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Editorial
by Martyn Plummer and Paul Murrell

Welcome to the first issue of R News for 2006. This
is my first issue as Editor-in-Chief and, in the spirit
of “start as you mean to go on”, I have had someone
else do all the work. Martyn Plummer is guest editor
for this special issue, which has a distinctly Bayesian
flavour. Thanks to Martyn and his merry band of
contributors and reviewers for getting this special is-
sue together.

Normal service and regular features will resume
with a regular issue following the release of R 2.3.0.
For now, sit back, relax, and prepare to gorge your-
self on a feast of Bayes.

Paul Murrell
The University of Auckland, New Zealand
paul.murrell@R-project.org

This special issue of R News is dedicated to
Bayesian inference and Markov Chain Monte Carlo
(MCMC) simulation. The choice of articles for this
issue is subjective. We aim to give you a snapshot of
some current work on Bayesian statistical comput-
ing in R without any claim to comprehensiveness.
A broader view is provided by the CRAN task view
on Bayesian inference maintained by Jong Hee Park.
This currently lists 33 packages, some of which have
been discussed in previous R News articles (Yan,
2004; Raftery et al., 2005).

MCMC has become the numerical method of

choice for many Bayesians. Although computation-
ally expensive, it enables highly complex probabil-
ity models to be analyzed. This capability, com-
bined with cheap, abundant computing power, has
contributed to the increasing popularity of Bayesian
methods in applied statistics. The field has now ma-
tured to the point where most users should not ex-
pect to write custom software, but may use one of
several existing “sampling engines”. R provides a
natural front end for these engines. This is nicely il-
lustrated by the package MCMCpack, subject of the
first article by Andrew Martin and Kevin Quinn. The
computational back-end of MCMCpack is provided
by the Scythe C++ statistical library. The front end
is a collection of R functions for fitting models com-
monly used in the social and behavioural sciences.
This is followed by an article on coda, which pro-
vides the infrastructure for analyzing MCMC output,
and is used by MCMCpack among other packages.

Samantha Cook and Andrew Gelman then dis-
cuss validation of MCMC software using the
BayesValidate package. Since the results of MCMC
simulation are never exact, and the models used are
typically very complex, validation of the sampling
software can be quite difficult. However, the lack
of validation of Bayesian software may be holding
back its acceptance in regulated environments such
as clinical trials approved by the US Food and Drug
Administration, so this is an important problem.

We continue with a pair of articles on Open-
BUGS. The BUGS (Bayesian inference Using Gibbs
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Sampling) project is a long-running project to pro-
vide a user-friendly language and environment for
Bayesian inference. The first article, by Andrew
Thomas and colleagues, describes the BRugs pack-
age which provides an R interface to the OpenBUGS
engine. The second article by Andrew Thomas de-
scribes the BUGS language itself and the design phi-
losophy behind it. Somewhat unusually for an article
in R News, this article does not describe any R soft-
ware, but it is included to highlight some of the dif-
ferences in the way statistical models are represented
in R and OpenBUGS.

The issue ends with an article by Jouni Kerman
and Andrew Gelman, who give a personal perspec-
tive on what the next generation of Bayesian soft-
ware may look like, and preview some of their own
work in this area, notably the rv package for rep-
resenting simulation-based random variables, and
the forthcoming “Universal Markov Chain Sampler”

package, Umacs.
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Applied Bayesian Inference in R using
MCMCpack
by Andrew D. Martin and Kevin M. Quinn

Introduction

Over the past 15 years or so, data analysts have be-
come increasingly aware of the possibilities afforded
by Markov chain Monte Carlo (MCMC) methods.
This is particularly the case for researchers interested
in performing Bayesian inference. Here, MCMC
methods provide a fairly straightforward way for
one to take a random sample approximately from a
posterior distribution. Such samples can be used to
summarize any aspect of the posterior distribution
of a statistical model. While MCMC methods are ex-
tremely powerful and have a wide range of applica-
bility, they are not as widely used as one might guess.
At least part of the reason for this is the gap be-
tween the type of software that many applied users
would like to have for fitting models via MCMC and
the software that is currently available. MCMCpack
(Martin and Quinn, 2005) is an R package designed
to help bridge this gap.

Until the release of MCMCpack, the two main
options for researchers who wished to fit a model via
MCMC were to: a) write their own code in R, C, FOR-
TRAN, etc., or b) write their own code (possibly re-
lying heavily on the available example programs) us-
ing the BUGS language1 in one of its various imple-

mentations (Spiegelhalter et al., 2004; Thomas, 2004;
Plummer, 2005). While both of these options offer a
great deal of flexibility, they also require non-trivial
programming skills in the case of a) or the willing-
ness to learn a new language and to develop some
modest programming skills in the case of b). These
costs are greater than many applied data analysts are
willing to bear. MCMCpack is geared primarily to-
wards these users.

The design philosophy of MCMCpack is quite
different from that of the BUGS language. The most
important design goal has been the implementation
of MCMC algorithms that are model-specific. This
comports with the manner in which people often-
times think about finding software to fit a particular
class of models rather than thinking about writing
code from the ground up. The major advantage of
such an approach is that the sampling algorithms,
being hand-crafted to particular classes of models,
can be made dramatically more efficient than black
box approaches such as those found in the BUGS lan-
guage, while remaining robust to poorly conditioned
or unusual data. All the MCMCpack estimation rou-
tines are coded in C++ using the Scythe Statistical Li-
brary (Martin et al., 2005). We also think it is eas-
ier to call a single R function to fit a model than to
code a model in the BUGS language. It should also
be noted that MCMCpack is aimed primarily at so-

1The BUGS language is a general purpose language for simulation from posterior distributions of statistical models. BUGS exploits
conditional independence relations implied by a particular graphical model in order to automatically determine an MCMC algorithm to
do the required simulation. In order to fit a model, the user must specify a graphical model using either the BUGS language or (in the case
of WinBUGS) a graphical user interface.
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cial scientists. While some models (linear regression,
logistic regression, Poisson regression) will be of in-
terest to nearly all researchers, others (various item
response models and factor analysis models) are es-
pecially useful for social scientists.

While we think MCMCpack has definite advan-
tages over BUGS for many users, we emphasize that
we view BUGS and MCMCpack as complimentary
tools for the applied researcher. In particular, the
greater flexibility of the BUGS language is perfect for
users who need to build and fit custom probability
models.

Currently MCMCpack contains code to fit the
following models: linear regression (with Gaus-
sian errors), a hierarchical longitudinal model with
Gaussian errors, a probit model, a logistic regres-
sion model, a one-dimensional item response theory
model, a K-dimensional item response theory model,
a normal theory factor analysis model, a mixed re-
sponse factor analysis model, an ordinal factor anal-
ysis model, a Poisson regression, a tobit regression, a
multinomial logit model, a dynamic ecological infer-
ence model, a hierarchial ecological inference model,
and an ordered probit model. The package also con-
tains densities and random number generators for
commonly used distributions that are not part of the
standard R distribution, a general purpose Metropo-
lis sampling algorithm, and some utilities for visu-
alization and data manipulation. The package pro-
vides modular random number generators, includ-
ing the L’Ecuyer generator which produces indepen-
dent substreams, thus making (embarrassingly) par-
allel simulation using MCMCpack possible.

In the remainder of this article, we illustrate the
user interface and functionality of MCMCpack with
three examples.

User interface

The model fitting functions in MCMCpack have
been written to be as similar as possible to the cor-
responding R functions for estimation of the models
in question. This largely eliminates the need to learn
a specialized model syntax for anyone who is even
a novice user of R. For example, to fit a linear re-
gression model with an improper uniform prior on
the coefficient vector, an inverse gamma prior with
shape and scale both equal to 0.0005 for the error
variance, and the default settings for the parameters
governing the MCMC algorithm, one would issue a
function call nearly identical to the lm() command.

As an example, consider the swiss data that
contains fertility and socioeconomic indicators from
the 47 French-speaking provinces of Switzerland in
1888. To fit a Bayesian linear regression of fertil-
ity on a number of predictors in the dataset we use
the Gibbs sampling algorithm to obtain a sample ap-
proximately from the appropriate posterior distribu-

tion. To do this with MCMCpack and to then sum-
marize the results we issue the following command:

> data(swiss)
> posterior1 <- MCMCregress(Fertility ~
+ Agriculture + Examination +
+ Education + Catholic +
+ Infant.Mortality,
+ data=swiss)
> summary(posterior1)

The MCMCregress() function has a syntax similar to
the lm() command. All model functions in MCMC-
pack return mcmc objects as defined by the coda pack-
age (Plummer et al., 2005). MCMCpack relies on
coda to perform posterior summarization and con-
vergence diagnostics on the simulated values. The
summary method for mcmc objects prints various
quantities of interest to the screen, including the pos-
terior mean, standard deviation, and quantiles. The
coda package provides a number of other facilities,
including a plot method that produces marginal pos-
terior kernel density plots and traceplots, and a suite
of convergence diagnostics. See Figure 1 for the pos-
terior summary for the Swiss fertility regression.

We note that diagnosing convergence is critical for
any application employing MCMC methods. While
we have ignored such diagnostics here for reasons of
space, please note that simulation run lengths used
in all of the examples have been chosen so that infer-
ences are accurate.

Latent variable models in MCMC-
pack

One very active area of research in the field of polit-
ical methodology involves modeling voting in com-
mittees using the spatial voting model. This expla-
nation of voting asserts that actors have a preferred
policy position (usually called an ideal point) in a
K-dimensional issue space. For example, many Eu-
ropean parliamentary systems are characterized by
a two-dimensional model, with one dimension rep-
resenting traditional left-right economic considera-
tions, and the other dimension representing the issue
of European integration. Voters cast votes on binary
choices—one representing the status quo, the other
an alternative policy. The goal of these models is to
recover the ideal points of the actors, and a set of
item-specific parameters that are functions of the al-
ternative and status quo positions.

Under certain sets of assumptions, these empir-
ical spatial voting models are the same as item re-
sponse theory (IRT) models used in educational test-
ing and psychometrics. The Bayesian approach to
fitting these latent variable models provides many
advantages over the frequentist approach. Model
estimation is reasonably easy using data augmenta-
tion, identification of the model is straightforward,
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> summary(posterior1)

Iterations = 1001:11000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

(Intercept) 67.0208 11.08133 0.1108133 0.1103841

Agriculture -0.1724 0.07306 0.0007306 0.0007149

Examination -0.2586 0.26057 0.0026057 0.0024095

Education -0.8721 0.18921 0.0018921 0.0017349

Catholic 0.1040 0.03602 0.0003602 0.0002965

Infant.Mortality 1.0737 0.39580 0.0039580 0.0042042

sigma2 54.0498 12.68601 0.1268601 0.1566833

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

(Intercept) 45.53200 59.56526 67.0600 74.31604 88.87071

Agriculture -0.31792 -0.22116 -0.1715 -0.12363 -0.02705

Examination -0.76589 -0.43056 -0.2579 -0.08616 0.24923

Education -1.24277 -0.99828 -0.8709 -0.74544 -0.49851

Catholic 0.03154 0.08008 0.1037 0.12763 0.17482

Infant.Mortality 0.28590 0.81671 1.0725 1.33767 1.85495

sigma2 34.57714 45.06332 52.3507 61.03743 83.85127

Figure 1: Posterior summary from coda for the Swiss fertility regression fit using MCMCregress()

auxiliary information can be included in the analysis
through the use of priors, and one can discuss quan-
tities of interest on the scale of probability (Clinton
et al., 2004; Martin and Quinn, 2002). MCMCpack
contains a number of latent variable models, includ-
ing one-dimensional and K-dimensional IRT models
and factor analysis models for continuous, ordinal,
and mixed data.

To illustrate the one-dimensional IRT model in
MCMCpack, we will use some data from the U.S.
Supreme Court. MCMCpack contains a dataset
(SupremeCourt) of the votes cast by the nine sit-
ting justices on the 43 non-unanimous cases decided
during the October 2000 term. The data are just a
(43 × 9) matrix of zeros, ones, and missing values.
To identify the polarity of the model we constrain the
ideal points of two justices in our one-dimensional
latent space. We constrain Justice Stevens (a well-
known liberal) to have a negative ideal point, and
Justice Scalia (perhaps the most conservative mem-
bers of the Court) to have a positive ideal point. (The
one-dimensional IRT model in MCMCpack is identi-
fied through constraints on the ideal points / subject
abilities while the K-dimensional model is identified
through constraints in the item parameters). We use
the default priors on the item and subject parameters.
To fit the model, we issue the following command:

> data(SupremeCourt)
> posterior2 <- MCMCirt1d(t(SupremeCourt),
+ theta.constraints=list(Stevens="-",
+ Scalia="+"), burnin=5000, mcmc=100000,
+ thin=10, verbose=500)

By default, MCMCirt1d only retains the ideal points
in the posterior sample. One can optionally store the
item parameters. We illustrate our results from this
sample analysis in Figure 2. This figure shows the
standard normal prior density on the ideal points,
and the marginal posterior densities of the ideal
points. Justice Stevens is the leftmost Justice, fol-
lowed by Breyer, Ginsburg, and Souter, who are es-
sentially indistinguishable. Justice O’Connor is the
pivotal median justice, closely followed by Justice
Kennedy. Chief Justice Rehnquist is next, following
by Justices Thomas and Scalia. The posterior sample
can be used to answer any number of important sub-
stantive questions (see, for example, Clinton et al.,
2004).

Generic metropolis sampling

MCMCpack model functions allow users to choose
prior distributions by picking the parameters of a
particular parametric family that is specific to each

R News ISSN 1609-3631
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Figure 2: Posterior densities of ideal points for the U.S. Supreme Court justices, 2000 term, as estimated by
MCMCirt1d()

model. This approach is reasonable for many appli-
cations, but at times users would like to use more
flexible prior specifications. Similarly, there are nu-
merous models that are not currently implemented
directly in MCMCpack, but whose posterior densi-
ties are easy to write down up to a constant of pro-
portionality. One area of MCMCpack that is cur-
rently under development is a set of functions to per-
form generic sampling from a user-supplied (log)-
posterior distribution. While the user-supplied den-
sity is written as an R function, the simulation itself is
performed in compiled C++ code, so it is much more
efficient than doing the simulation in R itself.

While MCMCpack is not designed to be a general
purpose sampling engine in manner of BUGS, the
ability to fit a models with relatively small numbers
of parameters by specifying a (log)-posterior is very
attractive to many social scientists who are accus-
tomed to calculating maximum likelihood estimates
using numerical optimization routines. For many of
these researchers, writing an R function that eval-
uates a (log)-posterior is much more intuitive than
specifying the equivalent graphical model in BUGS.

As an example, suppose one would like to fit a

logistic regression model to the birthwt data from
the MASS package (Venables and Ripley, 2002) with
a complicated prior distribution. We assume our di-
chotomous dependent variable (the low birthweight
indicator) yi ∼ Bernouli(πi) for observations i =
1, . . . , n with inverse-link function:

πi =
1

1 + exp(−x′iβ)

The parameter vector β is of dimensionality (p × 1),
and xi is a column vector of observed covariates.

The data encodes risk factors associated with low
birth weight. We prepare the data for analysis as fol-
lows:

> attach(birthwt)
> race <- factor(race, labels = c("white",
+ "black", "other"))
> ptd <- factor(ptl > 0)
> ftv <- factor(ftv)
> levels(ftv)[-(1:2)] <- "2+"
> bwt <- data.frame(low = factor(low), age,
+ lwt, race, smoke = (smoke > 0), ptd,
+ ht = (ht > 0), ui = (ui > 0), ftv)
> detach(birthwt)

R News ISSN 1609-3631



Vol. 6/1, March 2006 6

We could obtain the maximum likelihood estimates
with the command:

glm.out <- glm(low ~ ., binomial, bwt)

We will store these estimates and use them as start-
ing values. We could also fit the model with
MCMClogit() which assumes a multivariate normal
prior on the β vector.

Suppose, however, that we would like to fit the
model where our prior on β is:

p(β) ∝ I(β6 > 0)I(β8 > β7)
k

∏
i=1

1
2(1 + (βi/2)2)

This is an independent Cauchy prior with location
parameter 0 and scale parameter 2 truncated to a
sub-region of the parameter space. See Geweke
(1986) for some situations where such constraints
may be of interest.

To fit this model with MCMCpack, one has to
code the log-posterior density in R. This function can
be written as:

> logit.log.post <- function(beta){
+ ## constrain smoking coefficient to be
+ ## greater than zero
+ if (beta[6] <=0) return(-Inf)
+
+ ## constrain coefficient on ht to be
+ ## greater than coefficient on ptd
+ if (beta[8] <= beta[7]) return(-Inf)
+
+ ## form posterior
+ eta <- X %*% beta
+ p <- 1.0/(1.0+exp(-eta))
+ log.like <- sum(Y * log(p) +
+ (1-Y)*log(1-p))
+ log.prior <- sum(dcauchy(beta,
+ 0, 2, log=TRUE))
+ return(log.like + log.prior)
+ }

Note that the argument to the function only contains
the parameter vector. The data must be in the en-
vironment from which the function is called, which
is done automatically by the model-fitting function.
See the documentation for details. To prepare the
data for analysis, we will build a vector that holds
yi and a matrix that holds xi:

> Y.vec <- as.numeric(bwt$low) - 1
> X.mat <- model.matrix(glm.out)

The function we will use to simulate from the pos-
terior is MCMCmetrop1R(). This function samples in a
single block from a user-defined (log)-density using a
random walk Metropolis algorithm with a multivari-
ate normal proposal distribution. To simulate from
the posterior distribution of this model, we issue the
command:

> posterior3 <- MCMCmetrop1R(logit.log.post,
+ theta.init=coef(glm.out), burnin=1000,
+ mcmc=200000, thin=20, tune=.7,
+ Y=Y.vec, X=X.mat, verbose=500)

Here we use the results from the glm() function as
our starting values. We choose a tuning parameter
to produce an acceptance rate of about 25%. The
data are passed with the Y=Y.vec, X=X.mat options.
MCMCmetrop1R() puts these into the appropriate en-
vironment such that the data are available to the
function when performing simulation.

As with all MCMCpack model functions, this
code returns an mcmc object. Here, to summarize the
results, we first label our variables, and then summa-
rize the posterior:

> varnames(posterior3) <- colnames(X.mat)
> summary(posterior3)

We report just the posterior medians and central 95%
credible intervals from the coda summary in Figure
3.

2.5% 50% 97.5%

(Intercept) -1.24909 0.70661 2.918533

age -0.10475 -0.03132 0.040915

lwt -0.02965 -0.01595 -0.003622

raceblack 0.10524 1.10791 2.176933

raceother -0.09613 0.73250 1.606134

smokeTRUE 0.11367 0.78682 1.587147

ptdTRUE 0.35179 1.19072 2.076352

htTRUE 1.01740 2.01728 3.313555

uiTRUE -0.21642 0.67817 1.573814

ftv1 -1.35557 -0.41235 0.459527

ftv2+ -0.75103 0.14322 1.009499

Figure 3: Posterior medians and 2.5th and 97.5th
percentiles from the constrained logistic regression
model fit using MCMCmetrop1R()

Future developments

MCMCpack is a work in progress and under current
active development. Going forward, we intend to
implement more standard models—especially those
used commonly in the social sciences. To illustrate
the use of MCMCpack for applied problems, we will
provide detailed vignettes and more datasets. We
also intend to continue improving the flexibility of
MCMCpack. One approach to this is to give users
the ability to provide non-standard priors to any of
the standard model fitting functions. We also plan
to expand the number of general-purpose sampling
functions. The website for the MCMCpack project
(http://mcmcpack.wustl.edu) contains a more de-
tailed list of things to come. We welcome comments
and suggestions from the R community about MCM-
Cpack and how we can make it a better tool for ap-
plied Bayesian inference.
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CODA: Convergence Diagnosis and
Output Analysis for MCMC
by Martyn Plummer, Nicky Best, Kate Cowles and Karen
Vines

At first sight, Bayesian inference with Markov Chain
Monte Carlo (MCMC) appears to be straightforward.
The user defines a full probability model, perhaps
using one of the programs discussed in this issue;
an underlying sampling engine takes the model def-
inition and returns a sequence of dependent sam-
ples from the posterior distribution of the model pa-
rameters, given the supplied data. The user can de-
rive any summary of the posterior distribution from
this sample. For example, to calculate a 95% cred-
ible interval for a parameter α, it suffices to take
1000 MCMC iterations of α and sort them so that
α1 < α2 < . . . < α1000. The credible interval esti-
mate is then (α25,α975).

However, there is a price to be paid for this sim-

plicity. Unlike most numerical methods used in sta-
tistical inference, MCMC does not give a clear indi-
cation of whether it has converged. The underlying
Markov chain theory only guarantees that the distri-
bution of the output will converge to the posterior
in the limit as the number of iterations increases to
infinity. The user is generally ignorant about how
quickly convergence occurs, and therefore has to fall
back on post hoc testing of the sampled output. By
convention, the sample is divided into two parts: a
“burn in” period during which all samples are dis-
carded, and the remainder of the run in which the
chain is considered to have converged sufficiently
close to the limiting distribution to be used. Two
questions then arise:

1. How long should the burn in period be?

2. How many samples are required to accurately
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estimate posterior quantities of interest?

The coda package for R contains a set of functions de-
signed to help the user answer these questions. Some
of these convergence diagnostics are simple graphi-
cal ways of summarizing the data. Others are formal
statistical tests.

History of CODA

The coda package has a long history. The original
version of coda (Cowles, 1994) was written for S-
PLUS as part of a review of convergence diagnostics
(Cowles and Carlin, 1996). It was taken up and fur-
ther developed by the BUGS development team to
accompany the prototype of WinBUGS now known
as “classic BUGS” (Spiegelhalter et al., 1995). Classic
BUGS had limited facilities for output analysis, but
dumped the sampled output to disk, in a form now
known as “CODA format”, so that it could be read
into coda for further analysis.

Later BUGS versions, known as WinBUGS
(Spiegelhalter et al., 2004), had a sophisticated graph-
ical user interface which incorporated all of the fea-
tures of coda. However, as the name suggests, Win-
BUGS only ran on Microsoft Windows (until the re-
cent release of its successor OpenBUGS which also
runs on Linux on the x86 platform). BUGS users on
UNIX and Linux were either limited to using classic
BUGS or they developed their own MCMC software,
and a residual user base for coda remained.

The coda package for R arose out of an attempt to
port the coda suite of S-PLUS functions to R. Differ-
ences between S-PLUS and R made this difficult, and
the porting process ended with a more substantial
rewrite. Likewise, changes in S-PLUS 5.0 meant that
coda ceased to run on S-PLUS 1, and an initial patch
by Brian Smith, led to a complete rewrite known as
boa (Bayesian Output Analysis), which has subse-
quently been ported to R (Smith, 2005).

MCMC objects

S-PLUS coda had a menu-driven interface aimed at
the casual S-PLUS user. The menu interface was re-
tained in the R package as the codamenu() function,
but one of the design goals was to build this inter-
face on top of an object-based infrastructure so that
the diagnostics could also be used on the command
line. A new class called mcmc was created to hold
MCMC output. The mcmc class was designed from
the starting point that MCMC output can be viewed
as a time series. More precisely, MCMC output and
time series share some characteristics, but there are
important differences in the way they are used.

• An MCMC time series evolves in discrete time
(measured in iterations) and time is always
positive.

• The time series is not assumed to be stationary.
In fact the primary goal of convergence diagno-
sis is to identify and remove any non-stationary
parts from the beginning of the series. A priori
an MCMC time series is more likely to be sta-
tionary at iteration 10000 than at iteration 1.

• An MCMC time series is artificially generated.
This means it can be extended, if necessary. It
can also be replicated. A replicated time series
arises from a so-called “parallel” chain, derived
from the same model, but using different start-
ing values for the parameters and a different
seed for the random number generator.

• The autocorrelation structure of the time series
is a nuisance. A maximally informative series
of a given length has no autocorrelation: each
iteration is an independent sample from the
posterior distribution. In order to obtain such
a series we may choose to lengthen the MCMC
run by a factor of n and take every nth iteration,
a process known as “thinning”.

To reflect this close relation with time series, mcmc ob-
jects have methods for the generic time series func-
tions time, start, end, frequency, and window.
The thin() function is used to extract the “thinning
interval”, i.e. the number of iterations between con-
secutive samples in a chain that has been thinned.
The window() function is used to get a subset of iter-
ations from an mcmc object, usually by removing the
inital part of the chain, or increasing the thinning in-
terval.

x <- window(x, start=100, thin=5)

Numeric vectors or matrices in R can be con-
verted to mcmc objects using the mcmc() function, and
mcmc objects representing parallel chains can be com-
bined with mcmc.list(). As the name suggests, the
mcmc.list() function returns a list of mcmc objects,
but it also checks that each component of the list
contains data on the same variables over the same
set of iterations. It is not sufficient to combine par-
allel chains using the list() function, since func-
tions in the coda package require the presence of the
mcmc.list class attribute as proof of consistency be-
tween the list components.

1It was no longer possible to use a replacement function on an object unless that object already existed, a language feature also shared
by R.
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Figure 1: Example of a trace plot and density plot produced by the plot method for mcmc objects.

Reading MCMC data into R

Externally generated MCMC output can be read into
R from files written in CODA format. In this format,
each parallel chain has its own output file and there
is a single index file . The read.coda() function reads
output from an output/index file pair and returns an
mcmc object.

Short-cut functions are provided for output from
JAGS (Plummer, 2005) and OpenBUGS. In JAGS,
the output file is, by default, called ‘jags.out’ and
the index file ‘jags.ind’. A call to read.jags(),
without any arguments, will read the data in
from these files. In OpenBUGS, the index file is,
by default, ‘CODAindex.txt’, and the output files
are ‘CODAchain1.txt’, ‘CODAchain2.txt’, etc.. The
read.openbugs() function reads these files and re-
turns an mcmc.list object containing output from all
chains.

Graphics

The coda package contains several graphics func-
tions for visualising MCMC output. The graphical
output from plotting functions is quite extensive. A
separate plot is produced for each scalar parameter,
and for each element of a vector or array parameter.
A single function call can thus create a large num-
ber of plots. In order to make the plotting functions
more user-friendly, an appropriate multi-frame lay-
out is automatically chosen and interactive plotting
devices are paused in between pages.

The plot method for the mcmc class creates two
plots for each parameter in the model, illustrated

in Figure 1. The first is a trace plot, which shows
the evolution of the MCMC output as a time series.
The second is a density plot, which shows a kernel
density estimate of the posterior distribution. Trace
plots are useful for diagnosing very poor mixing, a
phenomenon in which the MCMC sampler covers
the support of the posterior distribution very slowly.
Figure 1 shows an extreme example of this. Poor
mixing invalidates the kernel density estimate, as it
implies that the MCMC output is not a representative
sample from the posterior distribution. The density
plots produced by coda have some useful features:
distributions that are bounded on [0, 1] or [0, ∞) are
recognized automatically and the density plots are
modified so that the smooth density curve does not
spill over the boundaries. For integer-valued param-
eters, a bar plot is produced instead of a density plot.

Two additional plotting functions allow the cor-
relation structure of the parameters to be explored.
The function autocorr.plot() produces an acf ob-
ject from the MCMC output and plots it. The re-
sulting plot can be useful in identifying slow mix-
ing, and may suggest a suitable thinning interval for
the sample to attain a sequence of approximately in-
dependent samples from the posterior. The function
crosscorr.plot() shows an image of the posterior
correlation matrix. It identifies parameters that are
highly correlated (a frequent cause of slow mixing
when using Gibbs sampling) and may suggest re-
parameterization of the model, or the use of an sam-
pling method that updates these parameters together
in a block. Figure 2 shows crosscorr.plot() output
from the same example as Figure 1. It is clear that
there is a strong negative correlation between mu and
alph[1].
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Further plotting functions are available in the
coda package. In particular, Lattice plots have re-
cently been added by Deepayan Sarkar.

Summary statistics

The summary method for the mcmc class prints a
fairly verbose summary of each parameter, giving
the mean, standard deviation, standard error of the
mean and a selection of quantiles.

Calculation of the standard error of the mean re-
quires estimating the spectral density of the mcmc
series at zero. This is done by the low-level function
spectrum0(), which is also used by several other
functions in coda. It uses a variation of the esti-
mator proposed by Heidelberger and Welch (1981)
and fits a generalized linear model to the lower part
of the periodogram. Unfortunately MCMC outout
can have extremely high autocorrelation, which may
cause spectrum0() to crash. A more robust estima-
tor, based the best-fitting autoregressive model, is
provided by the function spectrum0.ar().

One of the most important uses of
spectrum0.ar() is in the function effectiveSize().
This answers the question “How many independent
samples from the posterior distribution contain the
same amount of information?”. In the example illus-
trated in Figure 1 there are 3000 sampled iterations,
but the “effective size” of the sample is only 6.9,
clearly inadequate for any further inference.

Formal convergence tests

There are four formal convergence tests at the core of
the coda package. A brief explanation of the underly-
ing theory is given on the corresponding help pages
along with appropriate references, so the details will
not be repeated here. Briefly, geweke.diag() and
gelman.diag() aim to diagnose lack of convergence
using a single chain and multiple parallel chains, re-
spectively. These functions also have graphical ver-
sions that show how convergence is improved by
discarding extra burn in iterations at the beginning
of the series. The other two diagnostics are de-
signed for run length control based on accurate es-
timation of the mean (heidel.diag()) or a quantile
(raftery.diag()).

Outlook

Although the coda package continues to evolve in-
crementally, its core functionality has not substan-
tially changed in the last 12 years. This is largely due
to the lack of integration between between coda and
the underlying MCMC engine, which means that
coda must fall back on post hoc analysis of the out-
put, assuming nothing about how it was generated.

Closer integration of MCMC engines into R would
enable R functions to interrogate the transition kernel
of the Markov chain and get better estimates of con-
vergence rates. Conversely, run length control could
be done automatically from R. Both of these changes
would improve the practice of Bayesian data analy-
sis. Currently, the use of MCMC methods imposes
an extra burden on the user to check for nonconver-
gence of the MCMC output before it can be used. Not
only does this create extra work, it also a distraction
from the more important process of model criticism.
Eventually this layer of complexity may be hidden
from the user.
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Bayesian Software Validation
by Samantha Cook and Andrew Gelman

BayesValidate is a package for testing Bayesian
model-fitting software. Generating a sample from
the posterior distribution of a Bayesian model often
involves complex computational algorithms that are
programmed “from scratch.” Errors in these pro-
grams can be difficult to detect, because the correct
output is not known ahead of time; not all errors
lead to crashes or results that are obviously incor-
rect. Software is often tested by applying it to data
sets where the “right answer” is known or approx-
imately known. Cook et al. (2006) extend this strat-
egy to develop statistical assessments of the correct-
ness of Bayesian model-fitting software; this method
is implemented in BayesValidate. Generally, the val-
idation method involves simulating “true” param-
eter values from the prior distribution, simulating
fake data from the model, performing inference on
the fake data, and comparing these inferences to the
“true” values. Geweke (2004) presents an alternative
simulation-based method for testing Bayesian soft-
ware.

More specifically, let θ(0) represent the “true”
parameter value drawn from the prior distribution
p(θ). Data y are drawn from p(y|θ(0)), and the
posterior sample of size L to be used for inference,
θ(1), . . . ,θ(L), is drawn using the to-be-tested soft-
ware. With this sampling scheme, θ(0) as well as
θ(1), . . . ,θ(L) are, in theory, draws from p(θ|y). If the
Bayesian software works correctly, then, θ(0) should
look like a random draw from the empirical distribu-
tion θ(1), . . . ,θ(L), and therefore the (empirical) pos-
terior quantile of θ(0) with respect to θ(1), . . . ,θ(L)

should follow a Uniform(0, 1) distribution. Testing
the software amounts to testing that the posterior
quantiles for scalar parameters of interest are in fact
uniformly distributed.

One “replication” of the validation simulation
consists of: 1) Generating parameters and data; 2)
generating a sample from the posterior distribution;
and 3) calculating posterior quantiles. Performing
many replications creates, for each scalar param-
eter whose posterior distribution is generated by
the model-fitting software, a collection of quantiles
whose distribution will be uniform if the software
works correctly. If Nrep is the number of replica-
tions and q1, q2, . . . , qNrep are the quantiles for a scalar

parameter, the quantity ∑
Nrep
i=1

(
Φ−1(qi)

)2 will follow
a χ2

Nrep
distribution if the software works correctly,

where Φ−1 represents the inverse normal cumulative
distribution function (CDF). For each scalar parame-
ter, a p-value is then obtained by comparing the sum
of the transformed quantiles with the χ2

Nrep
distribu-

tion. BayesValidate analyzes each scalar parameter
separately, but also creates combined summaries for
each vector parameter; these scalar results and sum-
maries are in the graphical output as well.

BayesValidate performs a specified number of
replications and calculates a p-value for each scalar
parameter. The function returns a Bonferroni-
adjusted p-value and a graphical display of the zθ

statistics, which are the inverse normal CDFs of the
p-values. Figures 1 and 2 show the graphical output
for two versions of a program written to fit a simple
hierarchical normal model with parameters σ2, τ2,
µ, and α1,α2, . . . ,α6; one version correctly samples
from the posterior distribution and one has an error.
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Figure 1: zθ statistics: Correctly written software. Each
row represents a scalar parameter or batch of parameters;
the circles in each row represent the zθ statistics associated
with that parameter or batch of parameters. Solid circles
represent the zθ statistics associated with the mean of that
batch of parameters. The numbers on the y axis indicate
the number of parameters in the batch. The zθ statistics
are all within the expected range for standard normal ran-
dom variables.
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Figure 2: zθ statistics: Incorrectly written software (er-
ror sampling the parameter α). Each row represents a
scalar parameter or batch of parameters; the circles in each
row represent the zθ statistics associated with that param-
eter or batch of parameters. Solid circles represent the zθ

statistics associated with the mean of that batch of parame-
ters. The numbers on the y axis indicate the number of pa-
rameters in the batch. Values of zθ larger than 2 indicate
a potential problem with the software; this plot provides
convincing evidence that the software has an error.
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Making BUGS Open
by Andrew Thomas, Bob O’Hara, Uwe Ligges, and Sibylle
Sturtz

BUGS1 (Bayesian inference Using Gibbs Sampling,
Spiegelhalter et al., 2005) is a long running software
project aiming to make modern Bayesian analysis
using Markov Chain Monte Carlo (MCMC) simula-
tion techniques available to applied statisticians in an
easy to use Windows package. With the growing re-
alization of the advantages of Open Source software
we decided to release the source code of the BUGS
software plus full program level documentation on

the World Wide Web2. We call this release OpenBUGS
(Thomas, 2004). We hope the BUGS user community
will be encouraged to correct, improve and extend
this software.

We follow a brief outline of how the BUGS soft-
ware works with a more detailed discussion of the
software technology used during the development of
BUGS. We then try and explain why BUGS was de-
veloped using non-standard tools. We hope to con-
vince the reader that although unfamiliar, our tools
are very powerful and simple to use.

1http://www.mrc-bsu.cam.ac.uk/bugs/
2http://mathstat.helsinki.fi/openbugs/
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Much of the ease of use of the BUGS software
comes from its graphical user interface and the idea
of the compound document as a container for differ-
ent types of information. However, much is to be
gained by interfacing BUGS with other software. R
has many useful built-in and contributed functions
but as yet little in the way of Bayesian analysis tools.
The BRugs interface to the BUGS software plus a
small suite of R functions is an attempt to improve
this situation.

All of these (BRugs interface, the whole Open-
BUGS software, and the R functions) have been or-
ganized for the R users’ convenience in an R package
also called BRugs. This package is distributed over
the CRAN network. Its current version (0.2-5) is only
available for Windows.

In R, the user with internet connection can simply
type

R> install.packages("BRugs")

R> library("BRugs")

and then happily start sampling, benefiting from the
strengths of both OpenBUGS and R.

The R2WinBUGS package by Sturtz et al. (2005)
already provides an approach to connecting BUGS
and R. This has the disadvantage that it is impossible
to interact during processing/sampling by WinBUGS
in any way. If you need Gibbs sampling in R on other
operating systems than Windows, we recommend to
take a look at JAGS (Just Another Gibbs Sampler) by
Plummer (2005).

How BUGS works

The software creates lots of objects, wires the ob-
jects together and then gets the objects to talk to each
other. More formally a dynamic data structure, a di-
rected acyclic graph, of objects is build to represent
the Bayesian model. This graph is able to exploit con-
ditional independence assumptions to efficiently cal-
culate conditional probabilities. A layer of updater
objects is created to sample parameters of the model
and copy them into the graph data structure. Finally
a layer of monitor objects can be created to monitor
(watch) the values of the sampled parameters and
provide summary statistics for them.

How is the graph of objects built? The user writes
a description of the Bayesian model in the BUGS lan-
guage. This model description is also a description of
the graph of objects that BUGS should build. A com-
piler turns the textual representation of the Bayesian
model into the graph of objects. Objects of base class
‘updater’ have a method which is able to decide if
objects of that particular class can (and should) act
as updaters for a particular parameter in the model
based on the functional form of its conditional distri-
bution.

Compilation and inference

Compilation of the description of a Bayesian model
in the BUGS language involves a number of stages.
Firstly lexical analysis, scanning, is performed to
break the stream of character representing the model
into tokens. Secondly syntactical analysis, parsing,
is performed to build a tree representation of the
model. Thirdly the graph of objects is constructed by
a post order traversal of the parse tree with objects
whose values have been observed marked as data.
Finally conditional independence is used to produce
lists of graph objects that when multiplied together
calculate conditional distributions.

BUGS uses MCMC simulation algorithms to
make inference. These algorithms are computation-
ally expensive but robust to details of the problem
they are applied to. This robustness is an important
property in a system such as BUGS which automat-
ically chooses the inference algorithm. BUGS is able
to match a wide choice of MCMC algorithm, such
as single site Gibbs, slice sampling and continuously
adapting block Metropolis to the model parameters
that need updating.

Software development

BUGS is written in the language Component Pascal
(CP) using the BlackBox Component Builder from
Oberon microsystems3. CP is a very modern com-
piled language with both modular and object ori-
entated features. The language is highly dynamic
with runtime loading and linking of modules. Com-
piled modules contain meta information that allows
the module loader to verify that the loaded mod-
ule provides the services required by the client. It
is also an extremely safe language because of its very
strong type system and automatic heap management
(garbage collection).

CP software typically consists of many unlinked
modules plus a small executable or dynamic link li-
brary that is able to load modules as required. The
modules are arranged as a directed acyclic graph un-
der the import (make use of) relation. Loading a
module causes all modules in the sub graph to be
loaded. Module initialization code is executed when
a module is loaded. Modules are grouped into sub-
systems with the subsystem name used as a prefix
to the module name. Physically modules are repre-
sented by files with the location and name of the file
derived from the module name. Each subsystem is
kept in a separate subdirectory while the executable
(or dynamic link library) is kept in the root directory.

The BlackBox Component Builder comes with
several subsystems of modules which make the de-
velopment of graphical user interfaces simple. More

3http://www.oberon.ch/
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novel is the idea of a compound document, an ed-
itable text document that is able to contain graph-
ics views. Graphics views can be developed by ex-
tending a view class. Graphics views can be made
editable and special purpose drawing tools such as
DoodleBUGS can be easily developed. About one
quarter of the modules comprising OpenBUGS im-
plement the graphical user interface and various
graphics views used for output.

These GUI modules are only available for 32-bit
Windows. The package BRugs does not make use
of any GUI module. All other modules in the Open-
BUGS distribution can be used under Linux on x86
based platforms as well.

Metaprogramming

Metaprogramming is self awareness for software.
Software can ask itself questions. For example does
module Foo export an item called Bar? What sort
of item is Bar? Can such a thing be done with Bar?
More formally we can ask if a particular module is
loaded. If the module is loaded we can examine its
metadata and then query this metadata. For example
we could ask if a module Foo is loaded and if not load
the module. Then we could ask if module Foo con-
tains a procedure Bar with say no parameters and if
so to call (execute) this procedure. Note that this pro-
cess is safe: we do not just hope that Foo contains a
Bar of the right sort (with a crash if this is not so).

BUGS makes use of metaprogramming in many
places. These uses of metaprogramming fall into
two broad groups: program configuration and inter-
facing. In the first group are support for the BUGS
language, loading sampling algorithms and loading
data reading algorithms. In the second group con-
struction of GUI interfaces, implementing a scripting
language and interfacing to R.

Each time the BUGS language parser comes
across the name of a distribution it uses metapro-
gramming to load the module that implements this
distribution. The link between distribution name
and module name is stored in a configuration file
called ‘grammar’. A list of modules implementing
sampling algorithms is stored in a file. When BUGS
starts up this file is read and the appropriate modules
are loaded. Currently BUGS can read data in two
formats: the S-PLUS (Insightful Corporation, 2004)
format and rectangular format. Again the modules
that implement reading these formats are loaded at
program start up. Other data reading option such as
from SQL tables could be added.

Metaprogramming makes construction of the
widgets typical of a GUI simple. For example a but-
ton is just a region of a window which responds to
a mouse click by executing a procedure (without pa-
rameters). A string containing the module and pro-
cedure names is associated with the button and when

the mouse is clicked metaprogramming is used to
load the module and execute the procedure. Note
in this approach no code is written to represent the
button.

In a scripting language, typing a command at
a prompt causes the system to execute some ac-
tion. This involves some sort of interpreter. This is
easily written using metaprogramming. The com-
mand in the scripting language is a string which is
mapped into a series of procedures in the CP lan-
guage. Metaprogramming is then used to load and
execute these procedures. For example the command
modelCheck(^0) in the BUGS scripting language gets
mapped to

BugsCmds.SetFilePath(’^0’);
BugsCmds.ParseGuard;
BugsCmds.ParseFile

where ^0 is a holder for a string. The mapping be-
tween commands in the BUGS scripting language
and the corresponding CP procedure is stored in a
file, making the language extensible.

BRugs: Interfacing to R

The R interface to OpenBUGS is realized by a very
small dynamic link library ‘brugs.dll’ corresponding
to the ‘WinBUGS.exe’. It exports a couple of .C()
entry points, among those several for direct access
to the BUGS scripting language. This way, it is
possible to realize R functions that are very similar
to commands in the BUGS scripting language, not
only sharing the same names (e.g. modelCheck()) but
also sharing almost the same (order of) arguments.
Therefore, it was possible to implement a huge num-
ber of R functions that allow almost full control of
OpenBUGS in R.

Commands and some data are passed directly
from R to OpenBUGS by .C() calls. Some infor-
mation is passed back from OpenBUGS to R as the
value from these calls, as it is common practice in
R programming and interfaces. Unfortunately, we
still have to pass back some other information and
results of sampling using temporary text files that
is imported into R by readLines(), read.table(),
scan() and friends. Transparently reporting error
messages from OpenBUGS to the R user is another
topic that needs further improvement – currently we
are sometimes relying on a good guess for generating
error messages.

BRugs provides at least five kinds of functions:

• basic functions (such as modelCheck()) corre-
sponding to the BUGS scripting language men-
tioned above,

• functions (e.g. write.datafile()) to prepare
R data and inits (in form of dataframes, for
example) for OpenBUGS adapted from the
R2WinBUGS package (Sturtz et al., 2005),
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• high level functions such as BRugsFit() which
allow to run a whole simulation using only one
function call,

• functions (e.g. buildMCMC()) to prepare the
data for output analysis using the coda pack-
age (Plummer et al., 2005), and

• some internal help functions to read the tempo-
rary buffer file, for example.

Using these functions, it is possible to run an in-
teractive sampling and analysis session in R where
you can sample, calculate some (intermediate) re-
sults and make convergence diagnostics, and sample
further on if required.

For example, Weihs and Ligges (2006) used this
capability of BRugs for some MCMC optimization in
the following manner. In principle, after each 50 or
100 iterations (of OpenBUGS), the convergence of the
error rate of the underlying model was calculated us-
ing linear regression (in R). If the coefficient was no
longer significantly negative (i.e. convergence of the
error), the extremely computational expensive itera-
tions could be stopped, otherwise iterations contin-
ued in OpenBUGS again.

A BRugs session

For demonstration of the use of BRugs we use a
normal hierarchical model for the rats data that is
used throughout the WinBUGS manual (Spiegelhal-
ter et al., 2005). The example is originally taken from
section 6 of Gelfand and Smith (1990).

The WinBUGS manual is available in HTML
format documentation from within R by calling
help.WinBUGS(). Analogously, help.BRugs() starts
up the BRugs manual (Thomas, 2004). For refer-
ences on R functions, the usual help files such as
?help.BRugs for function help.BRugs() itself are
available.

After loading the BRugs package by

R> library(BRugs)

we change the working directory to simplify file
specification in the next steps:

R> oldwd <- getwd()

R> setwd(system.file("OpenBUGS", "Examples",

+ package = "BRugs"))

To initialize a model, the user types functions
corresponding to the BUGS scripting language in-
stead of clicking buttons. First, the model has to be
checked. The model file for the rats model is given
by ‘ratsmodel.txt’:

R> modelCheck("ratsmodel.txt")

Of course, it is also possible to specify the file by the
absolute path (using forward slashes). Afterwards,

data have to be loaded by modelData(). This func-
tion takes a file name as argument. R objects (named
list of data or a vector or list of object names) can be
written to such a file using bugsData(). For example:

R> data(ratsdata)

R> modelData(bugsData(ratsdata))

If data are stored in more than one file, the argument
can be a vector of files as well or the function has to
be called successively.

Now it is time to compile the model. In this ex-
ample, we use three chains to run the MCMC simu-
lation.

R> modelCompile(numChains = 3)

Initial values can be specified by calls to the func-
tion modelInits(). For more than one chain, one
can either call modelInits() with a character vec-
tor of more than one filename (one for each chain) or
call the function successively for each file containing
initial values. For random effect nodes, the function
modelGenInits() can generate appropriate inits.

In order to write files that contain initial values as
accepted by OpenBUGS and the modelInits() func-
tion, the function bugsInits() can be used. Its argu-
ment is a list with one element for each chain. Each
element of this list is itself a list of starting values for
the OpenBUGS model, or a function creating (possi-
bly random) initial values.

Therefore, we demonstrate the use of these three
different approaches to specify initial values, one for
each chain:

R> data(ratsinits)

R> modelInits("ratsinits.txt")

R> modelInits(bugsInits(list(ratsinits),

+ fileName = tempfile()))

R> initfoo <- function() {

+ list(

+ alpha = rnorm(30, mean = 250, sd = 1),

+ beta = rnorm(30, mean = 6, sd = 1),

+ alpha.c = runif(1, 140, 160),

+ beta.c = 10,

+ tau.c = 1,

+ alpha.tau = 1,

+ beta.tau = 1)

+ }

R> modelInits(bugsInits(initfoo,

+ fileName = tempfile()))

The model is initialized now and we start with
1000 updates as a burn-in period:

R> modelUpdate(1000)

By default, sampled parameter values are dis-
carded by WinBUGS after each iteration unless the
user explicitly requests that the values are stored for
later use. This is done with the samplesSet() func-
tion before running the simulation for further 2000
iterations.

R> samplesSet(c("alpha", "beta"))

R> modelUpdate(2000)
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To analyse the results of this simulation, we can
take a look at the summary statistics, similar to click
stats in the Sample Monitor tool within WinBUGS.

R> samplesStats("*")

An asterisk ("*") can be entered instead of a node
name as shorthand for all the stored samples.

All these calls can be performed conveniently by
a single call to the meta function BRugsFit():

R> BRugsFit(data = ratsdata,

+ inits = initfoo,

+ para = c("alpha", "beta"),

+ nBurnin = 1000, nIter = 2000,

+ modelFile = "ratsmodel.txt", numChains = 3,

+ working.directory =

+ system.file("OpenBUGS", "Examples",

+ package = "BRugs"))

It returns a list containing the summary statistic as
samplesStats() as well as the Deviance Information
Criterion (DIC, Spiegelhalter et al., 2002), a Bayesian
extension of the Akaike Information Criterion to hi-
erarchical models. The DIC can also be imported into
R by the low level functions dicSet() (for setting)
and dicStats() (for getting).

BRugsFit() is only one wrapper function sum-
marizing a couple of functions from the whole
BRugs framework. Users might want to come up
with own wrapper functions fitting their own pur-
poses, or some plot functions appropriate for their
analyses, for example along the code of BRugsFit().

Plots known from WinBUGS are also provided
by BRugs, for example history of the simula-
tion (samplesHistory()), plots of autocorrelations
(samplesAutoC()), plots of smoothed kernel den-
sity estimates (samplesDensity()), etc. Of course,
graphical parameters may be passed as additional ar-
guments to these plot functions.

As an example, we plot the smoothed kernel den-
sity estimates for the first 6 components of node
"alpha" (figure 1):

R> samplesDensity("alpha[1:6]")

To finish this example session, we reset the work-
ing directory by

R> setwd(oldwd)

Outlook

OpenBUGS has made modern Bayesian inference
software available in an Open Source package. The
software is also open in the sense that it has been
designed so that new features such as distributions,
sampling methods, user interfaces can be easily
added. An OpenBUGS user has already contributed
Component Pascal modules to implement the gen-
eralised extreme value and generalised pareto distri-
butions.

The R package BRugs links components of Open-
BUGS into R. This allows users to combine the
strengths of both applications and make use of them
interactively.

Unfortunately, currently BRugs is only available
for Windows. We hope to provide a Linux version
of BRugs shortly along with Component Pascal de-
velopment tools for Linux. Until these tools become
available to the public there is no alternative to dis-
tributing binary versions of the package for Win-
dows and Linux.
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Figure 1: Density plot for the first 6 components of
node "alpha".
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The BUGS Language
by Andrew Thomas

The BUGS language is a computer language not un-
like the S language Becker et al. (1988) in appearance,
however it has a very diferent purpose.

Statistical models must be described before they
can be used. A language to describe statistical mod-
els is needed by both the users of the model and the
software that makes inference about the model. The
language should be a formal language with well de-
fined rules which can be processed automatically. It
should not be concerned with the technology used
to make inference about the model. We have devel-
oped a model description language called the BUGS
language because of its use in the Bayesian inference
Using Gibbs Sampling (OpenBUGS) package. How-
ever, the BUGS language can be used outside the
OpenBUGS software. For example, it is used in the
JAGS package (Plummer, 2005) and has influenced
other packages such as Bassist (Toivonen et al., 1999)
and AUTOBAYES (Fisher and Schumann, 2003).

We choose to describe statistical models in terms
of a joint probability distribution. Model descrip-
tion in terms of a joint probability distribution is both
very general and very explicit. We consider these
good points. We do not consider it a good idea
to have a patchwork of specialized (maybe very el-

egant) notations for different types of model. We
want to be able to combine small submodels to build
larger models using a consistent notation. A small
change to a model should not lead to a large change
in the way that model is described. Examples of
small changes to the model would be, for example:
choice of sampling distribution, form of regression,
covariate measurement error, missing data, interval
censoring, etc. Explicitness is important in a model
description language. There should be no doubt if
two models are the same.

We hope the BUGS language will be useful to any-
one who uses complex statistical models, and even
to people who do not want to use the OpenBUGS
package to make inference. Is the BUGS language re-
ally about statistics? OpenBUGS has many users who
do not think of themselves primarily as statisticians,
who are mainly interested in the deterministic skele-
ton of a model. We think that if a probabilistic model
is used to explain observations, given this determin-
istic skeleton, that this is a form of statistics.

Influences

Formal languages have rules both for syntax and for
semantics. For the BUGS language, syntax has been
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influenced by the S language (Becker et al., 1988) and
semantics by graphical models. A model described
in the BUGS language looks like a piece of S code
but the meaning is completely different. The BUGS
language is declarative. It describes static relations
beween quantities, not how to do calculations.

Many joint probability distributions can be writ-
ten as a product of factors. This leads to a graphi-
cal notation for describing joint probability distribu-
tions. Each factor in the joint probability distribu-
tion is a function of several variables. It is possible
to order these variables for each factor so that the
factor is represented by a node in a directed acyclic
graph (DAG) labeled by one of the variables of the
factor with the remaining variables being parents of
the node in the graph. Describing the DAG is equiv-
alent to describing the joint probability distribution.
A DAG can be described by specifying the parents of
each node. In the simplest case, the factors are prob-
ability distribution functions whose parameters are
given by the values of the nodes parents. In the more
general case the parameters of the distribution will
be functions of the values of the node’s parents.

alpha

tau

Y

mu

beta

Figure 1: A simple directed acyclic graph

Consider the small graph in figure 1. This repre-
sents the joint probability distribution

P1(Y|mu, tau) P2(alpha) P3(beta) P4(tau)

where P1, P2, P3 and P4 are probability distributions
associated with nodes in the graph. Nodes with solid
arrows pointing into them represent stochastic rela-
tions and those with hollow arrows logical relations.
Hence mu is some function of the values of alpha and
beta.

Example 1: Growth curve in rats

An example of a simple model is the hierarchical lin-
ear growth curve model considered by Gelfand and
Smith (1990). This model has a simple representa-
tion as a DAG (drawn with the DoodleBUGS editor),
shown in figure 2. The plate, a rectangular box with
four parallel lines along its bottom and right edges,
is used as a metaphor for repetition.

To describe the DAG in the BUGS language,
a textual language, we need two types of rela-
tion: stochastic relations and logical relations. The
stochastic relations tell which probability distribu-
tion function is associated with which node in the
model. The logical relations define how to calculate
the values of the parameters of the probability distri-
bution functions in terms of the values of the nodes
parents. For stochastic relations we use the tilde (~)
as the relational operator and for logical relations the
left pointing arrow (<-). A final element in the BUGS
language is a notation for repetition. We use the no-
tation

for (i in M:N) { ... }

where the statements between the braces are dupli-
cated with the place holder i replaced by the integer
values M through N. Comments in the BUGS language
are any characters that follow the hash sign (#) up to
the end of the line.

Written in the BUGS language, our example is

model

{

for (i in 1:N) {

for (j in 1:T) {

Y[i,j] ~ dnorm(mu[i,j],tau.c)

# linear growth curve

mu[i,j] <- alpha[i]+beta[i]*(x[j]-xbar)

}

alpha[i] ~ dnorm(alpha.c,alpha.tau)

beta[i] ~ dnorm(beta.c,beta.tau)

}

tau.c ~ dgamma(0.001,0.001)

sigma <- 1/sqrt(tau.c)

alpha.c ~ dnorm(0.0,1.0E-6)

alpha.tau ~ dgamma(0.001,0.001)

beta.c ~ dnorm(0.0,1.0E-6)

beta.tau ~ dgamma(0.001,0.001)

alpha0 <- alpha.c-xbar*beta.c

}

We make some comments about this model. The
data Y consists of the weight of N rats measured at T
time points. A linear model is fitted for each rat. The
slope and intercept for each rat are drawn from nor-
mal distributions with unknown hyper parameters
alpha.c, alpha.tau, beta.c and beta.tau. These
hyper parameters are given vague priors.

The parameterization used by each distribution
must be documented. For example, the dnorm dis-
tribution parameterizes the normal distribution in
terms of its mean and precision (the reciprocal of the
variance), not the standard deviation. Logical nodes
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for(j IN 1 : T)
for(i IN 1 : N)

sigma

tau.c
x[j]

Y[i, j]

mu[i, j]

beta[i]alpha[i]

beta.taubeta.calpha0alpha.calpha.tau

Y[i, j]

name: Y[i, j] type: stochastic density: dnorm
mean mu[i, j] precision tau.c upper bound upper bound

Figure 2: Directed Acyclic Graph for a hierarchical linear growth model

can be added to the model to calculate functions of
stochastic nodes, for example sigma and alpha0 in
this model. We can easily change the model: the dis-
tribution of the data Y can be changed from the nor-
mal (dnorm) to, say, the t distribution (dt) to allow
for outliers, or the linear growth curve relation for mu
could be changed to a non-linear one, etc.

Example 2: Biopsy data

A slightly more complex model is the biopsy data
considered by Spiegelhalter and Stovin (1983). In this
model, the state of an internal organ (the heart) is
probed by taking tissue samples with a hollow nee-
dle. The true (latent) state of the organ is at least as
bad as the worst category of the tissue sample taken.
Multiple tissue samples are taken from each organ
giving rise to multinomial data. The probability vec-
tor of proportions in the multinomial is modeled as a
mixture of Dirichlet distributions with the constraint
that elements or the error matrix above the leading
diagonal are zero (no false positives). This model is
quite difficult to draw as a graph using the Doodle-
BUGS editor but easy to write in the BUGS language.

model

{

for (i in 1:ns){

nbiops[i] <- sum(biopsies[i,])

true[i] ~ dcat(p[ ])

biopsies[i,1:4] ~

dmulti(error[true[i],],nbiops[i])

}

error[2,1:2] ~ ddirch(prior[1:2])

error[3,1:3] ~ ddirch(prior[1:3])

error[4,1:4] ~ ddirch(prior[1:4])

error[1,1] <- 1 error[1, 2] <- 0

error[1,3] <- 0 error[1, 4] <- 0

error[2,3] <- 0 error[2, 4] <- 0

error[3,4] <- 0

# prior for p

p[1:4] ~ ddirch(prior[ ])

}

Note the use of variable indexing in the relation
for biopsies: the variable true[i] takes a value in
{1, 2, 3, 4} and picks which row of the error matrix
is used in the multinomial distribution. In the BUGS
language, a variable index must always be a named
quantity in the model. If the index is non variable,
then an expression that evaluates to a constant can
also be used. Nested indexing is allowed.

Data

Usually some of the quantities in the statistical model
have fixed values: they are data. Within the BUGS
language there is no distinction between quantities
that are data and quantities about which inference is
required. We put quantities with fixed values in a
data set. The syntax we have chosen for data sets
is the S list format containing scalars, vectors and
multi dimensional arrays (in the form of structures).
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If a quantity has both fixed components and compo-
nents that need estimating, then the later will be rep-
resented as NAs in the data set. The OpenBUGS soft-
ware processes both the model description language
and the associated data sets to build the joint proba-
bility distribution.

Correctness

Using the BUGS language it is easy to write down
a complex statistical model. But is the model cor-
rect? The model must be both syntactically and se-
mantically correct. Checking syntactic correctness
is quite easy: parsing the model will detect any er-
rors and produce clear error messages. It is much
harder to check that the description of a model in
the BUGS language plus a data set (or data sets) de-
fines a complete and consistent model. We take a
constructive approach to this problem. OpenBUGS
tries to compile the BUGS language into a detailed
graph that represents the joint probability distribu-
tion. The completeness and consistency of this graph
are then checked. This approach can detect many er-
rors. However, users have found the error messages
produced somewhat cryptic. Some typical cases of
lack of consistancy are:

1. The data set defines the length of a vector quan-
tity to be say L and the model uses a component
of this vector quantity with a index greater than
L.

2. Multiple definitions of a node in the model are
given. For example the statement

for(i in 1:10){ x ~ dnorm(0, 1) }

Computation on the graph

A detailed representation of the graph of the model
allows us to easily calculate the joint probability dis-
tribution. It also makes it easy to calculate the con-
ditional distribution of a single node in the model,
holding all other nodes fixed, in an efficient way.
These single node conditional distributions are the
basic building blocks of inference algorithms based
on an extreme divide-and-conquer approach. Condi-
tional distributions of blocks of nodes can be derived
from the single node conditional distributions. These
multi-node conditional distributions are useful for
inference algorithms when the divide approach is
not taken to extremes. The deviance of the model can
be calculated from the distributions associated with
data nodes (including censored observations) in the
model. The OpenBUGS software tries to classify the
functional form of the single node conditional distri-
butions. The more detailed the classification of these
single node conditional distributions, the wider the

choice of algorithms that can be proved valid for
statistical inference on the model. Markov Chain
Monte Carlo (MCMC) simulation makes heavy use
of the calculation of conditional distributions. This
fact makes MCMC simulation a natural choice of in-
ference technology to combine with the BUGS lan-
guage. However other approaches to inference could
be added to the OpenBUGS software.

Outlook

The BUGS language provides a uniform way of spec-
ifying complex statistical models. It allows a model
to be worked on and shared by several people. The
BUGS language can be used by other software that
makes inference about complex models. The Open-
BUGS software provides source code level access to
the lexical and parsing tools used to process the
BUGS language.

Different inference algorithms, for example the
EM algorithm (Dempster et al., 1977), the variational
algorithm (Jaakkola and Jordan, 2000) or particle fil-
ters (Doucet et al., 2001), could be build on top of the
OpenBUGS software. We hope that the separation of
model specification and parameter inference become
more common in the future development of statisti-
cal software.

In many statistical packages, the idea of a model
stays in the background, the emphasis is on fitting
data. This makes interfacing the OpenBUGS software
with, say, R conceptually difficult. R has data objects
and functions for doing computation on data objects
but not model description objects. BRugs, the R in-
terface to OpenBUGS, has to read the model descrip-
tion from a file. This is less than ideal. In outline, the
ideal way of interfacing R and OpenBUGS would be
to have model description objects that could be trans-
lated into compiled model objects. Compiled model
objects could then be passed to inference algorithms
(MCMC etc) to give fitted model objects (for MCMC,
something like an mcmc object from the coda package
(Plummer et al., 2005)). Standard R functions could
then be applied to the fitted model object to compute
any derived quantity of interest. This is a long term
program.
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Bayesian Data Analysis using R
by Jouni Kerman and Andrew Gelman

Introduction

Bayesian data analysis includes but is not limited
to Bayesian inference (Gelman et al., 2003; Kerman,
2006a). Here, we take Bayesian inference to refer to
posterior inference (typically, the simulation of ran-
dom draws from the posterior distribution) given a
fixed model and data. Bayesian data analysis takes
Bayesian inference as a starting point but also in-
cludes fitting a model to different datasets, alter-
ing a model, performing inferential and predictive
summaries (including prior or posterior predictive
checks), and validation of the software used to fit the
model.

The most general programs currently available
for Bayesian inference are WinBUGS (BUGS Project,
2004) and OpenBUGS, which can be accessed from R
using the packages R2WinBUGS (Sturtz et al., 2005)
and BRugs. In addition, various R packages ex-
ist that directly fit particular Bayesian models (e.g.
MCMCPack, Martin and Quinn (2005)). or emulate
aspects of BUGS (JAGS). In this note, we describe our
own entry in the “inference engine” sweepstakes but,
perhaps more importantly, describe the ongoing de-
velopment of some R packages that perform other as-
pects of Bayesian data analysis.

Umacs

Umacs (Universal Markov chain sampler) is an R
package (to be released in Spring 2006) that facilitates

the construction of the Gibbs sampler and Metropo-
lis algorithm for Bayesian inference (Kerman, 2006b).
The user supplies data, parameter names, updating
functions (which can be some mix of Gibbs sam-
plers and Metropolis jumps, with the latter deter-
mined by specifying a log-posterior density func-
tion), and a procedure for generating starting points.
Using these inputs, Umacs writes a customized R
sampler function that automatically updates, keeps
track of Metropolis acceptances (and uses acceptance
probabilities to tune the jumping kernels, following
Gelman et al. (1995)), monitors convergence (follow-
ing Gelman and Rubin (1992)), summarizes results
graphically, and returns the inferences as random
variable objects (see rv, below).

Umacs is customizable and modular, and
can be expanded to include more efficient
Gibbs/Metropolis steps. Current features include
adaptive Metropolis jumps for vectors and matrices
of random variables (which arise, for example, in hi-
erarchical regression models, with a different vector
of regression parameters for each group).

Figure 1 illustrates how a simple Bayesian hier-
archical model (Gelman et al., 2003, page 451) can
be fit using Umacs: y j ∼ N(θ j,σ2

j ), j = 1, . . . , J
(J = 8), where σ j are fixed and the means θ j are
given the prior tν(µ, τ). In our implementation of
the Gibbs sampler, θ j is drawn from a Gaussian dis-
tribution with a random variance component Vj. The
conditional distributions of θ, µ, V, and τ can be cal-
culated analytically, so we update them each by a
direct (Gibbs) update. The updating functions are
to be specified as R functions (here, theta.update,
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V.update, mu.update, etc.). The degrees-of-freedom
parameter ν is also unknown, and updated using
a Metropolis algorithm. To implement this, we
only need to supply a function calculating the log-
arithm of the posterior function; Umacs supplies
the code. We have several Metropolis classes for
efficiency; SMetropolis implements the Metropo-
lis update for a scalar parameter. These “updater-
generating functions" (Gibbs and SMetropolis) also
require an argument specifying a function return-
ing an initial starting point for the unknown param-
eter (here, theta.init, mu.init, tau.init, etc.).

s <- Sampler(

J = 8,

sigma.y = c(15, 10, 16, 11, 9, 11, 10, 18),

y = c(28, 8, -3, 7, -1, 1, 18, 12),

theta = Gibbs(theta.update,theta.init),

V = Gibbs(V.update, V.init),

mu = Gibbs(mu.update,mu.init),

tau = Gibbs(tau.update, tau.init),

nu = SMetropolis(log.post.nu, nu.init),

Trace("theta[1]")

)

Figure 1: Invoking the Umacs Sampler function to gen-
erate an R Markov chain sampler function s(...). Up-
dating algorithms are associated with the unknown pa-
rameters (θ, V, µ, τ , ν). Optionally, the non-modeled con-
stants and data (here J,σ , y) can be localized to the sam-
pler function by defining them as parameters; the func-
tion s then encapsulates a complete sampling environment
that can be even moved over and run on another computer
without worrying about the availability of the data vari-
ables. The “virtual updating function” Trace displays a
real-time trace plot for the specified scalar variable.

The function produced by Sampler runs a given
number of iterations and a given number of chains; if
we are not satisfied with the convergence, we may re-
sume iteration without having to restart the chains. It
is also possible to add chains. The length of the burn-
in period that is discarded is user-definable and we
may also specify the desired number of simulations
to collect, automatically performing thinning as the
sampler runs.

Once the pre-specified number of iterations are
done, the sampler function returns the simulations
wrapped in an object which can be coerced into a
plain matrix of simulations or to a list of random
variable objects (see rv, below), which can be then
attached to the search path.

rv

rv is an R package that defines a new simulation-
based random variable class in R along with various
mathematical and statistical manipulations (Kerman
and Gelman, 2005). The program creates an object
class whose instances can be manipulated like nu-
meric vectors and arrays. However, each element

in a vector contains a hidden dimension of simula-
tions: the rv objects can thus be thought of being ap-
proximations of random variables. That is, a random
scalar is stored internally as a vector, a random vector
as a matrix, a random matrix as a three-dimensional
array, and so forth. The random variable objects are
useful when manipulating and summarizing simu-
lations from a Markov chain simulation (for example
those generated by Umacs). They can also be used
in simulation studies (Kerman, 2005). The number
of simulations stored in a random variable object is
user-definable.

The rv objects are a natural extension of numeric
objects in R, which are conceptually just “random
variables with zero variance”—that is, constants.
Arithmetic operations such as + and ^ and elemen-
tary functions such as exp and log work with rv ob-
jects, producing new rv objects.

These random variable objects work seamlessly
with regular numeric vectors: for example, we can
impute random variable z into a regular numeric
vector y with a statement like y[is.na(y)] <- z.
This converts y automatically into a random vector
(rv object) which can be manipulated much like any
numeric object; for example we can write mean(y) to
find the distribution of the arithmetic mean function
of the (random) vector y or sd(y) to find the distri-
bution of the sample standard deviation statistic.

The default print method of a random variable
object outputs a summary of the distribution repre-
sented by the simulations for each component of the
argument vector or array. Figure 2 shows an example
of a summary of a random vector z with five random
components.

> z
name mean sd Min 2.5% 25% 50% 75% 97.5% Max

[1] Alice 59.0 27.3 ( -28.66 1.66 42.9 59.1 75.6 114 163 )
[2] Bob 57.0 29.2 ( -74.14 -1.98 38.3 58.2 75.9 110 202 )
[3] Cecil 62.6 24.1 ( -27.10 13.25 48.0 63.4 76.3 112 190 )
[4] Dave 71.7 18.7 ( 2.88 34.32 60.6 71.1 82.9 108 182 )
[5] Ellen 75.0 17.5 ( 4.12 38.42 64.1 75.3 86.2 108 162 )

Figure 2: The print method of an rv (random variable)
object returns a summary of the mean, standard deviation,
and quantiles of the simulations embedded in the vector.

Standard functions to plot graphical summaries
of random variable objects are being developed. Fig-
ure 3 shows the result of a statement plot(x,y)
where x are constants and y is a random vector with
10 constant components (shown as dots) and five
random components (shown as intervals).
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Figure 3: A scatterplot of fifteen points (x,y) where five
of the components of y are random, that is, represented by
simulations and thus are drawn as intervals. Black verti-
cal intervals represent the 50% uncertainty intervals and
the gray ones the 95% intervals. (The light grey line is a
regression line computed from the ten fixed points).

Many methods on rv objects have been written,
for example E(y) returns the individual means (ex-
pectations) of the components of a random vector y.
A statement Pr(z[1]>z[2]) would give an estimate
of the probability of the event {z1 > z2}.

Random-variable generating functions generate new
rv objects by sampling from standard distributions,
for example rvnorm(n=10, mean=0, sd=1) would
return a random vector representing 10 draws from
the standard normal distribution. What makes these
functions interesting is that we can give them pa-
rameters that are also random, that is, represented
by simulations. If y is modeled as N(µ,σ2) and
the random variable objects mu and sigma repre-
sent draws from the joint posterior distribution of
(µ,σ)—we can obtain these if we fit the model with
Umacs or BUGS for example—then a simple state-
ment like rvnorm(mean=mu, sd=sigma) would gen-
erate a random variable representing draws from
the posterior predictive distribution of y. A single
line of code thus will in fact perform Monte Carlo
integration of the joint density of (yrep, µ,σ), and
draw from the resulting distribution p(yrep|y) =∫ ∫

N(yrep|µ,σ)p(µ,σ |y) dµ dσ . (We distinguish the
observations y and the unobserved random variable
yrep, which has the same conditional distribution as
y).

R & B

The culmination of this research project is an R en-
vironment for Bayesian data analysis which would
allow inference, model expansion and comparison,
model checking, and software validation to be per-
formed easily, using a high-level Bayesian graphical
modeling language “B” adapted to R, with functions
that operate on R objects that include graphical mod-
els, parameters (nodes), and random variables. B exists
now only in conceptual level (Kerman, 2006a), and
we plan for its first incarnation in R (called R & B) to
be a simple version to demonstrate its possibilities.
B is not designed to be tied to any particular infer-
ence engine but rather a general interface for doing
Bayesian data analysis. Figure 4 illustrates a hypo-
thetical interactive session using R & B.

## Model 1: A trivial model:

NewModel(1, "J", "theta", "mu", "sigma", "y")

Model(y) <- Normal(J, theta, sigma)

Observation(y) <- c(28,8,-3,7,-1,1,18,12)

Hypothesis(sigma) <- c(15,10,16,11,9,11,10,18)

Observation(J) <- 8

Fit(1)

# Look at the inferences:

print(theta)

## Model 2: A hierarchical t model

NewModel(2, based.on.model=1, "V", "mu", "tau")

Model(theta) <- Normal(J, mu, V)

Model(V) <- InvChisq(nu, tau)

Fit(2)

# Look at the new inferences:

plot(theta)

# Draw from posterior predictive distribution:

y.rep1 <- Replicate(y, model=1)

y.rep2 <- Replicate(y, model=2)

## Use the same models but

## a new set of observations and hypotheses:

NewSituation()

Hypothesis(sigma) <- NULL # Sigma is now unknown.

Fit()

...

Figure 4: A hypothetical interactive session using the
high-level Bayesian language “B” in R (in development).
Several models can be kept in memory. Independently of
models, several “inferential situations” featuring new sets
of observations and hypotheses (hypothesized values for
parameters with assumed point-mass distributions) can
be defined. Fitting a model launches an inference engine
(usually, a sampler such as Umacs or BUGS) and stores
the inferences as random variable objects. By default, pa-
rameters are given noninformative prior distributions.
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Conclusion

R is a powerful language for statistical modeling
and graphics; however it is currently limited when
it comes to Bayesian data analysis. Some packages
are available for fitting models, but it remains awk-
ward to work with the resulting inferences, alter
or compare the models, check fit to data, or vali-
date the software used for fitting. This article de-
scribes several of our research efforts, which we have
made into R packages or plan to do so. We hope
these packages will be useful in their own right and
also will motivate future work by others integrating
Bayesian modeling and graphical data analysis, so
that Bayesian inference can be performed in the iter-
ative data-analytic spirit of R.
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Erratum
The article “BMA: An R package for Bayesian Model
Averaging” that appeared in R News volume 5(2)
contained an error in the second paragraph on page
4. When describing the probability that the variable
was not in the model, the text gave the value 0.445

when in fact the correct value was 0.555. This error
was corrected in the online version of R News 5(2) on
16/12/05.

Thanks to Antti Pirjeta for pointing out the error.
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