
News
The Newsletter of the R Project Volume 6/5, December 2006

Editorial
by Wolfgang Huber and Paul Murrell

Welcome to the fifth and final issue of R News for
2006, our third special issue of the year, with a fo-
cus on the use of R in Bioinformatics. Many thanks
to guest editor Wolfgang Huber for doing a fantastic
job in putting this issue together.

Paul Murrell
The University of Auckland, New Zealand
paul.murrell@R-project.org

Biology is going through a revolution. The
genome sequencing projects that were initiated in the
1980’s and undertaken in the 1990’s have provided
for the first time systematic inventories of the com-
ponents of biological systems. Technological innova-
tion is producing ever more detailed measurements
on the functioning of these components and their in-
teractions. The Internet has opened possibilities for
the sharing of data and of computational resources
that would have been unimaginable only 15 years
ago.

The field of bioinformatics emerged in the 1990’s
to deal with the pressing questions that the mas-
sive amounts of new sequence data posed: sequence

alignment, similarity and clustering, their phyloge-
netic interpretation, genome assembly, sequence an-
notation, protein structure. C and Perl were the lan-
guages of choice for the first generation of bioinfor-
maticians. All of these question remain relevant, yet
in addition we now have the big and colourful field
of functional genomics, which employs all sorts of
technologies to measure the abundances and activi-
ties of biomolecules under different conditions, map
their interactions, monitor the effect of their pertur-
bation on the phenotype of a cell or even a whole
organism, and eventually to build predictive models
of biological systems.

R is well suited to many of the scientific and com-
putational challenges in functional genomics. Some
of the efforts in this field have been pulled together
since 2001 by the Bioconductor project, and many of
the papers in this issue report on packages from the
project. But Bioconductor is more than just a CRAN-
style repository of biology-related packages. Moti-
vated by the particular challenges of genomic data,
the project has actively driven a number of tech-
nological innovations that have flown back into R,
among these, package vignettes, an embracement
of S4, the management of extensive package de-
pendence hierarchies, and interfaces between R and

Contents of this issue:

Editorial . 1
Graphs and Networks: Tools in Bioconductor . 2
Modeling Package Dependencies Using Graphs 8
Image Analysis for Microscopy Screens 12
beadarray: An R Package to Analyse Illumina

BeadArrays 17
Transcript Mapping with High-Density Tiling

Arrays . 23
Analyzing Flow Cytometry Data with Biocon-

ductor . 27
Protein Complex Membership Estimation us-

ing apComplex 32

SNP Metadata Access and Use with Biocon-
ductor . 36

Integrating Biological Data Resources into R
with biomaRt 40

Identifying Interesting Genes with siggenes . 45
Reverse Engineering Genetic Networks using

the GeneNet Package 50
A Multivariate Approach to Integrating

Datasets using made4 and ade4 54
Using amap and ctc Packages for Huge Clus-

tering . 58
Model-based Microarray Image Analysis . . . 60
Sample Size Estimation for Microarray Exper-

iments Using the ssize Package 64

mailto:paul.murrell@R-project.org

Vol. 6/5, December 2006 2

other software systems. Biological metadata (for ex-
ample, genome annotations) need to be tightly inte-
grated with the analysis of primary data, and the Bio-
conductor project has invested a lot of effort in the
provision of high quality metadata packages. The ex-
perimental data in functional genomics require more
structured formats than the basic data types of R, and
one of the main products of the Bioconductor core is
the provision of common data structures that allow
the efficient exchange of data and computational re-
sults between different packages. One example is the
ExpressionSet, an S4 class for the storage of the es-
sential data and information on a microarray experi-
ment.

The articles in this issue span a wide range of top-
ics. Common themes are preprocessing (data import,

quality assessment, standardization, error modeling
and summarization), pattern discovery and detection,
and higher level statistical models with which we
aim to gain insight into the underlying biological
processes. Sometimes, the questions that we en-
counter in bioinformatics result in methods that have
potentially a wider applicability; this is true in par-
ticular for the first three articles with which we start
this issue.

Wolfgang Huber
European Bioinformatics Insitute (EBI)
European Molecular Biology Laboratory (EMBL) Cam-
bridge, UK
huber@ebi.ac.uk

Graphs and Networks: Tools in
Bioconductor
by Li Long and Vince Carey

Introduction

Network structures are fundamental components for
scientific modeling in a number of substantive do-
mains, including sociology, ecology, and computa-
tional biology. The mathematical theory of graphs
comes immediately into play when the entities and
processes being modeled are clearly organized into
objects (modeled as graph nodes) and relationships
(modeled as graph edges).

Graph theory addresses the taxonomy of graph
structures, the measurement of general features of
connectedness, complexity of traversals, and many
other combinatorial and algebraic concepts. An im-
portant generalization of the basic concept of graph
(traditionally defined as a set of nodes N and a bi-
nary relation E on N defining edges) is the hyper-
graph (in which edges are general subsets of the
node set of cardinality at least 2).

The basic architecture of the Bioconductor toolkit
for graphs and networks has the following structure:

• Representation infrastructure: packages graph,
hypergraph;

• Algorithms for traversal and measurement:
packages RBGL, graphPart

• Algorithms for layout and visualization: pack-
age Rgraphviz; RBGL also includes some lay-
out algorithms;

• Packages for addressing substantive prob-
lems in bioinformatics: packages pathRender,

GraphAT, ScISI, GOstats, ontoTools, and oth-
ers.

In this article we survey aspects of working with
network structures with some of these Bioconductor
tools.

The basics: package graph

The graph package provides a variety of S4 classes
representing graphs. A virtual class graph defines
the basic structure:

> library(graph)
> getClass("graph")
Virtual Class

Slots:

Name: edgemode edgeData nodeData
Class: character attrData attrData

Known Subclasses: "graphNEL", "graphAM",
"graphH", "distGraph", "clusterGraph",
"generalGraph"

A widely used concrete extension of this class is
graphNEL, denoting the “node and edge list” repre-
sentation:

> getClass("graphNEL")

Slots:

Name: nodes edgeL edgemode edgeData
Class: vector list character attrData

R News ISSN 1609-3631

mailto:huber@ebi.ac.uk

Vol. 6/5, December 2006 3

attrData
nodeData

Extends: "graph"

An example graph is supplied, representing the
“integrin mediated cell adhesion” pathway as de-
fined in a previous version of KEGG (Kyoto Ency-
clopedia of Genes and Genomes, Kanehisa and Goto,
2000; the pathway is now called “focal adhesion”).

> data(integrinMediatedCellAdhesion)
> IMCAGraph
A graphNEL graph with directed edges
Number of Nodes = 52
Number of Edges = 91
> nodes(IMCAGraph)[1:5]
[1] "ITGB" "ITGA" "ILK" "CAV" "SHC"
> edges(IMCAGraph)[1:5]
$ITGB
[1] "ITGA" "ILK" "CAV" "SHC" "ACTN" "TLN"

$ITGA
[1] "ITGB"

$ILK
[1] "ITGB"

$CAV
[1] "ITGB"

$SHC
[1] "FYN" "GRB2" "ITGB"

Methods that can be used to work with graph in-
stances include:

• The edgemode method returns a character to-
ken indicating whether the graph is directed or
undirected.

• The nodes method returns information on
graph nodes; in the case of a graphNEL in-
stance it returns a vector, intended to repre-
sent the (unordered) node set through charac-
ter names of entities described by the graph.
(Note that there are more general represen-
tations available, in which objects other than
strings can constitute graph nodes, see remarks
on nodeData below.)

• The edges method returns a named list. The ith
element of the list bears as its name the name
of the ith node, and contains a vector of node
names to which the ith node is directly linked
by a graph edge.

> all.equal(names(edges(IMCAGraph)),
nodes(IMCAGraph))

[1] TRUE

The network may be visualized using the follow-
ing code:

library(Rgraphviz)
plot(IMCAGraph,

attrs = IMCAAttrs$defAttrs,
nodeAttrs = IMCAAttrs$nodeAttrs,
subGList = IMCAAttrs$subGList);

See Figure 1.

Figure 1: Rendering of the IMCA pathway.

We will illustrate aspects of other parts of the sys-
tem using this example graph structure.

The Rgraphviz package

Rgraphviz provides an interface to graphviz1,
an open source library for graph visualization.
Graphviz performs several types of graph layout:

• dot: draws directed graphs in a hierarchical
way

• neato: draws graphs using Kamada-Kawai al-
gorithm

• fdp: draws graphs using Fruchterman-
Reingold heuristic

• twopi: draws radial layout
• circo: draws circular layout

Many aspects of graph rendering are covered,
with general programmatic control over colors,
fonts, shapes, and line styles employed for various
aspects of the display and annotation of the graph.

The Bioconductor Rgraphviz interface package
lets you choose the layout engine for your graph ob-
ject among the options dot (the default), neato and
twopi.

1http://www.graphviz.org

R News ISSN 1609-3631

http://www.graphviz.org

Vol. 6/5, December 2006 4

We generate a graph and plot it using different
layout engines:

> library("Rgraphviz")
> set.seed(123)
> V <- letters[1:10]
> M <- 1:4
> g1 <- randomGraph(V, M, 0.2)
A graphNEL graph with undirected edges
Number of Nodes = 10
Number of Edges = 16

> plot(g1)

a

b

c

d

e

f

g

h

i j

Figure 2: Rendering with dot.

> plot(g1, "neato")

a b

c

d ef

g
h

i

j

Figure 3: Rendering with neato.

> plot(g1, "twopi")

a

b

c

d

e

f

g
h i

j

Figure 4: Rendering with twopi.

The RBGL package

Researchers study different kinds of biological net-
works: protein interaction networks, genetic regu-
latory systems, metabolic networks are a few exam-
ples. Signaling pathway identification could be mod-
eled using shortest paths in a protein interaction net-
work. The task of identification of protein complexes
can be conducted by finding cohesive subgroups in
protein interaction networks. The protein interaction
network under consideration is built from the experi-
mental data, which contains incomplete information,
false positives and false negatives. Extensible repre-
sentations that can manage such complications are at
a premium in this process.

RBGL provides a set of graph algorithms to anal-
yse the structures and properties of graphs and net-
works.

There are three categories of algorithms in this
package:

• interfaces to graph algorithms from the boost2

graph library (BGL3);

• algorithms built on BGL; and

• other algorithms.

The Boost C++ Library provides peer-reviewed
C++ libraries, with the objective of creating highly
portable open source resources for C++ program-
ming analogous to the proprietary standard template
library (STL).

The Boost Graph Library (BGL) is one of the Boost
libraries. BGL provides a set of generic data struc-
tures to represent graphs, and a collection of C++
modules (all defined as templates) constituting algo-
rithms on graphs.

Package RBGL provides a direct interface to
many of the graph algorithms available in BGL. Table
1 lists the main functionalities currently provided.

In the second category, we implemented
minimum-cut algorithm minCut, based on one of
the maximum-flow algorithms from BGL.

In the third category, we implemented

• highly connected subgraphs (function
highlyConnSG), a clustering algorithm pro-
posed by Hartuv and Shamir (2000).

• a number of algorithms from social network
analysis: k-cliques (function kCliques), k-
cores (function kCores), maximum cliques
(function maxClique), lambda-sets (function
LambdaSets), and

• predicate functions: to decide if a graph is tri-
angulated (function is.triangulated), to test
if a subset of nodes separates two other subsets
of nodes (function separates).

2http://www.boost.org
3http://www.boost.org/libs/graph

R News ISSN 1609-3631

http://www.boost.org
http://www.boost.org/libs/graph

Vol. 6/5, December 2006 5

RBGL functions Comments
Traversals

bfs breadth-first search
dfs depth-first search

Shortest paths
dijkstra.sp Single-source, nonnegative weights
bellman.ford.sp Single-source, general weights
dag.sp Single-source, DAG
floyd.warshall.- Returns distance matrix

all.pairs.sp
johnson.all.pairs.sp Returns distance matrix

Minimal spanning trees
mstree.kruskal Returns edge list and weights
prim.minST As above

Connectivity
connectedComp Returns list of node-sets
strongComp As above
articulationPoints As above
biConnComp As above
edgeConnectivity Returns index and minimum

disconnecting set
init.incremental.- Special processing for
components evolving graphs
incremental.components
same.component Boolean in the incremental setting

Maximum flow algorithms
edmunds.karp.max.flow List of max flow, and edge-
push.relabel.max.flow specific flows

Vertex ordering
tsort Topological sort
cuthill.mckee.ordering Reduces bandwidth
sloan.ordering Reduces wavefront
min.degree.ordering Heuristic

Other functions
transitive.closure Returns from-to matrix
isomorphism Boolean
sequential.vertex.coloring Returns color no for nodes
brandes.betweenness.- Indices and dominance measure

centrality
circle.layout Returns vertex coordinates
kamada.kawai.spring.layout Returns vertex coordinates

Table 1: Names of key functions in RBGL. Working examples for all functions are provided in the package
manual pages.

R News ISSN 1609-3631

Vol. 6/5, December 2006 6

To illustrate an application, we use the
sp.between function to determine the shortest path
in the network between the SRC gene and the cell
proliferation process:

> sp.between(IMCAGraph, "SRC",
"cell proliferation")

$‘SRC:cell proliferation‘
$‘SRC:cell proliferation‘$path
[1] "SRC" "FAK"
[3] "MEK" "ERK"
[5] "cell proliferation"

$‘SRC:cell proliferation‘$length
[1] 4

$‘SRC:cell proliferation‘$pweights
SRC->FAK

1
FAK->MEK

1
MEK->ERK

1
ERK->cell proliferation

1

The resulting list includes a vector encoding the
shortest path, its length, and the weights of individ-
ual steps through the graph.

Representations and general at-
tributes

As noted in the class report for getClass("graph"),
a variety of graph representations are available as
S4 classes. It is particularly simple to work with
graphAM on the basis of a binary adjacency matrix:

> am = diag(4)
> am = cbind(1,am)
> am = rbind(am,0)
> am[5,3] = am[3,5] = 1
> am[1,1] = 0
> dimnames(am) = list(letters[1:5],

letters[1:5])
> am
a b c d e

a 0 1 0 0 0
b 1 0 1 0 0
c 1 0 0 1 1
d 1 0 0 0 1
e 0 0 1 0 0
> amg = new("graphAM", am,

edgemode="directed")
> amg
A graphAM graph with directed edges
Number of Nodes = 5
Number of Edges = 9

> nodes(amg)
[1] "a" "b" "c" "d" "e"
> edges(amg)[2]
$b
[1] "a" "c"

Other classes can be investigated through examples
in the manual pages.

To illustrate extensibility of graph component
representations, we return to the IMCAGraph exam-
ple. As noted above, the node set for a graphNEL in-
stance is a character vector. We may wish to have ad-
ditional attributes characterizing the nodes. In this
example, we show how to allow a “long gene name”
attribute to be defined on this instance.

First, we establish the name of the node attribute
and give its default value for all nodes.

> nodeDataDefaults(IMCAGraph,
attr="longname") <- as.character(NA)

Now we take a specific node and assign the new at-
tribute value.

> nodeData(IMCAGraph, "SHC",
attr="longname") =

+ paste("src homology 2 domain",
"containing transforming protein")

To retrieve the attribute value, the nodeData accessor
is used:

> nodeData(IMCAGraph, "SHC")
$SHC
SHClongname
[1] "src homology 2 domain containing

transforming protein"

The hypergraph and graphPart
packages

A hypergraph is a generalised graph, where a hyper-
edge is defined to represent a subset of nodes (in con-
trast to the edge in a basic graph, which is defined by
a pair of nodes). This structure can be used to model
one-to-many and many-to-many relationships. The
package hypergraph provides an R class to represent
hypergraphs.

A protein interaction network could be consid-
ered as a hypergraph: nodes are proteins, hyper-
edges are protein complexes, a node is connected
to a hyperedge when the corresponding protein is a
member of the corresponding protein complex.

A k-way partition of a hypergraph assigns the
nodes to k disjoint non-empty sets so that a given
cost function is minimum. A typical cost function is
the weight sum of hyperedges that span over more
than one such disjoint sets. Computing k-way parti-
tions of hypergraphs is NP-hard.

R News ISSN 1609-3631

Vol. 6/5, December 2006 7

There are several libraries available that provide
approximate solutions to the above partition prob-
lem. The package graphPart provides interfaces to
two such libraries:

• hMETIS4: a set of algorithms based on the mul-
tilevel hypergraph partitioning schemes devel-
oped in Karypis Lab at Univ. of Minnesota.
These algorithms have shown to produce good
results and are scalable.

• PaToH5: a multilevel hypergraph partitioning
tool developed by U. Catalyurek in Ohio State
Univ. It is fast and stable, and can handle par-
titioning with fixed cells and multi-contraints.

Note that these libraries are not open source, and
must be obtained independently of the Bioconductor
tools described here.

The pathRender package

The Cancer Molecular Analysis Project (cMAP) from
NCICB6 maintains a collection of genes organized
by pathways and by ontology. The pathway inter-
action database is assembled from publicly avail-
able sources, represented in a formal, ontology-based
manner. The pathways are modeled as directed
graphs.

The data package cMAP contains annotated data
from cMAP for use in bioconductor. For a given
pathway, the package pathRender provides a tool to
render this pathway as a whole or just a part of it.

pathRender does the following:

• it takes data from the cMAP database via pack-
age cMAP;

• it builds a graph where nodes represent
molecules/proteins, edges represent interac-
tions between them;

• it assigns different properties to the nodes and
edges according to what they represent; then

• it uses package Rgraphviz to render such a
graph on graphical display.

Outlook

For RBGL, we’re planning to implement additional
algorithms, such as algorithms for calculating clus-
tering coefficient and transitivity of graphs, and com-
puting k-cores of hypergraphs. Further experience is
needed to establish more effective use of these algo-
rithms in bioinformatic work flows.

Since bipartite graphs and hypergraphs are likely
to play a substantial role, we will also introduce more
specialized algorithms for these structures.

Acknowledgement

L.L. was supported by a grant from Intel Corp. to the
Vital-IT Center.

Bibliography

E. Hartuv and R. Shamir. A clustering algorithm
based on graph connectivity. Information Process-
ing Letters, 76(4–6):175–181, 2000. URL citeseer.
ist.psu.edu/hartuv99clustering.html.

M. Kanehisa and S. Goto. KEGG: Kyoto encyclope-
dia of genes and genomes. Nucleic Acids Res, 28:
27–30, 2000.

Li Long
Vital-IT Center
Swiss Institute of Bioinformatics
CH 1015 Lausanne
Li.Long@isb-sib.ch

Vincent J. Carey
Channing Laboratory
Brigham and Women’s Hospital
Harvard Medical School
181 Longwood Ave.
Boston MA 02115, USA
stvjc@channing.harvard.edu

4http://glaros.dtc.umn.edu/gkhome/views/metis
5http://bmi.osu.edu/~umit/software.html
6http://cmap.nci.nih.gov

R News ISSN 1609-3631

citeseer.ist.psu.edu/hartuv99clustering.html
citeseer.ist.psu.edu/hartuv99clustering.html
mailto:Li.Long@isb-sib.ch
mailto:stvjc@channing.harvard.edu
http://glaros.dtc.umn.edu/gkhome/views/metis
http://bmi.osu.edu/~umit/software.html
http://cmap.nci.nih.gov

Vol. 6/5, December 2006 8

Modeling Package Dependencies Using
Graphs
Introducing the pkgDepTools Package

by Seth Falcon

Introduction

Dealing with packages that have many dependen-
cies, such as those in the Bioconductor repository,
can be a frustrating experience for users. At present,
there are no tools to list, recursively, all of a pack-
age’s dependencies, nor is there a way to estimate the
download size required to install a given package.

In this article we present the pkgDepTools pack-
age which provides tools for inspecting the depen-
dency relationships among packages, generating the
complete list of dependencies of a given package,
and estimating the total download size required to
install a package and its dependencies. The tools are
built on top of the graph (Gentleman et al., 2006)
package which is used to model the dependencies
among packages in the BioC and CRAN reposito-
ries. Aside from this particular application to pack-
age dependencies, the approach taken is instructive
for those interested in modeling and analyzing rela-
tionship data using graphs and the graph package.

Deciding how to represent the data in a graph
structure and transforming the available data into a
graph object are first steps of any graph-based anal-
ysis. We describe in detail the function used to gen-
erate a graph representing the dependency relation-
ships among R packages as the general approach can
be adapted for other types of data.

We also demonstrate some of the methods avail-
able in graph, RBGL (Carey and Long, 2006), and
Rgraphviz (Gentry, 2006) to analyze and visualize
graphs.

Modeling Package Dependencies

An R package can make use of functions defined
in another R package by listing the package in
the Depends field of its ‘DESCRIPTION’ file. The
available.packages function returns a matrix of
meta data for the packages in a specified list of CRAN-
style R package repositories. Among the data re-
turned are the dependencies of each package.

To illustrate our method, we use data from Bio-
conductor’s package repositories as well as the CRAN
repository. The Bioconductor project strongly en-
courages package contributors to use the depen-
dency mechanism and build on top of code in other
packages. The success of this code reuse policy can

be measured by examining the dependencies of Bio-
conductor packages. As we will see, packages in
the Bioconductor software repository have, on aver-
age, much richer dependency relationships than the
packages hosted on CRAN.

A graph consists of a set of nodes and a set of
edges representing relationships between pairs of
nodes. The relationships among the nodes of a graph
are binary; either there is an edge between a pair
of nodes or there is not. To model package depen-
dencies using a graph, let the set of packages be the
nodes of the graph with directed edges originating
from a given package to each of its dependencies.
Figure 2 shows a part of the Bioconductor depen-
dency graph corresponding to the Category package.
Since circular dependencies are not allowed, the re-
sulting dependency graph will be a directed acyclic
graph (DAG).

The ‘DESCRIPTION’ file of an R package also con-
tains a Suggests field which can be used by package
authors to specify packages that provide optional
features. The interpretation and use of the Suggests
field varies, and the graph resulting from using this
relationship in the Bioconductor repository is not a
DAG; cycles are created by packages suggesting each
other.

Building a Dependency Graph

To carry out the analysis, we need the pkgDepTools
package along with its dependencies: graph and
RBGL. We will also make use of Biobase, Rgraphviz,
and RCurl. You can install these packages on your
system using biocLite as shown below.

> u <- "http://bioconductor.org/biocLite.R"
> source(u)
> biocLite("pkgDepTools", dependencies=TRUE)

> library("pkgDepTools")

> library("RCurl")

> library("Biobase")

> library("Rgraphviz")

We now describe the makeDepGraph function that
retrieves the meta data for all packages of a specified
type (source, win.binary, or mac.binary) from each
repository in a list of repository URLs and builds a
graph instance representing the packages and their
dependency relationships.

The function takes four arguments: 1) repList
a character vector of CRAN-style package repository
URLs; 2) suggests.only a logical value indicating

R News ISSN 1609-3631

Vol. 6/5, December 2006 9

whether the resulting graph should represent rela-
tions from the Depends field (FALSE, default) or the
Suggests field (TRUE); 3) type a string indicating
the type of packages to search for, the default is
"source"; 4) keep.builtin which will keep pack-
ages that come with a standard R install in the de-
pendency graph (the default is FALSE).

The definition of makeDepGraph is shown in
Figure 1. The function obtains a matrix of
package meta data from each repository using
available.packages. A new graphNEL instance is
created using new. A node attribute with name “size”
is added to the graph with default value NA. When
keep.builtin is FALSE (the default), a list of pack-
ages that come with a standard R install is retrieved
and stored in baseOrRecPkgs.

Iterating through each package’s meta data,
the appropriate field (either Depends and Imports
or Suggests) is parsed using a helper function
cleanPkgField. If the user has not set keep.builtin
to TRUE, the packages that come with R are removed
from deps, the list of the current package’s depen-
dencies. Then for each package in deps, addNode is
used to add it to the graph if it is not already present.
addEdge is then used to create edges from the pack-
age to its dependencies. The size in megabytes of
the packages in the current repository is retrieved us-
ing getDownloadSizesBatched and is then stored as
node attributes using nodeData. Finally, the resulting
graphNEL, depG is returned. A downside of this itera-
tive approach to the construction of the graph is that
the addNode and addEdge methods create a new copy
of the entire graph each time they are called. This
will be inefficient for very large graphs.

Definitions for the helper functions cleanPkgField,
makePkgUrl, and getDownloadSizesBatched are in
the source code of the pkgDepTools package.

Here we use makeDepGraph to build dependency
graphs of the BioC and CRAN packages. Each de-
pendency graph is a graphNEL instance. The out-
edges of a given node list its direct dependencies
(as shown for package annotate). The node attribute
“size” gives the size of the package in megabytes.

> biocUrl <- biocReposList()["bioc"]

> cranUrl <- biocReposList()["cran"]

> biocDeps <- makeDepGraph(biocUrl)

> cranDeps <- makeDepGraph(cranUrl)

> biocDeps

A graphNEL graph with directed edges
Number of Nodes = 256
Number of Edges = 389

> cranDeps

A graphNEL graph with directed edges
Number of Nodes = 908
Number of Edges = 403

> edges(biocDeps)["annotate"]

$annotate
[1] "Biobase"

> nodeData(biocDeps, n = "annotate",

attr = "size")

$annotate
[1] 1.451348

The degree and connectedComp methods can be
used to compare the BioC and CRAN dependency
graphs. Here we observe that the mean number of
direct dependencies (out degree of nodes) is larger in
BioC than it is in CRAN.

> mean(degree(biocDeps)$outDegree)

[1] 1.519531

> mean(degree(cranDeps)$outDegree)

[1] 0.4438326

A subgraph is connected if there is a path be-
tween every pair of nodes. The RBGL package’s
connectedComp method returns a list of the con-
nected subgraphs. Examining the distribution of the
sizes (number of nodes) of the connected compo-
nents in the two dependency graphs, we can see that
the BioC graph has relatively fewer length-one com-
ponents and that more of the graph is a part of the
largest component (87% of packages for BioC vs 50%
for CRAN). The two tables below give the size of
the connected components (top row) and the num-
ber of connected components of that size found in
the graph (bottom row).

> table(listLen(connectedComp(cranDeps)))

1 2 3 4 5 7 14 245
521 34 10 2 3 1 1 1

> table(listLen(connectedComp(biocDeps)))

1 2 3 195
32 10 3 1

Both results demonstrate the higher level of inter-
dependency of packages in the BioC repository.

R News ISSN 1609-3631

Vol. 6/5, December 2006 10

makeDepGraph <- function(repList, suggests.only=FALSE,
type=getOption("pkgType"),
keep.builtin=FALSE, dosize=TRUE)

{
pkgMatList <- lapply(repList, function(x) {

available.packages(contrib.url(x, type=type))
})
if (!keep.builtin)
baseOrRecPkgs <- rownames(installed.packages(priority="high"))

allPkgs <- unlist(sapply(pkgMatList, function(x) rownames(x)))
if (!length(allPkgs))
stop("no packages in specified repositories")

allPkgs <- unique(allPkgs)
depG <- new("graphNEL", nodes=allPkgs, edgemode="directed")
nodeDataDefaults(depG, attr="size") <- as.numeric(NA)
for (pMat in pkgMatList) {

for (p in rownames(pMat)) {
if (!suggests.only) {

deps <- cleanPkgField(pMat[p, "Depends"])
deps <- c(deps, cleanPkgField(pMat[p, "Imports"]))

} else {
deps <- cleanPkgField(pMat[p, "Suggests"])

}
if (length(deps) && !keep.builtin)
deps <- deps[!(deps %in% baseOrRecPkgs)]

if (length(deps)) {
notFound <- ! (deps %in% nodes(depG))
if (any(notFound))
depG <- addNode(deps[notFound], depG)

deps <- deps[!is.na(deps)]
depG <- addEdge(from=p, to=deps, depG)

}
}
if (dosize) {

sizes <- getDownloadSizesBatched(makePkgUrl(pMat))
nodeData(depG, n=rownames(pMat), attr="size") <- sizes

}

}
depG

}

Figure 1: The definition of the makeDepGraph function.

R News ISSN 1609-3631

Vol. 6/5, December 2006 11

Using the Dependency Graph

The dependencies of a given package can be visu-
alized using the graph generated by makeDepGraph
and the Rgraphviz package. The graph in Figure 2
was produced using the code shown below. The acc
method from the graph package returns a vector of
all nodes that are accessible from the given node.
Here, it has been used to obtain the complete list of
Category’s dependencies.

> categoryNodes <- c("Category",

names(acc(biocDeps, "Category")[[1]]))

> categoryGraph <- subGraph(categoryNodes,

biocDeps)

> nn <- makeNodeAttrs(categoryGraph,

shape = "ellipse")

> plot(categoryGraph, nodeAttrs = nn)

Category

Biobase

annotate genefilter graph KEGG GO

Figure 2: The dependency graph for the Category
package.

In R , there is no easy to way to preview a given
package’s dependencies and estimate the amount of
data that needs to be downloaded even though the
install.packages function will search for and in-
stall package dependencies if you ask it to by specify-
ing dependencies=TRUE. Next we show how to build
a function that provides such a “preview” by making
use of the dependency graph.

Given a plot of a dependency graph like the one
for Category shown in Figure 2, one can devise a sim-
ple strategy to determine the install order. Namely,
find the packages that have no dependencies, the
leaves of the graph, and install those first. Then
repeat that process on the graph that results from
removing the leaves from the current graph. The
download size is easily computed by retrieving the
“size” node attribute for each package in the depen-
dency list.

basicInstallOrder <- function(pkg, depG) {
allPkgs <- c(pkg,

names(acc(depG, pkg)[[1]]))
if (length(allPkgs) > 1) {

pkgSub <- subGraph(allPkgs, depG)
toInst <- tsort(pkgSub)
if (!is.character(toInst))
stop("depG is not a DAG")

rev(toInst)
} else {

allPkgs
}

}

Figure 3: Code listing for the basicInstallOrder
function.

Figure 3 lists the definition of basicInstallOrder,
a function that generates the complete dependen-
cies for a given package using the strategy outlined
above. The tsort function from RBGL performs a
topological sort of the directed graph. A topologi-
cal sort on a DAG gives an ordering of the nodes in
which node a comes before b if there is an edge from
a to b. Reversing the topological sort yields a valid
install order.

The basicInstallOrder function can be used as
the core of a “preview” function for package installa-
tion. The pkgDepTools package provides such a pre-
view function called getInstallOrder. This func-
tion returns the uninstalled dependencies of a given
package in proper install order along with the size,
in megabytes, of each package. In addition, the func-
tion returns the total expected download size. Below
we demonstrate the getInstallOrder function.

First, we create a single dependency graph for all
CRAN and BioC packages.

> allDeps <- makeDepGraph(biocReposList())

Calling getInstallOrder for package GOstats,
we see a listing of only those packages that need to
be installed. Your results will be different based upon
your installed packages.

> getInstallOrder("GOstats", allDeps)

$packages
1.45MB 0.22MB 1.2MB

"annotate" "Category" "GOstats"

$total.size
[1] 2.87551

When needed.only=FALSE, the complete depen-
dency list is returned regardless of what packages are
currently installed.

> getInstallOrder("GOstats", allDeps,

needed.only = FALSE)

R News ISSN 1609-3631

Vol. 6/5, December 2006 12

$packages
0.31MB 17.16MB 1.64MB
"graph" "GO" "Biobase"
1.45MB 1.29MB 0.23MB

"annotate" "RBGL" "KEGG"
0.23MB 0.22MB 1.2MB

"genefilter" "Category" "GOstats"

$total.size
[1] 23.739

Wrap Up

We have shown how to generate package depen-
dency graphs and preview package installation us-
ing the pkgDepTools package. We have described in
detail how the underlying code is used and the pro-
cess of modeling relationships with the graph pack-
age.

These tools can help identify and understand in-
terdependencies in packages. A very similar ap-
proach can be applied to visualizing class hierarchies
in R such as those implemented using the S4 (Cham-
bers, 1998) class system or Bengtsson’s R.oo (Bengts-
son, 2006) package.

The graph, RBGL, and Rgraphviz suite of pack-
ages provides a very powerful means of manipulat-
ing, analyzing, and visualizing relationship data.

Bibliography

H. Bengtsson. R.oo: R object-oriented programming
with or without references, 2006. URL http://www.
braju.com/R/. R package version 1.2.3.

V. Carey and L. Long. RBGL: Interface to boost C++
graph lib, 2006. URL http://bioconductor.org. R
package version 1.10.0.

J. M. Chambers. Programming with Data: A Guide to
the S Language. Springer-Verlag New York, 1998.

R. Gentleman, E. Whalen, W. Huber, and S. Falcon.
graph: A package to handle graph data structures, 2006.
R package version 1.12.0.

J. Gentry. Rgraphviz: Provides plotting capabilities for R
graph objects, 2006. R package version 1.12.0.

E. Hartuv and R. Shamir. A clustering algorithm
based on graph connectivity. Information Process-
ing Letters, 76(4–6):175–181, 2000. URL citeseer.
ist.psu.edu/hartuv99clustering.html.

M. Kanehisa and S. Goto. KEGG: Kyoto encyclope-
dia of genes and genomes. Nucleic Acids Res, 28:
27–30, 2000.

Seth Falcon
Program in Computational Biology
Fred Hutchinson Cancer Research Center
Seattle, WA, USA
emailsfalcon@fhcrc.org

Image Analysis for Microscopy Screens
Image analysis and processing with EBImage

by Oleg Sklyar and Wolfgang Huber

The package EBImage provides functionality to per-
form image processing and image analysis on large sets
of images in a programmatic fashion using the R lan-
guage.

We use the term image analysis to describe the ex-
traction of numeric features (image descriptors) from
images and image collections. Image descriptors can
then be used for statistical analysis, such as classifi-
cation, clustering and hypothesis testing, using the
resources of R and its contributed packages.

Image analysis is not an easy task, and the defi-
nition of image descriptors depends on the problem.
Analysis algorithms need to be adapted correspond-
ingly. We find it desirable to develop and optimize
such algorithms in conjunction with the subsequent
statistical analysis, rather than as separate tasks. This

is one of our motivations for writing the package.

We use the term image processing for operations
that turn images into images, with the goals of
enhancing, manipulating, sharpening, denoising or
similar (Russ, 2002). While some image processing
is often needed as a preliminary step for image anal-
ysis, image processing is not the primary aim of the
package. We focus on methods that do not require in-
teractive user input, such as selecting image regions
with a pointer etc. Whereas interactive methods can
be extremely effective for small sets of images, they
tend to have limited throughput and reproducibility.

EBImage uses the Magick++ interface to the
ImageMagick (2006) image processing library to im-
plement much of its functionality in image process-
ing and input/output operations.

R News ISSN 1609-3631

http://www.braju.com/R/
http://www.braju.com/R/
http://bioconductor.org
citeseer.ist.psu.edu/hartuv99clustering.html
citeseer.ist.psu.edu/hartuv99clustering.html

Vol. 6/5, December 2006 13

Cell-based assays

Advances in automated microscopy have made it
possible to conduct large scale cell-based assays with
image-type phenotypic readouts. In such an assay,
cells are grown in the wells of a microtitre plate (of-
ten a 96- or 384-well format is used) under a condi-
tion or stimulus of interest. Each well is treated with
one of the reagents from the screening library and the
response of the cells is monitored, for which in many
cases certain proteins of interest are antibody-stained
or labeled with a GFP-tag (Carpenter and Sabatini,
2004; Wiemann et al., 2004; Moffat and Sabatini, 2006;
Neumann et al., 2006).

The resulting imaging data can be in the
form of two-dimensional (2D) still images, three-
dimensional (3D) image stacks or image-based time
courses. Such assays can be used to screen com-
pound libraries for the effect of potential drugs on
the cellular system of interest. Similarly, RNA inter-
ference (RNAi) libraries can be used to screen a set
of genes (in many cases the whole genome) for the
effect of their loss of function in a certain biological
process (Boutros et al., 2004).

Importing and handling images

Images are stored in objects of class Image which ex-
tends the array class. The colour mode is defined by
the slot rgb in Image; the default mode is grayscale.

New images can be created with the standard
constructor new, or using the wrapper function
Image. The following example code produces a
100x100 pixel grayscale image of black and white
vertical stripes:

> im <- Image(0, c(100,100))
> im[c(1:20, 40:60, 80:100),,] = 1

By using ImageMagick, the package supports
reading and writing of more than 95 image formats
including JPEG, TIFF and PNG. The package can
process multi-frame images (image stacks, 3D im-
ages) or multiple files simultaneously. For example,
the following code reads all colour PNG files in the
working directory into a single object of class Image,
converts them to grayscale and saves the output as a
single multi-frame TIFF file:

> files <- dir(pattern=".png")
> im <- read.image(files, rgb=TRUE)
> img <- toGray(im)
> write.image(img, "single_multipage.tif")

Besides operations on local files, the package can
read from anonymous HTTP and FTP sources, and it
can write to anonymous FTP locations. These proto-
cols are supported internally by ImageMagick and do
not use R-connections.

The storage mode of grayscale images is double,
and all R-functions that work with arrays can be di-
rectly applied to grayscale images. This includes the
arithmetic functions, subsetting, histograms, Fourier
transformation, (local) regression, etc. For example,
the sharpened image in Figure 1c can be obtained by
subtracting the slightly blurred, scaled in colour ver-
sion of the original image (Figure 1b) from its source
in Figure 1a. All pixels that become negative after
subtraction are then re-set to background. The source
image is a subset of the original microscopic image.
Hereafter, variables in the code are given the same
literal names as the corresponding image labels (e.g.
data of variable a are shown in Figure 1 a, b – in b,
and C – in c, etc).

> orig <- read.image("ch2.png")
> a <- orig[150:550, 120:520,]
> b <- blur(0.5 * a, 80, 5)
> C <- a - b
> C[C < 0] = 0
> C <- normalize(C)

One can think of this code as of a naive, but
fast and effective, version of the unsharp mask fil-
ter; a more sophisticated implementation from the
ImageMagick library is provided by the function
unsharpMask in the package.

Figure 1: Implementation of a simple unsharp mask
filter: (a) source image, (b) blurred colour-scaled im-
age, (c) sharpened image after normalization

Some of the image analysis routines assume
grayscale data in the interval [0, 1], but formally
there are no restrictions on the range.

The storage mode of RGB-images is integer, and
we use the three lowest bytes to store red (R), green
(G) and blue (B) values, each in the integer-based
range of [0, 255]. Because of this, arithmetic and
other functions are generally meaningless for RGB-
images; although they can be useful in some special
cases, as shown in the example code in the following
section. Support for RGB-images is included to en-
hance the display of the analysis results. Most anal-
ysis routines require grayscale data though.

Image processing

The ImageMagick library provides a number of image
processing routines, so-called filters. Many of those
are ported to R by the package. The missing ones

R News ISSN 1609-3631

Vol. 6/5, December 2006 14

may be added at a later stage. We have also imple-
mented additional image processing routines that we
found useful for work on cell-based assays.

Filters are implemented as functions acting on
objects of class Image and returning a new Image-
object of the same or appropriately modified size.
One can divide them into four categories: image en-
hancement, segmentation, transformation and colour cor-
rection. Some examples are listed below.

sharpen, unsharpMask generate sharpened ver-
sions of the original image.

gaussFilter applies the Gaussian blur operator to
the image, softening sharp edges and noise.

thresh segments a grayscale image into a binary
black-and-white image by the adaptive thresh-
old algorithm.

mOpen, mClose use erosion and dilation to en-
hance edges of objects in binary images and to
reduce noise.

distMap performs a Euclidean distance transform of
a binary image, also known as distance map. On
a distance map, values of pixels indicate how
far are they away from the nearest background.
Our implementation is adapted from the Scilab
image processing toolbox (SIP Toolbox, 2005)
and is based on the algorithm by Lotufo and
Zampirolli (2001).

normalize shifts and scales colours of grayscale im-
ages to a specified range, normally [0, 1].

sample.image proportionally resizes images.

The following code demonstrates how grayscale
images recorded using three different microscope fil-
ters (Figure 2 a, b and c) can be put together into
a single false-colour representation (Figure 2 d), and
conversely, how a single false-colour image can be
decomposed into its individual channels.

> files <- c("ch1.png","ch2.png","ch3.png")
> orig <- read.image(files, rgb=FALSE)
> abc <- orig[150:550, 120:520,]
> a <- toGreen(abc[,,1]) # RGB
> b <- toRed(abc[,,2]) # RGB
> d <- a + b + toBlue(abc[,,3])
> C <- getBlue(d) # gray

Figure 2: Composition of a false-colour image (d)
from a set of grayscale microscopy images for three
different luminescent compounds: (a) – DAPI, (b) –
tubulin and (c) – phalloidin

Displaying images

The package defines the method display which
shows images in an interactive X11 window, where
image stacks can be animated and browsed through.
This function does not use R graphics devices and
cannot be redirected to any of those. To redi-
rect display into an R graphics device, the method
plot.image can be used, which is a wrapper for the
image function from the graphics package. Since
each pixel is drawn as a polygon, plot.image is
much slower compared to display; also, it shows
only the first image of a stack:

> display(abc) # displays all 3
> plot.image(abc[,,2]) # can display just 1

Drawables

Pixel values can be set either by using the con-
ventional subset assignment syntax for arrays
(as in the third code example, C[C < 0] = 0) or
by using drawables. EBImage defines the fol-
lowing instantiable classes for drawables (de-
rived from the virtual Drawable): DrawableCircle,
DrawableLine, DrawableRect, DrawableEllipse
and DrawableText. The stroke and fill colours, the
fill opacity and the stroke width can be set in the
corresponding slots of Drawable. As the opportu-
nity arises, we plan to provide drawables for text,
poly-lines and polygons. Drawables can be drawn
on Images with the method draw; both grayscale and
RGB images are supported with all colours automat-
ically converted to gray levels on grayscale images.

R News ISSN 1609-3631

Vol. 6/5, December 2006 15

The code below illustrates how drawables can be
used to mark the positions and relative sizes of the
nuclei detected from the image in Figure 2a. It as-
sumes that x1 is the result of the function wsObjects,
which uses a watershed-based image segmentation
for object detection. x1 contains matrix objects with
object coordinates (columns 1 and 2) and areas (col-
umn 3). The resulting image is shown in Figure 3b.
This is just an illustration, we do not assume circular
shapes of nuclei. For comparison, the actual segmen-
tation boundaries are colour-marked in Figure 3a us-
ing the function wsPaint:

> src <- toRGB(abc[,,1])
> x <- x1$objects[,1]
> y <- x1$objects[,2]
> r <- sqrt(x1$objects[,3] / pi)
> cx <- DrawableCircle(x, y, r)
> b <- draw(src, cx)
> a <- wsPaint(x1, src)

Figure 3: Colour-marked nuclei detected with func-
tion wsObjects: (a) – as detected, (b) – illustrated by
DrawableCircle’s.

Analysing an RNAi screen

Consider an experiment in which images like those
in Figure 2 were recorded for each of ≈ 20,000 genes,
using a whole-genome RNAi library to test the ef-
fect of gene knock-down on cell viability and appear-
ance. Among the image descriptors of interest are the
number, position, size, shape and the fluorescent in-
tensities of cells and nuclei.

The package provides functionality to identify
objects in images and to extract image descriptors in
the function wsObjects. The function identifies dif-
ferent objects in parallel using a modified watershed-
based segmentation algorithm and using image dis-
tance maps as input. The result is a list of three ma-
trix elements objects, pixels (indices of pixels con-
stituting the objects) and borders (indices of pixels
constituting the object boundaries). If the supplied
image is an image stack, the result is a list of such
lists. Each row in the matrix objects corresponds
to a detected object, with different object descriptors
in the columns: x and y coordinates, size, perimeter,
number of pixels on the image edge, acircularity, ef-
fective radius, perimeter to radius ratio, etc. Objects

on the image edges can be automatically removed if
the ratio of the detected edge pixels to the perimeter
is larger than a given threshold. If the original image,
from which the distance map was calculated, is spec-
ified in the argument ref, the overall intensity of the
object region is calculated as well.

For every gene, the image analysis workflow
looks, therefore, as follows: load and normalize im-
ages, segment, enhance the segmented images by
morphological opening and closing, generate dis-
tance maps, identify cells and nuclei, extract image
descriptors, and, finally, generate image previews
with the identified objects marked.

Object descriptors can then be analysed statisti-
cally to cluster genes by their phenotypic effect, gen-
erate a list of genes that should be studied further in
more detail (hit list), e.g., genes that have a specific
phenotypic effect of interest, etc. The image previews
can be used to verify and audit the performance of
the algorithm through visual inspection.

A schematic implementation is illustrated in the
following example code and in Figure 4. Here we
omit the step of nuclei detection (object x1), from
where the matrix of nuclei coordinates (object seeds)
is retrieved to serve as starting points for the cell de-
tection. The nuclei detection is done analogously to
the cell detection without specifying starting points.

> for (X in genes) {
+ files <- dir(pattern=X)
+ orig <- read.image(files)
+ abc <- normalize(orig, independent=TRUE)
+ i1 <- abc[,,1]
+ i2 <- abc[,,2]
+ i3 <- abc[,,3]
+ a <- sqrt(normalize(i1 + i3))
+ b <- thresh(a, 300, 300, 0.0, TRUE)
+ C <- mOpen(b, 1, mKernel(7))
+ C <- mClose(C, 1, mKernel(7))
+ d <- distMap(C)
+ # x1 <- wsObjects(...) - nuclei detection
+ seeds <- x1$objects[,1:2]
+ x2 <- wsObjects(d, 30, 10, .2, seeds, i3)
+ rgb <- toGreen(i1)+toRed(i2)+ toBlue(i3)
+ e <- wsPaint(x2, rgb, col="white",fill=F)
+ f <- wsPaint(x2, i3, opac = 0.15)
+ f <- wsPaint(x1, f, opac = 0.15)
+ }

Note that here we adopted the record-at-a-time ap-
proach: image data, which can be huge, are stored
on a mass-storage device and are loaded into RAM
in portions of just a few images at a time.

Summary

EBImage brings image processing and image anal-
ysis capabilities to R. Its focus is the programmatic

R News ISSN 1609-3631

Vol. 6/5, December 2006 16

(non-interactive) analysis of large sets of similar im-
ages, such as those that arise in cell-based assays for
gene function via RNAi knock-down. Image descrip-
tors can be analysed further using R’s functionalities
in machine learning (clustering, classification) and
hypothesis testing.

Our current work on this package focuses on
more accurate object detection and algorithms for
feature/descriptor extraction. Image registration,
alignment and object tracking are of foreseeable in-
terest. In addition, one can imagine many other
useful features, for example, support for more
ImageMagick functions, better display options (e.g.,
using GTK) or interactivity. Contributions or collab-
orations on these or other topics are welcome.

Figure 4: Illustration of the object detection algo-
rithm: (a) – sqrt-brightened combined image of nu-
clei (DAPI from Figure 2a) and cells (phalloidin from
Figure 2c); (b) – image a after blur and adaptive thresh-
olding; (c) – image b after morphological opening fol-
lowed by closing; (d) – normalized distance map gen-
erated from image c; (e) – outlines of cells detected
using wsObjects drawn on top of the RGB image
from Figure 2d; (f) – colour-mapped cells and nuclei
as detected with wsObjects (one unique colour per
object)

Installation

The package depends on ImageMagick, which needs
to be present on the system to install the package.

Please refer to the ‘INSTALL’ file.

Acknowledgements

We thank F. Fuchs and M. Boutros for providing
their miscroscopy data and for many stimulating
discussions about the technology and the biology,
R. Gottardo and F. Swidan for testing the package on
MacOS X and the European Bioinformatics Institute
(EBI), Cambridge, UK, for financial support.

Bibliography

M. Boutros, A. Kiger, S. Armknecht, et al. Genome-
wide RNAi analysis of cell growth and viability in
Drosophila. Science, 303:832–835, 2004.

A. E. Carpenter and D.M. Sabatini. Systematic
genome-wide screens of gene function. Nature Re-
views Genetics, 5:11–22, 2004.

ImageMagick: software to convert, edit, and com-
pose images. Copyright: ImageMagick Studio LLC,
1999-2006. URL http://www.imagemagick.org/

R. Lotufo and F. Zampirolli. Fast multidimensional
parallel Euclidean distance transform based on
mathematical morphology. SIBGRAPI-2001/Brazil,
100–105, 2001.

J. Moffat and D.M. Sabatini. Building mammalian
signalling pathways with RNAi screens. Nature
Reviews Mol. Cell Biol., 7:177–187, 2006.

B. Neumann, M. Held, U. Liebel, et al. High-
throughput RNAi screening by time-lapse imag-
ing of live human cells. Nature Mathods, 3(5):385–
390, 2006.

J. C. Russ. The image processing handbook – 4th ed.
CRC Press, Boca Raton. 732 p., 2002

SIP Toolbox: Scilab image processing toolbox.
Sourceforge, 2005. URL http://siptoolbox.
sourceforge.net/

S. Wiemann, D. Arlt, W. Huber, et al. From ORFeome
to biology: a functional genomics pipeline. Genome
Res. 14(10B):2136–2144, 2004.

Oleg Sklyar and Wolfgang Huber
European Bioinformatics Institute
European Molecular Biology Laboratory
Wellcome Trust Genome Campus
Hinxton, Cambridge
CB10 1SD
United Kingdom
osklyar@ebi.ac.uk; huber@ebi.ac.uk

R News ISSN 1609-3631

http://www.imagemagick.org/
http://siptoolbox.sourceforge.net/
http://siptoolbox.sourceforge.net/
mailto:osklyar@ebi.ac.uk
mailto:huber@ebi.ac.uk

Vol. 6/5, December 2006 17

beadarray: An R Package to Analyse
Illumina BeadArrays
by Mark Dunning*, Mike Smith*, Natalie Thorne, and
Simon Tavaré

Introduction

Illumina have created an alternative microarray tech-
nology based on randomly arranged beads, each of
which carries copies of a gene-specific probe (Kuhn
et al., 2004). Random sampling from an initial pool of
beads produces an array containing, on average, 30
randomly positioned replicates of each probe type.
A series of decoding hybridisations is used to iden-
tify each bead on an array (Gunderson et al., 2004).
The high degree of replication makes the gene ex-
pression levels obtained using BeadArrays more ro-
bust. Spatial effects do not have such a detrimental
effect as they do for conventional arrays that provide
little or no replication of probes over an array. Illu-
mina produce two distinct BeadArray technologies;
the SAM (Sentrix Array Matrix) and the BeadChip.
A SAM is a 96-well plate arrangement containing 96
uniquely prepared hexagonal BeadArrays, each con-
taining around 1500 bead types. The BeadChip tech-
nology comprises a series of rectangular strips on a
slide with each strip containing around 24,000 bead
types. The most commonly used BeadChip is the
HumanRef-6 BeadArray. These have 6 pairs of strips,
each pair having 24,000 RefSeq genes and 24,000 sup-
plemental genes.

Until now, analysis of BeadArray data has been
carried out by using Illumina’s own software pack-
age (BeadStudio) and therefore does not utilise the
wide range of bioinformatic tools already available
via Bioconductor (Gentleman et al., 2004), such as
limma (Smyth, 2005) and affy (Gautier et al., 2004).
Also, the data output from BeadStudio only gives a
single average for each bead type on an array. Thus
potentially interesting information about the repli-
cates is lost. The intention of this project is to create
an R package, beadarray, for the analysis of BeadAr-
ray data incorporating ideas from existing Biocon-
ductor packages. We aim to provide a flexible and
extendable means of analysing BeadArray data both
for our own research purposes and for the benefit of
other users of BeadArrays. The beadarray package
is able to read the full bead level data for both SAM
and BeadChip technologies as well as bead summary
data processed by BeadStudio. The package includes
an implementation of Illumina’s algorithms for im-
age processing, although local background correc-
tion and sharpening are optional.

At present, beadarray is a package for the analy-

sis of Illumina expression data only. For the analysis
of Illumina SNP data, see the beadarraySNP package
in Bioconductor.

Data Formats

1 TIFF Image + 1 Bead
Level csv file for each
array

BeadScan software

BeadStudio
GUI

Raw Data

QC Data

Sample Sheet

BeadLevelList ExpressionSetIllumina

~30 values per
bead type
Image processing
optional

1 value per bead
type
Pre-Processed data

limma, affy etc,….

beadarray

Figure 1: Diagram showing the interaction be-
tween beadarray and Illumina software. Various
functions from Bioconductor packages (eg., limma
and affy) may be used for the pre-processing
or downstream analysis of BeadLevelList or
ExpressionSetIllumina objects.

After hybridisation and washing, each SAM or
BeadChip is scanned by the BeadScan software to
produce a TIFF image for each array in an experi-
ment. The size of each TIFF image is around 6Mb and
80Mb for SAM and BeadChip arrays respectively.
BeadScan will also provide a text file describing the
identity and position of each bead on the array if re-
quested (version 3.1 and above of BeadScan only).
We call this the bead level data for an array. Note
that the bead level text file has to be produced when
the arrays are scanned and cannot be generated later
on. BeadStudio is able to read these raw data and
produce a single intensity value for each bead type
after outliers are excluded. These values are referred
to as bead summary data. The images are processed
using a local background correction and sharpening
transformation (Dunning et al., 2005). These steps
are not optional within the BeadStudio software. The
bead summary values calculated by BeadStudio can
be output directly with or without normalisation ap-
plied or used for further analysis within the appli-
cation. The output from BeadStudio also contains
information about the standard error of each bead
type, the number of beads and a detection score that

1These authors contributed equally to this work.

R News ISSN 1609-3631

Vol. 6/5, December 2006 18

measures the probablity that the bead type is ex-
pressed; this uses a model assumed by Illumina. All
analysis within BeadStudio is done on the unlogged
scale and using the bead summary values rather than
full replicate information for each bead type. Figure
1 gives an overview of the interaction between the
file formats and software involved in the analysis of
BeadArray data.

Bead Level Analysis

The readBeadLevelData function is used to read
bead level data. A targets object is used in a simi-
lar way to limma to define the location of the TIFF
images and text files. Both SAM and BeadChip data
can be read by readBeadLevelData. The default op-
tions for the function use the sharpening transforma-
tion recommended by Illumina and calculate a lo-
cal background value for each bead. The usage of
readBeadLevelData is:

> BLData = readBeadLevelData(targets,

+ imageManipulation="sharpen")

> slotNames(BLData)

[1] "G" "R" "Rb" "Gb"
[5] "GrnY" "GrnX" "ProbeID" "targets"

Even though the size of the TIFF images is rather
large, readBeadLevelData uses C code to read these
images quickly, taking around 2 seconds to process
each SAM array and 1 minute for each BeadChip
array on a 3Ghz Pentium c©IV machine with 3Gb
of RAM. An object of type BeadLevelList is re-
turned by readBeadLevelData. The design of this
class is similar to the RGList object used in limma.
Note that we store the foreground (G) and back-
ground (Gb) intensities of each bead separately so
that local background correction is optional using the
backgroundCorrect function. Each bead on the ar-
ray has a ProbeID that defines the bead type for that
bead. We order the rows in the matrix according to
the ProbeID of beads, making searching for beads
with a particular ProbeID more efficient. The GrnX
and GrnY matrices give the coordinates of each bead
centre on the original TIFF image. Note that the ran-
dom nature of BeadArrays means that the number of
replicates of a particular bead type will vary between
arrays and rows in the matrices will not always cor-
respond to the same bead type, unlike data objects
for other microarray technologies.

Typical quality control steps for conventional mi-
croarrays involve looking for systematic differences
between arrays in the same experiment and also for
large spatial effects on each array. The boxplot func-
tion can be easily applied to the foreground or back-
ground values to reveal possible defective arrays. We

also provide the function imageplot for investigat-
ing the variation in foreground and background in-
tensities over an array. This function is different from
the functionality available in limma because BeadAr-
rays do not have print-tip groups as found on con-
ventional spotted microarrays. Therefore we define a
grid of M × N rectangles, average over the log2 bead
intensities found inside each rectangle and call the
image function. In Figure 3 we can clearly see that the
top-right corner of an array has a marked difference
in intensity compared to the rest of the array, where
the variation in intensity appears to be random. Such
a spatial effect might be a cause for concern in con-
ventional microarrays where probes representing the
same gene appear in the same location on all arrays.
In BeadArrays however, the arrangement of beads is
random and hence spatial trends tend to have less
impact. Whilst BeadStudio provides functionality to
view the TIFF images, the resolution of the images is
too high to be able to identify overall trends across
an array. Also, the intensity levels between arrays
cannot be easily compared. The displayTIFFImage
function in beadarray allows users to view sections
of TIFF images in a similar manner to BeadStudio but
with the advantage of being able to see which beads
are outliers. See Figure 3 of Dunning et al. (2005).

10 20 30 40 50

10
20

30
40

50

1:51

1:
51

Figure 3: Plot showing the variation in log2 fore-
ground intensity for a BeadArray from a SAM.

The random nature of BeadArrays and high
replication rates allow for low level analysis that
is not possible for other microarray technologies.
For example, we can see where the replicates of
a particular bead type are located on an array
(plotBeadLocations) and view the intensities of the
replicates (plotBeadIntensities). Due to the large
number of bead types, in-depth analysis of each bead
type is impractical. However, we might be interested
in a subset of bead types, such as the controls used in
the experiment. The plotBeadIntensities function
produces a series of boxplots of log2 bead intensity
for a supplied vector of ProbeIDs and can therefore

R News ISSN 1609-3631

Vol. 6/5, December 2006 19

Figure 2: beadarray can be used to find spatial effects on arrays. On the left is a representation of the number
of outliers for each array (bright red indicates more outliers) and on the right is the location of outliers for a
particular array. Clicking on a hexagon on the left will change which array is displayed on the right. For this
figure, the array in the 7th column of the first row of the SAM was chosen.

be a useful diagnostic tool.
Another set of beads that are of interest are out-

liers. Illumina exclude outliers for a particular bead
type using a cut-off of 3 MADs from the unlogged
mean. This analysis can be repeated for all bead
types on an array using the findAllOutliers func-
tion. Users may specify a different cut-off as a multi-
ple of the MAD or use the log2 intensity of beads in
this function. Note that the outliers are not removed
from the analysis at this point. To find all the outliers
for every bead type on the first array we would use:

> o = findAllOutliers(BLData, array=1)

The result is a vector that indexes the rows of the
first array in BLData. The plotBeadLocations func-
tion can then be used to plot the location of the out-
liers on the array.

> plotBeadLocations(BLData, array=1,

BeadIDs=o)

Typically, we find that 5% of beads on arrays are
outliers and this can be used as an ad-hoc criterion
for quality control. Figure 2 shows one of the inter-
active features available within beadarray. The left
side of the screen gives an overview of all arrays on
a SAM or BeadChip. In this example, each array is
coloured according to the number of outliers and im-
mediately we can see which arrays on the SAM have
a larger number of outliers (shown in bright red).

By clicking on a particular array in the graphic dis-
play, the location of all outliers on that array will be
displayed on the right of the screen. This example
shows the same array seen in Figure 3. As one might
expect, many of the outliers in Figure 2 correspond to
areas of higher foreground intensity visible in Figure
3.

Alternatively, the foreground or background in-
tensities of arrays may be used to colour the ar-
rays in the left screen and imageplots such as Fig-
ure 3 can be displayed when individual arrays are
clicked. This interactive functionality is available for
both SAM and BeadChip bead level data and can
be started by the SAMSummary and BeadChipSummary
functions respectively with the BeadLevelList cre-
ated by readBeadLevelData passed as a parameter.

The createBeadSummaryData function creates
bead summary data for each array by removing out-
liers for a particular bead type and then taking an av-
erage of the remaining beads. The findAllOutliers
function is used by default and the result is an
ExpressionSetIllumina object which can be anal-
ysed using different functionality within beadarray.

Reading Pre-Processed Bead Sum-
mary Data

Bead Summary data processed by BeadStudio
can be read into beadarray using the function
readBeadSummaryData. Three separate input files are

R News ISSN 1609-3631

Vol. 6/5, December 2006 20

required by the function, the location of which can be
specified by a targets text file. The first two files are
automatically created by BeadStudio by selecting the
Gene Analysis option whereas the third file must be
created by the user.

• Raw Data file - This contains the raw, non-
normalised bead summary values as output by
BeadStudio. Inside the file are several lines
of header information followed by a data ma-
trix. Each row is a different probe in the ex-
periment and the columns give different mea-
surements for the probes. For each array,
we record the summarised expression level
(AVG_Signal), standard error of the bead repli-
cates (BEAD_ST_DEV), Number of beads used
(Avg_NBEADS) and a Detection score which
estimates the probability of a gene being de-
tected above the background. Note that whilst
this data has not been normalised, it has been
subjected to local background correction at the
bead level prior to summarising.

• QC Info - Gives the summarised expression
values for each of the controls that Illumina
place on arrays and hence is useful for diagnos-
tic purposes. Each row in the file is a different
array and the columns give average expression,
standard error and detection for various con-
trols on the array. See Illumina documentation
for descriptions of control types.

• Sample Sheet - Gives a unique identifier to
each array and defines which samples were hy-
bridised to each array.

An example Bead Summary data set is included
with the beadarray package and can be found as a
zipped folder in the beadarray download. These
data were obtained as part of a pilot study into
BeadArray technology and comprises 3 HumanRef-6
BeadChips with various tumour and normal samples
hybridised. The following code can be used to read
the example data into R.

> targets <-

readBeadSummaryTargets("targets.txt")

> BSData <- readBeadSummaryData(targets)

> BSData

Instance of ExpressionSetIllumina

assayData
Storage mode: list
Dimensions:

BeadStDev Detection exprs NoBeads
Features 47293 47293 47293 47293
Samples 18 18 18 18

phenoData

rowNames: I.1, IC.1,..., Norm.2, (18 total)
varLabels and descriptions:

featureData
featureNames: GI_10047089-S,...(47293 total)
varLabels and descriptions:

Experiment data
Experimenter name:
Laboratory:
Contact information:
Title:
URL:
PMIDs:
No abstract available.

Annotation [1] "Illumina"
QC Information
Available Slots: Signal StDev Detection
featureNames: 1475542110_F,...1475542113_F
sampleNames: Biotin, ..negative

The output of readBeadSumamryData is an object
of type ExpressionSetIllumina which is an exten-
sion of the ExpressionSet class developed by the Bio-
core team used as a container for high-throughput
assays. The data from the raw data file has been
written to the assayData slot of the object, whereas
the phenoData slot contains information from sam-
ple sheet and the QC slot contains the quality con-
trol information. For consistency with the definition
of other ExpressionSet objects, we use exprs and
se.exprs to access the expression and standard er-
ror slots.

Analysis of Bead Summary Data

The quality control information read as part of
readBeadSummaryData can be retrieved using QCInfo
and plotted using plotQC, which gives an overview
of each control type. Plots of particular controls
(e.g., negative controls) can be produced using
singleQCPlot with the usual R plotting arguments
available.

Scatter and M (difference) vs. A (average) plots
can be generated for multiple arrays using the
plotMAXY function (Figure 4). These can give a vi-
sual indicator of the variability between arrays in an
experiment. For replicate arrays, we would expect to
see the majority of points lying on the horizontal for
the MA plots and along the diagonal for the scatter
plots. Systematic deviation from these lines may in-
dicate a bias between the arrays which requires nor-
malising. An MA or scatter plot can also be produced
for just two arrays at a time (plotMA and plotXY re-
spectively). An attractive feature of these plots is that
the location of particular genes (e.g., controls) can be
highlighted using the genesToLabel argument.

R News ISSN 1609-3631

Vol. 6/5, December 2006 21

0.6 0.8 1.0 1.2 1.4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Index

IH−1
●

●
●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

● ●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●●

●●
● ●●

●
●

●

●

●
●

●

●

●

●●●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●
●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

● ●

●

●●

●● ●

●●
●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●●

●

●

●

● ●●

●●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●
●
●

●

●

●
●

●●

●
●●

●

●●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ● ●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●●

●
●●

●

●

● ●
●

●

●
●

●

●

●
●

●
●●

●

●

●

●
● ●

●

●

●

●

●

●
●● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●●

●
●

●

●
●●

●

●

●
●

●

● ●
●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

● ●
● ●

●●

●

●●

8 10 12 14

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

8 10 12 14

−
2

−
1

0
1

2

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●
●

●

● ●●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
● ●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●●

●

● ●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●
●

●●
●

●

●
●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

6
8

10
12

14

0.6 0.8 1.0 1.2 1.4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Index

0 IC−1

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

● ●●

●

●

●
●

●

●
●

●

●

●

● ●
●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●●
●

● ●

●

●
●

●
●

●

●
● ●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●●
●

●

●

●

●

●

−
2

−
1

0
1

2

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●●
●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●
●

●●
●

●

●
●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●
●

●
●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

8 10 12 14 16

6
8

10
12

14

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●
●

●

●
●●

●

●●●

●

●

●

●

● ●

●
●

●
●

●

●
●●

● ●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●

● ●

● ●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
● ●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●● ●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●

●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●
● ●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●
●

●

●

●

●

●●

8 10 12 14 16 0.6 0.8 1.0 1.2 1.4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 IH−2

Figure 4: The plotMAXY function can be used to compare bead summary data from multiple arrays in the same
experiment. In this figure we compare three replicates from the example bead summary data provided with
beadarray

R News ISSN 1609-3631

Vol. 6/5, December 2006 22

Since the ExpressionSetIllumina class includes
a matrix of expression values, it can be analysed in
a similar manner to data obtained from other tech-
nologies. In particular, this enables normalisation
of BeadArray data to be carried out using the exist-
ing methods available in other Bioconductor pack-
ages (such as those available within the affy pack-
age, using assayDataElementReplace to replace the
exprs slot). Illumina recommend normalising data
by subtracting the average value of negative controls
from each array. This method is implemented in the
backgroundNormalise function and has quite a dra-
matic effect at lower intensities, often producing a lot
of negative values. Typically, we find that the vari-
ability between arrays is low and a quantile or me-
dian normalisation (the function medianNormalise
in beadarray) is sufficient.

The linear modelling tools within limma (Smyth,
2004) can be applied to the log-transformed expres-
sion exprs matrix in order to detect genes which are
differentially expressed between arrays. The Illu-
mina custom method is implemented by the function
DiffScore but at present is only able to make pair-
wise comparisons between arrays.

Computational Issues and Future
Plans

The vast amounts of data that can be generated
from BeadArray experiments present a number of
challenges for researchers, especially for analyses
based on the bead level data. One has to con-
sider that there are 12 80MB TIFF images for
each BeadChip and 96 6MB TIFF Images for a
SAM. In the case of a BeadChip experiment, sim-
ply reading the data into R for arrays from more
than one BeadChip is problematic. We find that
at least 1 Gb of RAM is required to run the
readBeadLevelData and createBeadSummaryData
functions on a BeadLevelList object representing
one BeadChip. We hope to implement methods for
normalisation which take the full bead level infor-
mation into account but anticipate that this is going
to be a computationally expensive task and may re-
quire the package to take advantage of parallel com-
puting tools for R. Future versions of the package will
also have better methods for creating bead averages
which take information from replicate arrays into ac-
count.

Another major addition planned for beadarray is
to allow sequence annotation information to be im-
ported so that Illumina expression data can be com-
bined with other microarray technologies such as ar-
rayCGH, SNP and DNA methylation arrays. We
plan to include functionality to read Illumina SNP
and methylation data into the package.

Useful Illumina Resources

The vignettes supplied with the package give more
detailed examples of how to analyse both bead level
and bead summary data. Our previous paper (Dun-
ning et al., 2005) provides descriptions of the image
processing steps used by Illumina and some exam-
ples of bead level analysis. Readers interested in a
comparison between Illumina and Affymetrix tech-
nologies are referred to Barnes et al. (2005).

We are keen to hear comments and feedback from
users of beadarray.

Acknowledgements

We thank Brenda Kahl and Semyon Kruglyak (Illu-
mina), Barbara Stranger, Matthew Forrest and Mano-
lis Dermitzakis (Wellcome Trust Sanger Institute),
and Andrew Lynch and John Marioni (University
of Cambridge) for many helpful discussions during
the devlopment of this work. We would also like
to thank Isabelle Camilier (Ecole Polytechnique) for
implementing the Illumina image processing algo-
rithms and Roman Sasik (University of California,
San Diego) for providing C code for reading TIFF im-
ages. The authors were supported by grants from
Cancer Research UK (MS, NT & ST) and the Medi-
cal Research Council (MD). Simon Tavaré is a Royal
Society / Wolfson Research Merit Award holder.

Bibliography

MJ Dunning, NP Thorne, I Camilier, et al. Qual-
ity control and low-level statistical analysis of Il-
lumina BeadArrays. Revstat, 4:1–30, 2006.

RC Gentleman, VJ Carey, DM Bates, et al. Bioconduc-
tor: open software development for computational
biology and bioinformatics. Genome Biol, 5:R80,
2004.

KL Gunderson, S Kruglyak, MS Graige, et al. Decod-
ing randomly ordered DNA arrays. Genome Res,
14:870–877, 2004.

K Kuhn, SC Baker, E Chudin, et al. A novel, high-
performance random array platform for quanti-
tative gene expression profiling. Genome Res,
14:2347–2356, 2004.

L Gautier, L Cope, BM Bolstad, et al. affy–analysis
of Affymetrix GeneChip data at the probe level.
Bioinformatics, 20(3):307–15, 2004.

GK Smyth. Linear models and empirical Bayes meth-
ods for assessing differential expression in mi-
croarray experiments. Statistical Applications in Ge-
netics and Molecular Biology, 3:113–136, 2004.

R News ISSN 1609-3631

Vol. 6/5, December 2006 23

GK Smyth. Limma: linear models for microarray
data. In R Gentleman, V Carey, W Huber, et al.
Bioinformatics and Computational Biology Solutions
using R and Bioconductor, pages 397–420. Springer,
New York, 2005.

M Barnes, J Freudenberg, S Thompson, et al. Ex-
perimental comparison and cross-validation of the
Affymetrix and Illumina gene expression analysis
platforms. Nucleic Acids Res, 33:5914–5923, 2005.

Mark Dunning, Mike Smith, Natalie Thorne and Simon
Tavaré
Computational Biology Group
Hutchison / MRC Research Centre
Department of Oncology
University of Cambridge
Hills Rd, Cambridge CB2 2XZ
United Kingdom
md392@cam.ac.uk
mls40@cam.ac.uk
npt22@cam.ac.uk
s.tavare@damtp.cam.ac.uk

Transcript Mapping with High-Density
Tiling Arrays
by Matthew Ritchie and Wolfgang Huber

Introduction

Oligonucleotide tiling arrays allow the measurement
of transcriptional activity and DNA binding events
at a much higher resolution than traditional microar-
rays. Compared to the spotted technology, tiling ar-
rays typically contain between 10 and 1000 times as
many probes, which may be ordered or ‘tiled’ along
entire chromosomes, or within specific regions of in-
terest, such as promoters.

For RNA analysis, tiling arrays can be used to
identify novel transcripts, splice variants, and anti-
sense transcription (Bertone et al., 2004; Stolc et al.,
2005). In DNA analysis, this technology can iden-
tify DNA binding sites through chromatin immuno-
precipitation (ChIP) on chip analysis (Sun et al.,
2003; Carroll et al., 2005) or genetic polymorphisms
and chromosomal rearrangements via comparative
genome hybridization (arrayCGH).

Due to the wide range of applications of this tech-
nology and the custom nature of the probe layout,
the analysis of these data is different to that of regu-
lar microarrays. In this article, the tilingArray pack-
age, which extends the existing Bioconductor toolset
to the problem of measuring transcriptional activity
using Affymetrix high-density tiling arrays, is pre-
sented.

Background

The initial processing steps of quality assessment
and normalization which are routinely applied to
lower density arrays are also important when ana-
lyzing tiling array data. Diagnostic plots of the raw
probe intensity data can highlight systematic biases

or artefacts which may warrant the need for individ-
ual arrays or batches of arrays to be repeated. Nor-
malization between arrays is necessary when data
from multiple hybridizations is to be combined in an
analysis. In the tilingArray package, a normaliza-
tion method which uses the probe intensities from
a DNA hybridization as a reference is implemented
(Huber et al., 2006). The next step in the analy-
sis is to detect the transcript boundaries. A sim-
ple change-point model, which segments the ordered
chromosomal intensity data into discrete units has
proven quite useful for whole genome tiling array
data (David et al., 2006). Other approaches which
use Hidden Markov Models (Toyoda and Shinozaki,
2005; Munch et al., 2006) or moving averages (Schadt
et al., 2004) have also been proposed. Displaying the
data with reference to the position along the chro-
mosome allows visualization of the segmentation re-
sults. These capabilities will be demonstrated in the
following sections.

The custom Affymetrix arrays used in this arti-
cle were produced for the Stanford Genome Tech-
nology Center and tile the complete genome of Sac-
charomyces cerevisiae with 25mer probes arranged in
steps of 8 bases along both strands of each chro-
mosome. The two tiles per chromosome are off-
set by 4 bases (see Figure 1). Both perfect match
(PM) and mismatch (MM) probes were available.
The experimental data we analyze comes from David
et al. (2006), and includes 5 RNA hybridizations from
yeast cells undergoing exponential growth and 3
DNA hybridizations of labelled genomic fragments.
This data is publicly available in the davidTiling
package or from ArrayExpress (accession number E-
TABM-14). A cell cycle experiment made up of RNA
hybridizations from 24 time-points sampled at 10
minute intervals and 3 DNA hybridizations will also
be used.

R News ISSN 1609-3631

mailto:md392@cam.ac.uk
mailto:mls40@cam.ac.uk
mailto:npt22@cam.ac.uk
mailto:s.tavare@damtp.cam.ac.uk

Vol. 6/5, December 2006 24

25mer

8bp

4bp

3’5’

3’ 5’

Watson strand

Crick strand

Figure 1: Probe spacing for Saccharomyces cerevisiae
tiling arrays. The 25 mer probes are offset by 8 bases
and tile each strand of DNA.

Reading data

We assume that the .CEL files from the davidTiling
package are unzipped and available in the R work-
ing directory. To read in these data, the following
commands can be used.

> library("tilingArray")

> cels = dir(pattern = ".cel")

> e = readCel2eSet(cels, rotated = TRUE)

The readCel2eSet function is is a wrapper for
ReadAffy from the affy package. Rotating the .CEL
file data through 90 degrees clock-wise by setting
rotated=TRUE was necessary for these arrays due to
old scanner settings. The data can also be loaded
with

> library("davidTiling")

> data("davidTiling")

> dim(davidTiling)

Features Samples
6553600 8

The 8 arrays each contain 6,553,600 probes arranged
in a grid with 2560 rows x 2560 columns. A special
data structure is necessary for the mapping between
the probes on the array and their target regions in
the genome. For the yeast tiling array, we use an en-
vironment, named probeAnno, which organizes this
information in two ways. Firstly, for each chromoso-
mal strand, a vector of probe identifiers, in linear ge-
nomic order, and the coordinates and type of match
is stored. In addition, the type of match and identi-
fier of its hit region (e.g. YBR275C) are stored in the
order that the probes appear on the array. To load,
and find out further details about this environment,
type

> data("probeAnno")

> ? probeAnno

To create this environment, the probes were mapped
to the yeast genome using the MUMmer program
(Delcher et al., 2002). In order to screen out ambigu-
ous probes from the analysis, probes with multiple
matches to the yeast genome where flagged and dis-
carded from the analysis.

Users who wish to apply the tilingArray pack-
age to other types of tiling arrays, for example, from
other species, need to produce their own probeAnno-
like environment. Currently, there is no support for
doing this. An objective of future work is to make
this process and the genome mapping data struc-
tures more generic. We aim to use the infrastructure
that will be provided by the oligo package for this
purpose.

Once the data has been imported, some simple
diagnostic plots can be generated with

> qcPlots(davidTiling, probeAnno = probeAnno)

This command generates an HTML report with im-
age plots, box plots and density plots of log base 2
intensity data in the current working directory.

Normalization

The tilingArray package implements a
DNA based normalization strategy in the
normalizeByReference function. Normalization of
the davidTiling data is carried out with the follow-
ing commands

> isDNA = davidTiling$nucleicAcid ==

+ "genomic DNA"

> isRNA = davidTiling$nucleicAcid ==

+ "poly(A) RNA"

> pm = PMindex(probeAnno)

> bg = BGindex(probeAnno)

> yn = normalizeByReference(davidTiling[,

+ isRNA], reference = davidTiling[,

+ isDNA], pm = pm, background = bg)

The logical vectors isDNA and isRNA indicate which
arrays are DNA and RNA hybridizations respec-
tively. The intensities measured on the DNA hy-
bridizations are used for two purposes. First, the
probes indexed by the bg vector are used to estimate
the background signal. Second, the PM intensities
(indexed by the pm vector) provide a reference signal
which is used to correct for probe specific responses
due to base content. Once the PM intensities from
the RNA hybridizations have been adjusted for back-
ground signal and probe effects, variance-stabilizing
normalization between arrays using the vsn function
(Huber et al., 2002) is applied to the data. For details
of the method, see Huber et al. (2006).

R News ISSN 1609-3631

Vol. 6/5, December 2006 25

Segmentation

Transcript boundaries are estimated from the data
using a structural change model (SCM). Assume we
have normalized intensity values zki from arrays i =
1, . . . , I and probes k = 1, . . . , n where the probe in-
dexes (k) order the data by increasing position along
the chromosome. We fit the SCM model

zki = µs +εki for ts ≤ k < ts+1 (1)

which has mean signal µs for the s-th segment, and
residuals εki. The change-points, t1, . . . , tS are the
coordinates of the segment boundaries. This model
was applied to arrayCGH data in Picard et al. (2005).
The model is fitted separately for each strand of each
chromosome. The algorithm is implemented in the
function segment, which can be used directly on a
matrix of data ordered along the chromosome.

To standardize some of the common data pre-
processing steps, such as extracting the data for the
chromosome of interest from yn, we use the wrapper
function segChrom. To segment the data from chro-
mosome 1, use

> seg1 = segChrom(yn, probeAnno = probeAnno,

+ chr = 1)

The segment algorithm is both time and memory in-
tensive. On the example data, it uses a maximum
of around 8 GB of RAM on larger chromosomes
and takes several hours to complete. The compu-
tations for different chromosomes are trivially par-
allelizable, and the function segChrom offers a prim-
itive mechanism for parallelization by synchroniza-
tion through lock files.

The key parameter which the user must specify
to the segChrom function is the maximum number of
segments (S) to fit. The dynamic programming algo-
rithm will then fit models with 1, 2, . . . , S segments.
S is specified via the parameter nrBasesPerSegment,
the average number of bases per segment, which is
used to set S by dividing the chromosome length by
this number. For the data in David et al. (2006), the
value nrBasesPerSegment=1500 was chosen based
on biological expectations and by manually inspect-
ing the results obtained by varying this parameter.
This value is obviously specific for these particular
data. For other chip types or species, the value of
nrBasesPerSegment needs to be adapted to the data.

The change-points ts indicate transcript bound-
aries. Confidence intervals for the boundary loca-
tions are calculated using the strucchange package
(Zeileis et al., 2002) when the confint argument of
segChrom is set to TRUE.

Following the identification of transcript bound-
aries and levels through the segmentation algorithm,
expression level changes for a given segment can
be measured between different experimental con-
ditions. Another approach to look for expression

changes is to calculate a statistic for the condition-
dependence for each probe and run the segmentation
on this statistic.

Chromosome plots

Raw or normalized probe intensities can be plot-
ted in along the chromosome order using the
plotAlongChrom function. This function assumes
that data is available for both strands of DNA and
requires a probeAnno environment. Annotated ge-
nomic features can be included in these displays
where a GFF (General Feature Format, see http:
//www.sanger.ac.uk/Software/formats/GFF) data
frame is available.

An along the chromosome plot of the davidTil-
ing data can be created with

> data("gff")

> plotAlongChrom(segObj = seg1,

+ probeAnno = probeAnno, gff = gff,

+ what = "dots", chr = 1, coord = c(156500,

+ 160000))

−4

−3

−2

−1

0

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

MBP1−bs
MBP1−bs

SEN34 ARS101

−4

−3

−2

−1

0

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

RFA1 MBP1−bs
MBP1−bs

157000 158000 159000 160000

Chr 1

Figure 2: Plot of normalized intensity data (averaged
between arrays) versus position along the chromo-
some (in bases) for a region of chromosome 1. The
top and bottom panels display the probes from the
Watson (+) and Crick (-) strands respectively. The
gray lines indicate the segment boundaries (ts) esti-
mated from the data using segChrom. These bound-
aries correspond very closely with the known coordi-
nates of the SEN34 and RFA1 genes, marked by blue
boxes.

This plot (Figure 2) shows the result of the seg-
mentation from the previous section; gray vertical
lines indicate the transcript boundaries (ts) and each
point represents a probe. The chr and coord ar-
guments specify the region plotted. The light blue
boxes show the open reading frames of protein cod-
ing genes. Binding sites and other features from the

R News ISSN 1609-3631

http://www.sanger.ac.uk/Software/formats/GFF
http://www.sanger.ac.uk/Software/formats/GFF

Vol. 6/5, December 2006 26

gff data frame are also marked on the figure in the
relevant locations. The absolute level of expression
for different transcripts can be visualized in this dis-
play.

The following commands can be used to generate
a heatmap display of the normalized intensities from
the cell cycle data set (available in the object cycle),
for the same region on chromosome 1 as in Figure 2.

> plotAlongChrom(y=cycle,
+ probeAnno=probeAnno, gff=gff,
+ what="heatmap", chr=1,
+ coord=c(156500,160000))

Figure 3 shows the resulting output. The periodic ex-
pression patterns for the cell cycle regulated SEN34
and RFA1 transcripts are clearly visible in this figure.

0
20
40
60
80

100
120
140
160
180
200
220

MBP1−bs
MBP1−bs

SEN34 ARS101

0
20
40
60
80

100
120
140
160
180
200
220

RFA1 MBP1−bs
MBP1−bs

157000 158000 159000 160000

Chr 1

Figure 3: Heatmap plot of probe intensities from a
cell cycle experiment for a region of chromosome
1. Each row in the y-direction displays the normal-
ized intensities from a different time-point (0 min-
utes through to 230 minutes). The x-axis shows the
position along the chromosome (in bases). The color-
scheme indicates the intensity level, ranging from
light yellow for lower intensities, through to dark
blue for higher intensities.

Summary

The tilingArray package provides tools for read-
ing, normalizing, segmenting and visualizing
Affymetrix tiling array data. The core functions are
normalizeByReference and segment, and their un-
derlying methodology is described in Huber et al.
(2006). These functions should be widely applicable
to tiling array data.

There are also some functions and objects
that have been customized to our specific Sac-
charomyces cerevisiae data sets, such as segChrom,
plotAlongChrom and probeAnno. These functions
can be used as templates for transferring the meth-
ods to other types of arrays and species, but this will
require some work by the user. In future releases, we
hope to use the infrastructure for tiling array data
that will be offered by the oligo package to make
these tools more generic.

Many exciting, open research questions still re-
main including a data-driven approach for selecting
an optimal number of segments (S) for each chro-
mosome (Huber et al., 2006), applying SCMs beyond
piece-wise constant curves and the segmentation of
condition-dependent transcription patterns.

Acknowledgements

We thank Jörn Tödling and Zhenyu Xu for contribu-
tions to the development of the tilingArray package,
Lior David, Marina Granovskaia, Sandra Clauder-
Münster and Lars Steinmetz for providing the data
used in this article, Eugenio Mancera for Figure 1 and
Rachel Uren for proof-reading the article.

Bibliography

P. Bertone, V. Stolc, T. E. Royce et al. Global identifica-
tion of human transcribed sequences with genome
tiling arrays. Science, 306(5705):2242–2246, 2004.

J. S. Carroll, X. S. Liu, A. S. Brodsky et al.
Chromosome-wide mapping of estrogen receptor
binding reveals long-range regulation requiring
the forkhead protein FoxA1. Cell, 122:33–43, 2005.

L. David, W. Huber, M. Granovskaia et al. A
high-resolution map of transcription in the yeast
genome. Proc Natl Acad Sci USA, 103(14):5320–
5325, 2006.

A. L. Delcher, A. Phillippy, J. Carlton and S. L.
Salzberg. Fast algorithms for large-scale genome
alignment and comparison. Nucleic Acids Res, 30
(11):2478–2483, 2002.

W. Huber, A. V. Heydebreck, H. Sültmann et al. Vari-
ance stabilization applied to microarray data cal-
ibration and to the quantification of differential
expression. Bioinformatics, 18(Suppl 1):S96–S104,
2002.

W. Huber, J. Toedling and L. M. Steinmetz. Transcript
mapping with oligonucleotide high-density tiling
arrays. Bioinformatics, 22(16):1963–1970, 2006.

K. Munch, P. Gardner, P. Arctander and A. Krogh. A
hidden Markov model approach for determining
expression from genomic tiling micro arrays. BMC
Bioinformatics, 7:239, 2006.

R News ISSN 1609-3631

Vol. 6/5, December 2006 27

F. Picard, S. Robin, M. Lavielle et al. A statistical ap-
proach for array CGH data analysis. BMC Bioinfor-
matics, 6(1):27, 2005.

E. E. Schadt, S. W. Edwards, D. GuhaThakurta et al.
A comprehensive transcript index of the human
genome generated using microarrays and compu-
tational approaches. Genome Biol, 5(10):R73, 2004.

V. Stolc, M. Samanta, W. Tongprasit et al. Identi-
fication of transcribed sequences in Arabidopsis
thaliana by using high-resolution genome tiling ar-
rays. Proc Natl Acad Sci USA, 102(12):4453–4458,
2005.

L. V. Sun, L. Chen, F. Greil et al. Protein-DNA in-
teraction mapping using genomic tiling path mi-
croarrays in Drosophila. Proc Natl Acad Sci USA,
100:9428–9433, 2003.

T. Toyoda and K. Shinozaki. Tiling array-driven
elucidation of transcriptional structures based on

maximum-likelihood and Markov models. Plant J,
43(4):611–621, 2005.

A. Zeileis, F. Leisch, K. Hornik and C. Kleiber. struc-
change: An R package for testing for structural
change in linear regression models. Journal of Sta-
tistical Software, 7:1–38, 2002.

Matt Ritchie
European Bioinformatics Insitute (EBI)
European Molecular Biology Laboratory (EMBL) Cam-
bridge, UK
ritchie@ebi.ac.uk

Wolfgang Huber
European Bioinformatics Insitute (EBI)
European Molecular Biology Laboratory (EMBL) Cam-
bridge, UK
huber@ebi.ac.uk

Analyzing Flow Cytometry Data with
Bioconductor
by Nolwenn Le Meur and Florian Hahne

Introduction

In the recent past, flow cytometry (FCM) has become
a high-throughput technique used in both basic and
clinical research. Applications range from studies fo-
cusing on the immunological status of patients, ther-
apeutic approaches involving stem cells up to func-
tional screens used to identify specific phenotypes.
The technology is capable of measuring multiple flu-
orescence as well as some morphological properties
of individual cells in a cell population on the basis
of light emission. FCM experiments can be extremely
complex to analyze due to the large volume of data
that is typically created in several processing steps.
As an example, flow cytometry high content screen-
ing (FC-HCS) can process at a single workstation up
to a thousand samples per day each containing thou-
sands of cells, monitoring up to eighteen parameters
per sample. Thus, the amount of information gener-
ated by these technologies must be stored and man-
aged and finally needs to be summarized in order to
make it accessible to the researcher.

Instrument manufacturers have developed soft-
ware to drive the data acquisition process of their
cytometers, but these tools are primarily designed
for their proprietary instrument interface and offer
few or no high level data processing functions. The
packages rflowcyt and prada provide facilities for

importing, storing, assessing and preprocessing data
from FCM experiments. In this article we demon-
strate the use of these packages for some common
tasks in flow cytometry data analysis.

FCS format

In order to facilitate data exchange across differ-
ent platforms, a data standard has been developed
which is now widely accepted by the flow cytometry
community and also by most instrument manufac-
turers. Flow Cytometry Standard (FCS) binary files
contain both raw data and accompanying meta data
of individual cytometry measurements and option-
ally the results of prior analyses carried out on the
raw data (Seamer et al., 1997). The current version
of the FCS standard is 3.0, but both packages can also
deal with the old 2.0 standard which is still widely
used. We can import FCS files into R using the func-
tion read.fcs.

Data models

Both rflowcyt and prada use their own object models
to deal with FCM data. While the focus of rflowcyt
is more on single cytometry measurements, prada
offers the possibility to combine several individual
measurements in the confines of a single experiment

R News ISSN 1609-3631

mailto:ritchie@ebi.ac.uk
mailto:huber@ebi.ac.uk

Vol. 6/5, December 2006 28

and to include all the necessary metadata. Its object
model tries to stay close to the familiar micro-array
data structures (expressionSet) making use of al-
ready defined generic functions. Both models store
the data corresponding to the different immunoflu-
orescence measurements or variables and the meta-
data included in the FCS files. The 2 main slots pro-
vide:

• a data frame with rows corresponding to the
biological unit (i.e. cells) and columns corre-
sponding to the measured variables

• the experimental metadata as a list (rflowcyt)
or a named vector (prada)

The argument objectModel to read.fcs can be used
to chose between the two models when importing
the data. In addition, the package rflowcyt provides
functions for the conversion between objects of both
classes.

prada data model

Objects of class cytoFrame are the containers for stor-
ing individual cytometry measurements in prada.
The data slot can be accessed using the func-
tion exprs, the metadata slot via the function
description. Subsetting of the data is possible us-
ing the usual syntax for data frames and matrices.

> library(prada)

> data(cframe)

> cframe

cytoFrame object with 2115 cells and 8 observables:

FSC-H SSC-H FL1-H FL2-H FL3-H FL2-A FL4-H Time

slot ’description’ has 148 elements

> subset <- cframe[1:3, c(1, 2,

+ 3, 7, 8)]

> exprs(subset)

FSC-H SSC-H FL1-H FL4-H Time
[1,] 467 532 87 449 2
[2,] 437 431 28 478 2
[3,] 410 214 0 358 2

> description(cframe)[4:6]

$SYS
"Macintosh System Software 9.2.2"

CREATOR
"CellQuest Pro 4.0.2"

$TOT
"2115"

Collections of several cytometry measurements
(whole experiments) can be stored in objects of class
cytoSet. The phenoData slot of these objects con-
tains all the relevant experiment-wide meta data.
Multiple FCS files can be imported along with their

metadata when the first argument to read.fcs is a
vector of filenames or an object of class phenoData
(see the documentation to read.fcs for more de-
tails). Subsetting of cytoSets is similar to subsetting
of list, i.e., individual cytoFrame objects are returned
when subsetting is done with double brackets.

> data(cset)

> cset

cytoSet object with 5 cytoFrames and colnames

FSC-H SSC-H FL1-H FL2-H FL3-H FL2-A FL4-H Time

> subset <- cset[1:2]

> pData(subset)

name ORF
2 fas-Bcl2-plate323-04-04.A02 MOCK
3 fas-Bcl2-plate323-04-04.A03 YFP
batch

2 1
3 1

> class(cset[[3]])

[1] "cytoFrame"
attr(,"package")
[1] "prada"

csApply can be used to apply a function on all
items of a cytoSet. In a simple case this could for
instance be a preprocessing step or a statistical in-
ference on the data from each well. In a more com-
plex application, the function could summarize dif-
ferent features of the data and even produce diag-
nostic plots for visualization and quality assesment.
Here, we apply a preprocessing function which re-
moves artefactual measurements from our dataset
based on the morphological properties of a cell and
computes the number of cells in each of the wells on
the plate.

> myFun <- function(xraw) {

+ fn <- fitNorm2(xraw[, c("FSC-H",

+ "SSC-H")], scale = 2)

+ x <- xraw[fn$sel,]

+ return(nrow(x))

+ }

> cellCounts <- csApply(cset,

+ myFun)

Many of the common R methods like plot
or length are also available for objects of class
cytoFrame and cytoSet.

rflowcyt data model

Objects of class FCS are the containers for storing in-
dividual cytometry measurements in rflowcyt. The
data slot can be accessed using the function fluors,
the metadata slot via the function metaData. Subset-
ting of the data is possible using:

R News ISSN 1609-3631

Vol. 6/5, December 2006 29

• [i,j] to extract or subset information from the
data (a matrix object) of the FCS R-object

• [[i]] to extract metadata (which is of S4 class FC-
Smetadata) of the FCS R-object

> library(rflowcyt)
> data(VRCmin)
> st.DRT

Original Object of class FCS from:
DRT_GAG.fcs
Object name: st.DRT
Dimensions 206149 by 8

> subset <- st.DRT[1:3,1:3]
> metaData(subset)

FACSmetadata for non-original FCS object:
st.DRT from original file DRT_GAG.fcs
with 3 cells and 3 parameters.

> fluors(subset)
FSC-Height Side Scatter CD8 FITC

1 640 458 298
2 136 294 102
3 588 539 265

Multiple cytometry measurements can be im-
ported when the filename argument to read.fcs is
a vector of file names and are stored as a list of in-
dividualFCS objects. These lists may be further pro-
cessed using the familiar basic R functions, however,
no experiment-wide metadata is provided.

Besides the FCS class, rflowcyt include
FCSmetadata, FCSsummary, and FCSgate classes.
FCSmetadata is the class of the metadata slot of an
FCS R-object. The FCSsummary class is the class of
the output of the summary method implemented on
a FCS R-object. The FCSgate class contains the FCS
class and extends it to include gating information
(for more details, see the following section).

Gating

A common task in the analysis of flow cytome-
try data is to perform interactive selections of sub-
populations of cells with respect to one or several
measurement parameters, a process known as gat-
ing. In this respect, a gate is a set of rules that
uniquely identifies a cell to be part of a given sub-
population. In the easiest case this can be a sharp
cutoff, e.g., all cells with values in one parameter that
are larger than a given threshold. But often much
more complex selections are necessary like rectangu-
lar or elliptic areas in two dimensions or even polyg-
onal boundaries. It is sometimes desirable to define
a gate on a data set and later on apply this gate to a
number of additional data sets, hence gates should

be independent from the actual raw data. In addi-
tion, there may be several different combinations of
gates that can be combined in a logical manner (i.e.,
“AND” and “OR”) and in a defined order, thus the
concept of the gate can be extended to collections of
multiple gates.

The package prada offers the infrastructure to
apply gating on cytometry data. Objects of class
gate and gateSet model the necessary features
of individual gates and of collections of multiple
gates and can be assigned to the gate slot of ob-
jects of class cytoFrame. Gates can either be cre-
ated from scratch by specifying the necessary se-
lection rules or, much more conveniently, the func-
tion drawGate can be used to interactively set gates
based on two-dimensional scatter plots of the raw
data (Fig. 1). Please see the vignette of package
prada for a more thorough discussion on gating.

Figure 1: Interactive drawing of a polygonal gate
based on a scatterplot of two cytometry parameters
using function drawGate.

Quality control and quality assess-
ment of cytometry data

Data quality control and quality assessment are cru-
cial steps in processing high throughput FCM data.
Quality control efforts have been made in clinical cell
analysis by flow cytometry. For example, guidelines
were defined to monitor the fluorescence measure-
ments by computing calibration plots for each flu-
orescent parameter. However such procedures are
not yet systematically applied in high throughput
FCM and quality assessment of the raw data is often
needed to overcome the lack of data quality control.
The aim of data quality assessment is to detect sys-
tematic and stochastic effects that are not likely to be
biologically motivated. The rationale is that system-
atic errors often indicate the need for adjustments
in sample handling or processing. Further, the aber-

R News ISSN 1609-3631

Vol. 6/5, December 2006 30

rant samples should be identified and potentially
removed from any downstream analysis in order to
avoid spurious results.

rflowcyt proposes a variety of graphical ex-
ploratory data analytic (EDA) tools to explore and
summarize ungated FCM data.

• plotECDF.FCS creates Empirical Cumulative
Distribution (ECDF) plots that reveal differ-
ences in distributions (Fig. 2);

• boxplot.FCS draws boxplots that display loca-
tion and variation of the distributions and facil-
itate the comparison of these features between
samples as they are aligned horizontally;

• plotQA.FCS summarizes the distribution of one
or two parameters by their means, medians,
modes or IQR for the diferent samples and dis-
plays the values in a scatterplot (Fig. 4). The
dots in the resulting scatterplot can be colored
according to the samples position in a 96-well
plate to reveal potential plate effects;

• plotdensity.FCS displays density curves that
reveal the shape of the distributions, especially
multi-modality and asymmetry;

We illustrate the usefulness of those visualization
tools to assess FCM data quality through examina-
tion of a collection of weekly peripheral blood sam-
ples obtained from a patient following allogeneic
blood and marrow transplant. Samples were taken
at various time points before and after transplanta-
tion. At each time point, every blood sample was
divided into eight aliquots. Values for the forward
light scatter (FSC) which measures a cell’s size and
for the sideward light scatter (SSC, a measure for a
cell’s granularity) of aliquots from the same sample
should therefore be comparable.

The plotECDF.FCS function can be used to visual-
ize several variables for several samples in the same
graph.

> data(flowcyt.data)

> subset <- flowcyt.data[c(1:24,

+ 41:48, 57:72)]

> stain <- paste("A", 1:8, sep = "")

> timePoint <- c(-8, 0, 5, 27,

+ 39, 46)

> plotECDF.FCS(subset,
+ varpos = c(1),
+ var.list = c(paste("Day ",
+ timePoint)),
+ group.list = stain,
+ type = "l", xlab = "FSC",
+ lwd = 2, cex = 1.5)

For example, Figure 2 shows the FSC parame-
ter for the 8 aliquots of a sample per time point.
Each panel corresponds to a particular time point,
in days before or after transplantation. In Figure 2
we expected to see the density curves superimpose.
One aliquot significantly deviates from the other.
This aliquot should be investigated in more detail
and potentially be removed from further analysis.

FSC

E
m

pi
ric

al
 c

um
ul

at
iv

e
di

st
rib

ut
io

n

0.0

0.2

0.4

0.6

0.8

1.0
Day −8

0 200 600 1000

Day 0 Day 5

0 200 600 1000

Day 27 Day 39

0 200 600 1000

0.0

0.2

0.4

0.6

0.8

1.0
Day 46

A1
A2

A3
A4

A5
A6

A7
A8

Figure 2: ECDF plots of the FSC parameter for 8
aliquots of a sample at different time point. Each
panel corresponds to a particular time point, in days
before or after transplantation. In each panel, each
intensity curves represents one of the 8 aliquots.

ECDF plots are not good for visualizing the shape
of the distributions. Instead, you can use the function
plotdensity.FCS (Fig. 3).

0 200 400 600 800 1000

0.
00

0
0.

00
5

0.
01

0
0.

01
5

FSC Intensity

D
en

si
ty

Figure 3: Density plots of the FSC parameter for 8
aliquots of the same sample.

R News ISSN 1609-3631

Vol. 6/5, December 2006 31

> plotdensity.FCS(subset[41:48],

+ varpos = c(1), ylab = "Density",

+ xlab = "FSC Intensity",

+ col = c(1:8), ylim = c(0,

+ 0.015))

Finally the plotQA.FCS function creates "sum-
mary" scatterplots to visualize samples relationship
within plates. This representation allows to identify
biological outlier and/or plate biases, such as edge
effect or within-plate spatial effect. Figure 4 shows
the SSC vs FSC median intensities for all aliquots
stored in one 96-well plate and colored by their col-
umn position in the plate. In this figure, if all sam-
ples were identical, we expect to see a single cluster
of data points. One has to be careful when interpret-
ing such plots as each column correspond to different
samples collected at different time points. However,
we note that some columns have widely spread val-
ues (light blue and brown) and that one aliquot is an
outlier as it is far away from the rest of its group. This
aliquot appears to be the same as in Figures 2 and 3.

> idx <- order(names(flowcyt.data))

> flowcyt.data <- flowcyt.data[idx]

> plotQA.FCS(flowcyt.data, varpos = c(1,

+ 2), col = "col", median,

+ labeling = TRUE, xlab = "SSC median",

+ ylab = "FSC median", xlim = c(0,

+ 200), ylim = c(75, 275),

+ pch = "*", asp = 1, cex = 1.5,

+ main = "")

*
*

**

*

*

**

*

*

*

*
*

*
**

*

*

**

*

*

*
**

*
**

*

*

**

*
*

*
*

*
*

**
*

*

**

*

*

**
*

*
**

*

*

**

*
*

*
*

*
*

*
*

*

*

* *

*
*

*
*

*
*

**

*

*

* *

*
*

*
*

*
*

**

*

*

* *

*
*

*
*

0 50 100 150 200

10
0

15
0

20
0

25
0

SSC median

F
S

C
 m

ed
ia

n

a01

a02

a03
a04

a05

a06

a07a08

a09

a10

a11

a12

b01

b02

b03
b04

b05

b06

b07b08

b09

b10

b11

b12
c01

c02

c03
c04

c05

c06

c07c08

c09

c10

c11

c12

d01

d02

d03
d04

d05

d06

d07d08

d09

d10

d11
d12

e01

e02

e03
e04

e05

e06

e07
e08

e09

e10

e11

e12

f01

f02

f03

f04

f05

f06

f07 f08

f09

f10

f11

f12

g01

g02

g03
g04

g05

g06

g07 g08

g09

g10

g11

g12

h01

h02

h03
h04

h05

h06

h07 h08

h09

h10

h11

h12

Figure 4: Scatterplot of SSC vs FSC medians intensi-
ties for one plate.

prada offers another visualization tool which can
be used to inspect the data from whole experiments.
Using the function plotPlate we can display quan-
titative as well as qualitative values or even complex
graphs for each well of a microtiter plate retaining its

array format 2. This allows for the identification of
spatial effects and for a consise presentation of im-
portant features of an experiment. plotPlate is im-
plemented using grid graphic and users are able to
define their own plotting functions, so conceptually
anything can be plotted in a mircrotiter plate format
(see Figure 5).

0.
22

0.
42

0.
61

0.
8

1 2 3 4 5 6 7 8 9 10 11 12

A

B

C

D

E

F

G

H

cell number

1 2 3 4 5 6 7 8 9 10 11 12

A

B

C

D

E

F

G

H

relative local density

Figure 5: Two different variations of plate plots
for 96 well microtiter plates. Top: Quantitative val-
ues. The consistently low number of cells around
the edges of the plate indicates a technical prob-
lem. Bottom: Complex graph. Image maps of two-
dimensional local densities of FSC vs SSC values for
each well relative to a standard. Blue areas indicate
low, red areas indicate high local densities. These
plots help detect morphological changes in a cell
population.

Discussion and Conclusion

The application of flow cytometry in modern cell bi-
ology is diverse and so are the demands on data anal-
ysis. The multitude of packages within R and Bio-
conductor already provides for many tools that are
also useful in the analysis of FCM data. The pack-
ages rflowcyt and prada try to close the gap between
data acquisition and data analysis by enabling the re-
searches to take their data into the powerful R envi-
ronment and to make use of the statistical and graph-
ical solutions already available there. In addition,
they provide for tools that are commonly used in
early steps of data analysis which in principle are the

R News ISSN 1609-3631

Vol. 6/5, December 2006 32

same for all FCM applications.
Currently, in a collaboration of several groups in-

volved in high-throughput FCM together with instru-
ment manufacturers and members of the flow cytom-
etry standards initiative a flowCore package and a
number of additional FCM utility packages are de-
veloped. The aim is to merge both prada and rflow-
cyt into one core package which is copmpliant with
the data exchange standards that are currently de-
veloped in the community. Visualization as well as
quality control will than be part of the utility pack-
ages that depend on the data structures defined in
the flowCore package.

Bibliography

L. C. Seamer, C. B. Bagwell, L. Barden et al. Proposed
new data file standard for flow cytometry, version
fcs 3.0. Cytometry, 28(2):118–122, Jun 1997.

Nolwenn Le Meur
Computational Biology
Fred Hutchinson Cancer Research Center
Seattle, WA, USA
nlemeur@fhcrc.org

Florian Hahne
Molecular Genome Analysis
German Cancer Research Center
Heidelberg, Germany
f.hahne@dkfz.de

Protein Complex Membership Estimation
using apComplex
by Denise Scholtens

Graphs of protein-protein interactions, so called ‘in-
teractomes’, are rapidly surfacing in the systems bi-
ology literature. In these graphs, nodes represent
cellular proteins and edges represent interactions be-
tween them. Global interactome analyses are often
undertaken to explore topological features such as
network diameter, clustering coefficients, and node
degree distribution. Local interactome modeling,
particularly at the protein complex level, is also
important for identifying distinct functional com-
ponents of the cell and studying their interactivity
(Hartwell et al., 1999). The apComplex package con-
tains functions to locally estimate protein complex
membership as described in Scholtens and Gentle-
man (2004) and Scholtens et al. (2005).

Two technologies are generally used to query
protein-protein relationships. Affinity purification-
mass spectrometry (AP-MS) technologies detect pro-
tein complex co-membership. In these experiments
a set of proteins are used as baits, and in separate
purifications, each bait identifies all hits with which
it shares protein complex membership. AP-MS baits
and their hits may physically bind to each other, or
they may be joined together in a complex through an
intermediary protein or set of proteins. If a bait pro-
tein is a member of more than one complex, all of
its hits may not necessarily themselves be complex
co-members. These biological realities become essen-
tial components of complex membership estimation.

Publicly available AP-MS data sets for Saccharomyces
cerevisiae include those reported by Gavin et al. (2002,
2006), Ho et al. (2002), and Krogan et al. (2004, 2006).

Yeast-two-hybrid (Y2H) technology is another
bait-hit system that measures direct physical interac-
tions. The distinction between AP-MS and Y2H data
is subtle, but crucial. Two proteins that are part of the
same complex may not physically interact with each
other. Thus an interaction detected by AP-MS may
not be detected by Y2H. On the other hand, two pro-
teins that do physically interact by definition form a
complex so any interaction detected by Y2H should
also be detected by AP-MS. Under the same exper-
imental conditions, Y2H technology should in fact
consist of a subset of the interactions detected by AP-
MS technology, the subset consisting of complex co-
members that are physically bound to each other. Ito
et al. (2001) and Uetz et al. (2000) both offer publicly
available Y2H data sets for Saccharomyces cerevisiae.

apComplex deals strictly with data resulting
from AP-MS experiments. The joint analysis of Y2H
and AP-MS data is an interesting and important
problem and is in fact an obvious next step after
complex membership estimation, but is not currently
dealt with in apComplex.

R News ISSN 1609-3631

mailto:nlemeur@fhcrc.org
mailto:f.hahne@dkfz.de

Vol. 6/5, December 2006 33

Protein Complex Membership and
Co-Membership

apComplex estimates protein complex membership
given a set of AP-MS co-membership data. The
distinction between the complex membership and
co-membership ties back to affiliation relationships
in social networks analyses (Wasserman and Faust,
1999). As a simple example to be discussed through-
out this article, suppose proteins P1, P2, P4, and P6
compose complex C1 and proteins P3, P4, and P5
compose complex C2. Then their affiliation matrix,
A, is as follows.

C1 C2
P1 1 0
P2 1 0

A = P3 0 1
P4 1 1
P5 0 1
P6 1 0

A can also be represented as a bipartite graph in
which one set of nodes represent proteins, another
set represents complexes, and edges from proteins to
complexes denote complex membership.

Instead of A, AP-MS technology assays Y = A⊗
A′ where ⊗ represents matrix multiplication under
the Boolean algebra 0 + 0 = 0× 0 = 1× 0 = 0× 1 =
0 and 1 + 0 = 0 + 1 = 1 + 1 = 1 × 1 = 1. Entries
of 1 in Y represent co-membership of two proteins
in a complex. In this simple example, we have Y as
follows.

P1 P2 P3 P4 P5 P6
P1 1 1 0 1 0 1
P2 1 1 0 1 0 1

Y = P3 0 0 1 1 1 0
P4 1 1 1 1 1 1
P5 0 0 1 1 1 0
P6 1 1 0 1 0 1

apComplex estimates A using assays of Y.

Observed Data

The entire matrix Y is not tested in AP-MS experi-
ments. For this to happen, all cellular proteins would
need to be used as baits. Even in small model organ-
isms such as Saccharomyces cerevisiae with approxi-
mately 6000 cellular proteins, genome-wide testing is
logistically prohibitive. Instead, only a subset of the
rows of Y are tested (letting rows represent baits and
columns represent hits). In a graph of Y, this is best
described by neighborhood sampling of all edges ex-
tending from baits to all other proteins. Recognition
of this sampling scheme is crucial as it draws a very

important distinction between two types of edges
that are absent from a graph of AP-MS data. Figure 1
shows ideal results from a neighborhood sampling of
our simple interactome using P1, P2, and P3 as baits.
The edge between P1 and P3 is tested and observed to
be absent, but the edge between P4 and P6 is absent
because it is never tested. Scholtens and Gentleman
(2004) discuss why inference should only be based
on the tested edges, leaving the untested edges to be
estimated or tested in further experiments.

P1

P2 P3

P4 P5P6

Figure 1: Co-memberships detected using neighbor-
hood sampling scheme with P1, P2, and P3 as baits.

In addition to being incomplete AP-MS data are
also imperfect, including both false positive (FP) and
false negative (FN) observations. Figure 2 demon-
strates hypothetical FP observations from P8 to P3
and P3 to P7 and a FN observation from P2 to P4.

P1

P2

P3

P4 P5

P6

P7

P8

Figure 2: Observed data including FPs and FNs.

Penalized Likelihood Approach

Since edges in an AP-MS graph represent complex
comembership, if all proteins were used as baits,
then maximal complete subgraphs (or cliques) in
the AP-MS graph would contain entire collections
of proteins that compose a complex. The maximal
complete subgraphs could then be used to estimate
A (see Scholtens and Gentleman, 2004 and Scholtens
et al., 2005 for a more thorough discussion).

Since all proteins are not used as baits, apCom-
plex instead searches for maximal BH-complete sub-
graphs in the observed AP-MS data. A BH-complete
subgraph is defined to be a collection of baits and
hits for which all bait-bait edges and all bait-hit-only
edges exist; a maximal BH-complete subgraph is a BH-
complete subgraph that is not contained in any other

R News ISSN 1609-3631

Vol. 6/5, December 2006 34

BH-complete subgraph. In other words, all edges ob-
served in the neighborhood sampling scheme must
exist for a subgraph to be BH-complete. The func-
tion bhmaxSubgraph can be used to find maximal BH-
complete subgraphs in the observed AP-MS data.

In the event of unreciprocated observations be-
tween pairs of baits, the edges are estimated to ex-
ist when the sensitivity of the AP-MS technology
is less than the specificity. Under a logistic regres-
sion model where the parameters represent sensitiv-
ity and specificity, this treatment of unreciprocated
bait-bait edges maximizes the likelihood L for the
data (Scholtens and Gentleman, 2004).

For our example, bhmaxSubgraph reports four
maximal BH-complete subgraphs as shown below.
Figure 3 depicts the bipartite graph of the results con-
tained in BP1.

> apEX
P1 P2 P3 P8 P4 P5 P6 P7

P1 1 1 0 0 1 0 1 0
P2 1 1 0 0 0 0 1 0
P3 0 0 1 0 1 1 0 1
P8 0 0 1 1 0 0 0 0
> BP1 <- bhmaxSubgraph(apEX)

bhmax1 bhmax2 bhmax3 bhmax4
P1 0 1 1 0
P2 0 1 0 0
P3 1 0 0 1
P8 1 0 0 0
P4 0 0 1 1
P5 0 0 0 1
P6 0 1 1 0
P7 0 0 0 1

BHM1 BHM2BHM3BHM4

P1 P2P3 P4P5 P6P7P8

Figure 3: Bipartite graph for the initial estimate of A
determined by locating maximal BH-complete sub-
graphs in the graph of observed AP -MS data.

The initial maximal BH-complete subgraph esti-
mate of A does not allow missing edges between bait
and hit-only proteins; since AP-MS technology is not
perfectly sensitive, it is reasonable to expect a num-

ber of missing edges in the subgraph for each com-
plex estimate. mergeComplexes accommodates this
by employing a penalty term with the likelihood. For
a complex ck, let C(ck) represent the product of 1)
the binomial probability for the number of observed
edges in ck given the number of tested edges and the
supposed sensitivity of the technology, and 2) a two-
sided p-value from Fisher’s exact test for the distri-
bution of missing incoming edges for complex esti-
mate ck. Then let C equal the product of C(ck) over
all complexes c1, ..., cK. The penalized likelihood P is
the product of L and C, or P = L×C. L is maximized
with the initial maximal BH-complete subgraphs –
the algorithm in mergeComplexes looks to increase C
in favor of small decreases in L.

After the initial estimate of A is made using
bhmaxSubgraph, mergeComplexes proposes pairwise
unions of individual complex estimates. If P in-
creases when the complexes are treated as one, then
the combination is accepted. If more than one
union increases P, then the union with the largest
increase is accepted. This is a greedy algorithm
and mergeComplexes can be sensitive to the order in
which the columns in the input matrix are specified.
Users may want to order the columns putting the ini-
tial complex estimates with more bait proteins first
since these contain proportionately more tested data.

> BP2 <- mergeComplexes(BP1, apEX,
sensitivity = 0.7, specificity = 0.75)
> BP2

Complex1 Complex2 Complex3
P1 0 1 0
P2 0 1 0
P3 1 0 1
P8 1 0 0
P4 0 1 1
P5 0 0 1
P6 0 1 0
P7 0 0 1

Figure 4 shows the corresponding bipartite graph
for the estimated A.

C1 C2C3

P1 P2P3 P4P5 P6P7P8

Figure 4: Bipartite graph for new complex estimates
after using mergeComplexes.

The function findComplexes can be used to run
both steps together. It will automatically reorder

R News ISSN 1609-3631

Vol. 6/5, December 2006 35

the input to mergeComplexes as suggested previ-
ously. Note that the user must specify the sensitiv-
ity and specificity of the AP-MS technology. Speci-
ficity should be considered in light of the dimension
of the data under consideration. In our small exam-
ple, a fairly high FP rate (i.e. low specificity) creates
a reasonable number of suspected FP interactions. In
large dimensional data sets, the number of true neg-
ative interactions is quite large. In these cases, very
low FP probabilities (e.g. 0.001 or specificity=0.999)
are usually appropriate.

Algorithm Output

apComplex makes three types of complex estimates:
multi-bait-mult-edge (MBME) complexes that con-
tain multiple baits and multiple edges, single-bait-
multi-hit (SBMH) complexes that contain a single
bait and a collection of hit-only proteins, and un-
reciprocated bait-bait (UnRBB) complexes that only
contain two bait proteins connected by one unrecip-
rocated edge. MBME complexes are the most reliable
since they contain the most tested data. SBMH com-
plexes are useful for proposing future experiments
since the topology among the hit-only proteins is
unknown. UnRBB complexes may result from FP
observations since the edges are tested twice, ob-
served once, and not confirmed by other subgraph
edges. On the other hand, the unreciprocated edge
may also result from a FN observation between the
two baits. The complex estimates resulting from
mergeComplexes or findComplexes can be sorted
into the MBME, SBMH, and UnRBB components us-
ing the function sortComplexes.

Results for three publicly available data sets are
included in apComplex. TAP is an adjacency matrix
of the AP-MS data (called ‘TAP’) reported by Gavin,
et al. (2002). There were 3420 comemberships re-
ported using 455 baits and 909 hit-only proteins. The
TAP data were originally compiled into 232 yTAP
complexes, available in Supplementary Table 1 of
Gavin et al. (2002) at http://www.nature.com and
at http://yeast.cellzome.com. These yTAP com-
plex estimates, along with the annotations given by
Gavin, et al. are available in yTAP.

HMSPCI is an adjacency matrix of the AP-MS data
(called ‘HMS-PCI’) reported by Ho et al. (2002).
There were 3687 comemberships reported using 493
baits and 1085 hit-only proteins.

Krogan is an adjacency matrix of the AP-MS data
reported by Krogan et al. (2004). There were 1132
comemberships reported using 153 baits and 332 hit-
only proteins.

These data were analyzed using apComplex,
and the results for the TAP and HMS-PCI data
sets are described in Scholtens et al. (2005). Com-
plex estimates are available for all three data sets
- MBMEcTAP, SBMHcTAP, and UnRBBcTAP for the TAP

data, MBMEcHMSPCI, SBMHcHMSPCI, and UnRBBcHMSPCI
for the HMS-PCI data, and MBMEcKrogan for the Kro-
gan data.

One example of the detail with which the ap-
Complex algorithm can estimate complex member-
ship involves the PP2A proteins Tpd3, Cdc55, Rts1,
Pph21, and Pph22. These five proteins compose
four heterotrimers (Jiang and Broach, 1999). Using
the TAP data, apComplex accurately predicts these
trimers as distinct complexes and furthermore notes
the exclusive association of Zds1 and Zds2 with the
Cdc55/Pph22 trimer. Confirmation of this prediction
in the lab may help clarify the cellular function of this
particular trimer and the reason for its joint activity
with Zds1 and Zds2.

Related Packages

Several other packages based on the apComplex al-
gorithm are currently being developed. The ScISI
package contains an in silico interactome including
apComplex estimates of publicly available AP-MS
data. Given an interactome, simulatorAPMS can be
used to simulate the neighborhood sampling scheme
and both stochastic and systematic errors charac-
teristic of AP-MS experiments for testing the per-
formance of complex estimation algorithms, among
other things. To complement the AP-MS data anal-
ysis, y2hStat contains algorithms for Y2H data anal-
ysis. This effort to better model Y2H observations
will facilitate improved joint modeling of apCom-
plex outputs and Y2H data.

Summary

In summary, apComplex can be used to predict com-
plex membership using data from AP-MS experi-
ments. An accurate catalog of complex member-
ship is a fundamental requirement for understand-
ing functional modules in the cell. Integration of ap-
Complex analyses with other high-throughput data,
including Y2H physical interactions, gene expression
data, and binding domain data are promising av-
enues for further systems biology research.

Bibliography

A. C. Gavin et al. Functional organization of the yeast
proteome by systematic analysis of protein com-
plexes. Nature, 415:141–147, 2002.

A. C. Gavin et al. Proteome survey reveals modular-
ity of the yeast cell machinery. Nature, 440:631–636,
2006.

L. Hartwell, J. Hopfield, S. Leibler et al. From molec-
ular to modular cell biology. Nature, 402:C47, 1999.

R News ISSN 1609-3631

http://www.nature.com
http://yeast.cellzome.com

Vol. 6/5, December 2006 36

Y. Ho et al. Systematic identification of protein com-
plexes in Saccharomyces cerevisiae by mass spec-
trometry. Nature, 415:180–183, 2002.

T. Ito, T. Chiba, R. Ozawa, et al. A comprehensive
two-hybrid analysis to explore the yeast protein
interactome. Proc. Nat. Acad. Sci. U.S.A., 98:4569–
4574, 2001.

Y. Jiang and J. Broach. Tor proteins and protein phos-
phatase 2A reciprocally regulate Tap42 in control-
ling cell growth in yeast. EMBO J., 18:2782–2792,
1999.

N. Krogan et al. High-definition macromolecular
composition of yeast RNA-processing complexes.
Molecular Cell, 13(2):225–239, 2004.

N. Krogan et al. Global landscape of protein com-
plexes in the yeast Saccharomyces cerevisiae. Nature,
440:637–643, 2006.

D. Scholtens and R. Gentleman. Making sense of
high-throughput protein-protein interaction data.
Statistical Applications in Genetics and Molecular Bi-
ology, 3(1):Article 39, 2004.

D. Scholtens, M. Vidal, and R. Gentleman. Local
modeling of global interactome networks. Bioin-
formatics, 21:3548–3557, 2005.

P. Uetz, L. Giot, G. Cagney, et al. A comprehensive
analysis of protein-protein interactions in Saccha-
romyces cerevisiae. Nature, 403:623–627, 2000.

S. Wasserman and K. Faust. Social Network Analysis.
Cambridge University Press, New York, 1999.

Denise Scholtens
Northwestern University Medical School
Chicago, IL, USA
dscholtens@northwestern.edu

SNP Metadata Access and Use with
Bioconductor
by Vince Carey

Introduction

“Single nucleotide polymorphisms (or SNPs) ... are
DNA sequence variations that occur when a single
nucleotide in genomic sequence is altered”1. Con-
ventionally, a given variation must be present in at
least one percent of the population in order for the
variant to be regarded as a SNP.

There are many uses of data on SNPs in bioinfor-
matics. Two recent contributions which lay out as-
pects of the concept of “genetical genomics” are Li
and Burmeister (2005) and Cheung et al. (2005). In
this short contribution I review some functionality
provided by Bioconductor for investigating analyses
related to the Cheung et al. paper.

The RSNPper package

The SNPper2 web service of the Children’s Hospital
(Boston) Informatics Program provides interactive
access to a curated database of metadata on SNPs.
Details of the system are provided in Riva and Ko-
hane (2005). In addition to the browser-based in-
terface, SNPper has an XML-RPC query resolution
system. The RSNPper package provides an inter-
face to this XML-RPC-based service. The objective of

RSNPper is to provide a convenient high-level inter-
face to the SNPper database contents, by providing
a small number of high-level query functions with
simple calling sequence, and by translating XML re-
sponses to convenient R-language objects for further
use.

Getting gene-level information

A geneInfo function takes a string argument with a
HUGO gene symbol and returns an object of class
SNPperGeneMeta:

> cpm = geneInfo("CPNE1")
> cpm
SNPper Gene metadata:
There are 8 entries.
Basic information:
GENEID NAME CHROM STRAND PRODUCT NSNPS

1 12431 CPNE1 chr20 - copine I 160
TX.START TX.END CODSEQ.START CODSEQ.END

1 33677382 33705245 33677577 33684259
LOCUSLINK OMIM UNIGENE SWISSPROT

1 8904 604205 Hs.166887 Q9NTZ6
MRNAACC PROTACC REFSEQACC

1 NM_003915 NP_003906 NULL
SNPper info:

SOURCE VERSION
[1,] "*RPCSERV-NAME*" "$Revision: 1.38 $"

1http://www.ornl.gov/sci/techresources/Human_Genome/faq/snps.shtml
2snpper.chip.org

R News ISSN 1609-3631

mailto:dscholtens@northwestern.edu
http://www.ornl.gov/sci/techresources/Human_Genome/faq/snps.shtml
snpper.chip.org

Vol. 6/5, December 2006 37

GENOME DBSNP
[1,] "hg17" "123"

The notion of multiple “entries” mentioned in the
show result concerns the multiplicity of mRNA and
protein accession numbers referenced by annotation
of the chosen gene. The allGeneMeta method pro-
vides access to such details.

> allGeneMeta(cpm)[,15:16]
MRNAACC PROTACC

1 NM_003915 NP_003906
2 NM_152925 NP_690902
3 NM_152926 NP_690903
4 NM_152927 NP_690904
5 NM_152928 NP_690905
6 NM_152929 NP_690906
7 NM_152930 NP_690907
8 NM_152931 NP_690908

Note that the show result gives a GENEID field,
which is an internal SNPper-based index, which
must be used for further gene-level queries. A
geneLayout function provides information on the ex-
tents of the coding region and exons in a gene.

Getting SNP-level information

The SNPinfo function takes standard dbSNP3 iden-
tifiers (deleting the rs prefix) and returns curated
metadata:

> mysnp = SNPinfo("rs6060535")
> mysnp
SNPper SNP metadata:

DBSNPID CHROMOSOME POSITION
[1,] "rs6060535" "chr20" "33698936"

ALLELES VALIDATED
[1,] "C/T" "Y"
There are details on 4 populations
and 10 connections to gene features
SNPper info:

SOURCE VERSION
[1,] "*RPCSERV-NAME*" "$Revision: 1.38 $"

GENOME DBSNP
[1,] "hg17" "123"

Information on populations in which allele frequen-
cies were analyzed is obtained with the popDetails
method:

> popDetails(mysnp)
PANEL SIZE MAJOR.ALLELE

1 Japanese sanger C
2 Han_Chinese sanger C
3 Yoruba-30-trios sanger C
4 CEPH-30-trios sanger C
MINOR.ALLELE majorf minorf

1 T 0.918605 0.0813954
2 T 0.94186 0.0581395

3 T 0.925 0.075
4 T 0.9 0.1

The genes near this SNP are described using the
geneDetails method:

> geneDetails(mysnp)[8:9,]
HUGO LOCUSLINK

8 CPNE1 8904
9 RBM12 10137

NAME MRNA
8 copine I NM_152931
9 RNA binding motif protein 12 NM_006047

ROLE RELPOS AMINO AMINOPOS
8 Exon -14677 <NA> <NA>
9 3’ UTR 7722 <NA> <NA>

Broad queries can also be handled by this system.
The itemsInRange function allows tabulation of SNPs
in specific chromosomal regions:

> itemsInRange("countsnps", "chr20", "36000000",
"37000000")

total exonic nonsyn
3679 145 48

If "genes" is supplied as the first argument, a list of
genes and counts of SNPs related to those genes is
returned.

The RSNPper interface package also includes
useSNPper, permitting direct communication with
the XML-RPC facility, returning XML to be parsed
by the R user.

Exploring a genome-wide associa-
tion study

Data representation
A marked benefit of Bioconductor architecture for
analysis of datasets arising in high-throughput biol-
ogy is the capacity for unifying diverse experimental
result structures in S4 objects. For this illustration of
inference in genetical genomics, we made an exten-
sion of the eSet class in Biobase to house expression
and allele counts along with phenotype data. This
extension is the racExSet class (rac connoting rare
allele count), and an exemplar, chr20GGdem, is sup-
plied with the package:

> chr20GGdem

racExSet (SNP rare allele count + expression)

rare allele count assayData:

Storage mode: environment

featureNames: rs4814683, ..., rs6062370,

rs6090120 (117417 total)

Dimensions:

racs

Features 117417

Samples 58

3www.ncbi.nlm.nih.gov/SNP

R News ISSN 1609-3631

www.ncbi.nlm.nih.gov/SNP

Vol. 6/5, December 2006 38

expression assayData

Storage mode: environment

featureNames: 1007_s_at, ... (8793 total)

Dimensions:

exprs

Features 8793

Samples 58

phenoData

rowNames: NA06985, ..., NA12892 (58 total)

varLabels and varMetadata:

sample: arbitrary numbering

...

Information on high-density SNP genotyping
(here restricted to SNPs resident on chromosome 20)
is accessible with the snps method:

> snps(chr20GGdem)[1:5,1:5]
NA06985 NA06993 NA06994

rs4814683 2 0 0
rs6076506 0 0 0
rs6139074 2 0 0
rs1418258 2 0 0
rs7274499 0 0 0

NA07000 NA07022
rs4814683 2 1
rs6076506 0 NA
rs6139074 2 1
rs1418258 2 1
rs7274499 0 NA

Entries count the number of copies of the rare allele
in each subject’s genotype.

The data noted here were provided by Vivian
Cheung and Richard Spielman in conjunction with
a summer course at Cold Spring Harbor Lab. This
data will be provided in a Bioconductor experimen-
tal data package in the near future.

An association test

Figure 1 illustrates the test for association between a
specific SNP (rs6060535) and expression measured
in a probe set annotated to gene CPNE1. The p
value reported by Cheung and Spielman for this test
was 8.35×10−13, in good agreement with the find-
ing noted here. Comprehensive computation of such

tests over a chromosome or in a specific region could
be conducted with a simple iteration. Some opti-
mizations of note include the elimination of SNPs for
which all subjects sampled have identical genotype,
and memoization of computations that depend only
on the frequency distribution of genotypes, and not
on their specific connection to outcomes.

Conclusions

Management of high-quality metadata on SNPs is a
complex task. The XML document for dbSNP’s data
on chromosome 20 alone decompresses to 3GB. The
Informatics Program at Children’s Hospital Boston
provides an extremely useful resource that can be
queried interactively and programatically; RSNPper
makes use of the Omegahat4 XML interface of Dun-
can Temple Lang to simplify use of SNPper by the R
community. More work on efficient data representa-
tion and algorithm design for genome-wide associa-
tion studies is underway.

Bibliography

V. G. Cheung, R. S. Spielman, K. G. Ewens et al. Map-
ping determinants of human gene expression by
regional and genome-wide association. Nature, 437
(7063):1365–9, 2005.

J. Li and M. Burmeister. Genetical genomics: combin-
ing genetics with gene expression analysis. Human
Molecular Genetics, 14(R2):R163–R169, 2005.

A. Riva and I. Kohane. A SNP-centric database for
the investigation of the human genome. BMC
Bioinformatics, 5(33), 2005.

Vincent J. Carey
Channing Laboratory
Brigham and Women’s Hospital
Harvard Medical School
181 Longwood Ave.
Boston MA 02115, USA
stvjc@channing.harvard.edu

4www.omegahat.org

R News ISSN 1609-3631

mailto:stvjc@channing.harvard.edu
www.omegahat.org

Vol. 6/5, December 2006 39

Call:
lm(formula = exprs(chr20GGdem)["206918_s_at",] ~ snps(chr20GGdem)["rs6060535",

])

Residuals:
Min 1Q Median 3Q Max

-0.54749 -0.17590 0.02143 0.17102 0.64717

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.63381 0.04027 189.57 < 2e-16
snps(chr20GGdem)["rs6060535",] -0.84324 0.08197 -10.29 1.62e-14

(Intercept) ***
snps(chr20GGdem)["rs6060535",] ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.2782 on 56 degrees of freedom
Multiple R-Squared: 0.654, Adjusted R-squared: 0.6478
F-statistic: 105.8 on 1 and 56 DF, p-value: 1.619e-14

Figure 1: Call and report on a specific fit.

R News ISSN 1609-3631

Vol. 6/5, December 2006 40

Integrating Biological Data Resources into
R with biomaRt
by Steffen Durinck

Abstract

Comprehensive analysis of data generated from
high-throughput biological experiments, involves in-
tegration of a variety of information that can be
retrieved from public databases. A simple exam-
ple is to annotate a set of features that are found
differentially expressed in a microarray experiment
with corresponding gene symbols and genomic lo-
cations. Most public databases provide access to
their data via web browsers. However, a major
remaining bioinformatics challenge is how to effi-
ciently have access to this biological data from within
a data analysis environment. BioMart is a generic,
query oriented data management system, capable of
integrating distributed data resources. It is devel-
oped at the European Bioinformatics Institute (EBI)
and Cold Spring Harbour Laboratory (CSHL). We
first describe a number of important public biologi-
cal databases, such as Ensembl and Uniprot, that im-
plement the BioMart data management system. And
then describe biomaRt, a software package aimed at
integrating data from BioMart systems into R, en-
abling biological data mining.

Biological databases

In recent years, biological databases have become
repositories containing large amounts of heteroge-
neous data. In the next paragraphs we discuss some
of these public databases which have a BioMart im-
plementation.

The completion of the human genome sequenc-
ing project and other sequencing efforts resulted
in a surge of available sequence data. Dedicated
databases and genome browsers have been set up
that make these fully or partially sequenced genomes
available to the community together with annota-
tion information. Ensembl is a software system that
produces and maintains automatic annotation on se-
lected eukaryotic genomes (Birney et al., 2006). At
the time of writing, Ensembl (http://www.ensembl.
org) covers 25 annotated genomes from a wide range
of organisms such as human, mouse, and dog. There
are many ways to use meta-data from Ensembl in bi-
ological data analysis. Examples are to annotate a va-
riety of identifiers with the corresponding gene sym-

bol, a description of the gene and the gene’s chromo-
somal coordinates. Alternatively one can extract a
subset of identifiers that fulfill a certain requirement
set, such as being located on human chromosome 19
and having the Gene Ontology (GO) term for imprint-
ing associated with it. The ability to calculate and dis-
play integrated comparative genomics resources is
another important feature of Ensembl (Birney et al.,
2006). This allows one for example to easily go from
a set of mouse identifiers to identifiers of correspond-
ing homologs in human.

Genomes display natural polymorphisms, which
are variations in the genome sequence. Two human
genomes differ in about 1 base pair per 1000 bases.
Most of these variations are Single Nucleotide Poly-
morphisms (SNPs), where one nucleotide is changed
into another. Other sources of the variation are at-
tributable to deletions and insertions, and copy num-
ber polymorphisms.

dbSNP (Sherry et al., 2001) is a database located
at the NCBI, and stores this variation data. This
database is also mirrored by Ensembl. A second re-
source of variation data has been delivered by the
HapMap project of which Phase I was completed in
November 2005 (The international hapmap consor-
tium, 2005). The HapMap project aims to determine
common patterns in human genome variation by
characterizing sequence variants and their frequen-
cies in human populations. The HapMap database
(http://www.hapmap.org) implements the BioMart
data management system and contains more than
one million SNPs. This database provides a unique
data collection to for example find associations be-
tween the reported SNPs and differences in gene ex-
pression.

The Vertebrate Genome Annotation database
(VEGA1) stores high quality manual annotations of
finished vertebrate genomes (Ashurst et al., 2005)
and thus differs from Ensembl, which stores com-
putationally derived gene predictions on finished
and unfinished genomes. At the time of writing,
the VEGA database contained five species: human,
mouse, zebrafish, pig and dog. Manually annotated
information that is available from VEGA includes
gene symbol, gene description, location, OMIM2

identifiers, HUGO3 identifiers, and InterPro4 protein
domains.

The UniProt database (http://www.ebi.
uniprot.org, Wu et al., 2006) is the most comprehen-
sive catalog of information on proteins. The database

1http://vega.sanger.ac.uk
2Online Mendelian Inheritance in Men
3Human Genome Organization
4InterPro is a database of protein domains.

R News ISSN 1609-3631

http://www.ensembl.org
http://www.ensembl.org
http://www.hapmap.org
http://www.ebi.uniprot.org
http://www.ebi.uniprot.org
http://vega.sanger.ac.uk

Vol. 6/5, December 2006 41

provides a resource for protein sequences as well as
functional annotation. The annotations provided by
UniProt include protein name and function, protein
domains, taxonomy, and post-translational modifi-
cations.

Wormbase (http://www.wormbase.org) is a
database dedicated to the model species Caenorhab-
ditis elegans (Schwarz et al., 2006). In addition to
gene-centric queries, Wormbase supports querying
expression patterns, RNAi phenotypes, mutant phe-
notypes, genome variations, and literature citations.

The Gramene database (http://www.gramene.
org) is a resource for comparative genomics of
grasses (Ware et al., 2002) and currently contains
data on Zea Mays and Oryza Sativa. Additional to
the grasses, Gramene also stores information on the
plant model species Arabidopsis. Examples of data
present in Gramene is Gene Ontology and Plant On-
tology associations, genome sequences, Trait Ontol-
ogy terms (an ontology describing associated traits
of Quantitative Trait Loci), and phenotypic descrip-
tions.

BioMart

BioMart (http://www.biomart.org) is a joint project
between the European Bioinformatics Institute (EBI)
and Cold Spring Harbor Laboratory (CSHL) and
aims to develop a generic, query oriented data man-
agement system, capable of integrating distributed
data resources. BioMart systems have a three-tier
architecture. The first tier consists of one or mul-
tiple relational databases. Central to these BioMart
databases is the concept of the star and the reverse-
star schemas, of which the former consist of a single
main table linked to different dimension tables and
the latter is a variant (Kasprzyk et al., 2004). The
overall simplicity of these schemas avoids complex
joins and enables fast data retrieval.

The second tier consists of two Application Pro-
gramming Interfaces (APIs), one written in Java and
the other in Perl. The third tier consists of query
interfaces. BioMart comes with web-based query
interfaces (MartView), a stand-alone query inter-
face (MartExplorer) and a command-line interface
(MartShell). In addition to this, the BioMart system
comes with the MartEditor tool to edit the database
configuration. This configuration is stored as XML
within the database making meta-data (a description
of the database, including the tables and fields) avail-
able to third-party applications. Ensembl was one of
the first databases to deploy a full-featured BioMart
implementation in spring 2005 (Birney et al., 2006;
Kasprzyk et al., 2004). Since then, more databases
have implemented a BioMart data management sys-
tem and by now all of the databases described in the
previous section have a BioMart implementation.

biomaRt

With the development of the biomaRt pack-
age (Durink et al., 2005) we wanted to take advan-
tage of the fast query capabilities in BioMart sys-
tems and the growing number of major databases
present in this uniform system. This way a large
collection of biological data becomes available in R,
making it an ideal environment for biological data
mining. Queries to the BioMart databases are either
performed via web services or by using MySQL.

The biomaRt package depends on the R packages
RCurl and XML, and it is being used on Windows,
Linux and OSX. In the sections below we will high-
light the functions that are available in the biomaRt
package.

Selecting a BioMart database and dataset
A first step when using biomaRt, is to check which
BioMart web services are available. The function
listMartswill display all available BioMart web ser-
vices. Next we need to select a BioMart database to
use, which can be done with the useMart function.
In the example we will choose to use the Ensembl
BioMart web service.
> library(biomaRt)

> listMarts()

name

1 dicty

2 ensembl

3 snp

4 vega

5 uniprot

6 msd

7 wormbase

version

1 DICTYBASE (NORTHWESTERN)

2 ENSEMBL 41 (SANGER)

3 SNP 41 (SANGER)

4 VEGA 41 (SANGER)

5 UNIPROT PROTOTYPE 4-5 (EBI)

6 MSD PROTOTYPE 4 (EBI)

7 WORMBASE CURRENT (CSHL)

> ensmart = useMart("ensembl")

BioMart databases can contain several datasets. In
a next step we look at which datasets are avail-
able in the selected BioMart by using the function
listDatasets.
> datasets = listDatasets(ensmart)

> datasets[8:12,]

dataset

8 hsapiens_gene_ensembl

9 ggallus_gene_ensembl

10 tnigroviridis_gene_ensembl

11 mmulatta_gene_ensembl

12 olatipes_gene_ensembl

version

8 NCBI36

9 WASHUC1

R News ISSN 1609-3631

http://www.wormbase.org
http://www.gramene.org
http://www.gramene.org
http://www.biomart.org

Vol. 6/5, December 2006 42

10 TETRAODON7

11 MMUL_1

12 MEDAKA1

> ensmart <- useMart("ensembl",

+ dataset = "hsapiens_gene_ensembl")

Simple biomaRt functions

In this section we will discuss a set of simple biomaRt
functions which are tailored to Ensembl.

Gene annotation

The function getGene uses a vector of query iden-
tifiers to look up the symbol, description and chro-
mosomal information of the corresponding genes.
When using getGene with Affymetrix identifiers, we
have to specify the chip name by using the array ar-
gument. When using any other type of identifier the
type should be specified with the type argument (for
example: entrezgene, refseq, unigene,...). The mart
argument should be used to specify which Mart ob-
ject (which we generated above) to use.
> affyids = c("202763_at", "209310_s_at",

+ "207500_at")

> gene = getGene(id = affyids,

+ array = "affy_hg_u133_plus_2",

+ mart = ensmart)

> gene[, -3]

ID symbol chromosome

1 202763_at CASP3 4

2 207500_at CASP5 11

3 209310_s_at CASP4 11

band strand chromosome_start

1 q35.1 -1 185785845

2 q22.3 -1 104370180

3 q22.3 -1 104318810

chromosome_end ensembl_gene_id

1 185807623 ENSG00000164305

2 104384909 ENSG00000137757

3 104345373 ENSG00000196954

ensembl_transcript_id

1 ENST00000308394

2 ENST00000260315

3 ENST00000355546

> entrez = c("673", "7157", "837")

> gene2 = getGene(id = entrez,

+ type = "entrezgene", mart = ensmart)

> gene2[, -3]

ID symbol chromosome band

1 673 BRAF 7 q34

2 7157 TP53 17 p13.1

3 837 CASP4 11 q22.3

strand chromosome_start

1 -1 140080754

2 -1 7512464

3 -1 104318810

chromosome_end ensembl_gene_id

1 140271033 ENSG00000157764

2 7531642 ENSG00000141510

3 104345373 ENSG00000196954

ensembl_transcript_id

1 ENST00000288602

2 ENST00000269305

3 ENST00000355546

Note that Ensembl maps all annotation to the tran-
script level. As such a query might result in multiple
apparantly redundant results which can be distin-
guished by the ensembl_transcript_id. Similarly
as the getGene function, there are simple biomaRt
functions to retrieve GO and InterPro protein do-
main information from Ensembl.

Retrieving sequences

Sequences can be retrieved using the getSequence
function either starting from chromosomal coordi-
nates or identifiers. The chromosome name can be
specified using the chromosome argument. The start
and end arguments are used to specify start and
end positions on the chromosome. The seqType ar-
gument enables one to specify which sequence type
should be retrieved (cdna, 5utr, 3utr or protein).

In the example below, we retrieve the 5’UTR5 se-
quences of all genes on chromosome 3 between a
given start and end position

> utr5 = getSequence(chromosome=3,

start=185514033,

end=185535839,

seqType="5utr",

mart=ensmart)

> utr5

V1 V2 V3
1 ENSG00000114867 3 protein_coding
1 CCGGCTGCGCCTGCGGAGAAGCGGTGGCCGCCGAGCGGGATCTGTGCGGGGAGCCGG

AAATGGTTGTGGACTACGTCTGTGCGGCTGCGTGGGGCTCGGCCGCGCGGACT....

Selecting a set of identifiers with a certain location
or GO term association

The getFeature function enables us to select a set of
features based on chromosomal coordinates or GO
identifiers. We can for example select all Affymetrix
identifiers on the hgu133plus2 chip for genes located
on chromosome 16 between basepair 1100000 and
1250000. getFeature takes the array or type argu-
ments if one wants to retrieve Affymetrix identifiers
or other identifiers respectively.

> ids = getFeature(array = "affy_hg_u133_plus_2",

+ chromosome = "4", start = "600000",

+ end = "700000", mart = ensmart)

> ids

ensembl_transcript_id

1 ENST00000255622

2 ENST00000389796

3 ENST00000389795

4 ENST00000383023

5 ENST00000383023

5UnTranslated Region

R News ISSN 1609-3631

Vol. 6/5, December 2006 43

6 ENST00000304312

7 ENST00000304312

8 ENST00000360686

9 ENST00000304351

10 ENST00000347950

11 ENST00000322224

12 ENST00000362003

chromosome_name start_position

1 4 609373

2 4 609373

3 4 609373

4 4 656227

5 4 656227

6 4 656227

7 4 656227

8 4 657369

9 4 665618

10 4 665618

11 4 665618

12 4 689573

end_position affy_hg_u133_plus_2

1 653896 210304_at

2 653896 210304_at

3 653896 210304_at

4 658127 207335_x_at

5 658127 209492_x_at

6 658127 207335_x_at

7 658127 209492_x_at

8 665816 205145_s_at

9 673230 214269_at

10 673230 214269_at

11 673230 214269_at

12 754428

Human variation data

This section briefly shows how to retrieve SNP data.
After selecting the SNP BioMart database, the getSNP
function can be used to retrieve SNPs that are present
in a given genomic region.

> snpm = useMart("snp", dataset = "hsapiens_snp")

Checking attributes and filters ... ok

> snp = getSNP(chromosome = 5,

+ start = 327200, end = 327350,

+ mart = snpm)

> snp

tscid refsnp_id allele

1 TSC1701737 rs2864968 C/G

2 TSC1701738 rs2864969 G/A

3 TSC1790560 rs2902896 A/G

4 TSC1701739 rs2864970 G/A

5 TSC1790561 rs2902897 T/C

6 TSC1790562 rs2902898 A/G

7 TSC1701740 rs2864971 A/G

8 TSC1701741 rs2864972 T/C

chrom_start chrom_strand

1 327271 1

2 327274 1

3 327283 1

4 327292 1

5 327317 1

6 327326 1

7 327348 1

8 327349 1

Homology mapping

BioMart takes advantage of the many species present
in Ensembl to do homology mappings. By using
two datasets (i.e. two species), we can apply the
getHomolog function to map identifiers from one
species to the other. In the example below we start
from an Affymetrix identifier of a human chip and
we want to retrieve the identifiers of the correspond-
ing homolog on a mouse chip.

> hs = useMart("ensembl",

dataset = "hsapiens_gene_ensembl")

> mm = useMart("ensembl",

dataset = "mmusculus_gene_ensembl")

> hom = getHomolog(id = "1939_at",

to.array = "affy_mouse430_2",

from.array = "affy_hg_u95av2",

from.mart = hs,

to.mart = mm)

> hom

V1 V2 V3

1 ENSMUSG00000059552 ENSMUST00000005371 1427739_a_at

2 ENSMUSG00000059552 ENSMUST00000005371 1426538_a_at

Generic biomaRt functions

The previous functions were all tailored to Ensembl.
In this section we will see biomaRt functions that
can be used to retrieve every data field that is made
available by any BioMart. Three terms have to be in-
troduced first: filters, attributes and values. A filter
defines a restriction on the query. For example you
want to restrict the output to all genes located on the
X chromosome then the filter chromosome_name can
be used with value ’X’. Attributes define the values
we are interested in to retrieve. For example we want
to retrieve the gene symbols or chromosomal coordi-
nates.

The function listFilters can be used to retrieve
all available filters in a dataset.
> filters = listFilters(ensmart)

> filters[1:5,]

name

1 affy_hc_g110

2 affy_hg_focus

3 affy_hg_u133a

4 affy_hg_u133a_2

5 affy_hg_u133b

description

1 Affy hc g 110

2 Affy hg focus ID(s)

3 Affy hg u133a ID(s)

4 Affy hg u133a 2 ID(s)

5 Affy hg u133b ID(s)

The listAttributes function can be used to see
which attributes are available in the selected dataset.

R News ISSN 1609-3631

Vol. 6/5, December 2006 44

> attrib = listAttributes(ensmart)

> attrib[1:5,]

name description

1 adf_embl embl

2 adf_go go

3 adf_omim omim

4 adf_pdb pdb

5 adf_refseq refseq

Once the filters and attributes are known, one can
make a biomaRt query using the getBM function. An
easy query could be to retrieve the gene symbol,
chromosome name and band for a set of affy iden-
tifiers.
> getBM(attributes = c("affy_hg_u95av2",

+ "hgnc_symbol", "chromosome_name",

+ "band"), filters = "affy_hg_u95av2",

+ values = c("1939_at", "1503_at",

+ "1454_at"), mart = ensmart)

affy_hg_u95av2 hgnc_symbol

1 1454_at SMAD3

2 1939_at TP53

chromosome_name band

1 15 q22.33

2 17 p13.1

Below we describe some more complicated exam-
ples.

Retrieving information on homologs

Within one Ensembl dataset there are attributes pro-
viding homology mappings to the other Ensembl
species. In the next example, we start from the
hsapiens dataset and a list of Entrez Gene identi-
fiers. We can now query chromosomal positions of
the corresponding genes in human, zebrafish, mouse
and fly.
> getBM(attributes = c("hgnc_symbol",

+ "chromosome_name", "start_position",

+ "mouse_chromosome", "mouse_chrom_start",

+ "zebrafish_chromosome",

+ "zebrafish_chrom_start",

+ "drosophila_chromosome",

+ "drosophila_chrom_start"),

+ filter = "entrezgene", values = c("673",

+ "837"), mart = ensmart)

hgnc_symbol chromosome_name

1 BRAF 7

2 CASP4 11

start_position mouse_chromosome

1 140080754 6

2 104318810 9

mouse_chrom_start

1 39543731

2 5308874

zebrafish_chromosome

1 4

2 16

zebrafish_chrom_start

1 9473158

2 47717138

drosophila_chromosome

1 X

2

drosophila_chrom_start

1 2196282

2 NA

Using more than one filter

The getBM function enables you to use more than one
filter. In this case the filter argument should be a vec-
tor with the filter names. The values should be a list,
where the first element of the list corresponds to the
first filter and the second list element to the second
filter and so on. The elements of this list are vectors
containing the possible values for the corresponding
filters. In the example below we want to retrieve the
gene symbol, agilent probe identifier, chromosome
name and the Ensembl transcript identifier for all the
transcripts that are associated with one or more of
the specified GO terms and that are located on either
chromosome 1, 2, or the Y chromosome.

> go = c("GO:0051330", "GO:0000080",

+ "GO:0000114", "GO:0000082",

+ "GO:0000083", "GO:0045023",

+ "GO:0031568", "GO:0031657")

> chrom = c(1, 2, "Y")

> bm = getBM(attributes = c("hgnc_symbol",

+ "agilent_probe", "chromosome_name",

+ "ensembl_transcript_id"),

+ filters = c("go", "chromosome_name"),

+ values = list(go, chrom),

+ mart = ensmart)

> bm[1:2,]

hgnc_symbol agilent_probe

1 PPP1CB A_23_P425579

2 PPP1CB A_32_P102935

chromosome_name

1 2

2 2

ensembl_transcript_id

1 ENST00000379582

2 ENST00000379582

Discussion

The Bioconductor package biomaRt enables direct
access from Bioconductor to BioMart databases such
as Ensembl, creating a powerful integration of data
analysis and biological databases. As such biomaRt
enables one to use the latest annotations available
from these databases. A possible drawback is that
one needs to be online while performing the queries
and downtime of the BioMart server makes queries
impossible. A local BioMart database installation
would be a solution to prevent this. Currently
biomaRt will always use the most recent release of
the BioMart databases. However, Ensembl and other
BioMart databases archive previous releases. Fur-
ther development of the package and the BioMart
web service, should allow access to these archived

R News ISSN 1609-3631

Vol. 6/5, December 2006 45

database releases. The biomaRt package is designed
so that new BioMart databases can be automatically
included, once they provide public MySQL access or
have an active BioMart web service. The tight inte-
gration of large public databases with data analysis
in R makes biomaRt a powerful platform for biolog-
ical data integration and data mining.

Bibliography

J. Ashurst, C. Chen, J. Gilbert et al. The Vertebrate
Genome Annotation (VEGA) database. Nucleic
Acids Res, 33:D459–465, 2005.

E. Birney, D. Andrews, M. Caccamo et al. Ensembl
2006. Nucleic Acids Res, 34:D556–D561, 2006.

S. Durinck, Y. Moreau, A. Kasprzyk et al. Biomart and
Bioconductor: a powerful link between biological
databases and microarray data analysis. Bioinfor-
matics, 21:3439–3440, 2005.

The international hapmap consortium. A haplotype
map of the human genome. Nature, 437:1299–1320,
2005.

A. Kasprzyk, D. Keefe, D. Smedley et al. Ensmart: A
generic system for fast and flexible access to bio-
logical data. Genome Res, 14:160–169, 2004.

E. Schwarz, I. Antoshechkin, C. Bastiani et al. Worm-
base: better software, richer content. Nucleic Acids
Res, 34:D475–478, 2006.

S. Sherry, M. Ward, M. Kholodov et al. dbSNP: the
NCBI database of genetic variation. Nucleic Acids
Res, 29:308–311, 2001.

D. Ware, P. Jaiswal, J. Ni et al. Gramene, a resource
for comparative grass genomics. Nucleic Acids Res,
30(1):103–105, 2002.

C. Wu, R. Apweiler, A. Bairoch et al. The Univer-
sal Protein Resource (UniProt): an expanding uni-
verse of protein information. Nucleic Acids Res, 34:
D187–191, 2006.

Steffen Durinck
Oncogenomics Section
NIH/NCI
Gaithersburg MD, USA
durincks@mail.nih.gov

Identifying Interesting Genes with
siggenes
by Holger Schwender, Andreas Krause and Katja Ickstadt

A common and important task in microarray experi-
ments is the identification of genes whose expression
values differ substantially between groups or condi-
tions. Finding such differentially expressed genes re-
quires methods that can deal with multiple testing
problems in which thousands or even tens of thou-
sands of hypotheses are tested simultaneously.

Usually, a statistic appropriate for testing if the
expression levels are associated with a covariate of
interest and the corresponding p-value are computed
for each gene. Afterwards, these raw p-values are ad-
justed for multiplicity such that a Type I error rate is
strongly controlled at a pre-specified level of signif-
icance. The classical example of such an error rate
is the family-wise error rate (FWER), i.e. the proba-
bility of at least one false positive. This error rate,
however, might be too conservative for a situation in
which thousands of hypotheses are tested and seve-
ral tens of genes should be identified. In the analysis
of microarray data, another error rate has hence be-
come very popular: The False Discovery Rate (FDR)
which is loosely spoken the expected proportion of
false positives among all rejected null hypotheses, i.e.

identified genes.
There are, however, other ways to adjust for mul-

tiplicity: For example, QQ plots or the Bayesian
framework can be employed for this purpose. If the
observed test statistics are plotted against the values
of the test statistics that would be expected under
the null hypothesis most of the points will appro-
ximately lie on the diagonal. Those points that dif-
fer substantially from this line correspond to genes
that are most likely differentially expressed. The Sig-
nificance Analysis of Microarrays (SAM) proposed
by Tusher et al. (2001) can be used to specify what
“differ substantially" means. While Tusher et al.
(2001) base their analysis on a moderated t statistic,
Schwender et al. (2003) compare this approach with
a SAM version based on Wilcoxon rank sums.

Efron et al. (2001) use an empirical Bayes analy-
sis (EBAM) to model the distribution of the observed
test statistics as a mixture of two components, one
for the differentially expressed genes and the other
for the not differentially expressed genes. Follow-
ing their analysis, a gene is called differentially ex-
pressed if the corresponding posterior probability is
larger than 0.9.

Both SAM and EBAM are implemented in the

R News ISSN 1609-3631

mailto:durincks@mail.nih.gov

Vol. 6/5, December 2006 46

Bioconductor package siggenes. In this article, we,
however, will concentrate on SAM. In the following,
we briefly describe the SAM procedure, its imple-
mentation in siggenes (for more details, see Schwen-
der et al., 2003) and the test statistics already avai-
lable in this package. Afterwards, we show how you
can write your own function for other testing situa-
tions. Finally, we will give an example of how sam
can be applied to gene expression data.

Significance Analysis of Microar-
rays

In SAM, a statistic d appropriate for testing if there
is an association between the expression levels and
the covariate of interest is computed for each of the
m genes. These observed test scores are sorted and
plotted against the scores expected under the null
hypothesis, where the expected test scores d̄(i), i =
1, . . . , m, are computed as follows: If the null distri-
bution is known, then d̄(i) is the (i− 0.5)/m quantile
of this null distribution. Otherwise, d̄(i) is assessed
by

– generating B permutations of the group labels,

– computing the m test statistics and sorting
them for each of the B permutations,

– averaging over the B ith-smallest scores.

Two lines parallel to the diagonal in a distance of ∆

are then drawn into this plot called the SAM plot.
Any gene that has a d value

– larger than or equal to the d value of the gene,
say dup, that corresponds to the left-most point
on the right side of the origin that lies above the
upper ∆ line,

– smaller than or equal to the d value of the gene,
say dlow, that corresponds to the right-most
point on the left side of the origin that lies be-
low the lower ∆ line

is called differentially expressed. Afterwards, the
FDR is estimated by

– counting how many of the mB permuted test
scores are larger than or equal to dup or smaller
than and equal to dlow, and dividing this num-
ber by B,

– dividing this average by the number of identi-
fied genes,

– multiplying this ratio by the prior probability
that a gene is not differentially expressed (by
default, sam estimates this probability by the
procedure of Storey and Tibshirani, 2003).

This procedure is repeated for several values of ∆

and the value of ∆ is chosen that provides the best
balance between the number of identified genes and
the estimated FDR.

The following test statistics can be called in sam
by setting the argument ‘method’ to

d.stat: Moderated t and F statistics. The “usual” t
or F statistics are computed if the fudge factor
‘s0’ is set to zero. (The fudge factor is added
to the denominator of the statistics to prevent
genes with very low expression levels to be-
come differentially expressed. For details, see
Tusher et al., 2001).

wilc.stat: Wilcoxon rank sums for one and two
class analyses.

cat.stat: Pearson’s χ2-statistic for testing categori-
cal data such as SNP (Single Nucleotide Poly-
morphism) data (Schwender, 2005).

Writing Your Own Test Score Func-
tion

It is also possible to write your own function for an-
other testing situation and use this function in sam.
This function must have as input the two required
arguments

‘data’: A matrix or data frame containing the data.
Each row of this data set should correspond to
one of the m variables, i.e. genes, and each col-
umn to one of the n observations.

‘cl’: A vector consisting of the class labels of the ob-
servations.

The function can also have additional optional argu-
ments that can be called in sam.

The output of this function must be a list consi-
sting of the following objects

‘d’: A numeric vector containing the test scores of the
genes.

‘d.bar’: A numeric vector of length na.exclude(d)
consisting of the sorted test scores expected un-
der the null hypothesis.

‘p.value’: A numeric vector of the same length and
order as ‘d’ containing the p-values of the
genes.

‘vec.false’: A numeric vector of the same length
as ‘d’ consisting of the one-sided numbers
of falsely called genes (for more details, see
Schwender et al., 2003, and the help files of
sam).

‘s’: A numeric vector containing the standard errors
of the expression values.

R News ISSN 1609-3631

Vol. 6/5, December 2006 47

‘s0’: A numeric value specifying the fudge factor.

‘mat.samp’: A B× n matrix containing the permuted
class labels.

‘msg’: A character vector containing messages that
are displayed when the SAM specific S4 meth-
ods print and summary are called.

‘fold’: A numeric vector containing the fold
changes of the genes. Should be set to
numeric(0) if another analysis than a two-class
analysis is performed.

Assume, e.g., that we would like to perform a
SAM analysis with the “usual" t-statistic assuming
equal group variances and normality. The code of a
function t.stat for such an analysis is given by

t.stat <- function(data, cl){
require(genefilter) ||

stop("genefilter required.")
row.out <- rowttests(data, cl)
d <- row.out$statistic
m <- length(na.exclude(d))
d.bar <- qt(((1:m) - 0.5)/m, row.out$df)
p.value <- row.out$p.value
vec.false <- m * p.value/2
s <- row.out$dm/d
dm: differences in group means
msg <- paste("SAM Two-Class Analysis",

"Assuming Normality\n\n")
list(d=-d, d.bar=d.bar, p.value=p.value,

vec.false=vec.false, s=s, s0=0,
mat.samp=matrix(numeric(0)),
msg=msg, fold=numeric(0))

}

Please note that in the output of t.stat ‘d’ is set to
-d since in rowttests the mean of group 2 is sub-
tracted from the mean of group 1, whereas in sam the
difference is taken the other way around.

Now t.stat can be used in sam by setting
method=t.stat.

Example: ALL Data

As example we here employ one of the data sets used
in Gentleman et al. (2005). The package ALL contai-
ning this data set can be downloaded by

> source(
"http://www.bioconductor.org/getBioC.R")

> getBioC("ALL")

> library(ALL)
> data(ALL)

Even though it is in general not a good idea to fil-
ter genes / probe sets prior to a SAM analysis since

SAM assumes that most of the genes are not differen-
tially expressed, we here follow the code of Scholtens
and von Heydebreck (2005) and filter the genes and
select a subset of the samples.

> library(genefilter)
> subALL <- filterALL()

(The code of filterALL can be found in the Ap-
pendix.) This leads to an exprSet object containing
gene expression data of 2,391 probe sets and 79 sam-
ples.

Following Scholtens and von Heydebreck (2005)
we would like to identify the probe sets whose ex-
pression values differ strongly between the samples
for which

> mol.biol <- pData(subALL)$mol.biol

is equal to "BCR/ABL" and the samples for which
mol.biol=="NEG". Thus, sam is applied to this data
set by specifying the required arguments ‘data’ and
‘cl’, where

‘data’ can either be a matrix, a data frame or an
exprSet object containing the gene expression
data,

‘cl’ is a vector containing the class labels of the sam-
ples. If ‘data’ is an exprSet object, then ‘cl’ can
also be a character string naming the column of
pData(data) that contains the class labels.

So

> library(siggenes)
> clALL <- ifelse(mol.biol=="BCR/ABL", 0, 1)
> dataALL <- exprs(subALL)
> out1 <- sam(dataALL, clALL,
+ var.equal = TRUE, rand = 123456)

leads to the same results as

> out2 <- sam(subALL, "mol.biol",
+ var.equal = TRUE, rand = 123456)

where ‘var.equal’ is set to TRUE since we here would
like to assume that the group variances are equal,
and ‘rand’ is set to 123456 to make the results of this
analysis reproducible.

By default, the number of identified genes and
the estimated FDR is computed for ten values of ∆

equidistantly spaced between 0.1 and maxi |d(i) −
d̄(i)|. The output of our SAM analysis is thus given
by

> out1

SAM Analysis for the Two-Class Unpaired Case
Assuming Equal Variances

Delta p0 False Called FDR
1 0.1 0.63 1900.61 2075 0.57726

R News ISSN 1609-3631

Vol. 6/5, December 2006 48

2 0.7 0.63 125.07 400 0.19706
3 1.4 0.63 3.86 90 0.02703
4 2.0 0.63 0.1 25 0.00252
5 2.7 0.63 0 6 0
6 3.3 0.63 0 4 0
7 4.0 0.63 0 3 0
8 4.6 0.63 0 2 0
9 5.3 0.63 0 2 0
10 5.9 0.63 0 1 0

where p0 is the estimated prior probability that a
gene is not differentially expressed, False is the
number of falsely called genes (see Tusher et al.,
2001), Called is the number of identified genes, and
FDR = p0 * False / Called is the estimated FDR.

More information, e.g., the value of the fudge fac-
tor can be obtained using summary. Both summary and
print can also be used to generate the above table for
other values of ∆. For example,

> print(out1, seq(1.4, 2, 0.1))

SAM Analysis for the Two-Class Unpaired Case
Assuming Equal Variances

Delta p0 False Called FDR
1 1.4 0.63 3.86 90 0.02703
2 1.5 0.63 2.36 77 0.01932
3 1.6 0.63 1.45 64 0.01428
4 1.7 0.63 0.80 54 0.00934
5 1.8 0.63 0.41 45 0.00574
6 1.9 0.63 0.26 36 0.00455
7 2.0 0.63 0.10 25 0.00252

Let’s say our choice of ∆ is 1.5. The SAM plot for
this selection shown in Figure 1 is generated by

> plot(out1, 1.5, sig.col = c(3,2), pch = 16,
+ pos.stats = 2, cex = 0.6)

Figure 1: SAM Plot for ∆ = 1.5.

where

‘sig.col’ is a numeric value or vector specifying the
color of the identified down- and up-regulated
genes,

‘pos.stats’ indicates where the statistics are shown
in the SAM plot,

‘cex’ specifies the relative size of the plotting sym-
bols of the genes not identified as differentially
expressed.

While the relative size of the symbols can be specified
separately for the identified and the not identified
genes, the symbol itself (‘pch’) is the same for both
types of genes. For all arguments of the SAM specific
method plot, see

> help.sam(plot)

Information about the identified genes such as
their d values, the corresponding raw p-values and
the q-values (see Storey and Tibshirani, 2003) can be
obtained by

> summary(out1,1.5)

An excerpt from the output of summary is shown in
Figure 2. This information can also be stored in a csv
file via sam2excel or in an html file using sam2html.
If ‘data’ is an exprSet object or ‘chipname’ is spec-
ified in sam2html, then the html file will also con-
tain the gene symbols and links to public reposito-
ries such as Entrez, RefSeq and UniGene. If ‘cdfname’
is specified, links to the Affymetrix webpages of the
identified probe sets will also be available. For exam-
ple, the html file generated by

> sam2html(out1, 1.5, "out1.html", ll = TRUE,
+ cdfname = "HG-U95Av2")

is available at http://www.statistik.uni-dortmund.
de/de/content/einrichtungen/lehrstuehle/
personen/holgers/out1.html.

Finally, we would like to check if
method="t.stat" (see previous section) really
works.

> out3 <- sam(subALL, "mol.biol",
+ method = "t.stat")
> out3

SAM Two-Class Analysis Assuming Normality

Delta p0 False Called FDR
1 0.1 0.63 1832.197 2050 0.56307
2 0.7 0.63 94.609 347 0.17177
3 1.3 0.63 3.555 100 0.02240
4 1.9 0.63 0.044 19 0.00145
5 2.5 0.63 0.000567 6 5.95e-05
6 3.1 0.63 3.33e-05 4 5.24e-06
7 3.7 0.63 2.92e-07 3 6.14e-08
8 4.4 0.63 5.73e-10 2 1.80e-10
9 5.0 0.63 5.73e-10 2 1.80e-10
10 5.6 0.63 0 0 0

R News ISSN 1609-3631

http://www.statistik.uni-dortmund.de/de/content/einrichtungen/lehrstuehle/personen/holgers/out1.html
http://www.statistik.uni-dortmund.de/de/content/einrichtungen/lehrstuehle/personen/holgers/out1.html
http://www.statistik.uni-dortmund.de/de/content/einrichtungen/lehrstuehle/personen/holgers/out1.html

Vol. 6/5, December 2006 49

SAM Analysis for the Two-Class Unpaired Case Assuming Equal Variances

s0 = 0

Number of permutations: 100

MEAN number of falsely called genes is computed.

Delta: 1.5

cutlow: -3.332

cutup: 5.04

p0: 0.63

Significant Genes: 77

Falsely Called Genes: 2.36

FDR: 0.0193

Genes called significant (using Delta = 1.5):

Row d.value stdev rawp q.value R.fold Name

1 134 -9.26 0.1188 0 0 0.457 1636_g_at

2 1787 -8.69 0.1327 0 0 0.442 39730_at

3 133 -7.28 0.1652 0 0 0.420 1635_at

4 1890 -6.18 0.2878 0 0 0.429 40202_at

5 1193 -5.65 0.2388 0 0 0.460 37027_at

Figure 2: An excerpt from the output of summary(out1, 1.5).

Since in both analyses we have computed the t
statistic assuming equal group variances, the d va-
lues in both analyses should be the same:

> tmp <- sum(round(out1@d, 8) ==
+ round(out3@d, 8))
> tmp == length(out1@d)
[1] TRUE

Summary

The package siggenes contains functions for per-
forming both a Significance Analysis of Microarrays
(SAM) and an Empirical Bayes Analysis of Microar-
rays (EBAM). The function sam provides not only a
set of statistics for standard tests such as the t test
and F test but also the possibility to use user-written
functions for other testing situations. After identi-
fying a list of genes, not only statistics of these genes
such as their test scores and p-values can be obtained
but also links to public repositories containing bio-
logical information about these genes.

The EBAM functions are currently under revi-
sion to provide more user-friendly and less memory-
consuming versions of these functions having all the
features that the SAM functions already have.

This article will be available as vignette in
siggenes 1.7.1 and later.

Acknowledgements

The work of Katja Ickstadt and Holger Schwender
has been supported by the Deutsche Forschungsge-
meinschaft, Sonderforschungsbereich 475. The work
of Andreas Krause was largely carried out while he
was an employee of Novartis Pharma AG, Basel,
Switzerland.

Appendix

filterALL <- function(){
pdat <- pData(ALL)
subset<-intersect(grep("^B",

as.character(pdat$BT)),
which(pdat$mol %in% c("BCR/ABL",
"NEG")))

eset <- ALL[, subset]
require(genefilter)
f1 <- pOverA(0.25, log2(100))
f2 <- function(x) IQR(x) > 0.5
selected <- genefilter(eset,

filterfun(f1, f2))
esetSub <- eset[selected,]
pdat <- pData(esetSub)
esetSub$mol.biol <-

as.character(esetSub$mol.biol)
esetSub

}

R News ISSN 1609-3631

Vol. 6/5, December 2006 50

Bibliography

B. Efron, R. Tibshirani, J. Storey and V. Tusher. Em-
pirical Bayes Analysis of a Microarray Experiment.
Journal of the American Statistical Association, 96,
1151–1160, 2001.

R. Gentleman, V. J. Carey, W. Huber, R. A. Irizarry
and S. Dudoit, editors. Bioinformatics and Compu-
tational Biology Solutions Using R and Bioconductor.
Springer, New York, 2005.

D. Scholtens and A. von Heydebreck. Analysis of
Differential Gene Expression Studies. In: R. Gen-
tleman, V. J. Carey, W. Huber, R. A. Irizarry, S. Du-
doit, editors. Bioinformatics and Computational Biol-
ogy Solutions Using R and Bioconductor. Springer,
New York, 229–248, 2005.

H. Schwender. Modifying Microarray Analysis
Methods for Categorical Data – SAM and PAM for
SNPs. In: C. Weihs, W. Gaul, editors. Classification
– The Ubiquitous Challenge. Springer, Heidelberg,
370–377, 2005.

H. Schwender, A. Krause and K. Ickstadt. Com-
parison of the Empirical Bayes and the Signif-

icance Analysis of Microarrays. Technical Re-
port, SFB 475, University of Dortmund, Germany,
2003. URL http://www.sfb475.uni-dortmund.
de/berichte/tr44-03.pdf.

J. D. Storey and R. Tibshirani. Statistical Significance
for Genomewide Studies. Proceedings of the Na-
tional Academy of Sciences, 100, 9440–9445, 2003.

V. Tusher, R. Tibshirani and G. Chu. Significance
Analysis of Microarrays Applied to the Ionizing
Radiation Response. Proceedings of the National
Academy of Science, 98, 5116–5121, 2001.

Holger Schwender, Katja Ickstadt
Department of Statistics, SFB 475
University of Dortmund, Germany
holger.schwender@udo.edu,
ickstadt@statistik.uni-dortmund.de

Andreas Krause
Pharsight Corporation
Mountain View, CA, USA
akrause@pharsight.com

Reverse Engineering Genetic Networks
using the GeneNet Package
by Juliane Schäfer, Rainer Opgen-Rhein, and Korbinian
Strimmer

GeneNet is a package for analyzing high-
dimensional (time series) data obtained from high-
throughput functional genomics assays, such as ex-
pression microarrays or metabolic profiling. Specif-
ically, GeneNet allows to infer large-scale gene as-
sociation networks. These are graphical Gaussian
models (GGMs) that represent multivariate depen-
dencies in biomolecular networks by means of par-
tial correlation. Therefore, the output of an analysis
conducted by GeneNet is a graph where each gene
corresponds to a node and the edges included in the
graph portray direct dependencies between them.

GeneNet implements a specific learning algo-
rithm that allows to estimate GGMs from small sam-
ple high-dimensional data that is both computation-
ally as well as statistically efficient. This approach
relies on analytic shrinkage estimation of covariance
and (partial) correlation matrices and on model se-
lection using (local) false discovery rate multiple test-
ing. Hence, GeneNet includes a computational algo-
rithm that decides which edges are to be included in
the final network, in dependence of the relative val-
ues of the pairwise partial correlations.

In a recent comparative survey (Werhli et al.,
2006) the GeneNet procedure was found to recover
the topology of gene regulatory networks with sim-
ilar accuracy as computationally much more de-
manding methods such as dynamical Bayesian net-
works (Friedman, 2004).

We note that the approach implemented in
GeneNet should be regarded as an exploratory ap-
proach that may help to identify interesting genes
(such as “hubs”) or clusters of genes that are func-
tionally related or co-regulated, rather than that it
yields the precise network of mechanistic interac-
tions. Therefore, the resulting network topologies
need be interpreted and validated in the light of bi-
ological background information, ideally accompa-
nied by further integrative analysis employing data
from different levels of the cellular system.

Prerequisites

GeneNet is available from the CRAN repository
and from the webpage http://strimmerlab.org/
software/genenet/. It requires prior installation of
four further R packages also found on CRAN: corp-
cor, longitudinal, fdrtool, and locfdr (Efron, 2004).

R News ISSN 1609-3631

http://www.sfb475.uni-dortmund.de/berichte/tr44-03.pdf
http://www.sfb475.uni-dortmund.de/berichte/tr44-03.pdf
mailto:holger.schwender@udo.edu
mailto:ickstadt@statistik.uni-dortmund.de
mailto:akrause@pharsight.com
http://strimmerlab.org/software/genenet/
http://strimmerlab.org/software/genenet/

Vol. 6/5, December 2006 51

For installation of the required packages simply
enter at the R prompt:

> install.packages(c("corpcor",
"longitudinal", "fdrtool",
"locfdr", "GeneNet"))

Preparation of Input Data

The input data must be arranged in a matrix where
columns correspond to genes and where rows cor-
respond to the individual measurements. Note that
the data must already be properly preprocessed, i.e.
in the case of expression data calibrated and normal-
ized.

In the following we describe an example for infer-
ring the gene association network among 102 genes
from a microarray data set on the microorganism
Escherichia coli with observations at 9 time points
(Schmidt-Heck et al., 2004). These example data are
part of GeneNet:

> library("GeneNet")
> data(ecoli)
> dim(ecoli)
[1] 9 102

Shrinkage Estimators of Covari-
ance and (Partial) Correlation

The first step in the inference of a graphical Gaussian
model is the reliable estimation of the partial correla-
tion matrix:

> inferred.pcor <- ggm.estimate.pcor(ecoli)
> dim(inferred.pcor)
[1] 102 102

For this purpose, the function ggm.estimate.pcor
offers an interface to a shrinkage estimator of par-
tial correlation implemented in the corpcor pack-
age that is statistically efficient and can be used for
analyzing small sample data. By default, the op-
tion method="static" is selected, which employs the
function pcor.shrink. Standard graphical modeling
theory (e.g. Whittaker, 1990) shows that the matrix of
partial correlations P̃ = (ρ̃i j) is related to the inverse
of the covariance matrix Σ. This relationship leads to
the straightforward estimator

r̃i j = −ω̂i j/
√

ω̂iiω̂ j j, (1)

where
Ω̂ = (ω̂i j) = Σ̂−1. (2)

In Equation 2, it is absolutely crucial that the co-
variance is estimated accurately, and that Σ̂ is well
conditioned – otherwise the above formulae will re-
sult in a rather poor estimate of partial correlation

(cf. Schäfer and Strimmer, 2005a). For this purpose,
the pcor.shrink function uses an analytic shrink-
age estimator of the correlation matrix developed in
Schäfer and Strimmer (2005b). This linearly com-
bines the unrestricted sample correlation with a suit-
able correlation target in a weighted average. Se-
lecting this target requires some diligence: specifi-
cally, we choose to shrink the empirical correlations
R = (ri j) towards the identity matrix, while empir-
ical variances are left intact. In this case the analyti-
cally determined shrinkage intensity is

λ? =
∑i 6= j var(ri j)

∑i 6= j r2
i j

. (3)

The resulting shrinkage estimate exhibits a number
of favorable properties. For instance, it is much more
efficient, always positive definite, and well condi-
tioned. It is inexpensive to compute and does not re-
quire any tuning parameters, as the analytically de-
rived optimal shrinkage intensity is estimated from
the data. Moreover, there are no assumptions about
the underlying distributions of the individual esti-
mates, except for the existence of the first two mo-
ments. These properties carry over to derived quan-
tities, such as partial correlations. Furthermore, the
resulting estimates are in a form that allows for fast
computation of their inverse using the Woodbury
matrix identity.

Note that the function ggm.estimate.pcor also
allows the specification of a protect argument, with
default value protect=0. This imposes limited trans-
lation (Efron and Morris, 1972) onto the specified
fraction of entries of the estimated shrinkage corre-
lation matrix, thereby protecting those components
against overshrinkage (see also Opgen-Rhein and
Strimmer, 2006c).

Taking Time Series Aspects Into
Account

Standard Gaussian graphical models assume i.i.d.
data whereas in practice many expression data sets
result from time course experiments. One possibility
to generalize the above procedure correspondingly
is to employ dynamic (partial) correlation (Opgen-
Rhein and Strimmer, 2006a). This is available in the
function ggm.estimate.pcor by specifying the op-
tion method="dynamic", which in turn relies on the
longitudinal package for computation.

The key difference between dynamical and i.i.d.
correlation is that the former takes into account the
time that has elapsed between two subsequent mea-
surements. In particular, dynamical correlation al-
lows for unequally spaced time points as often en-
countered in genomic studies. All small sample
learning procedures (shrinkage) developed for i.i.d.

R News ISSN 1609-3631

Vol. 6/5, December 2006 52

correlation also carry over to dynamical correlation
(Opgen-Rhein and Strimmer, 2006b).

Network Search and Model Selec-
tion

The second crucial part of gene association network
inference is model selection, i.e. assigning statistical
significance to the edges in the GGM network:

> test.results <-
ggm.test.edges(inferred.pcor)

> dim(test.results)
[1] 5151 6

For this purpose a mixture model,

f (r̃) = η0 f0(r̃;κ) + (1− η0) fA(r̃) , (4)

is fitted to the observed partial correlation coeffi-
cients r̃ using the subroutine cor.fit.mixture. f0
is the distribution under the null hypothesis of van-
ishing partial correlation, η0 is the (unknown) pro-
portion of “null edges”, and fA the distribution of
observed partial correlations assigned to actually ex-
isting edges. The latter is assumed to be an arbitrary
nonparametric distribution that vanishes for values
near zero. This allows for κ, η0, and even fA to be
determined from the data – see Efron (2004) for an
algorithm.

Subsequently, two-sided p-values corresponding
to the null hypothesis of zero partial correlation are
computed for each potential edge using the function
cor0.test. Large-scale simultaneous testing is then
conducted by obtaining q-values via the function
fdr.controlwith the specified value of η0 taken into
account. fdr.control uses the algorithms described
in Benjamini and Hochberg (1995) and Storey (2002).
An alternative to the q-value approach is to use the
empirical Bayes local false discovery rate (fdr) statis-
tic (Efron, 2004). This fits naturally with the above
mixture model setup, and in addition takes account
of the dependencies among the estimated partial cor-
relation coefficients. The posterior probability that a
specific edge exists given r̃ equals

IP(non-null edge|r̃) = 1− fdr(r̃) = 1− η0 f0(r̃;κ)
f (r̃)

.

(5)
Following Efron (2005), we typically consider an

edge to be “significant” if its local fdr is smaller than
0.2, or equivalently, if the probability of an edge to be
“present” is larger that 0.8:

> signif <- test.results$prob > 0.80
> sum(signif)
[1] 66
> test.results[signif,]

Network Visualization

The network plotting functions in GeneNet rely ex-
tensively on the infrastructure offered by the graph
and Rgraphviz packages (cf. contribution of Seth
Falcon in this R News issue).

First, a graph object must be generated containing
all significant edges:

> node.labels <- colnames(ecoli)
> gr <- ggm.make.graph(

test.results[signif,],
node.labels)

> gr
A graphNEL graph with undirected edges
Number of Nodes = 102
Number of Edges = 66

Subsequently, the resulting object can be inspected
by running the command

> show.edge.weights(gr)

Finally, the gene network topology of the graphical
Gaussian model can be visualized using the function
ggm.plot.graph:

> ggm.plot.graph(gr,
show.edge.labels=FALSE,
layoutType="fdp")

The plot resulting from the analysis of the ecoli data
is shown in Figure 1. For show.edge.labels=TRUE
the partial correlation coefficients will be printed as
edge labels. Note that on some platforms (e.g. Win-
dows) the default layoutType="fdp" may not yet be
available. In this case an alternative variant such as
"layoutType=neato" needs to be specified.

Ecoli Gene Association Network

aceB

asnA

atpD

atpG

b1191

b1583

b1963

cchB

cspA

cspG

dnaG

dnaJ

dnaK

eutG fixC

folK

ftsJ

gltA

hupB

ibpB

icdA

lacA

lacY

lacZ

mopB

nmpC

pspA

pspB

sodA

sucA

sucD

tnaA

yaeM

yceP

ycgX

yecO

yedE

yfaD

yfiA

ygcE

yhdM

yheI

yhfV

yjbO

Figure 1: Sparse graphical Gaussian model for 102
genes inferred from an E. coli microarray data set
with 9 data points. Full and dotted lines indicate pos-
itive and negative partial correlation, respectively.

R News ISSN 1609-3631

Vol. 6/5, December 2006 53

Release History of GeneNet and
Example Scripts

The package GeneNet emerged from a reorganiza-
tion of the (now obsolete) package GeneTS. This
was split into the GeneNet part dealing with gene
network reconstruction, and the package GeneCycle
for cell cycle and periodicity analysis (Wichert et al.,
2004; Ahdesmäki et al., 2005).

On the home page of GeneNet we collect exam-
ple scripts in order to guide users of GeneNet when
conducting their own analyses. Currently, this in-
cludes the above E. coli data but for instance also a
network analysis of A. thaliana diurnal cycle genes.
We welcome further contributions from the biologi-
cal community.

Bibliography

M. Ahdesmäki, H. Lähdesmäki, R. Pearson, H. Hut-
tunen, and O. Yli-Harja. Robust detection of peri-
odic time series measured from biological systems.
BMC Bioinformatics, 6:117, 2005.

Y. Benjamini and Y. Hochberg. Controlling the false
discovery rate: a practical and powerful approach
to multiple testing. J. R. Statist. Soc. B, 57:289–300,
1995.

B. Efron. Large-scale simultaneous hypothesis test-
ing: the choice of a null hypothesis. J. Am. Statist.
Assoc., 99:96–104, 2004.

B. Efron. Local false discovery rates. Preprint, Dept.
of Statistics, Stanford University, 2005.

B. Efron and C. N. Morris. Limiting the risk of Bayes
and empirical Bayes estimators – part II: The em-
pirical Bayes case. J. Am. Statist. Assoc., 67:130–139,
1972.

N. Friedman. Inferring cellular networks using prob-
abilistic graphical models. Science, 303:799–805,
2004.

R. Opgen-Rhein and K. Strimmer. Inferring gene
dependency networks from genomic longitudinal
data: a functional data approach. REVSTAT, 4:53–
65, 2006a.

R. Opgen-Rhein and K. Strimmer. Using regularized
dynamic correlation to infer gene dependency net-
works from time-series microarray data. In Pro-
ceedings of the 4th International Workshop on Com-
putational Systems Biology (WCSB 2006), 12-13 June
2006, Tampere, volume 4, pages 73–76, 2006b.

R. Opgen-Rhein and K. Strimmer. Accurate ranking
of differentially expressed genes by a distribution-
free shrinkage approach. In review.

J. Schäfer and K. Strimmer. An empirical Bayes
approach to inferring large-scale gene association
networks. Bioinformatics, 21:754–764, 2005a.

J. Schäfer and K. Strimmer. A shrinkage approach to
large-scale covariance matrix estimation and im-
plications for functional genomics. Statist. Appl.
Genet. Mol. Biol., 4(1):Article 32, 2005b.

W. Schmidt-Heck, R. Guthke, S. Toepfer, H. Reis-
cher, K. Duerrschmid, and K. Bayer. Reverse en-
gineering of the stress response during expression
of a recombinant protein. In Proceedings of the EU-
NITE symposium, 10-12 June 2004, Aachen, Germany,
pages 407–412, 2004. Verlag Mainz.

J. D. Storey. A direct approach to false discovery
rates. J. R. Statist. Soc. B, 64:479–498, 2002.

A. Werhli, M. Grzegorczyk, and D. Husmeier. Com-
parative evaluation of reverse engineering gene
regulatory networks with relevance networks,
graphical Gaussian models and Bayesian net-
works. Bioinformatics, 22:2523–2531, 2006.

J. Whittaker. Graphical Models in Applied Multivariate
Statistics. Wiley, New York, 1990.

S. Wichert, K. Fokianos, and K. Strimmer. Identify-
ing periodically expressed transcripts in microar-
ray time series data. Bioinformatics, 20:5–20, 2004.

Juliane Schäfer, ETH Zurich, Switzerland
Rainer Opgen-Rhein, University of Munich, Germany
Korbinian Strimmer, University of Munich, Germany
juliane.schaefer@stat.math.ethz.ch
opgen-rhein@stat.uni-muenchen.de
korbinian.strimmer@lmu.de

R News ISSN 1609-3631

mailto:juliane.schaefer@stat.math.ethz.ch
mailto:opgen-rhein@stat.uni-muenchen.de
mailto:korbinian.strimmer@lmu.de

Vol. 6/5, December 2006 54

A Multivariate Approach to Integrating
Datasets using made4 and ade4
by Aedín C. Culhane and Jean Thioulouse

The public microarray repositories, ArrayExpress
and the GeneExpression Omnibus (GEO), now con-
tain over 100,000 microarray gene expression profiles
(Table 1). This is a considerable data resource.

However the average number of arrays per
study is only between 30 and 40 (Table 1). Given
that the number of features (genes) on microar-
rays now exceeds 50,000, this presents a consid-
erable dimensionality problem. Low case to fea-
ture ratio is likely to remain an issue, as cost and
availability of biomaterial, such as biopsy tissue,
are often limiting. As a result, meta-analysis or
merging data from multiple studies is attractive.

Table 1. Public Microarray Databasesa

Database Arrays Studies
ArrayExpressb 44,602 1,487
GEOc 87,073 2,353

aStatistics: ArrayExpress (June 2006), GEO (5 July 2006)
bhttp://www.ebi.ac.uk/arrayexpress/
chttp://www.ncbi.nlm.nih.gov/geo/

Unfortunately, matching of variables (gene
probes) from different microarray technologies is
challenging. Numerous microarray platforms have
been developed and a number of studies have re-
ported disappointingly low correlations between
different technologies. Matching of probes by their
DNA sequence reduces cross-platform inconsis-
tency (Carter et al., 2005), and functions to per-
form sequence matching are available in the Bio-
conductor package matchprobes. EnsEMBL align-
ments of DNA probe sequences to the human and
other genomes can be retrieved using the pack-
age biomaRt. However even the performance of
matched probes may vary across platforms. These
differences may be due to real biological effects
where probes on different platforms detect different
splice variants or homologues of a gene.

A different approach is simply to examine genes
or cases with covariant trends across matched
datasets. We have described the application of co-
inertia analysis (CIA) for visualization and analysis
of such trends across microarray datasets (Culhane
et al., 2003). Functions to perform these analyses are
provided in the Bioconductor package made4 (Cul-
hane et al., 2005). made4 is an extension to ade4
(Thioulouse et al., 1997; Chessel et al., 2004), an ex-
tensive R package for multivariate analysis of eco-
logical data.

Our multivariate approach for cross-platform
analysis of microarray data may be easily applied to

heterogeneous datasets. Increasingly, microarray ex-
periments are performed in parallel with proteomics,
metabolomics or other high throughput array tech-
nologies. Typically the identity of peaks or spots
in proteomics or metabolomics data is unknown.
Therefore mapping probes, spots or peaks across
datasets is not possible. In analysis of these data, we
are simply exploring features (peaks or spots) that
have similar trends across datasets and are correlated
with a covariate of interest. CIA is suitable for such
an analysis.

We will describe the application of CIA to cross-
platform visualization of microarray data and other
functions in made4 and ade4 for multivariate analy-
sis of biological datasets.

Co-inertia analysis

CIA is a multivariate analysis method that describes
the relationship between two data tables (Dray et al.,
2003). It can be used on quantitative, qualitative or
distance matrices. Classical methods, like principal
component (PCA) or correspondence analysis (CA),
aim at summarizing a table by searching orthogonal
axes on which the projection of the sampling points
(cases) have the highest possible variance. This char-
acteristic ensures that the associated graphs (factor
maps) best represent the initial data (see Figure 1).

To extract information common to two tables,
canonical analysis (CANCOR, Gittins, 1985) searches
successive pairs of axes (one for each table) with a
maximum correlation. The problem is that this anal-
ysis may lead to axes with high correlation, but low
percentages of explained variance. This means that it
will be difficult to give a biological interpretation to
these axes. To overcome this difficulty, CIA searches
for pairs of axes with maximum covariance (instead
of correlation). This ensures that CIA axes will have
both a high correlation and also good percentages
of explained variance for each table. Computations
are based on the cross table between the variables of
the two tables. The importance of each axis is given
by the percentage of total co-inertia, which is similar
to the percentage of explained variance for canonical
axes.

CIA has been successfully applied to visual-
ization of cross-platform relationships between mi-
croarray datasets (Culhane et al., 2003). CIA is an at-
tractive approach as it can be applied to data where
the number of variables (genes) far exceeds the num-
ber of cases, as seen in microarray data. Given data
with such low sample size, CANCOR cannot be used

R News ISSN 1609-3631

http://www.ebi.ac.uk/arrayexpress/
http://www.ncbi.nlm.nih.gov/geo/

Vol. 6/5, December 2006 55

and canonical correspondence analysis (Ter Braak,
1986) is reduced to a plain CA (Dray et al., 2003).

Monte-Carlo tests can be used to check the sig-
nificance of the relationship between the two tables.
The method consists of performing many random
permutation of the cases (arrays), followed by the re-
computation of the total co-inertia. By comparing the
total co-inertia obtained in the normal analysis with
the co-inertias obtained after randomization, one can
estimate the probability of the observed relationship
between the tables.

PCA or CA of microarray data

PCA and CA are well suited to exploratory analysis
of microarray data, and complement popular cluster-
ing approaches. While clustering investigates pair-
wise distances among objects highlighting fine rela-
tionships, PCA and CA examine the variance of the
whole dataset highlighting general trends and gra-
dients (reviewed by Brazma and Culhane, 2005). To
perform a PCA or CA on a microarray dataset using
made4, use the function ord.

To illustrate we apply CA to a microarray gene
expression profiling study of 4 childhood tumors
(NB, BL-NHL, EWS, RMS; Khan et al., 2001). A sub-
set of these expression data (khan$train, 306 genes
x 64 cases), a factor describing the class of each case
(khan$train.classes, length=64) and a data frame
of gene annotation are available in dataset khan in
made4.

library(made4)
data(khan)
dataset = khan$train
fac = khan$train.classes
geneSym = khan$annotation$Symbol

results.coa <- ord(dataset, type="coa")
par(mfrow= c(1,2))
plotarrays(results.coa, classvec=fac)
plotgenes(results.coa, genelabels= geneSym)

 d = 0.5

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

● ●
●

●●

●

●
●

●

●

●

●●

●
●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

 EWS

 BL−NHL

 NB

 RMS

Arrays

 d = 0.5

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

 LYN

 TNNT2 IGF2

 AIF1

 −
 MYL4 IGF2

 HCLS1
 ELF1 HLA−DMA

 TNNT1

 CDKN3
 ISG20 BUB1 MME

 COL3A1

 PRKAR2B
 −

 FNDC5

 MYC

 METAP2
 GSTM5

 TNA CAV1
 TLE2

 TUBB5

 TNFAIP6

 MYC

 PTPN13

 LOXL2

 FCGRT
 OLFM1

 GYG2

 NFIX FVT1

Genes

Figure 1: CA of a 306 gene subset of Khan dataset
(Khan et al., 2001). A) Plot of arrays B) Plot of genes.
The further a gene and case are projected in the same
direction from the origin, the stronger association be-
tween that gene and case (gene is upregulated in that
array sample).

Cross-platform analysis using CIA

To perform CIA, objects in the dataset must be
"matchable". For example, where multiple studies
are performed on the same samples, CIA can detect
co-varying patterns across datasets. If the cases are
matched, there is no constraint to match the variables
(genes) and the number of variables in each dataset
may differ.

In Example 2, we examine a panel of 60 cell lines
from the National Cancer Institute (NCI60) that have
been subjected to gene expression profiling using
Affymetrix (Staunton et al., 2001) and spotted cDNA
(Ross et al., 2000) arrays. We apply cia to subsets of
these 2 datasets which are available in made4.

data(NCI60)
names(NCI60)
[1] "Ross" "Affy" "classes" "Annot"

fac = NCI60$classes[,2]
results.cia = cia(NCI60$Affy, NCI60$Ross)
par(mfrow=c(1,2))
plotarrays(results.cia, clabel=0)
plotarrays(results.cia, clabel=0,

classvec=fac)

In Figure 2, matched cases are joined by a line. If
two cases (arrays) have similar profiles, they will be
projected close together. Therefore, the shorter the
length of connecting line the greater the correlation.
In Figure 2B, one green case is represented by a long
line, indicating a large cross-platform difference be-
tween the two expression profiles for this cell line.
This may suggest a quality issue in one dataset.

 d = 1

●

●

●

●●

●

●

●

●●
●

●● ●

●
●

● ●

● ●

●

●
● ●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

60 cases, NCI60 cell lines

 d = 1

●

●

●

●●

●

●

●

●●
●

●● ●

●
●

● ●

● ●

●

●
● ●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

60 cases, NCI60 cell lines

Figure 2: CIA of NCI60 datasets Affy (closed circles)
and Ross (arrows). B). Same as A) but cases are col-
ored by class (cancer cell line phenotype). Further
details and interpretation in Culhane (2003).

CIA using "matched" genes

Equally CIA could be performed on variables
(genes). Visualization of matched genes across plat-
forms is often useful when there is a one:many match

R News ISSN 1609-3631

Vol. 6/5, December 2006 56

of gene probes. On older arrays, a gene was gen-
erally only represented by one probe, but on recent
microarrays a gene maybe represented by 5 or more
probes (or probesets). In Example 3, we examine
microarray studies of acute lymphoblastic leukemia
(ALL) using older hu6800 (Golub et al., 1999) or more
recent u95av2 (Chiaretti et al., 2004) Affymetrix ar-
rays. These datasets are available in Bioconductor
packages golubEsets and ALL.

library(affy)
library(ALL)
data(ALL)
ALL.fac <- substring(ALL$BT,1,1)
library(golubEsets)
data(Golub_Train)
golub <- Golub_Train[,1:27] #ALL data
golub.data <- exprs(golub)
#footnote 1
golub.data[] <- as.double(golub.data)
golub.fac <-golub$T.B.cell

We performed a t-test on the Golub data, using
rowttests in the genefilter package, to select genes
which were significantly (P<0.001) associated with T-
cell or B-cell ALL.

library(genefilter)
ttests <- rowttests(golub.data,golub.fac)
nsignf <- sum(ttests$p.val < 0.001)
topGeneInd <- order(ttests$p.val)[1:nsignf]
ttests.signf <-

rownames(golub.data)[topGeneInd]

There were 109 significant gene probes on the
hu6800 arrays, which were matched to genes on the
u95av2 using biomaRt.

library(biomaRt)
mart <- useMart("ensembl", mysql=TRUE)
mart <- useDataset("hsapiens_gene_ensembl",

mart)
pRef <- getBM(attributes="affy_hg_u95av2",

values=ttests.signf,
filters="affy_hugenefl",
mart=mart)

anyNA <- function(x) any(is.na(x))
pRef <- pRef[!apply(pRef, 1, anyNA),]
dupSet <- function(x, a)

subset(x, a %in% a[duplicated(a)])
pMany <- dupSet(pRef, pRef$affy_hugenefl)

Of the 109 hu6800 probesets, 96 mapped to 133
u95av2 probesets. Therefore 29 hu6800 probesets
mapped to more than 1 u95av2 probesets. These
29:66 "one to many" matches were examined using
cia.

hu6800set <-
exprs(golub[pMany$affy_hugenefl,])

u95av2set <-
exprs(ALL[pMany$affy_hg_u95av2,])

cia.out <- cia(t(hu6800set), t(u95av2set))
coordVar1 <- cia.out$coinertia$co
coordVar2 <- cia.out$coinertia$li
par(mfrow=c(2, 2))
plotarrays(cia.out, sub="Genes")
plotarrays(cia.out, clabel=0,

classvec=pMany$affy_hugenefl)
plotarrays(coordVar1, classvec=golub.fac)
plotarrays(coordVar2, classvec=ALL.fac)

In Figure 3 we observe that the probesets selected
using the older hu6800 platform, do appear to dis-
criminate B and T cells expression profiles on u95av2
arrays. However it appears that only a few gene
probes contribute a significant amount of variance
across both datasets.

 d = 2

 Genes

●●●

●●

●●

●●●●●

●●

●●●●●●●●●●●
●●

●●

●●

●●

●●
●●●
●●

●●
●●

●●
●● ●●●

●●

●●●●
●●
●●●

●● ●●

 U23852_s_at U23852_s_at.1 U23852_s_at.2

 X00437_s_at X00437_s_at.1

 U14603_at
 U14603_at.1

 X60992_at
 X60992_at.1 M26692_s_at M26692_s_at.1 M26692_s_at.2 M13560_s_at

 M13560_s_at.1
 U18009_at U18009_at.1

 U18009_at.2
 X95677_at

 X95677_at.1
 X95677_at.2 X95677_at.3

 X73358_s_at

 X73358_s_at.1

 D11327_s_at D11327_s_at.1 L40386_s_at L40386_s_at.1

 X58529_at X58529_at.1

 X67098_at X67098_at.1
 M13792_at

 M13792_at.1
 D85131_s_at

 D85131_s_at.1

 U09578_at

 U09578_at.1
 U09578_at.2 U18422_at U18422_at.1 S81003_at S81003_at.1

 L10717_at L10717_at.1

 J03473_at J03473_at.1

 U82275_at

 U82275_at.1
 U79253_at U79253_at.1 U79253_at.2

 L01087_at
 L01087_at.1 X05309_at

 X05309_at.1
 D13720_s_at D13720_s_at.1

 Z30643_at Z30643_at.1

 M14676_at M14676_at.1 M14676_at.2

 L78833_cds2_at
 L78833_cds2_at.1

 U04241_at

 U04241_at.1

Genes, labels hu6800

 d = 2

●●●

●●

●●

●●●●●

●●

●●●●●●●●●●●
●●

●●

●●

●●

●●
●●●
●●

●●
●●

●●
●● ●●●

●●

●●●●
●●
●●●

●● ●●

Genes, no labels

 d = 0.02

●
●

●
●●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

 B−cell T−cell

Golub hu6800 arrays

 d = 0.05

●

●

●

●●
●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●
●● ●

●

●
● ●

●

●●

●
●●

●

●

● ●

●

●●
●

●
●

●

●

●

● ●

●●
● ●

●

●

● ●
●●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●●●

●

●●●

●

●
●

●
●

● ●
● ●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●

● B−cell T−cell

ALL u95av2 arrays

Figure 3: CIA of a set of genes in golub and ALL
datasets. Projection of probesets A) with and B) with-
out hu6800 probe labels, and arrays C),D).

One nice feature of this analysis is that one:many
probeset matches are clearly visualised. For exam-
ple, M13560_s_at, X58529_at, X00437_s_at have 2
matches on the hgu95av2 platform. We can see that
only one M13560_s_at u95av2 probeset matches has
a high loading on the B-cell end of axis 1 (horizontal),
indicating that the expression of only one of these
probesets agrees with the older hu6800 array.

1This processing is only required with golubEset and is not nor-
mal processing of ExpressionSet datasets

R News ISSN 1609-3631

Vol. 6/5, December 2006 57

Combining microarray data with
gene sequence information

We have also used CIA to integrate microarray data
with counts of motif occurrences in gene promoters,
to discover which promoter motifs are most associ-
ated with the main patterns of gene expression in a
dataset (Jeffery et al., 2006). We have also extended
this approach using between group analysis (Cul-
hane et al., 2002), a supervised method where group-
ings of arrays or tissues of a-priori interest are con-
trasted with the rest. Using between group CIA, we
identify gene motifs (or other gene features) that are
most associated with a gene expression classifier (Jef-
fery et al., 2006).

Using ade4 codon usage may be investigated us-
ing internal correspondence analysis, a variant of
between groups and within groups analyses (Lo-
bry and Chessel, 2003). CIA has also been ap-
plied to study the relationships between amino-acid
physico-chemical properties and protein composi-
tion (Thioulouse and Lobry, 1995). These analyses
maybe facilitated using the seqinr package (Charif
et al., 2005). seqinr is an interface between R and the
ACNUC (Gouy et al., 1985) sequence retrieval sys-
tem for nucleotide and protein sequence databases
such as GenBank, EMBL and SWISS-PROT.

Although we have only described analysis of 2 ta-
bles, many other multivariate analysis methods are
available in ade4, which are easily extended using
the duality diagram (class dudi) (Chessel et al., 2004).
There are several functions for analysis of three-way
or multiple tables (class ktab class, and functions
sepan, statis, pta, mcoa, mfa, foucart). Distance ma-
trices can be integrated in this framework through
principal coordinates analysis (dudi.pco function),
and the kdist class in the case of k distance matrices
measured on the same individuals.

GUIs : ade4TkGUI, Rweb

The made4 package was created to ease the use
of multivariate data analysis of microarray gene-
expression data. Indeed, it has two main advantages:
it is an interface between the ade4 package and Bio-
conductor data objects and classes, and it provides
wrapper functions to simplify the use of multivari-
ate analysis functions implemented in ade4.

Another approach to the simplification is the use
of a graphical user interface (GUI). A new package
(ade4TkGUI) has been developed using the tcltk
package to provide a GUI to ade4. This GUI has two
special features. The first one is a centralized graph-
ical display of ade4 dudi objects). The second one
is a dynamic view of factor maps, allowing explo-
ration of sample and variable sets by way of zoom-
ing, panning, and searching on labels. An Rweb in-
terface to seqinr and ade4 multivariate analysis is

also available (http://pbil.univ-lyon1.fr/Rweb/
Rweb.general.html).

Summary

The Bioconductor package made4 facilitates multi-
variate analysis of microarray data, and builds on
extensive experience of multivariate data analysis in
ecology. Multivariate data analysis methods pro-
vide many useful tools to extract meaningful biolog-
ical information from these large data sets. Some-
times, these methods are overlooked because they
are thought to be complicated and subject to barely
met application hypotheses. This is partly true in the
framework of the Gaussian approximation model of
multivariate analysis. But the geometric model (for
example Le Roux and Rouanet, 2004), and the dual-
ity diagram (Holmes, 2006) lift most of these assump-
tions.

Bibliography

A. Brazma and A.C. Culhane. Algorithms for gene
expression analysis. In M.J. Dunn, L.B. Jorde, P.F.R.
Little, and S. Subramaniam, editors, Encyclopedia
of Genetics, Genomics, Proteomics and Bioinformatics.
John Wiley and Sons, London, 2005.

S.L. Carter, A.C. Eklund, B.H. Mecham et al. Redefi-
nition of affymetrix probe sets by sequence over-
lap with cdna microarray probes reduces cross-
platform inconsistencies in cancer-associated gene
expression measurements. BMC Bioinformatics, 6:
107, 2005.

D. Charif, J. Thioulouse, J.R. Lobry et al. Online syn-
onymous codon usage analyses with the ade4 and
seqinr packages. Bioinformatics, 21(4):545–7, 2005.

D. Chessel, A. Dufour, and J. Thioulouse. The ADE4
package – I: One-table methods. RNews, 4(1):5–10,
June 2004.

S. Chiaretti, X. Li, R. Gentleman et al. Gene ex-
pression profile of adult T-cell acute lymphocytic
leukemia identifies distinct subsets of patients
with different response to therapy and survival.
Blood, 103(7):2771–8, 2004.

A.C. Culhane, G. Perrière, E. C. Considine et al.
Between-group analysis of microarray data. Bioin-
formatics, 18(12):1600–8, 2002.

A.C. Culhane, G. Perrière, and D.G. Higgins. Cross-
platform comparison and visualisation of gene ex-
pression data using co-inertia analysis. BMC Bioin-
formatics, 4:59, 2003.

A.C. Culhane, J. Thioulouse, G. Perrière et al. Made4:
an R package for multivariate analysis of gene ex-
pression data. Bioinformatics, 21(11):2789–90, 2005.

R News ISSN 1609-3631

http://pbil.univ-lyon1.fr/Rweb/Rweb.general.html
http://pbil.univ-lyon1.fr/Rweb/Rweb.general.html

Vol. 6/5, December 2006 58

S. Dray, D. Chessel, and J. Thioulouse. Co-inertia
analysis and the linking of ecological tables. Ecol-
ogy, 84:3078–3089, 2003.

R. Gittins. Canonical analysis, a review with applications
in ecology. Vol.12 of Biomathematics. Springer- Ver-
lag, Berlin, 1985.

T.R. Golub, D.K. Slonim, P. Tamayo et al. Molecular
classification of cancer: Class discovery and class
prediction by gene expression monitoring. Science,
286:531–537, 1999.

M. Gouy, C. Gautier, M. Attimonelli et al. ACNUC–a
portable retrieval system for nucleic acid sequence
databases: logical and physical designs and usage.
Comput Appl Biosci, 1(3):167–72, 1985.

S. Holmes. Multivariate analysis: The french way. In
D. Nolan and T. Speed, editors, Festschrift for David
Freedman. IMS, Beachwood, OH, 2006.

I.B. Jeffery, S.F. Madden, P.A. McGettigan et al. Inte-
grating transcription factor binding site informa-
tion with gene expression datasets. BMC Bioinfor-
matics, 7:359, 2006.

J. Khan, J.S. Wei, M. Ringner et al. Classification and
diagnostic prediction of cancers using gene expres-
sion profiling and artificial neural networks. Nat
Med, 7(6):673–9, 2001.

B. Le Roux and H. Rouanet. Geometric Data Analysis.
Kluwer Academic Publishers, Dordrecht, 2004.

J. R. Lobry and D. Chessel. Internal correspondence
analysis of codon and amino-acid usage in ther-
mophilic bacteria. J Appl Genet, 44(2):235–61, 2003.

D.T. Ross, U. Scherf, M.B. Eisen et al. Systematic vari-
ation in gene expression patterns in human cancer
cell lines. Nat Genet, 24(3):227–35, 2000.

J. E. Staunton, D.K. Slonim, H.A. Coller et al.
Chemosensitivity prediction by transcriptional
profiling. Proc Natl Acad Sci USA, 98(19):10787–92,
2001.

C. Ter Braak. Canonical correspondence analysis: a
new eigenvector technique for multivariate direct
gradient analysis. Ecology, 69:1167–1179, 1986.

J. Thioulouse and J. Lobry. Co-inertia analysis of
amino-acid physico-chemical properties and pro-
tein composition with the ade package. Comput
Appl Biosci, 11(3):321–9, 1995.

J. Thioulouse, D. Chessel, S. Dolèdec et al. ADE-4:
a multivariate analysis and graphical display soft-
ware. Statistics and Computing, 7(1):75–83, 1997.

Aedín C. Culhane
Department of Biostatistics and Computational Biology,
Dana-Farber Cancer Institute & Department of Biostatis-
tics, Harvard School of Public Health, Boston, MA, USA.
aedin@jimmy.harvard.edu

Jean Thioulouse
Biométrie et Biologie Evolutive,
CNRS & Université Lyon 1, France.
jthioulouse@biomserv.univ-lyon1.fr

Using amap and ctc Packages for Huge
Clustering
by Antoine Lucas and Sylvain Jasson

Introduction

Huge clustering is often required in the field of DNA
microarray (DeRisi et al., 1997) analysis. A new use
of clustering results appears with presentation and
exploration software like TreeView (Eisen et al., 1998).

DNA microarray is the most appropriate method
for high throughput gene studies, allowing expres-
sion evaluation of vast gene numbers in differ-
ent cells types or conditions. From a technical
point of view, microarray analysis first needs im-
age processing (for example Imagene (http://www.
biodiscovery.com), BZScan (Lopez et al., 2004) or
ScanAlyze (Eisen et al., 1998)) that gives large tables

of data, followed by statistical processing including
data normalization.

A main goal of microarray analysis is to detect co-
regulated genes presenting similar expression pro-
files, which can be achieved by various classification
techniques. In this area, hierarchical clustering is of
special interest as it allows multi-scale cluster visual-
ization.

Some R extensions provide efficient clustering
tools (mainly: stats and cluster; Struyf et al., 1997).
The packages amap and ctc aim to complete the set
of clustering tools for R with:

• Additional features to standard clustering
functions.

• A novel PCA method, robust to extreme values.

R News ISSN 1609-3631

mailto:aedin@jimmy.harvard.edu
mailto:jthioulouse@biomserv.univ-lyon1.fr
http://www.biodiscovery.com
http://www.biodiscovery.com

Vol. 6/5, December 2006 59

• Fast and optimized and parallelized algo-
rithms, which drastically reduce time and
memory requirements so that any computer is
able to cluster large data sets.

• The possibility of an external visualization with
software such as Treeview (Eisen et al., 1998)
and Freeview (http://magix.fri.uni-lj.si/
freeview), as shown in Figure 1. This visu-
alization software provides convenient cluster
exploration and browsing to find relevant in-
formation in large cluster trees.

Description

Amap and ctc packages are complementary. The
former implementa all statistical algorithms and the
latter is used for all interactions with other soft-
ware such as the Eisen suite and makes it possi-
ble to launch Xcluster (http://genetics.stanford.
edu/~sherlock/cluster.html) software within R.

CtcAmap
Bioconductor

Normalization
Annotation

R software

Image analyis
Imagene
ScanAlyze

Clustering software
Xcluster

Cluster exploration
Treeview
Freeview

Bzscan

Figure 1: Amap and ctc usage for microarray analy-
sis.

The amap package includes standard hierarchical
clustering and k-means analysis. The novel features
of amap are a larger selection of distances set like
Pearson or Spearman (rank-based metric) adapted to
microarray data and a better hierarchical clustering
implementation (see the benchmark section).

Clustering can be pre-processed by a principal
component analysis, as it projects data into an or-
thogonal vector space, which avoids counting corre-
lated variables twice. With this analysis, a few ex-
treme values may strongly affect the main compo-
nents. As the high throughput implies a fully auto-
mated data acquisition and therefore outliers gener-
ation, we implement robust statistic tools including
a principal component analysis. The main idea of
such tools is to minimize the isolated points affected
by lowering their relative weight. This is a recent
method described by Caussinus et al. (2003).

Figure 2: Results window with Freeview displaying a
sub-cluster (red part of the tree).

The ctc package has tools to export cluster trees to
visualization software that can explore trees at any
scale to find the suitable magnification depending
on the data specificity and the biological expertise as
shown on Figure 2.

The ctc package also makes it convenient to use
Xcluster software within R. Xcluster performs cluster-
ing with a very small memory allocation (it does not
compute the whole distance matrix).

We propose the possibility to import results from
Eisen Cluster software to perform post clustering
processing with R. Other conversion functions are
designed to dialog between R and Eisen software
suite.

Benchmark

We compare time and memory use with other main
implementations of standard hierarchical clustering:
average link for agglomeration method and Eu-
clidean distance (see Figure 3).

It appears that Xcluster has less memory needs
(less than 100 MB when others methods use more
than 1.5 GB) since the algorithm used does not com-
pute exhaustive distance while agglomerating clus-
ters. When using the complete distance matrix,
memory use is O(n2) Hierarchical clustering from
amap, stats or cluster packages returns the same
tree but cluster includes a post processing that re-
works the tree display. The amap implementation of
hcluster or hclusterpar functions are significantly
faster and allow us to pass the limit of 15000 genes
on a recent server in less than half an hour.

R News ISSN 1609-3631

http://magix.fri.uni-lj.si/freeview
http://magix.fri.uni-lj.si/freeview
http://genetics.stanford.edu/~sherlock/cluster.html
http://genetics.stanford.edu/~sherlock/cluster.html

Vol. 6/5, December 2006 60

5000 10000 15000 20000
Number of genes

0,01

0,1

1

10

G
o

(lo
g

sc
al

e)

amap/hcluster
amap/hclusterpar*
ctc/xcluster**
cluster/agnes
stats/hclust

Memory used

5000 10000 15000 20000
Number of genes

0,01

0,10

1,00

10,00

100,00

H
ou

rs
 (l

og
 sc

al
e)

Time used

Figure 3: Benchmark of R package. Sample: simu-
lated data, 5000 to 20000 genes under 200 conditions,
using average link and Euclidean distance for clus-
tering. Computer: dual Xeon processor server, with
4 GB RAM and 20 GB swap. System command “time”
provides time and memory usage. R version 2.0.1
∗ hclusterpar is a parallelized version of hcluster,
uses all CPU.
∗∗ Xcluster uses a slightly simplified algorithm.

Web application

As many end-users use graphical and intuitive inter-
faces, we propose a way to skip the R command line
austerity while using a web interface. We provide
files ‘amap.php’ and ‘ctc.php’ as part of the packages,
which produce both form and CGI script, with any
standard apache and php server.

A more sophisticated web application can be
tested and downloaded at url: http://bioinfo.
genopole-toulouse.prd.fr/microarray.

Methods and implementation

The amap core library is implemented in C. The
package runs on Linux, Windows, and Mac OS X.
Multi-threading and parallelization are disabled on
Windows. Both amap and ctc use the free and open
source license GPL.

The amap package is hosted on a source-
forge like project manager at http://mulcyber.
toulouse.inra.fr/projects/amap by Inra that pro-
vides a cvs repository and a bug tracker.

The amap package is also available on CRAN, and
the ctc package is available on Bioconductor.

Acknowledgments

We wish to thank Laurent Gautier and Steffen Möller
for their contributions.

A. Lucas was supported by the FNS Réseau des
Génopôles contract number A1457.

Bibliography

H. Caussinus, M. Fekri, S. Hakam, and A. Ruiz-
Gazen. A monitoring display of multivariate out-
liers. Computational Statistics & Data Analysis, 44:
237–252, October 2003.

J. DeRisi, V. Iyer, and P. Brown. Exploring the
metabolic and genetic control of gene expression
on a genomic scale. Science, 278(5338):680–6, 1997.

M. Eisen, P. Spellman, P. Brown, and D. Botstein.
Cluster analysis and display of genome-wide ex-
pression patterns. Proc. Natl. Acad. Sci. USA, 95:
14863–14868, 1998.

F. Lopez, J. Rougemont, B. Loriod et al. Feature ex-
traction and signal processing for nylon DNA mi-
croarrays. BMC Genomics, 5(1):38, Jun 2004. Eval-
uation Studies.

A. Struyf, M. Hubert, and P. Rousseeuw. Integrating
robust clustering techniques in S-PLUS. Compu-
tational Statistics and Data Analysis, 26:17–37, Nov
1997.

Antoine Lucas
antoinelucas@gmail.com

Sylvain Jasson
Unité de Biométrie et Intelligence Artificielle, INRA, Cas-
tanet Tolosan, France
sylvain.jasson@toulouse.inra.fr

Model-based Microarray Image Analysis
by Chris Fraley and Adrian E. Raftery

DNA microtechnology has enabled biologists to si-
multaneously monitor the expression levels of thou-
sands of genes or portions of genes under multi-
ple experimental conditions. Many microarray plat-
forms exist; what they all have in common is that the
gene expression data is obtained via image analysis
of the array segments or spots corresponding to the

individual experiments.

A common method for making DNA arrays con-
sists of printing the single-stranded DNA represent-
ing the genes on a solid substrate using a robotic
spotting device. The arrayed DNA spots are then
mixed and hybridized with the cDNA extracted from
the experimental and control samples. In the two-
color array, these samples are treated before hy-
bridization with both Cy3 (green) and Cy5 (red)

R News ISSN 1609-3631

http://bioinfo.genopole-toulouse.prd.fr/microarray
http://bioinfo.genopole-toulouse.prd.fr/microarray
http://mulcyber.toulouse.inra.fr/projects/amap
http://mulcyber.toulouse.inra.fr/projects/amap
mailto:antoinelucas@gmail.com
mailto:sylvain.jasson@toulouse.inra.fr

Vol. 6/5, December 2006 61

fluorescent dyes. After hybridization, the arrays
are scanned at the corresponding wavelengths sepa-
rately to obtain the images corresponding to the two
channels. The fluorescence measurements are used
to determine the relative abundance of mRNA or
DNA in the samples.

The quantification of the amount of fluorescence
from the hybridized sample can be affected by a vari-
ety of defects that occur during both the manufactur-
ing and processing of the arrays, such as perturba-
tions of spot positions, irregular spot shapes, holes
in spots, unequal distribution of DNA probe within
spots, variable background, and artifacts such as
dust and precipitates. Ideally these events should be
automatically recognized in the image analysis, and
the estimated intensities adjusted to take account of
them.

Li et al. (2005) proposed a method for segmenting
microarray image blocks, along with a robust model-
based method for estimating foreground and back-
ground intensities. Peaks and valleys are first located
in the image signal with a sliding window to auto-
matically separate the microarray blocks into regions
containing the individual spots. Model-based clus-
tering (McLachlan and Peel 2000, Fraley and Raftery
2002) is then applied to the (univariate) sum of the
intensities of the two channels measuring the red
and green signals for each spot region to provide an
initial segmentation. Models are fit for up to three
groups (background, foreground, uncertain), and the
number of groups present is then determined via
the Bayesian Information Criterion (BIC). Whenever
there is more than one group, the segmentation is
postprocessed in order to remove artifacts. This is
done by reclassifying connected components in the
brightest group that are below a certain threshold in
size as unknown. The procedure is described in Fig-
ure 1.

1. Automatic gridding.

2. Model-based clustering for ≤ 3 groups.

3. Foreground / background determination:

• If there is more than one group, threshold
connected components. The foreground is
taken to be the group of highest mean in-
tensity and the background the group of
lowest mean intensity.

• If there is only one group, it is assumed
that no foreground signal is detected.

Figure 1: Basic Procedure for Model-based Segmentation
of Microarray Blocks.

This approach combines the strengths of
histogram-based and spatial methods. It deals effec-

tively with inner holes and artifacts. It also provides
a formal inferential basis for deciding when no fore-
ground signal is present in a spot. The method has
been shown to compare favorably with other meth-
ods on experimental microarray data with replicates
(Li et al. 2005).

The method is implemented in the Bioconductor
package spotSegmentation, which consists of two
basic functions:

spotgrid: determines spot locations in blocks
within microarray slides

spotseg: determines foreground and background
signals within individual spots

The spotseg function uses the R package mclust
(Fraley and Raftery, 1999, 2003, 2006) for model-
based clustering. Other life-sciences applications
of model-based clustering include grouping coex-
pressed genes (Yeung et al. 2001), in vivo MRI of pa-
tients with brain tumors (Wehrens et al. 2002), and
contrast-enhanced MRI for breast tumors (Forbes
et al. 2004).

The spotSegmentation functions will be illustrated
on the first block from the first microarray slide
image from van’t Wout et al. (2003), avail-
able as a dataset in Bioconductor under the name
HIVcDNAvantWout03. The encoded image data from
the two channels for this block are provided as
datasets hiv1raw and hiv2raw, and can be obtained
via the data command.

> data(hiv1raw)
> data(hiv2raw)

The data come from a supplementary website
http://ubik.microbiol.washington.edu/HIV/
array1/supplemental.htm, where they are encoded
for compact storage. We have chosen to provide
these data as given there, so that the following trans-
formation is needed in order to extract the intensities:

> dataTrans <- function(x,A=4.7154240E-05)
matrix((256*256-1-x)^2*A,nrow=450,ncol=1000)

> hiv1 <- dataTrans(hiv1raw)
> hiv2 <- dataTrans(hiv2raw)

Note that this transformation is specific to this
data; in general stored image data must be con-
verted as needed to image intensities. Figure 2
shows the image data for the two channels in re-
verse gray scale. These plots can be obtained with
the spotSegmentation package using the following
commands:

> plotBlockImage(sqrt(hiv1))
> plotBlockImage(sqrt(hiv2))

R News ISSN 1609-3631

http://ubik.microbiol.washington.edu/HIV/array1/supplemental.htm
http://ubik.microbiol.washington.edu/HIV/array1/supplemental.htm

Vol. 6/5, December 2006 62

Figure 2: Reverse gray-scale plots of image intensi-
ties from channel 1 (Cy3 green) and channel 2 (Cy5
red) of the first block from the first slide of HIV data
from the Bioconductor dataset HIVcDNAvantWout03.

The function spotgrid can be used to divide the
microarray image block into a grid separating the in-
dividual spots.

> hivGrid <- spotgrid(hiv1, hiv2,
rows = 12, cols = 32, show = TRUE)

> hivGrid
$rowcut

[1] 105 138 163 189 219 244 271 297 326 354
379 407 438

$colcut
[1] 11 41 66 94 126 163 192 222 250 279

307 338 364 392 419 445 474 501 531 558
587 614 641 671 697 727 754 782 808 836
862 889 922

Here we have used the knowlege that there are 12
rows and 32 columns in a block of the microarray
image. The show option allows display of the image,
shown in the top pannel of Figure 3.
The individual spots can now be segmented using
the function spotseg. The following segments all
spots in the block:

hivSeg <- spotseg(hiv1, hiv2,
hivGrid$rowcut, hivGrid$colcut)

plot(hivSeg)

The corresponding plot is shown in the bottom pan-
nel in Figure 3.

Figure 3: Above: The grid delimiting microar-
ray spots determined by function spotgrid, su-
perimposed on the sum of the intensities for
the two channels for the Bioconductor dataset
HIVcDNAvantWout03. Below: The segmented spots
produced by spotseg. The color scheme is as fol-
lows: black denotes the spots, yellow denotes back-
ground, gray denotes pixels of uncertain classifica-
tion.

It is possible to process a subset of the regions in the
grid using the arguments R for grid (as opposed to
pixel) row location of the spot and C for grid column
location. The show option in spotseg can be used to
display details for each spot as it is classified. When
more than one spot is processed, the graphics com-
mand par(ask = TRUE) should be set so that the dis-
plays can be stepped through. The following is an
example of the segmenting and display of an indi-
vidual splot.

hivSeg <- spotseg(hiv1, hiv2,
hivGrid$rowcut, hivGrid$colcut
R = 1, C = 4, show = TRUE)

The resulting display is shown in Figure 4.
Mean and median pixel intensities for the fore-
ground and background for each channel and each
spot can be recovered through the summary function
applied to the output of spotseg. For example, the
following extracts the summary intensities for the
spot shown in Figure 4.

> hivSumry <- summary(hivSeg)

> hivSumry$channel1$foreground$mean[1,4]
[1] 1475.053

> hivSumry$channel2$background$median[1,4]
[1] 249.0123

R News ISSN 1609-3631

Vol. 6/5, December 2006 63

Figure 4: spotseg processing of the 1,4 section of
the gridded HIV image data. Clockwise from top
left: gray-scale image, labeled image after model-
based clustering (light yellow: lowest intensity;
black: highest intensity), clustered image with con-
nected components less than threshold in size la-
beled (bright yellow, blue, red denote components
below threshold in size for the light yellow, gray, and
black groups, respectively), final labeling.

Summary

The Bioconductor package spotSegmentation pro-
vides functionality for automatic gridding of mi-
croarray blocks given the number of rows and
columns of spots. It also provides functionality for
determining foreground and background of spots in
microarray images via model-based clustering. This
approach deals effectively with inner holes and arti-
facts, as well as providing a formal inferential basis
for deciding when no foreground signal is present in
a spot.

Bibliography

F. Forbes, N. Peyrard, C. Fraley, D. Georgian-Smith,
D. Goldhaber, and A. Raftery. Model-based region-
of-interest selection in dynamic breast MRI. Journal
of Computer Assisted Tomography, 30:675–687, 2006.

C. Fraley and A. E. Raftery. MCLUST: Software for
model-based cluster analysis. Journal of Classifica-
tion, 16:297–306, 1999.

C. Fraley and A. E. Raftery. Model-based clustering,
discriminant analysis and density estimation. Jour-
nal of the American Statistical Association, 97:611–
631, 2002.

C. Fraley and A. E. Raftery. Enhanced software for
model-based clustering, density estimation, and
discriminant analysis: MCLUST. Journal of Clas-
sification, 20:263–286, 2003.

Q. Li, C. Fraley, R. E. Bumgarner, K. Y. Yeung, and
A. E. Raftery. Donuts, scratches, and blanks: Ro-
bust model-based segmentation of microarray im-
ages. Bioinformatics, 21:2875–2882, 2005.

G. J. McLachlan and D. Peel. Finite Mixture Models.
Wiley, 2000.

R. Wehrens, A. W. Simonetti and L. M. .C. Buydens,
Mixture modeling of medical magnetic resonance
data. Journal of Chemometrics, 16:274-282, 2002.

A. B. van’t Wout, G. K. Lehrman, S. A. Mikeeva,
G. C. O’Keefe, M. G. Katze, R. E. Bumgarner, G. K.
Geiss, and J. I. Mullins. Cellular gene expression
upon human immunodeficiency type 1 infection of
CD4(+)-T-cell lines. Journal of Virology, 77(2):1392–
1402, January 2003.

K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery, and
W. L. Ruzzo. Model-based clustering and data
transformation for gene expression data. Bioinfor-
matics 17, 977–987, 2001.

C. Fraley and A. E. Raftery. MCLUST version 3 for R:
Normal mixture modeling and model-based clus-
tering. Technical Report No. 504, University of
Washington, September, 2006.

Chris Fraley, Adrian Raftery
Department of Statistics, Box 354322
University of Washington
Seattle, WA 98195-4322 USA
fraley@stat.washington.edu
raftery@stat.washington.edu

R News ISSN 1609-3631

mailto:fraley@stat.washington.edu
mailto:raftery@stat.washington.edu

Vol. 6/5, December 2006 64

Sample Size Estimation for Microarray
Experiments Using the ssize Package
by Gregory R. Warnes

Abstract

mRNA Expression Microarray technology is widely
applied in biomedical and pharmaceutical research.
The huge number of mRNA concentrations esti-
mated for each sample make it difficult to apply tra-
ditional sample size calculation techniques and has
left most practitioners to rely on rule-of-thumb tech-
niques. In this paper, we briefly describe and then
demonstrate a simple method for performing and vi-
sualizing sample size calculations for microarray ex-
periments as implemented in the ssize R package.

Note

This document is a simplified version of the
manuscript

Warnes, G. R., Liu, P. (2006) Sample
Size Estimation for Microarray Experi-
ments, Technical Report, Department of
Biostatistics and Computational Biology,
University of Rochester.

which has been available as a pre-publication
manuscript since 2004. Please refer to that document
for a detailed discussion of the sample size estima-
tion method and an evaluation of its performance.

Introduction

High-throughput microarray experiments allow the
measurement of expression levels for tens of thou-
sands of genes simultaneously. These experiments
have been used in many disciplines of biological re-
search, including neuroscience (Mandel et al., 2003),
pharmacogenomic research, genetic disease and can-
cer diagnosis (Heller, 2002). As a tool for estimat-
ing gene expression and single nucleotide polymor-
phism (SNP) genotyping, microarrays produce huge
amounts of data which can providing important new
insights.

Microarray experiments are rather costly in terms
of materials (RNA sample, reagents, chip, etc), labo-
ratory manpower, and data analysis effort. It is crit-
ical, therefore, to perform proper experimental de-
sign, including sample size estimation, before car-
rying out these experiments. Since tens of thou-
sands of variables (gene expressions) may be mea-
sured on each individual chip, it is essential appro-

priately take into account multiple testing and de-
pendency among variables when calculating sample
size.

Method

Overview

Warnes and Liu (2006) provide a simple method for
computing sample size for microarray experiments,
and reports on a series of simulations demonstrat-
ing its performance. Surprisingly, despite its sim-
plicity, the method performs exceptionally well even
for data with very high correlation between measure-
ments.

The key component of this method is the genera-
tion of a cumulative plot of the proportion of genes
achieving a desired power as a function of sam-
ple size, based on simple gene-by-gene calculations.
While this mechanism can be used to select a sample
size numerically based on pre-specified conditions,
its real utility is as a visual tool for understanding the
trade off between sample size and power. In our con-
sulting work, this latter use as a visual tool has been
exceptionally valuable in helping scientific clients to
make the difficult trade offs between experiment cost
and statistical power.

Assumptions

In the current implementation, we assume that a
microarray experiment is set up to compare gene
expressions between one treatment group and one
control group. We further assume that microarray
data has been normalized and transformed so that
the data for each gene is sufficiently close to a nor-
mal distribution that a standard 2-sample pooled-
variance t-test will reliably detect differentially ex-
pressed genes. The tested hypothesis for each gene
is:

H0 : µT = µC

versus
H1 : µT 6= µC

where µT and µC are means of gene expressions for
treatment and control group respectively.

Computations

The proposed procedure to estimate sample size is:

R News ISSN 1609-3631

Vol. 6/5, December 2006 65

1. Estimate standard deviation (σ) for each gene
based on control samples from existing stud-
ies performed on the same biological system.
(While samples from the study to be performed
are not, of course, generally available, control
samples from other studies using the same bio-
logical system are often readily available.)

2. Specify values for

(a) minimum effect size, ∆, (log of fold-
change for log-transformed data)

(b) maximum family-wise type I error rate, α

(c) desired power, 1−β.

3. Calculate the per-test Type I error rate nec-
essary to control the family-wise error rate
(FWER) using the Bonferroni correction:

αG =
α

G
(1)

where G is the number of genes on the microar-
ray chip.

4. Compute sample size separately for each gene
according to the standard formula for the two-
sample t-test with pooled variance:

1−β

= 1− Tn1+n2−2

(
tαG/2,n1+n2−2| ∆

σ
√

1
n1

+ 1
n2

)

+ Tn1+n2−2

(
−tαG/2,n1+n2−2| ∆

σ
√

1
n1

+ 1
n2

)
(2)

where Td(•|θ) is the cumulative distribution
function for non-central t-distribution with d
degree of freedom and the non-centrality pa-
rameter θ.

5. Summarize the necessary sample size across all
genes using a cumulative plot of required sam-
ple size verses power. An example of such a
plot is given in Figure 3 for which we assume
equal sample size for the two groups, n = n1 =
n2.

On the cumulative plot, for a point with x coordi-
nate n, the y coordinate is the proportion of genes
which require a sample size smaller than or equal
to n, or equivalently the proportion of genes with
power greater than or equal to the specified power
(1−β) at sample size n. This plot allows users to vi-
sualize the relationship between power for all genes
and required sample size in a single display. A sam-
ple size can thus be selected for a proposed microar-
ray experiment based on user-defined criterion. For
the plot in Figure 3, for example, requiring 80% of
genes to achieve the 80% power yields a sample size
of 10.

Similar plots can be generated by fixing the sam-
ple size and varying one of the other parameters,
namely, significance level (α), power (1−β), or min-
imum effect size (∆). Two such plots are shown in
Figures 2 and 4.

Functions

There are three pairs of functions available in the
ssize package.

pow(sd, n, delta, sig.level,
alpha.correct = "Bonferroni")

power.plot(x, xlab = "Power",
ylab = "Proportion of Genes with"

" Power >= x",
marks = c(0.7, 0.8, 0.9), ...)

ssize(sd, delta, sig.level, power,
alpha.correct = "Bonferroni")

ssize.plot(x,
xlab = "Sample Size (per group)",
ylab = "Proportion of Genes Needing Sample"

" Size <= n",
marks = c(2, 3, 4, 5, 6, 8, 10, 20), ...)

delta(sd, n, power, sig.level,
alpha.correct = "Bonferroni")

delta.plot (x, xlab = "Fold Change",
ylab = "Proportion of Genes with "

"Power >= 80\% at\\n"
"Fold Change=delta",
marks = c(1.5, 2, 2.5, 3, 4, 6, 10), ...)

pow, power.plot compute and display a cumulative
plot of the fraction of genes achieving a speci-
fied power for a fixed sample size (n), effect size
(delta), and significance level (sig.level).

ssize,ssize.plot compute and display a cumulative
plot of the fraction of genes for which a speci-
fied sample size is sufficient to achieve a speci-
fied power (power), effect size (delta), and sig-
nificance level (sig.level).

delta,delta.plot compute and display a cumulative
plot of the fraction of genes which can achieve
a specified power (power), for a specified sam-
ple size (n), and significance level (sig.level)
for a range of effect sizes.

Example

First, we need to load the ssize library:

> library("ssize")

> library("xtable")

> library("gdata")

R News ISSN 1609-3631

Vol. 6/5, December 2006 66

The ssize library provides an example data set
containing gene expression values for smooth mus-
cle cells from a control group of untreated healthy
volunteers processed using Affymetrix U95 chips
and normalized per the Robust Multi-array Average
(RMA) method of Irizarry et al. (2003).

> data("exp.sd")

> exp.sd <- exp.sd[1:1000]

This data was calculated via:

library("affy")
load("probeset_data.Rda")
expression.values <- exprs(probeset.data)
covariate.data <- pData(probeset.data)
controls <- expression.values[,

covariate.data$GROUP=="Control"]
exp.sd <- apply(controls, 1, sd)

Let’s see what the distribution looks like:

> par(cex = 2)

> xlab <- c("Standard Deviation",

+ "(for data on the log scale)")

> hist(exp.sd, n = 40, col = "cyan",

+ border = "blue", main = "",

+ xlab = xlab, log = "x")

> dens <- density(exp.sd)

> scaled.y <- dens$y * par("usr")[4]/

+ max(dens$y)

> lines(dens$x, scaled.y,

+ col = "red", lwd = 2)

Standard Deviation
(for data on the log scale)

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0

0
50

10
0

15
0

20
0

25
0

Figure 1: Standard deviations for of logged example
data

As is often the case, this distribution is extremely
right skewed, even though the standard deviations
were computed on the log2 scale.

So, now lets see the functions in action. First, de-
fine the parameter values we will be investigating:

> n <- 6

> fold.change <- 2

> power <- 0.8

> sig.level <- 0.05

Now, the functions provided by the ssize package
can be used to address several questions:

1. What is the necessary per-group sample size
for 80% power when δ = 1.0, and α = 0.05?

> all.size <- ssize(sd = exp.sd,

+ delta = log2(fold.change),

+ sig.level = sig.level,

+ power = power)

> par(cex = 1.3)

> ssize.plot(all.size, lwd = 2,

+ col = "magenta", xlim = c(1,

+ 20))

> xmax <- par("usr")[2] -

+ 1

> ymin <- par("usr")[3] +

+ 0.05

> legend(x = xmax, y = ymin,

+ legend = strsplit(paste("fold change=",

+ fold.change, ",",

+ "alpha=", sig.level,

+ ",", "power=",

+ power, ",", "# genes=",

+ nobs(exp.sd), sep = ""),

+ ",")[[1]], xjust = 1,

+ yjust = 0, cex = 0.9)

> title("Sample Size to Detect 2-Fold Change")

5 10 15 20

Sample Size (per group)

P
ro

po
rt

io
n

of
 G

en
es

 N
ee

di
ng

 S
am

pl
e

S
iz

e
<

=
 n

 0
%

=
0

 4
0%

=
40

0
 8

0%
=

80
0

4

11%=111

5

40%=395

6

60%=602

8

76%=761

10

83%=833

20

95%=946

fold change=2
alpha=0.05
power=0.8
genes=1000

Sample Size to Detect 2−Fold Change

Figure 2: Sample size required to detect a 2-fold treat-
ment effect.

This plot illustrates that a sample size of 10 is
required to ensure that at least 80% of genes have
power greater than 80%. It also shows that a sample

R News ISSN 1609-3631

Vol. 6/5, December 2006 67

size of 6 is sufficient if only 60% of the genes need to
achieve 80% power.

2. What is the power for 6 patients per group with
δ = 1.0, and α = 0.05?

> all.power <- pow(sd = exp.sd,

+ n = n, delta = log2(fold.change),

+ sig.level = sig.level)

> power.plot(all.power, lwd = 2,

+ col = "blue")

0.0 0.2 0.4 0.6 0.8 1.0

Power

P
ro

po
rt

io
n

of
 G

en
es

 w
ith

 P
ow

er
 >

=
 x

 0
%

=
0

 4
0%

=
40

0
 8

0%
=

80
0

0.7

65%=654

0.8

60%=602

0.9

52%=525

n=6
fold change=2
alpha=0.05
genes=1000

Power to Detect 2−Fold Change

Figure 3: Effect of Sample Size on Power

This plot shows that only 52% of genes achieve at
80% power at this sample size and significance level.

3. How large does a fold-change need to be for
80% of genes to achieve 80% power for an experi-
ment for n = 6 patients per group and α = 0.05?

> all.delta <- delta(sd = exp.sd,

+ power = power, n = n,

+ sig.level = sig.level)

> delta.plot(all.delta, lwd = 2,

+ col = "magenta",

+ xlim = c(1, 10),

+ ylab = paste("Proportion of Genes with ",

+ "Power >= 80% \n",

+ "at Fold Change of delta"))

2 4 6 8 10

Fold Change

P
ro

po
rt

io
n

of
 G

en
es

 w
ith

 P
ow

er
 >

=
 8

0%

 a
t F

ol
d

C
ha

ng
e

of
 d

el
ta

 0
%

=
0

 4
0%

=
40

0
 8

0%
=

80
0

1.5

16%=156

2

60%=602

2.5

75%=750

3

82%=818

4

90%=897

6

95%=946

10

97%=969

n=6
alpha=0.05
power=0.8
genes=1000

Fold Change to Achieve 80% Power

Figure 4: Given sample size, this plot allows visual-
ization of the fraction of genes achieving the speci-
fied power for different fold changes.

This plot shows that for a fold change of 2.0, only
60% of genes achieve 80% power, while a fold change
of 3.0 will be detected with 80% power for 80% of
genes.

Modifications

While the ssize package has been implemented us-
ing the simple 2-sample pooled t-test, you can eas-
ily modify the code for other circumstances. Simply
replace the call to power.t.test in each of the func-
tions pow,ssize,delta with the appropriate compu-
tation for the desired experimental design.

Future Work

Peng Liu is currently developing methods and code
for substituting False Discovery Rate for the Bonfer-
roni multiple comparison adjustment.

Contributions

Contributions and discussion are welcome.

Acknowledgment

This work was supported by Pfizer Global Research
and Development.

R News ISSN 1609-3631

Vol. 6/5, December 2006 68

Bibliography

Benjamini, Y. and Hochberg, Y. (1995) Controlling the
false discovery rate: a practical and powerful ap-
proach to multiple testing, Journal of Royal Statisti-
cal Society B, 57:1, 289-300.

Dow,G.S. (2003) Effect of sample size and p-value
filtering techniques on the detection of tran-
scriptional changes induced in rat neuroblastoma
(NG108) cells by mefloquine, Malaria Journal, 2, 4.

Heller, M. J. (2002) DNA microarray technology: de-
vices, systems, and applications, Annual Review in
Biomedical Engineering, 4, 129-153.

Hwang,D., Schmitt, W. A., Stephanopoulos, G.,
Stephanopoulos, G. (2002) Determination of min-
imum sample size and discriminatory expression
patterns in microarray data, Bioinformatics, 18:9,
1184-1193.

Irizarry, R.A., Hobbs, B., Collin, F. et al. (2003) Ex-
ploration, normalization, and summaries of high
density oligonucleotide array probe level data, Bio-
statistics, 4:2, 249-264.

Mandel, S., Weinreb, O., Youdim, M. B. H. (2003) Us-
ing cDNA microarray to assess Parkinson’s dis-
ease models and the effects of neuroprotective
drugs, TRENDS in Pharmacological Sciences, 24:4,
184-191.

Storey, J., (2002) A direct approach to false discovery
rates, Journal of Royal Statistical Society B, 64:3, 479-
498.

Warnes, G. R., Liu, P. (2006) Sample Size Estimation
for Microarray Experiments, Technical Report, De-
partment of Biostatistics and Computational Biol-
ogy, University of Rochester.

Yang, Y. H., Speed, T. Design and analysis of compar-
ative microarray experiments, in Statistical analy-
sis of gene expression microarray data, Chapman and
Hall, 51.

Yang, M. C. K., Yang, J. J., McIndoe, R. A., She, J.
X. (2003) Microarray experimental design: power
and sample size considerations, Physiological Ge-
nomics, 16, 24-28.

Zien, A., Fluck, J., Zimmer, R., Lengauer, T. (2003)
Microarrays: how many do you need?, Journal of
Computational Biology, 10:3-4, 653-667.

Gregory Warnes
University of Rochester
Dept. of Biostatistics and Computational Biology
Rochester, New York 14642, USA
warnes@bst.rochester.edu

R News ISSN 1609-3631

mailto:warnes@bst.rochester.edu

Vol. 6/5, December 2006 69

Editor-in-Chief:
Paul Murrell
Department of Statistics
The University of Auckland
Private Bag 92019
Auckland

Editorial Board:
Torsten Hothorn and John Fox.

Editor Programmer’s Niche:
Bill Venables

Editor Help Desk:
Uwe Ligges

Email of editors and editorial board:
firstname.lastname @R-project.org

R News is a publication of the R Foundation for Sta-
tistical Computing. Communications regarding this
publication should be addressed to the editors. All
articles are copyrighted by the respective authors.
Please send submissions to regular columns to the
respective column editor and all other submissions
to the editor-in-chief or another member of the edi-
torial board. More detailed submission instructions
can be found on the R homepage.

R Project Homepage:
http://www.R-project.org/

This newsletter is available online at
http://CRAN.R-project.org/doc/Rnews/

R News ISSN 1609-3631

http://www.R-project.org/
http://CRAN.R-project.org/doc/Rnews/

	Editorial
	Graphs and Networks: Tools in Bioconductor
	Modeling Package Dependencies Using Graphs
	Image Analysis for Microscopy Screens
	beadarray: An R Package to Analyse Illumina BeadArrays
	Transcript Mapping with High-Density Tiling Arrays
	Analyzing Flow Cytometry Data with Bioconductor
	Introduction
	Discussion and Conclusion

	Protein Complex Membership Estimation using apComplex
	SNP Metadata Access and Use with Bioconductor
	Getting SNP-level information
	Exploring a genome-wide association study
	Data representation
	An association test

	Conclusions

	Integrating Biological Data Resources into R with biomaRt
	Identifying Interesting Genes with siggenes
	Reverse Engineering Genetic Networks using the GeneNet Package
	A Multivariate Approach to Integrating Datasets using made4 and ade4
	Using amap and ctc Packages for Huge Clustering
	Model-based Microarray Image Analysis
	Sample Size Estimation for Microarray Experiments Using the ssize Package
	Functions

