessor
and record-modifier, each of the above method-generating procedures has a correspond-
ing accessor-generator. Each of these procedures creates a generic procedure, adds an
appropriate method to it by calling the corresponding method-generating procedure, and
returns the generic procedure. Thus, for example, the following are equivalent:

(slot-accessor <foo> ’bar)

(let ((g (make-generic-procedure 1)))

(add-method g (slot-accessor-method <foo> ’bar))

g)

[Procedure]slot-accessor class name
Returns a generic procedure of one argument that is an accessor for the slot name in
class. The argument to the returned procedure must be an instance of class. When
the procedure is called, it returns the contents of the slot name in that instance; if
the slot is uninitialized, an error of type condition-type:uninitialized-slot is
signalled.

[Procedure]slot-modifier class name
Returns a generic procedure of two arguments that is a modifier for the slot name in
class. The first argument to the returned procedure must be an instance of class, and
the second argument may be any object. When the procedure is called, it modifies
the slot name in the instance to contain the second argument.

[Procedure]slot-initpred class name
Returns a generic procedure of one argument that is an “initialized?” predicate for
the slot name in class. The argument to the returned procedure must be an instance
of class. When the procedure is called, it returns #t if the slot name in that instance
is initialized, otherwise it returns #f.

3.4 Slot Access Procedures

Finally, there is another set of three procedures, which access the contents of a slot directly,
given an instance and a slot name. These procedures are very slow by comparison with the
above.

15

However, note the following. You can use these procedures in the body of a
define-method special form in an efficient way. If the define-method specifies the correct
number of arguments, the body of the form contains a call to one of these procedures
and nothing else, and the specified slot name is quoted, the form is rewritten during
macro-expansion time as a call to the corresponding method-generating procedure. For
example, the following are equivalent:

(define-method p ((v <foo>))

(slot-value v ’bar))

(add-method p

(slot-accessor-method <foo> ’bar))

[Procedure]slot-value instance name
Returns the contents of the slot name in instance; if the slot is uninitialized, an error
of type condition-type:uninitialized-slot is signalled.

[Procedure]set-slot-value! instance name object
Modifies the slot name in instance to contain object.

[Procedure]slot-initialized? instance name
Returns #t if the slot name in instance is initialized, otherwise returns #f.

16 SOS 1.9

4 Generic Procedures

Like an ordinary Scheme procedure, a generic procedure takes arguments, performs a series
of operations, and perhaps returns useful values. An ordinary procedure has a single body
of code that is always executed when the procedure is called. A generic procedure has a set
of multiple bodies of code, called methods, from which a subset is selected for execution.
The selected bodies of code and the manner of their combination are determined by the
classes of one or more of the arguments to the generic procedure.

Ordinary procedures and generic procedures are called with identical procedure-call syn-
tax.

Generic procedures are true procedures that can be passed as arguments, returned as
values, and otherwise used in all the ways an ordinary procedure may be used. In particular,
generic procedures satisfy the predicate procedure?.

4.1 Generic Procedure Datatype

The following definitions are used to construct and inspect generic procedures.

[Procedure]make-generic-procedure arity [name]
Creates and returns a new generic procedure. The generic procedure requires arity
arguments.

Arity may take one of the following forms. An exact positive integer specifies that the
procedure will accept exactly that number of arguments. A pair of two exact positive
integers specifies inclusive lower and upper bounds, respectively, on the number of
arguments accepted; the cdr may be #f indicating no upper bound.

Name is used for debugging: it is a symbol that has no role in the semantics of
the generic procedure. Name may be #f to indicate that the generic procedure is
anonymous. If name is not specified, it defaults to #f.

Examples:

(define foo-bar (make-generic-procedure 2))

(define foo-baz (make-generic-procedure ’(1 . 2) ’foo-baz))

(define foo-mum (make-generic-procedure ’(1 . #f)))

[Syntax]define-generic name lambda-list
Defines name to be a generic procedure. Lambda-list is an ordinary parameter list,
which is exactly like the parameter list in a lambda special form. This expands into

(define name

(make-generic-procedure arity

(quote name)))

where arity is determined from lambda-list.

Examples (compare to examples of make-generic-procedure):

(define-generic foo-bar (x y))

(define-generic foo-baz (x #!optional y))

Chapter 4: Generic Procedures 17

(define-generic foo-mum (x . y))

[Procedure]generic-procedure? object
Returns #t if object is a generic procedure, otherwise returns #f. Note that every
generic procedure satisfies the predicate procedure?.

[Procedure]generic-procedure-arity generic-procedure
Returns the arity of generic-procedure, as specified in the call to make-generic-

procedure. The returned arity must not be modified.

[Procedure]generic-procedure-name generic-procedure
Returns the name of generic-procedure, as specified in the call to make-generic-

procedure.

4.2 Method Storage

Methods are stored in generic procedures. When a generic procedure is called, it selects a
subset of its stored methods (using method-applicable?), and arranges to invoke one or
more of the methods as necessary. The following definitions provide the means for adding
methods to and removing them from a generic procedure.

[Procedure]add-method generic-procedure method
Adds method to generic-procedure. If generic-procedure already has a method with
the same specializers as method, then the old method is discarded and method is
used in its place.

[Procedure]delete-method generic-procedure method
Removes method from generic-procedure. Does nothing if generic-procedure does not
contain method.

[Procedure]add-methods generic-procedure methods
Adds methods, which must be a list of methods, to generic-procedure. Equivalent to
calling add-method on each method in methods.

[Procedure]generic-procedure-methods generic-procedure
Returns a list of the methods contained in generic-procedure. The returned list must
not be modified.

4.3 Effective Method Procedure

When a generic procedure is called, it arranges to invoke a subset of its methods. This is
done by combining the selected methods into an effective method procedure, or emp, then
tail-recursively invoking the emp. compute-effective-method-procedure is the procedure
that is called to select the applicable methods and combine them into an emp.

[Procedure]compute-effective-method-procedure generic-procedure classes
Collects the applicable methods of generic-procedure by calling method-applicable?
on each method and on classes. Combines the resulting methods together into an
effective method procedure, and returns that emp.

18 SOS 1.9

[Procedure]compute-method generic-procedure classes
This procedure is like compute-effective-method-procedure, except that it returns
the result as a method whose specializers are classes.

compute-method is equivalent to

(make-method classes

(compute-effective-method-procedure generic-procedure

classes))

19

5 Methods

A method contains a method procedure and a sequence of parameter specializers that
specify when the given method is applicable.

A method is not a procedure and cannot be invoked as a procedure. Methods are invoked
by the effective method procedure when a generic procedure is called.

5.1 Method Datatype

The following procedures are used to construct and inspect methods.

[Procedure]make-method specializers procedure
Creates and returns a new method. Note that specializers may have fewer elements
than the number of required parameters in procedure; the trailing parameters are
considered to be specialized by <object>.

After the returned method is stored in a generic procedure, Procedure is called by
the effective method procedure of the generic procedure when the generic procedure
is called with arguments satisfying specializers. In simple cases, when no method
combination occurs, procedure is the effective method procedure.

[Procedure]method? object
Returns #t iff object is a method, otherwise returns #f.

[Generic Procedure]method-specializers method
Returns the specializers of method. This list must not be modified.

[Generic Procedure]method-procedure method
Returns the procedure of method.

[Procedure]method-applicable? method classes
This predicate is used to determine the applicability of method. When a method is
contained in a generic procedure, and the procedure is applied to some arguments,
the method is applicable if each argument is an instance of the corresponding method
specializer, or equivalently, if each argument’s class is a subclass of the corresponding
method specializer.

method-applicable? determines whether method would be applicable if the given
arguments had the classes specified by classes. It returns #t if each element of classes
is a subclass of the corresponding specializer of method, and #f otherwise.

5.2 Method Syntax

The following syntactic form greatly simplifies the definition of methods, and of adding
them to generic procedures.

[Syntax]define-method generic-procedure lambda-list body . . .
Defines a method of generic-procedure. Lambda-list is like the parameter list of
a lambda special form, except that the required parameters may have associated
specializers. A parameter with an associated specializer is written as a list of two

20 SOS 1.9

elements: the first element is the parameter’s name, and the second element is an
expression that evaluates to a class.

Lambda-list must contain at least one required parameter, and at least one required
parameter must be specialized.

A define-method special form expands into the following:

(add-method generic-procedure

(make-method (list specializer ...)

(lambda (call-next-method . stripped-lambda-list)

body ...)))

where stripped-lambda-list is lambda-list with the specialized parameters replaced
by their names, and the specializers are the corresponding expressions from the spe-
cialized parameters. If necessary, the specializers are interspersed with references to
<object> in order to make them occur in the correct position in the sequence.

For example,

(define-method add ((x <integer>) (y <rational>)) ...)

expands into

(add-method add

(make-method (list <integer> <rational>)

(lambda (call-next-method x y) ...)))

Note that the list of specializers passed to make-method will correspond to the required
parameters of the method; the specializer corresponding to a non-specialized required
parameter is <object>.

Further note that, within the body of a define-method special form, the free variable
call-next-method is bound to a “call-next-method” procedure (see make-chained-
method for details). If the define-method body refers to this variable, the defined
method is a chained method, otherwise it is an ordinary method.

5.3 Chained Methods

Sometimes it is useful to have a method that adds functionality to existing methods.
Chained methods provide a mechanism to accomplish this. A chained method, when in-
voked, can call the method that would have been called had this method not been defined:
it is passed a procedure that will call the inherited method. The chained method can run
arbitrary code both before and after calling the inherited method.

[Procedure]make-chained-method specializers procedure
Create and return a chained method. Procedure must be a procedure of one argument
that returns a procedure. When the chained method is combined, its procedure will
be called with one argument, a “call-next-method” procedure; it must then return
another procedure that will be called when the method is invoked. The “call-next-
method” procedure may called by the method procedure at any time, which will
invoke the next less-specific method. The “call-next-method” procedure must be
called with the same number of arguments as the method procedure; normally these
are the same arguments, but that is not required.

Chapter 5: Methods 21

[Procedure]chained-method? object
Returns #t if object is a chained method, otherwise returns #f. Note that every
chained method satisfies method?.

5.4 Computed Methods

A computed method is a powerful mechanism that provides the ability to generate methods
“on the fly”. A computed method is like an ordinary method, except that its procedure is
called during method combination, and is passed the classes of the arguments in place of the
arguments themselves. Based on these classes, the computed method returns an ordinary
method, which is combined in the usual way.

Note that computed methods and computed emps both satisfy the predicate method?.
They are not really methods in that they cannot be combined with other methods to form
an effective method procedure; however, they are treated as methods by procedures such
as add-method and method-specializers.

[Procedure]make-computed-method specializers procedure
Create and return a computed method. Procedure will be called during method
combination with the classes of the generic-procedure arguments as its arguments. It
must return one of the following:

• An ordinary method (as returned by make-method or make-chained-method).
The returned method’s specializers must be restrictions of specializers, i.e. each
specializer in the returned method must be a subclass of the corresponding spe-
cializer in specializers. In the usual case, the returned method’s specializers are
the same as specializers.

• A procedure, which is converted into an ordinary method by calling make-method
on specializers and the returned procedure.

• #f, which means that the computed method declines to generate a method.

[Procedure]computed-method? object
Returns #t if object is a computed method, otherwise returns #f.

A computed emp takes the computed-method mechanism one step further. A com-
puted emp is like a computed method, except that it returns an effective method procedure
rather than a method. compute-effective-method-procedure tries each of the applicable
computed emps, and if exactly one of them returns an emp, that is the resulting effective
method procedure.

[Procedure]make-computed-emp key specializers procedure
Create and return a computed emp. Procedure will be called during method combi-
nation with the classes of the generic-procedure arguments as its arguments. It must
return either an emp or #f.

Key is an arbitrary object that is used to identify the computed emp. The key is
used by add-method and delete-method to decide whether two computed emps are
the same; they are the same if their keys are equal?. This is necessary because a
generic procedure may have more than one computed emp with the same specializers.

[Procedure]computed-emp? object
Returns #t if object is a computed emp, otherwise returns #f.

22 SOS 1.9

[Generic Procedure]computed-emp-key computed-emp
Returns the key for computed-emp.

23

6 Printing

The following procedures can be used to define a custom printed representation for an
instance. It is highly recommended that instances be printed by write-instance-helper,
as this ensures a uniform appearance for all objects.

[Generic Procedure]write-instance instance port
This is called by the runtime system to generate the printed representation of instance.
The methods of this procedure should write the representation to port.

[Procedure]write-instance-helper name instance port thunk
This writes a standardized “frame” for a printed representation method. It generates
the following output on port:

#[name hash-number...]

where hash-number is the result of calling hash on instance, and . . . is the output
generated by thunk.

24 SOS 1.9

Appendix A GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

Appendix A: GNU Free Documentation License 25

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

26 SOS 1.9

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

Appendix A: GNU Free Documentation License 27

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

28 SOS 1.9

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

Appendix A: GNU Free Documentation License 29

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warrany Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

30 SOS 1.9

A.1 ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

31

Appendix B Binding Index

<
<boolean> . 7
<chained-method> . 8
<char> . 7
<complex> . 8
<computed-emp> . 8
<computed-method> . 8
<entity> . 7
<exact-complex> . 8
<exact-integer> . 8
<exact-rational> . 8
<exact-real> . 8
<exact> . 8
<generic-procedure> . 7
<inexact-complex> . 8
<inexact-integer> . 8
<inexact-rational> . 8
<inexact-real> . 8
<inexact> . 8
<instance> . 7
<integer> . 8
<method> . 7
<number> . 8
<object> . 7
<pair> . 7
<procedure> . 7
<rational> . 8
<real> . 8
<record> . 7
<string> . 7
<symbol> . 7
<vector> . 7

A
add-method . 17
add-methods . 17

C
chained-method? . 21
class-direct-slot-names . 7
class-direct-superclasses . 7
class-name . 6
class-precedence-list . 7
class-slot . 12
class-slots . 12
class? . 6
compute-effective-method-procedure 17
compute-method . 18
computed-emp-key . 22
computed-emp? . 21
computed-method? . 21
constructor . 5

D
define-class . 4
define-generic . 16
define-method . 19
delete-method . 17

G
generic-procedure-arity . 17
generic-procedure-methods 17
generic-procedure-name . 17
generic-procedure? . 17

I
initialize-instance . 10
instance-class . 11
instance-constructor . 10
instance-of? . 11
instance-predicate . 11
instance? . 11

M
make-chained-method . 20
make-class . 2
make-computed-emp . 21
make-computed-method . 21
make-generic-procedure . 16
make-method . 19
make-trivial-subclass . 6
method-applicable? . 19
method-procedure . 19
method-specializers . 19
method? . 19

O
object-class . 6

P
predicate . 5

R
record-class . 9
record-type-class . 9

32 SOS 1.9

S
separator . 5
set-slot-value! . 15
slot-accessor . 14
slot-accessor-method . 13
slot-class . 12
slot-descriptor? . 12
slot-initial-value . 13
slot-initial-value? . 12
slot-initialized? . 15
slot-initializer . 13
slot-initpred . 14
slot-initpred-method . 14
slot-modifier . 14
slot-modifier-method . 13
slot-name . 12
slot-properties . 12

slot-property . 12
slot-value . 15
specializer-classes . 9
specializer=? . 9
specializer? . 9
specializers=? . 9
specializers? . 9
subclass? . 6

U
union-specializer . 9
union-specializer? . 9

W
write-instance . 23
write-instance-helper . 23

33

Appendix C Concept Index

A
accessibility of slots . 12
accessor, for slot . 13

C
chained method . 20
class . 2
class name . 2
class options . 5
class precedence list . 2
computed emps . 21
computed method . 21
constructor, class option . 5

D
direct subclass . 2
direct superclass . 2

E
effective method procedure . 17
emp . 17

F
FDL, GNU Free Documentation License 24

G
generic procedure . 16

I
initialize-instance . 10
instance . 2, 10

L
local precedence order . 2

M
method . 19
modifier, for slot . 13

N
name, of class . 2

O
order, local precedence . 2

P
precedence list, class . 2
precedence order, local . 2
predefined classes . 7
predicate, class option . 5
printing instances . 23

R
record class . 8

S
separator, class option . 5
slot . 12
slot accessor . 13
slot descriptor . 12
slot modifier . 13
slot, uninitialized . 12
specializer . 9
subclass . 2
subclass, direct . 2
superclass . 2
superclass, direct . 2

U
uninitialized slot . 12

	Introduction
	Classes
	Class Datatype
	Predefined Classes
	Record Classes
	Specializers

	Instances
	Slots
	Slot Descriptors
	Slot Access Methods
	Slot Access Constructors
	Slot Access Procedures

	Generic Procedures
	Generic Procedure Datatype
	Method Storage
	Effective Method Procedure

	Methods
	Method Datatype
	Method Syntax
	Chained Methods
	Computed Methods

	Printing
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Binding Index
	Concept Index

