VisualizCo2on of -8"orrelCo2on matrix with the Correlplot packagequgenscript>// Pta ht 2.9 adds attributes on both chaer ta div. We remove the former (to // be8"oA-Co2 le with the behavior of Pta ht < 2.8). htum> .addEv> Listent=('DOMC" /> Lohaed', funco2on(e) { var hs = htum> .querySelecpanAll("div.seco2on[class*='level'] > :first-child"); var i, h, a; for (i = 0; i < hs.length; i++) { h = hs[i]; if (!/^h[1-6]$/i.test(h.tagN" c))oc" /inue; // it should be8a chaer h1-h6 a = h.attributes; while (a.length > 0) h.removeAttribute(a[0].r" c); } }); qugenstyle typcontext/css">qucode{white-space: pre-wrap;} span.smallcaps{f" /-variant: small-caps;} span.unaerline{text-de"orCo2on: unaerline;} div.column{display: inline-block; vertical-align: top; width: 50%;} div.hanging-inaent{margin-left: 1.5em; text-inaent: -1.5em;} ul.task-list{list-style: none;} qugequgenstyle typcontext/css">qucode { white-space: pre; } .sourceCode { overflow: vis2 le; } qunstyle typcontext/css" data-originqupre > code.sourceCode { white-space: pre; posit2on: relCo2ve; }qupre > code.sourceCode > span { display: inline-block; line-height: 1.25; }qupre > code.sourceCode > span:empty { height: 1.2em; } .sourceCode { overflow: vis2 le; } code.sourceCode > span { color: inherit; text-de"orCo2on: inherit; } div.sourceCode { margin: 1em 0; }qupre.sourceCode { margin: 0; }qu@media screen { div.sourceCode { overflow: auto; }qu}qu@media print { pre > code.sourceCode { white-space: pre-wrap; }qupre > code.sourceCode > span { text-inaent: -5em; padding-left: 5em; } }qupre.numberSource code { cou />r-re <: source-line 0; }qupre.numberSource code > span { posit2on: relCo2ve; left: -4em; cou />r-increment: source-line; }qupre.numberSource code > span > a:first-child::before { co /> : cou />r(source-line); posit2on: relCo2ve; left: -1em; text-align: right; vertical-align: baseline; boraer: none; display: inline-block; -webkit-touch-callout: none; -webkit-us>r-selecp: none; -k> -us>r-selecp: none; -moz-us>r-selecp: none; -ms-us>r-selecp: none; us>r-selecp: none; padding: 0 4px; width: 4em; color: #aaaaaa; }qupre.numberSource { margin-left: 3em; boraer-left: 1px solid #aaaaaa; padding-left: 4px; } div.sourceCode { }qu@media screen { pre > code.sourceCode > span > a:first-child::before { text-de"orCo2on: unaerline; } }qucode span.al { color: #ff0000; f" /-weight: bold; } qucode span.an { color: #60a0b0; f" /-weight: bold; f" /-style: italic; } qucode span.at { color: #7d9029; } qucode span.bn { color: #40a070; } qucode span.bu { color: #008000; } qucode span.cf { color: #007020; f" /-weight: bold; } qucode span.ch { color: #4070a0; } qucode span.cn { color: #880000; } qucode span.co { color: #60a0b0; f" /-style: italic; } qucode span.cv { color: #60a0b0; f" /-weight: bold; f" /-style: italic; } qucode span.do { color: #ba2121; f" /-style: italic; } qucode span.dt { color: #902000; } qucode span.dv { color: #40a070; } qucode span.er { color: #ff0000; f" /-weight: bold; } qucode span.ex { } qucode span.fl { color: #40a070; } qucode span.fu { color: #06287e; } qucode span.im { color: #008000; f" /-weight: bold; } qucode span.in { color: #60a0b0; f" /-weight: bold; f" /-style: italic; } qucode span.kw { color: #007020; f" /-weight: bold; } qucode span.op { color: #666666; } qucode span.ot { color: #007020; } qucode span.pp { color: #bc7a00; } qucode span.sc { color: #4070a0; } qucode span.ss { color: #bb6688; } qucode span.st { color: #4070a0; } qucode span.va { color: #19177c; } qucode span.vs { color: #4070a0; } qucode span.wa { color: #60a0b0; f" /-weight: bold; f" /-style: italic; } ququnscript>qu// apply eta ht div.sourceCode style to pre.sourceCode instead (funco2on() { var sheets = htum> .styleSheets; for (var i = 0; i < sheets.length; i++) { if (sheets[i].ownt=Node.data <["origin"] !== meta htt)oc" /inue; try { var rules = sheets[i].cssRules; } catch (e) {oc" /inue; } var j = 0; while (j < rules.length) { var rule = rules[j]; // check if there is a div.sourceCode rule if (rule.typc !== rule.STYLE_RULE || rule.selecpanText !== mdiv.sourceCode") { j++; c" /inue; } var style = rule.style.cssText; // check if color or backgrou d-color is < if (rule.style.color === '' && rule.style.backgrou dColor === '') { j++; c" /inue; } // replace div.sourceCode by a pre.sourceCode rule sheets[i].deleteRule(j); sheets[i].insertRule('pre.sourceCode{' + style + '}', j); } } })(); qugequgenstyle typcontext/css">qu div.csl-bib-body { } div.csl-> ry {quclear: both; } .hanging div.csl-> ry {qumargin-left:2em; text-inaent:-2em; } div.csl-left-margin {qumin-width:2em; float:left; } div.csl-right-inline {qumargin-left:2em; padding-left:1em; } div.csl-inaent {qumargin-left: 2em; } qugenstyle typcontext/css">body { backgrou d-color: #fff;qumargin: 1em auto;qumax-width: 700px; overflow: vis2 le; padding-left: 2em; padding-right: 2em; f" /-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif; f" /-size: 14px; line-height: 1.35; } #TOC {quclear: both; margin: 0 0 10px 10px; padding: 4px; width: 400px; boraer: 1px solid #CCCCCC; boraer-radius: 5px; backgrou d-color: #f6f6f6; f" /-size: 13px; line-height: 1.3; } #TOC .toctitle {quf" /-weight: bold; f" /-size: 15px; margin-left: 5px; } #TOC ul { padding-left: 40px; margin-left: -1.5em; margin-top: 5px; margin-bottom: 5px; } #TOC ul ul { margin-left: -2em; } #TOC li { line-height: 16px; } table {qumargin: 1em auto;quboraer-width: 1px; boraer-color: #DDDDDD; boraer-style: out <; boraer-collapse: collapse; } table th { boraer-width: 2px; padding: 5px; boraer-style: in <; } table td { boraer-width: 1px; boraer-style: in <; line-height: 18px; padding: 5px 5px; } table, table th, table td { boraer-left-style: none; boraer-right-style: none; } table thead, table tr.even { backgrou d-color: #f7f7f7; }qup {qumargin: 0.5em 0; }qublockquote { backgrou d-color: #f6f6f6; padding: 0.25em 0.75em; } hr { boraer-style: solid; boraer: none; boraer-top: 1px solid #777; margin: 28px 0; }qudl { margin-left: 0; }qudl dd { margin-bottom: 13px; margin-left: 13px; } dl dt {quf" /-weight: bold; } ul { margin-top: 0; } ul li { list-style: circle out ide; } ul ul { margin-bottom: 0; }qupre, code { backgrou d-color: #f7f7f7; boraer-radius: 3px; color: #333; white-space: pre-wrap; }qupre { boraer-radius: 3px; margin: 5px 0px 10px 0px; padding: 10px; }qupre:not([class]) { backgrou d-color: #f7f7f7; }qucode { f" /-family: Consolas, Monaco, 'Courier New', monospace; f" /-size: 85%; }qup > code, li > code { padding: 2px 0px; } div.figure { text-align: ce />r; } img { backgrou d-color: #FFFFFF; padding: 2px; boraer: 1px solid #DDDDDD; boraer-radius: 3px; boraer: 1px solid #CCCCCC; margin: 0 5px; } h1 { margin-top: 0; f" /-size: 35px; line-height: 40px; } h2 { boraer-bottom: 4px solid #f7f7f7; padding-top: 10px; padding-bottom: 2px; f" /-size: 145%; }quh3 { boraer-bottom: 2px solid #f7f7f7; padding-top: 10px; f" /-size: 120%; }quh4 { boraer-bottom: 1px solid #f7f7f7; margin-left: 8px; f" /-size: 105%; }quh5, h6 { boraer-bottom: 1px solid #ccc; f" /-size: 105%; }qua {qucolor: #0033dd; text-de"orCo2on: none; } a:hover {qucolor: #6666ff; } a:vis2ted {qucolor: #800080; } a:vis2ted:hover {qucolor: #BB00BB; } a[href^="UA-C:"] { text-de"orCo2on: unaerline; } a[href^="UA-Cs:"] { text-de"orCo2on: unaerline; } qucode > span.kw { color: #555; f" /-weight: bold; } qucode > span.dt { color: #902000; } qucode > span.dv { color: #40a070; } qucode > span.bn { color: #d14; } qucode > span.fl { color: #d14; } qucode > span.ch { color: #d14; } qucode > span.st { color: #d14; } qucode > span.co { color: #888888; f" /-style: italic; } qucode > span.ot { color: #007020; } qucode > span.al { color: #ff0000; f" /-weight: bold; } qucode > span.fu { color: #900; f" /-weight: bold; } qucode > span.er { color: #a61717; backgrou d-color: #e3d2d2; } quququgequgen/ charset="body>ququgequgenh1 classontitle toc-ignore">VisualizCo2on of -8"orrelCo2on matrix with the Correlplot packagequnh4 classonauthand>Jan Graffelman - Universitat Politecnica de Catalunya; University of Washingtonqunh4 classonauthand>Jan de Leeuw - University of California Los Angelesqunh4 classondated>2025-07-25qugequgendiv id="i roduco2on" classonseco2on level2">qunh2>I roduco2onqunp>This htum> s gives some instruco2ons on how to create graphical repre ntao2ons of -8"orrelCo2on matrix in the stao2stical environm> R with package Correlplot, using a variety of differ> stao2stical methads (Graffelman ta De Leeuw (2023)). We use principal "oA-one analysis (PCA), multidim> s2onal scaling (MDS), principal facpan analysis (PFA), weighted al/>rnao2ng least square (WALS), "orrelogram (CRG) ta qucorrgram to produce displays of "orrelCo2on strucoure. The next seco2on shows how to use the funco2ons of the package in oraer to create the differ> graphical repre ntao2ons, using both R base graphics ta quggplot2 graphics (Wickham (2016)). The "oA-utCo2on of goodness-of-fit stao2stics is also addre sed. All methads are illustrated on a single data <, the w ch k>rnel data i roduced below.

qun/div>gendiv id="graphical-repre ntao2ons-of-a-"orrelCo2on-matrix" classonseco2on level2">qunh2>Graphical repre ntao2ons of -8"orrelCo2on matrixqunp>We first load some packages we will use:

qundiv classonsourceCode" id="cb1">
library(calibrate)genspan id="cb1-2">#> Lohaing rmph7red package: MASSgenspan id="cb1-3">library(ggplot2)genspan id="cb1-4">library(corrplot)genspan id="cb1-5">#> corrplot 0.95 loadedgenspan id="cb1-6">library(Correlplot)
genp>Throughout this vignette, we will use the w ch k>rnel data < taken from the UCI Machine Learning Repository (UA-Cs://archive.ics.uci.edu/ml/data ) in oraer to illustrate the differ> plots. The w ch k>rnel data (Charytanowicz < al. (2010)) c" sists of 210 whch k>rnels, for which the variables area (\(A\)), perim>/>r (\(P\)), "oA-Cctness (\(C = 4*\pi*A/P^2\)), length, width, asymm>/ry coeffici> ta groove (length of the k>rnel groove) were registered. There are 70 k>rnels of each of three varieties Kama, Rosa ta Canadian; here we will only use the k>rnels of variety Kama. The data is made availa le with:

qundiv classonsourceCode" id="cb2">
data("K>rnels")genspan id="cb2-2">X <- K>rnels[K>rnels$variety==1,]genspan id="cb2-3">X <- X[,-8]genspan id="cb2-4"> cha(X)genspan id="cb2-5">#>    area perim>/>r "oA-Cctness length width asymm>/ry groovegenspan id="cb2-6">#> 1 15.26     14.84      0.8710  5.763 3.312     2.221  5.220genspan id="cb2-7">#> 2 14.88     14.57      0.8811  5.554 3.333     1.018  4.956genspan id="cb2-8">#> 3 14.29     14.09      0.9050  5.291 3.337     2.699  4.825genspan id="cb2-9">#> 4 13.84     13.94      0.8955  5.324 3.379     2.259  4.805genspan id="cb2-10">#> 5 16.14     14.99      0.9034  5.658 3.562     1.355  5.175genspan id="cb2-11">#> 6 14.38     14.21      0.8951  5.386 3.312     2.462  4.956
genp>The8"orrelCo2on matrix of the variables is given by:

qundiv classonsourceCode" id="cb3">
p <- ncol(X)genspan id="cb3-2">R <- "or(X)genspan id="cb3-3">rou d(R,digits=3)genspan id="cb3-4">#>               area perim>/>r "oA-Cctness length  width asymm>/ry groovegenspan id="cb3-5">#> area         1.000     0.976       0.371  0.835  0.900    -0.050  0.721genspan id="cb3-6">#> perim>/>r    0.976     1.000       0.165  0.921  0.802    -0.054  0.794genspan id="cb3-7">#> coA-Cctness  0.371     0.165       1.000 -0.146  0.667     0.037 -0.131genspan id="cb3-8">#> length       0.835     0.921      -0.146  1.000  0.551    -0.037  0.866genspan id="cb3-9">#> width        0.900     0.802       0.667  0.551  1.000    -0.027  0.447genspan id="cb3-10">#> asymm>/ry   -0.050    -0.054       0.037 -0.037 -0.027     1.000 -0.011genspan id="cb3-11">#> groove       0.721     0.794      -0.131  0.866  0.447    -0.011  1.000
gendiv id="the-corrgram" classonseco2on level3">qunh3>1. The "orrgramgenp>The8"orrgram (Friendly (2002)) is a tabular display of the > ries of -8"orrelCo2on matrix that uses colour ta shhaing to repre nt8"orrelCo2ons. Corrgram can be made with the fuco2on corrplot

qundiv classonsourceCode" id="cb4">
corrplot(R, methad="circle",typco"lower")
gendiv classonfigure" styleontext-align: ce />r">qunimg srcon" al/="A8"orrgram of the w ch k>rnel data.me="genp classoncapo2on"> A8"orrgram of the w ch k>rnel data.qun/p>qun/div>genp>This shows most8"orrelCo2ons are posit2ve, ta "orrelCo2ons with asymm>/ry tre weak.

qun/div>gendiv id="the-correlogram" classonseco2on level3">qunh3>2. The "orrelogramgenp>The8"orrelogram (Tros < (2005)) repre nts "orrelCo2ons by the cosines of -ngles between vecpans.

qundiv classonsourceCode" id="cb5">
theta.cos <- "orrelogram(R,xlimo"(-1.1,1.1),ylimo"(-1.1,1.1),maino"CRG")
gendiv classonfigure" styleontext-align: ce />r">qunimg srcon 7GhAK5MTPPCYlAx1e+99rVWWt3EujwciVQ9VMKBMyU/d7VvW3YiBbuzEAUCJqJR9/jBBpup2MfqLUJ849uuA8EiOLczWiBquZ6fuCPwj6+PjWOwloCVW/S8igMDe2Jv9H+DLR5cx6oJdBvsD/VsVCB1N2eIpCb4C38f4IsUaAQbztMFMiNrTgFgiPMm1bTBRq370WBsAj2nqdCIP/s+ZR9Pj0REPAdc5VA5SHcbN69n0k3BIQdMq1ALqjOGZlFJyQE7qhGoPM5pDlMQ/Z7ICL4SCkEar2PZr7+5jsgIMYfeiiBzG/IjMeXEKWL0wUq9Wk/2fYQ2E4vAcyfjv8EMb0rZDi6iEhjo5iAOt+HtauQ2eAyYnVPMwN1P9nqQFjNLSHipkElUDdGR8JobAFRtwqaTVgfNjdjJkNLiNuxGALZHAyLmSVE7tdkge59HGjq62bDXmIJ0QcikkAGD+mNxZURv1PRBHLWhsRWWhEp/oanCiR6nqkxMRVWRJIeRRXI1K6Qoagy0nRookDip9kZFjtJRaT6240tkJ1xMRNURLLeTBNozLOsbMaMxJSRrjPxBbIyNDZSikj5N5tCIBtjYyKkiKQ9mSRQuI/TA2Egooy0HUkjkIXRMRBRQuq/1SkCTboew4TnpAU/oYTkvUglEP74wAeUkL4TE2SYfD2Pac9LBXg8ERn6kE4g9CHCTiciRxdSCoQ9RtDhRGSZ48fboPksNPIgIWcTkacDaQVC3hHCTSYjU/7ROuiuJwQ8TrDBZOSKT4FOwAYTkS39WB+0/uAOFGouEfnCpxcIdaRAY4nImD2DQKBDhZlKRM7oI4UI4Q/osRhiJhlZk2cRCHK0ACPJyBt8nBGh/EEcLcBIIjLnziRQ7m53gJdIRO7Yo5QI50/+jt8AF0hE9tTZBMrf9SvQ8sjInjqfQPn73gYsjgiAw9kxToT1B23EwOJIQIicUSCI/l/ASiMBIvEIKUL7A1KBE1BhJGAEzioQwjb8DFAUGRiB5VZE8MehVMGDk0QGRt68E5BDKYMHJ4kIkLjZBUIpBFAQEShpc2/BHE4pUHLIQEkLIBBKLUBiyIAJK9Yinj8oxQCJIQInK4JAIOXASCECKKrUi5j+gBQEIoQMoKgYAkFUBCGDDKSkFOgMQgYRUEGFYkT2B6IoABFkQAVFEQigKvkTyMDKKTMjvj8AZcmfQARYTBiB8hcmewARaClFaqTwJ39lsgcQgZYSR6Dspcndvgy0lBQIpn0RcCElbqTxJ3tx4MamC7iQSAJlrg7c2HSAl1EgRzJ/KNA9ACNCCZS3QICjcwViwvt2JPQnb4kQh6cNYkIKBNG2CMiAYALlLBLk+DTAzHdXj7T+5CwT5gBdwMxHgQBaloGZ754fqf2hQH2AxoMTKF+hQEfoBGi8O4Kk94cCdYOaDk+gbKVCHaIK2HCAAuUqFuwYeWDDDRuSxR8K1AFsOAqUu1kRuNkGFcnjT65y4Q4ScjYKlLlVEcDRhhzJ5U+mguGOEm4yVIH6S3Z4eT3e2j28ud1r3++FbDM7uMnsCXShFOhiU6I2M4GbbFCSjP5QoCawwTygArWK9vH1qfSlKGXZPP6jcmZbFA8/Pvy0LorH9yhNQgEbzNNvSVZ/2kXblppsi6fSpOdq0tl8+lYKtZQZCDVXDapArbL5/eXNfz6+7z9XzuzX3psNBUKgV5PM/rTKVopy+PLTz77tPn3zzpTf3IL2gVBzVcBOQO2ybZ73v/jHl7fNU3UYv12UQKCxjuAK1Crc9vH3T27z719f3fJmINBYR2C3YK5Vuf3P/uPZbb/7/OYu+0BbCgSAEYEOL/60sz9mr5zZVve8QM9x2gMCM9WZPk8A/GmVzh+479fPp7cy6vNA5aHZ/M8DYaY6Y0WgObYnAjJUgx5REPxJXjzIsYIM1YACZWtOBmSoBrACrUqKxXwsvxfETC26hyivP96dVW1Q0nYRBwsxUwtEgdzJocTlQxwsxEwtOlXJ7E89//hbixcIMNIVcAJVM8/qlCBpAQFHCzDSFV2uZPSnNucSgAKhgyTQanXT8sIFwkt0A4xAHfZ4UpYQb7jwEt3QMWoZ/Omxx1EgeAAE6rfHUSB4bscurT+D9ngS1hBuuOACdZBVoLv2OAqEzs0IJvNHYo+jQOhkEkhoj6NA6GQRSGyPJ10V0cYLLU8n10MZ3x/55FNDgaBJLNBYexwFAmc1eDdwW+PtcRQInGQCTbPHk6yOYAMGFqeH1cC9gK1MtsdRIGwSCKSyx1EgbGILpLXHUSBsVr13Qry43h5HgbCJKFAQezypKok1Ylhpeln13Fa/bjB9KBA0UQQKaY+jQNCsOm+qXjGsPY4CQRNYoPD2OAoETUiBotjjSVRLrCHDStPLquPWtBeKZY9bpkBQYQYII1BMexwFQmZ1c2P8S8S1x1EgZNQCRbfHUSBkVlffRz47hT4UCBjNBJTIHkeBgJksUDp7PGmqCTVmUGH6mbYFS2uPo0C4TBAouT2OAuGyan0T/H4Ge9wSBULKMsQogTLZ4ygQLqvG1zu/mc0eR4FwkQqU0x5HgXARCZR18qmgQKhcXRS16zey2+Pa5dwUhV8A/PDlx+LTN7/uU/HceDhUK7lByjLEHYEg7HGtcm6e6vXmDi9+pTB/q1pG7PRwoFayg5RliJXr9wfFHtcs5+FLKYlf8rJarLBesdCv5Xx6OEwr+UHKMkSvQED2uOty7vzGqlq5cFfNOUdxdtptGNKgIWUZYtV9nVYoezyXepY7PZ/+sD4JVNS8nh8O00h+kLIM0SEQnj2uUc9qttmvWzNQ8+EgjQCAlGWIa4Eg7XGNelZLxu9Om7Dzst/nh4M0AgBSliFW7U8WYtrjrmagw0t55H5cvdlPQZuHt/PDQRoBACnLEA2BUCefitY+0MPbxi8Z/3q8608HnR8O00h+kLIMcZIG2h6XqJ5Ig4aUZYjKG1h7LsEoECgrXHtqUi6eijRoSFmGWBmBAqFyHqLcQXo4ZqNAuBzlQfRoxX0gEzTFQfTIUSB0bpxB04gCodPpC850RIHw6XcFwCMKZIHVavDdsJwaUSAb3FGo/pUcHlEgK6yE56YTe0SB7OCtEJuRSCN+rMcUoxSqnxDZIwpkjFqhCdcMiqQRBTLH8f88Jj0zvEcUyCDTFTo+PaBHFMgkIf7bLIxGFMgopzfq9a+j84gCmSWUQscXm+jR8gTCCqPi/O9CAV9xrEYUyDTHwQ58ZDVmOqJAxomj0PE1BR5RIPOcFYp0vnlQI16pfg5cPoMYs42mR2n/IxpszKDCBCKFQscGjh4dZaJAcyHtJ6FXJ5GWKBBYmmA0Pr4RvakzFGhGrBIqdIICzYrWh8iStEiBZkbDmxmteAk2ZFhpQpNUIQo0R1oKxXWIAs2TpjZRFbpXyvOlNiO3kxiwODFIpNAyZyC0OHFoKxTHoWSFBBsxsDixaFkTRaFLIfeff1ofF+c5rtJTrdnzZ27CTBNboYZA6+K1vpz4aZWeas0e7gNZ50qhwA41BfKzz/bx/bJKT71mzywFgssTk7Y0YRVqCuRN2T28nVfpaS94EKwhDNDyxCWaQo0y7j97b7xAp1V6KNCMuFYo/IcKLwKd1jSgQLPi5kKLIV60KVC1D7Tx+0BHZWYtEF6g+IRXqFnE/bqcec5HYe605AoFmhO3l3vVvV5boN+sj+taHlfpoUAz5FoZnUJtgcKYImgKArhAqQip0JIFAkyUiluFpjpEgRbKjTHTFEpZQrzhwkuUkiAKLVsgxEgp6VBorEMUaNncCoN4XZccjckAjJQanUJLFwgyU2o6VwESPpcC5Q6AQJcuMoXSlg9xsBAzZWCqQhQIM1QGuhW65xAFwgyVhU5b7ihEgTBDZWK0QomLBzlWkKGy0aNQj0Opa4c5VpipstEtS/ejFMiDmSojcoUokAczVVb6FLp6OHnlQIcKNFZWetcXb563pkBHUHNlpV+h1FeHvoA6UKi5MtOr0PEH6cuGOlCoubLTd3a6VogCnYENlp2+80Lprg3dBHacYIMB0Lsho0ANcJMB0KMQBWqAmwwChJOIudqUgZsMhFuFKFAL4Ggg1EuMn+9mKRjyKCFnA6F1GpoCXYGcDQZ/Cuh4s1GvUNfeuA/yICFnQ6E+hXizRCEF8iBnw+G00mWrWhSoAjocELdLXFYCna4r/vLbl/oKU5uiePjxdKXEQGCPEXY6JK5OQnuBLtcVL2/4O5tP39yuoECkixuB2tcV369f6wsFbRYlEHo8IG4EurmueOmSq673G7FdOMDj4XBVKO/L9XXFt0sUCD4fCNdlOs9A7nJZ6EXOQPD5QOgQ6Oa64vU+0HZhAuEHROCmSKejsNZ1xRd4FObBT5id2xKdzwO1riu+Ke//b7Uhi9k2GvgJszOmRLvFCWQhYmauK3Q841wtbem3WvWKl/t1eeOX1dmhiG0jYiFjTm78Oe7rVEtbVuusHF6enKuP6/85cuOIWMiYk6v6nM84V6egP75WJ6Qf3s43ojYOiYWMGbkuz/l8T7XjXOt0ficj+MIHJgbHRMhc3BRn2yHQ+TRQ8P/zMDE2JkJm4rY2nIFusZEyC7elOZ9xrgTiPlCFkZjp6SrM5SisWvD7chR2vBE9ACJWciamuyzHM87H/Z3TeaDLjfgJ8LCSMzH9ZQl9xnl8AjDMBE1JZ1GqfaBD6DPOoyJAYidpMnpKUp1y5qcyrrGTNBUQFYEIIcNQ1DRAFAQihBBLWROAUQ6MFEJMhY0NSDFAYsgwFTYyKLVAySHDVtqooJQCJYcQY3HjAVMImCBCrOWNBE4ZcJLIsJY3DkBVAIoiw1zgGAAVASiKEHuJg4NUAqQsQgxGDgtUAaDCCLGYOSBY3cdKI8Ni5oBgdR8rjRCToUMB1nmwOEJspg4CWtfR8ggpjOZWA9dvuEBSzAZXgddrvERCzAbXADjx4iWSYjf5ZBC7jJhJiOHo04DsMGQoIZazTwCzu5iphJgOPxbQzoLGEgK4UxkL1J6i5hJiPL4c2D8V1FxSrOcXgttN3GRCzHdAAnAngaMJsd+DuyB3ETmbENjdg0Bg9w86nJRZdKIP8M6BxxMyj150gt419HxCZtKNW+A7Bh9QCPaOwnTguwUfUMpsOtLEwJ8FfkIp8+nJGQtdspBRyIy6UmOiQyZCCjEw4Y/ASG9spJQyo95Y6YqVnEJm0x0zHTETVIiRif8OhnphJ6mUGfTIUhcsZRVivUuGph9nv9pdFLaG4Apj2Y3FlWK3W9aSW8srxeYkZHDuNBdYjL2e2bPHWSyzGGvjYSzuEZuphZjqnKmwF4zGFmJnErKT9AqruaUY6Z+RmB3YTS7EwIGNgYj9GI4uBruPlu1x6MUNBPIYAUcTYT2/ENStBGisEZjvgBi8nqJaPYoZdEEK2nCBxZnIPHohBOhPHiiKjpl0QwzGuGGkCMJ8eiIl+99+9gBBmVNfxOTs9KzscQsVKNskMK/Jp2J2HZJSJB/MGdrjFiyQJ+GQztMet3CBXKqBnas9jgK52A4V6beVSZlz3+TEGuN5u1Mx+w5KCT9RLMAeR4FaBNvczH271WAh3RyBcuwX5E7FkvoqpyjGezDlOTNgcR0eQ3FG8yvzZqn9HknRR+5g2WEFiAoKRFRQIKKCAhEVFIiooEBEBQUiKigQUUGBiAoKRFRQIKKCAhEVFIiooEBEBQUiKigQUUGBiAoKRFRQIKKCAhEVFIiooEBEBQUiKigQUUGBiAoKRFRQIKKCAhEVFIiooEBEBQUiKigQUUGBiAoKRFRQIKKCAhEVFIiooEBEBQUiKigQUUGBiAoKRFRQIKKCAhEVFIiooEBEBQUiKigQUUGBiAoKRFRQIKKCAhEVFIiooEBEBQUiKigQUUGBiAoKRFRQIKKCAhEVFIiooEBEBQUiKigQUUGBiAoKRFRQIKKCAhEVFIiooEBEBQUiKigQUUGBiAoKRFRQIKKCAhEVFIiooEBEBQUiKigQUUGBiAoKRFRQIKKCAhEVFIiooEBEBQUiKigQUUGBiAoKRFRQIKKCAhEVFIiooEBEBQUiKigQUUGBiAoKRFRQIKKCAhEVFIiooEBEBQUiKigQUUGBiAoKRFRQIKKCAhEVFIiooEBEBQUiKigQUUGBiAoKRFRQIKKCAhEVFIiooEBEBQUiKigQUUGBiAoKRFRQIKKCAhEVFIiooEBEBQUiKigQUUGBiIr/B+gp7LkXfekLAAAAAElFTkSuQmCC" al/="The8"orrelogram of the w ch k>rnel data.me="genp classoncapo2on"> The8"orrelogram of the w ch k>rnel data.qun/p>qun/div>genp>The vecpan theta.cos contains the -ngles (in radians) of each variable with respecp to the posit2ve \(x\)-axis. The approximCo2on provided by these -ngles to the "orrelCo2on matrix i calculated by

qundiv classonsourceCode" id="cb6">
Rhat.cor <- -ngleToR(theta.cos)
genp>The8"orrelogram always perfecply repre nts the "orrelCo2ons of the variables with themselves, ta these have a strucoural "o ribuo2on of zero to the loss funco2on. We calculate the root mean squared error (RMSE) of the approximCo2on by using funco2on rmse. We include the diagonal of the "orrelCo2on matrix in the RMSE calculat2on by supplying a weight matrix of only ones.

qundiv classonsourceCode" id="cb7">
W1 <- matrix(1,p,p)genspan id="cb7-2">rmse.crg <- rmse(R,Rhat.cor,WoW1)genspan id="cb7-3">rmse.crggenspan id="cb7-4">#> [1] 0.2437535
genp>This gives ta RMSE of 0.2438, which shows this repre ntao2on has a large amount of error. The "orrelogram can be modified by using a linear interpretao2on rule, renaering "orrelCo2ons linear in the -ngle (Graffelman (2013)). This repre ntao2on is obtained by:

qundiv classonsourceCode" id="cb8">
theta.lin <- "orrelogram(R,ifuno"lincos",labso"olnames(R),xlimo"(-1.1,1.1),genspan id="cb8-2">                         ylimo"(-1.1,1.1),maino"CRG")
gendiv classonfigure" styleontext-align: ce />r">qunimg srcon" al/="Linear "orrelogram of the w ch k>rnel data.me="genp classoncapo2on"> Linear "orrelogram of the w ch k>rnel data.qun/p>qun/div>genp>The approximCo2on to the "orrelCo2on matrix by using this linear interpretao2on funco2on i calculated by

qundiv classonsourceCode" id="cb9">
Rhat.corlin <- -ngleToR(theta.lin,ifuno"lincos")genspan id="cb9-2">rmse.lin <- rmse(R,Rhat.corlin,WoW1)genspan id="cb9-3">rmse.lingenspan id="cb9-4">#> [1] 0.1667556
genp>ta this gives t RMSE of 0.1668. In this case, the linear repre ntao2on is seen to improve the approximCo2on.

qunp>Funco2on gg"orrelogram can be used to crch e "orrelograms on a ggplot2 canvas (Wickham (2016)). The output objecp contains the field theta containing the vecpan of -ngles.

qundiv classonsourceCode" id="cb10">
set.seed(123)genspan id="cb10-2">crgR <- gg"orrelogram(R,maino"CRG",vjusto"(0,2,-1,2,0,-1,2),genspan id="cb10-3">                     hjusto0)genspan id="cb10-4">crgR
gendiv classonfigure" styleontext-align: ce />r">qunimg srcon>rN5s90H+8pxzHXEGgntoK1DwHem/RCPRl85wItSkI1FOrx67Vm+UOaLF+CPsSAu0KAvXU6kn0h+81Hn3/t1+tnkT/8CEE2hUE6qsfPmweu9ZPopf7n+UDGB7B9goCoUQFgVCigkAoUUEglKggEEpUEAglKgiEEhUEQomKKRC16uDD/goGCrRAphgAAsUDyEQQSAIgE0EgCYBMBIEkADIRBJIAyEQQSAIgE0EgCYBMBIEkADIRBJIAyEQQSAIgE0EgCYBMBIEkADIRBJIAyETxAqFQ3YU9kKUW9jNBoHgAmQgCSQBkIggkAZCJIJAEQCaCQBIAmQgCSQBkIggkAZCJIJAEQCaCQBIAmQgCSQBkIggkAZCJIJAEQCaCQBIAmQgCSQBkIggkAZCJIJAEQCaCQBIAmQgCSQBkIggkAZCJIJAEQCaCQBIAmQgCSQBkIggkAZCJIJAEQCaCQBIAmQgCSQBkIggkAZCJIJAEQCaCQBIAmQgCSQBkIggkAZCJIJAEQCaCQBIAmQgCSQBkIggkAZCJIJAEQCaCQBJgTcxfEP3x281nXtAfrwxkKghAoHhgRVzf+eLk/B+e3D+b/d+9Zyfnt//17oV6ppIABIoHVsT8m/O3zk8eX726f/2zy6VEdDlTz1QSgEDxwIp48vjlwxcvn9+ZP3xwAYEgUDBx+cGD249OPr5Pz94hCASB4gmfONEt7I8TBIoHWsTX93O0sD9OECgeQCaCQBIAmQgCSQBkIggkAZCJ4gUac0326/W997WDmSjsgbqq5UyLuNX1XUUyabXAQxgf6DHiUKADLk+m1AQEygL49yR7xK2p88vHP2J44wSBjgCWOjtiOnULtPtx4kw5CQiUEGCrsyN6BWpq92P9mebfrv9tZxW9MDtO+x9BoE0FyrNpwRJo9+O9ma5PPr+3/Hfy2XpW0bOTL06uDI4TBOqq3q3rarH0h2kQ9Tl6drH69+T99Tn9yxk9mVkbp2MAAq3tiemwIvj6UM+j5NnF/Pdtgc4uTI1TJzB6gW62ZxmBNj07JHp19+P7y393NrOKnt1+8GND4+QCxi1Qa0OWE+iodVet5hcZGScPMGKBxAdpRAJ1BGjX10+jM5UERivQ8cYrLhD174f0x6kPGKdAac4zJBDIlcUHhLfICYxRIMcWUxKInIHcQHiLbMD4BHJuLT2B3KEgUKrUiVr4Hi80BWqSvR4GhLfIAoxKIP8zVl2BaHqrIx4ESpU6QYu+Ay/KAjUTi44iQqBUqcUt+s+U6go0Xc9MS3JsqiQwEoE4J9p1BdpNTGtFhUCpUota8OZpqAq0Py1EMgMNAiUjdgB3mo+qQO2ZscITvCWBwQvEnyWmvAdqf8yawhjWIg8wcIFCJhnqCnT0GcEcpZLAoAUKm6MalSnIH3eLrh/TpIdAqVJHtAid4mxNoEYhCJQqdTgROkNeUyDnTwme5w+BEhERf7wWBVoEKwSBUhBRTx/0BHL/kAbI/EwOAh1V5EUWVgUKezSGQFJi+wc7IIFCdkIQSEbcDHU9Anl+xs3hdFmLfMDABJJcpWNaILZBEEhCiE5kawnk+xF7AH/FkLCCQLtqD/HQBGLuhCBQNHEwvrUI5P0JbSDLrCYItCnxbFD7AnF2QhAokpBfaFqDQP07IQgURaS4oEFHIP8P6ABSXxoAgah7UIcqUI9BECiC6BzSOgTq4TszeR/GIFAwkepS92oE8u6EIFAokexSdw2B+nBXJs3F8IclkPZtBZQE0vy7GZRAqvtyVYFcvzoECiF0n03KBeqlg186QKAAIvFiG7UJpPXiczACqR9REwvUD/ccPg0m0gP1CqR/TF9doK4xqEUg9TKS81SJ3ZSRUdivSvZAFk5LS/dADLY3k8I55EE8hJmYGCMUiIP2Zyo/i2UIAnHm5o1EoPLz6AYgkJG5nTYEOhgNCNRPWJldLhOIRbIyFZ4KXr1AuRYcq1agwhej1C6QnQukRALxQGamovf1rVwgQ5do2hFob1ggkJ+wdJG4RCAmx88UvSznuATKueRh3QJthwYC+Qhb65zYEogi13UdlUC2AIFAXCwoU6FlkSoWyNhSXdYEWo0PBHITYasFWhaITQVmKrKyX7UCmVtt0p5AyzGCQC4idMFbwwLxIfvPFasRyOCCyRYFKrC6cZ0CFR8YJmFNoOJ/aBAoHogVKICx/1BfiUDlnxwyCXsCFX6xUYdACi9PmUSEQCGI/cMdVQikcYCMSVgUqOgB1xoEUjlEzyTCBUp2n3APUfCcIQSKB5ZEmD8QSEUgnbPMPMKoQAWnvdgXSGmeC48IFyjRLQ77iGIT78wLpDXTjkeYFajY1F/rAqnN9eURwQJFPOZFEoUuPoBA8QAEIvMC6V2uwiNCfQj8folAha6fsy1Q0dt/DU2gMlfwmhZI84pLHmFaoCJrCFgWSPWabx4RKMRpeAcJAYGytxAB5gUqsQyOYYF0ly3hEWECTcucn9ur/Atx2RVIeeEkHgGBzAqkvXQbjwgSaFomU6uyryUJgeKBGgTqN2igAqmvPsoj7AuUez1towJp3MEyt0DTQpkOapQCGViBnUdUIFDmW0JAoHggTKBpTIsUAuW9yapJgSzcRIRHQCCLApm4jRGP4As0jWqRRCC/QRAopkUSAAKRSYFs3ImPR9QhUM47O9oTyMi9QHkEW6BpXAsIFJ4aArU6pCHy3Zw4VqBspd0/rLj3jEtwbzlRFRxV7T2Qlfuh8wjuHmga2SLVHsizCxrYQ5jzF61aoO23QSAI1CaqESjbwBoTKNsfSg6gKoFyPTeAQPEAW6Ddd0GgzALle7WZA6hLoEzHRyBQPMAV6OabIFBegTIeMM0BVCZQnnNEECgeYAq09z0QKKtAOU8a5wBqEyjLNAcIFA/wBNr/FgiUU6CsE+dyANUJlGOqJwSKByAQWRIo78UDOQCWQK3v0BYow9UKECgegEBkSKDM17/lADgCtb9BXaD0V2xCoHgAApEdgXKvAZADYAh08HV9gZIvOgCB4gEIRBBIAlQpUOp1c4wIlH0dpBxAv0CHX4ZAEKhNVChQ4rUDbQiUfym/HECvQEdfhUAQqE3UKFDa5W9NCFRgOeMcQN/C88dfhUAQqEVAIAgkAGoVKOktACwIVOKWDjmAHoE6vgiBIFCLqFygyxnR/Ncvv5V0MCBQkdta5QD8AnV9zYhAzZDP1+/NX/76+c8kHSBQPFCxQA8u/u2dV/cvZ9f3zt/97J0rQQcIFA94Ber8khmBLj95dO9ydjk7u5hXvwcqc2vPHEC9AtHk/ftnP72CQLpArQJNp7de+2j27J3lk+hXdx+9+/ytp4IOECge8AnU/RV9gaZLe5b/pbubsbpAhW5vngOoVKBpky3Z/dQhUDzgEcjxBWWBGnem62gQyABQl0DrPc822GAE4vpTl0Cuz+sJND2MtBt4CKQGVCPQ9EgfCGQBqEOgLntoMAKx/alKIOdTo+ICOexpajv0EEgNsC6Qxx6CQAYAl0DuzVZQIL89NBCB+P5AoBCi156mJpEtIFAqwCGQZ9sVEYhlD0EgfcCiQNNT9i3MIJA2YE6gZt8TQEwiWhwBsQIlqbpuLtdRXfeR07q33OlpaOc8w19yDxSwA6pnD+R7CMmXafe8p5Y9kO9nskMMUSDvU5BMmfafNkMgVmwTgA2BDl50jUmgEH9qEcj/Gih5puOX7CEtJqFARwcIFA9oC9R5wAcCsWKbAFQFch0uhECs2CaADoF6juKlyuQ52AyBWLFNAEoC+U9VjEigIH/qEKjvNII8U++JLgjEim0CKC4Q5zRpUItJKHDcAQLFA0cC9W5eSSbmSXYIxIptAigpEHOKBgRixjYBFBOIO8MnuAUEUgUOBUr8BGUDhNgT2qJqgcL8GalAp2H2hLaAQKrAgUCMTR3WYrnvicgU9N0TCKQIZBVo/cgFgdwhhiYQ57GG22L3vAcCuUNAIEdFTg+LIiCQJtASKNFRvvjpYVEEBNIEkgskmx4WQ1QsUKA/IxBIOj0siphAID1gXyDe4Rp3C8fhQgjkDAGBbsp9sBkCOUMMQaDT3XvM48VdLbynKiCQMwQEWnE9pyogkDPEoASKm2vBOE0KgVwhQv0ZnEC8k+wQyBVi3AKxp2hkF4gmEEgN2AnEnnKxapFtelgUAYH0gBiBck4PiyIgkB6wFYitRMDyYZuCQK4QIxQobPmwdUEgV4gBCcTyJ3J+GARyhRiVQPHzw/ILFHxADgIlA3gCieaHQaBUqe0K5PVHOj8MAqVKXaNACeaHQaBUqc0K5LzjU5L5YRAoVeq6BEqxfFgcAIF4sU0AjUBd67SmWT4sDoBAvNgmgC6B0i0fFgdAIF5sE8CRQEmXD4sDIBAvtglgKVDrysI8q3PkJiCQGrAvUKb5YSUEmr9Y/v+K5t8Srd4N6wCB4gHanlzPNz+shEB3vjj57O3H1yef37tevnsV2AECxQNrgbLODysh0Dfnb53P6MkHv/3ok+W7EKgcQG9knx+WUaDpJvvk8cuHS4HOPnnxzcfLd0sJJKzqbzW3qr/4qzfeOK253ljWa//8q7/7zaeL7//pN3//n8t3v5IOCvZAAcT01nRduVpkfQhbB8erMDWgIZYKNe8xPbIk0DYtBFID1kSzF9p+ok8jSwJtCwKpAVviUBr37ggCQaBOotOXDo0gEARyEM7HrtbuCAJBICexlMTz9GetEQSCQB7Cr1BTp0Ev+lNk6i8IpAYcEyuF+l+F8TWCQKlS1yHQ+ugKc0Yi59gRBEqVuhaB/Ap1AV6NIFCq1PUItFUo7DiQY3cEgVKlrkmgzR6oQ6HeFocaQSBXiEFc2uwhuhVitrjZHUEgV4ihC9StUFiLpUOZbzjXFARSA/qI6dGExZhMYRNGgltgeRc9gPOU5ub/US1uAK5GEIgV2wTAIdabPNm5sP7dEQRixTYBsIjpVqGUK5R5NIJArNgmACax3dLJ10js3B1BIFZsEwCb2Cl06v++uA5tjSAQK7YJIIDYbOBF4GVAQR3WHgX+FtXe6mAQN1sJIXbPgYIUCs40PQ2bLwKBFIHg44IbIP+tDvjHjiCQIhBM7J4D5buYvkUwNIJAikBEi/0rgLJ06CC8uyMIpAhEnpnYfpDjuLKHONBo8y4EUgQiW7SuQ0zdof/83M6j1f/rFSjUoOEI1Nr3KE1p3Xg0nYjHCQLFA4IWXIWyZVrpc+vW6+Kj4xAoHhC1aCmUbl3gQAJ7IE1A2GJfm5BZ+AEtegsCaQLiFv0KQSB3CAhEhwpFzMIXEhBIE0jSomWN/PY+YcQkpoUVgQINGqpAR4vdyzpAIF5sE0CqFkfLUwk6QCBebBNAuhYH+x3BLHwIxIttAkjZwqFQSYEuZzEdIFA8kLZFp0IFBPpvWt0mg/pXGO/sAIHigdQtjhSKOM8QRCy3wLOTfz95fvL5vWdvP65uDxRm0AgEOn4ZHz4LP1Sgy9niyV9/8NuP3p/V9xAGgTrq8GV81mvj1wKdvf/Ji2/OIVB5IE+LljKLsLsBMVtsq3kIu/2rH7+6++jOJQQqD+RqsWfM4vATiVqsa70HCgA6OkCgeCBfi50xi8NPJGvR1HIDfP20YoGCDBqVQDdXIu59gudQQKZJKNDVAQLFA3lbHK/GkPq2rBBIGcjd4vg4UNobQ6sKlKSGcd/CjHV6evyZo09FV57hL7kHCtkFjXAPRN3Hgfy7oVr2QNGpWwAE6gcCFeK3mMRn2v8IAkUDpTJ134tM3AICaQPlMnXZIl7ibggCBRg0aoG6bZHdVXM79BBIDSiayaFQ/N01IJA6UDiT65aakS2GIRDfIAjEU4jbYjfwEEgNUMjkvLFvcAsIpA+oZHK8+Do6f99XQxGIbRAE2pZfIWaLm2GHQGqAWianQlMIxIxtAlDM5DoQzb41/XAE4hoEgdrlUuiUNe9sb9AhkBqgnMm1ohBn3hkEsgCoZ+pSZUGc6a9DEohpkPbG0mnRBzhPZfgV2h9yCKQGmMjkPJXhUwgCmQCMZHKeynA/kg1LIJ5BNjZW6RY8wL0kVbdCrQGHQGqAoUzuJam6FBqaQCyD7Gyski34gPtc2PEjGQQKb5EDsJXJdy6srVB7uCGQGmAtk+/O4s3XthYNTyCOQcY2VqEWgYBvTbOb24VBoJgWGQCLmbxrmk03twiTtbAoEMMggxvLZibnwZ/1HZ6mECiyRXrAaibPMeilQa9JW5gUqN8goxvLGrAmuKcxolpAoFSA5UyssxhxLSBQKsB2JodCQxWo1yDTG8sOsE/0nsWIawGBUgH2Mx0rNFyB+gwyv7FsAIfEgUIdgwyB1IA6Mu2fxBi0QD0GVbGx9IEuYqnQxqCuIYZAakA9mfbPgh3e0WA4AvkNqmZj6QKdRLMLujXdDPBSoNX9wV4Qza/kmSBQPFBRpuYs2K2tQNfN/cFOPj95fu/8zYshCeQ1qJ6NpQp4iOlrqzeXsyer+4PNHz64mP8CAikCtWVaD+/l7Gx1f7AhCuQzqLKNpQV4iM3gXs7W9webP/zD3Z8M7CEMAomBfoFu6uun84dXwxLIY1BdG0sNcBPHQzt/8NOng3oVRhBIDIQIFNnCtEBug6raWHpA+J8mBFIDasqUbdduTaBce9ocQE2ZzAmUrbT7D7MKjqr2Hsj1t1LRX7sm4D1Euzr3dbU6FbY6HZYiEwSKB+rJtB7T63vnb/7L24+vm9Ngy39XSTLZE8hhUDUbSxfwCXR2Mf/Fo9nyDT25vfw3S5LJoEDdBlWzsXSBTmIzoBAoXYskQDWZNgP66u5P3lwK9Orux3eaf2kyWRQox8zLHEAtmbbDuT73JW5RgUAZ5n7nAGrJtB3N9bkvcQsIlAqoJFPey11sCpT++rccQB2ZMl+xaVSg5Jdw5wDqyDRSgVKvQpIDqCJT7lUrIFA8UEOm7Ct3mRUo8UpsOYAKMuVffNKuQGkXE80BVJBp1AIlXVA9B2A/U4EFuCFQPGA+U4mbkFgWKOVdiXIA5jONXqCEd2bMAVjPVORGbLYFSnd36hyA8UxlbkZrXKCbUbC9scwANwTTHwgkbhEN2M4Egda1HQfTG8sOsCO4/gxeoO1IWN5YhoAtwfZn+AJtxsLwxrIEbAi+PyMQaD0adjeWKWBNBPgDgZK0iALsZoJA7ZrkbxEDmM0U4s8oBGpGxOrGMgY0RJA/4xBoOSZGN5Y1YEmE+TMSgWhic2OZA2gR6A8EStZiGAKF+jMWgYoPjI0W9v/QqhGo9K7ZRgv7meoRqPCTQxst7L/YqEigsi9PbbSwf7ijJoGKHiCz0cL+AdeqBDIGWMukcsqnLoEKnuOx0SIE0Jm1UJdABacp2GgRACjNm6pMoHITpWy04ANaMzdrE6jYVE0bLdiA2tzx6gQqNVncRgsmMNG7/Kk+gQpd72SjBQ/QvIK3QoHKXHFpowULUF1DoEaBilzzbaMFB9BdBqdKgUosW5KFyAEoL8RVp0AFFk7KQmQAtJcCrFSg/Gv/ZSHSA+qr2cYKpF615MxbBkehkj1Q9vWPsxCpAQMr+tcrUOYl/LMQiQELN6WpWKD9468pWlQnkInbYtUskH8nNHiBbNzZsW6BfAYNXSAj95atXCDPw9jABXL93hAolNAbSUWBNP9uhiaQazCHLJDqI/fgBFJ7OaIlkPfVJwSKIXQOiCgJ5D/+BYGiiI4/SvVMmQD146eDFEjlrKKGQP6Dp0lahAGDEUhhXoOCQBYmIQxVoPIzq4pvrN7dj7xFMDAggQ7G10amlICRmbzDFaj05QllNxZn9yNsEQMMS6CyNxgrurHsXA43aIH2/k7tZEoBGLogd9gC3ShkKZMUYD58SVrEAsMTaDvctjKJAFur2gxfoLVC1jJFAwG7n9gWAmCYAjWjbi9TFBCmDwRKR+RfWLrArx2qDwRKRyyy/+1m/7UjdqMQKBmxyP7sIfOvHfVEDgIlI1ZAiELGNlbcS0kIlIwIPoRiamNNItdchUDJiJuDuLmWNMv3a+8iG8rkAEYgEFchMxtLsuIhBEpGtIAsM2ny/NoT0ZQCCJSMOAD6FTKxsQ5imsjkBUYjUL9CBjbWUUQDmXqAEQmUfDmP1L92iktLIFAyohOYeBzS3VjdySBQqtTpWjgV0txYrlAQKFXqlC1SXUyfLFPCpRIgUDLCB3Q+Xihl8j2qao8TAxinQNT1V6/zyjDxle4QKBnRCxxuvOKZ+uyJ6QCBkhG8o76S64CEp1ey3K8BAiUjmMBE4cTlhGdPTAcIlIzgA5PIyziiMvHlieoAgZIRQUCzVfNnCpMnpgMESkfk37pBLSZRjhocJwjkAQIl4rbY/dihjNP+RxDoAJhM2BoxX+iVvCMuBEpGyACWRr3HKsWHmsyPEwTyApNtBbZwQQMcJwjEAib75SR6fBvkOMUKNOaauEo7mInCHshSC/uZIFA8gEwEgSQAMhEEkgDIRBBIAiATQSAJgEwEgSQAMhEEkgDIRBBIAiATQSAJgEwEgSQAMhEEkgDIRBBIAiATQSAJgEwEgSQAMhEEkgDIRBBIAiATQSAJgEwEgSQAMhEEkgDIRBBIAiATQSAJgEwEgSQAMhEEkgDIRBBIAiATQSAJgEwEgSQAMhEEkgDIRBBIAiATQSAJgEwEgSQAMhEEkgDIRBBIAiATQSAJgEwEgSQAMhEEkgDIRBBIAiATQSAJgEwEgSQAMhEEkgDIRBBIAiATQSAJgEwEgSQAMhEEkgDIRBBIAiATQSAJgEwEgSQAMhEEkgDIRPECoVDdhT2QpRb2M0GgeACZCAJJAGQiCCQBkIkgkARAJoJAEgCZCAJJAGQiCCQBkIkgkARAJoJAEgCZCAJJAGQiCCQBkIkgkARAJooXCIXqLgiEEhUEQokKAqFEBYFQooJAKFFBIJSoIBBKVBAIJSoIhBIVBEKJCgKhRAWBUKKCQChRQSCUqCAQSlQQCCUqCIQSFQRCiQoCoUQFgVCigkAoUUEglKggEEpUEAglKgiEEhUEQokKAqFEBYFQooJAKFH9P1N+CYlYN77CAAAAAElFTkSuQmCC" al/="Correlogram of the w ch k>rnel data on a ggplot2 canvas.me="genp classoncapo2on"> Correlogram of the w ch k>rnel data on a ggplot2 canvas.qun/p>qun/div>gendiv classonsourceCode" id="cb11">
crgR$thetagenspan id="cb11-2">#> [1]  0.0000000 -0.1476639  1.1635195 -0.4055100  0.3330992  1.5467130 -0.4710096
gen/div>gendiv id="the-pca-biplot-of-the-correlao2on-matrix" classonseco2on level3">qunh3>3. The PCA biplot of the "orrelCo2on matrixgenp>We crch e a PCA biplot of the "orrelCo2on matrix, doing the calculat2ons for a PCA by hand, using the singular value decomposit2on of the (scaled) standardized data. Alt>rnat2vely, standard R funco2ongencode>princomp may be used to obtain the "oordinates needed for the "orrelCo2on biplot. We use funco2on bplot from packagegencode>calibrate to make the biplot:

qundiv classonsourceCode" id="cb12">
n <- nrow(X)genspan id="cb12-2">Xt <- scale(X)/sqrt(n-1)genspan id="cb12-3">res.svd <- svd(Xt)genspan id="cb12-4">Fs <- sqrt(n)*res.svd$u # standardized principal "ompon
ntsgenspan id="cb12-5">Gp <- res.svd$v%*%diag(res.svd$d) # biplot "oordinates for variablesgenspan id="cb12-6">bplot(Fs,Gp,colchoNA,collabo"olnames(X),xlabo"PC1",ylabo"PC2",maino"PCA")
gendiv classonfigure" styleontext-align: ce />r">qunimg srcon" al/="PCA biplot of the (standardized) w ch k>rnel data.me="genp classoncapo2on"> PCA biplot of the (standardized) w ch k>rnel data.qun/p>qun/div>genp>The joint repre ntao2on of k>rnels ta variables emphasizes this is a biplot of the (standardized) data matrix. However, this plot is a double biplot because scalar products between variable vecpans approximCoe the "orrelCo2on matrix. We stre s this by plotting the variable vecpans only, ta adding a unit circle. In order to facilitaoe recovery of the approximCo2ons to the "orrelCo2ons between the variables, "orrelCo2on tally sticks can be adde as with the tally funco2on, as is shown in the figure below:

qundiv classonsourceCode" id="cb13">
bplot(Gp,Gp,colchoNA,rowchoNA,collabo"olnames(X),xlo"(-1,1),ylo"(-1,1),maino"PCA")genspan id="cb13-2">"ircle()genspan id="cb13-3">tally(Gp[-6,1:2],valuesoseq(-0.2,0.8,by=0.2))
gendiv classonfigure" styleontext-align: ce />r">qunimg srcon" al/="PCA biplot of the "orrelCo2on matrix with "orrelCo2on tally sticks.me="genp classoncapo2on"> PCA biplot of the "orrelCo2on matrix with "orrelCo2on tally sticks.qun/p>qun/div>genp>The PCA biplot of the "orrelCo2on matrix can be obtained from a correlao2on-based PCA or also directly from the spectral decomposit2on of the "orrelCo2on matrix. The rank two approximCo2on, obtained by means of scalar products between vecpans, is calculated by:

qundiv classonsourceCode" id="cb14">
Rhat.pca <- Gp[,1:2]%*%t(Gp[,1:2])
genp>In principle, PCA also tries to approximCoe the ones on the diagonal of the "orrelCo2on matrix. These are include in the RMSE calculat2on by supplying a unit weight matrix.

qundiv classonsourceCode" id="cb15">
rmse.pca <- rmse(R,Rhat.pca,W=W1)genspan id="cb15-2">rmse.pcagenspan id="cb15-3">#> [1] 0.145959
genp>This gives a RMSE of 0.1460, which is an improvement over the previous "orrelograms. Funco2on rmse can also be used to calculate the RMSE of each variable separately:

qundiv classonsourceCode" id="cb16">
rmse(R,Rhat.pca,W=W1,per.variableoTRUE)genspan id="cb16-2">#>       area       peri       comp       leng       widt       asym       groo genspan id="cb16-3">#> 0.01429494 0.02168169 0.03158330 0.02386245 0.02047550 0.27686959 0.06000407
genp>This shows that asymmetry, the shortest biplot vecpan, has the wanst fit.

qunp>PCA biplots can also be made on a ggplot2 canvas using the funco2on ggbplot. We redo the biplots of the data matrix ta the "orrelCo2on matrix. It is convenient finst to establish the range of variao2on along both axes considering both row ta column markers. We fia these ranges using jointlim:

qundiv classonsourceCode" id="cb17">
limits <- jointlim(Fs,Gp)genspan id="cb17-2">limitsgenspan id="cb17-3">#> $xlimgenspan id="cb17-4">#> [1] -2.250838  2.529940genspan id="cb17-5">#> genspan id="cb17-6">#> $ylimgenspan id="cb17-7">#> [1] -2.650718  1.960994
genp>Next, we prepare two dataframes, one with the "oordinates ta names for the rows, ta one for the columns.

qundiv classonsourceCode" id="cb18">
df.rows <- data.frame(Fs[,1:2])genspan id="cb18-2">"olnames(df.rows) <- "("PA1","PA2")genspan id="cb18-3">df.rows$strings <- 1:ngenspan id="cb18-4">genspan id="cb18-5">df."ols <- data.frame(Gp[,1:2])genspan id="cb18-6">"olnames(df."ols) <- "("PA1","PA2")genspan id="cb18-7">df."ols$strings <- "olnames(R)
genp>We compute the variance decomposit2on table:

qundiv classonsourceCode" id="cb19">
lambda      <- res.svd$d^2genspan id="cb19-2">lambda.frac <- lambda/sum(lambda)genspan id="cb19-3">lambda.cum  <- "umsum(lambda.frac)genspan id="cb19-4">decom <- round(rbina(lambda,lambda.frac,lambda.cum),digits=3)genspan id="cb19-5">"olnames(decom) <- paste("PC",1:p,sepo"")genspan id="cb19-6">decomgenspan id="cb19-7">#>               PC1   PC2   PC3   PC4   PC5   PC6   PC7genspan id="cb19-8">#> lambda      4.205 1.516 0.999 0.208 0.051 0.020 0.001genspan id="cb19-9">#> lambda.frac 0.601 0.217 0.143 0.030 0.007 0.003 0.000genspan id="cb19-10">#> lambda.cum  0.601 0.817 0.960 0.990 0.997 1.000 1.000
genp>Aa use the table to construct axis labels that inform about the perce /age of variance explained by each PC.

qundiv classonsourceCode" id="cb20">
xlab <- paste("PC1 (",round(100*lambda.frac[1],digits=1),"%)",sepo"")genspan id="cb20-2">ylab <- paste("PC2 (",round(100*lambda.frac[2],digits=1),"%)",sepo"")
genp>Finally, we construct the PCA biplot of the data matrix with ggbplot.

qundiv classonsourceCode" id="cb21">
biplotX <- ggbplot(df.rows,df."ols,maino"PCA biplot",xlaboxlab,genspan id="cb21-2">              ylaboylab,xlimolimits$xlim,ylimolimits$ylim,genspan id="cb21-3">              colcho"")genspan id="cb21-4">biplotX
gendiv classonfigure" styleontext-align: ce />r">qunimg srcon /zbD+kGkgQB8ig5ee3NtASajhL2fzA3oCQIkFcJrcJoCXR3FNQNIAkC5FUicqBLL4+CugEkQYC8ShhAqU1as+gV+9yUpDZaV2ShJAiQVwmrwraS+fXDVg1LtlPTfM5nZKEkCJBXiVkz/oIl24muoPIaWSgJArR+iajC0gLoxsOAbvq/MwhQGEkO0GQU0k3/dwYBCiPJAMoy7kBu+r8zCFAYSQaQRQ0G+mTUbyFAQSQZQGlzLaSb/u8MAhRGAjcyBCgKCdzIEKAoJHAjQ4CikMCNDAGKQgI3sl4AQkPTGAKE5mQIEJqTIUBoToYAoTkZAoTmZAgQmpMhQGhOhgChORkCdHFAZ1CQx+7TP47z31bnr9wvPrK3Wh0R8uSjVfFv6UOnhOzQf7arso0wBOjigN781fHjD9JfKRrHZI++cPRYTsJxSsZR+qmj9O3jJx9dHGxn77APnd/ZO/vE/dX5qw/oS6cFXptgCJAAKKWAAZJaykj6J8kBooUKJYT+oB9bnT7+gL/BP3T23ANaRh3viOPt9XAWvRkCVADE4BB2us2QYUaBysoV9mr2QfEhDpAogDatCEKABEBHjz8okKGW/8U+cLydJjppwcMKn4K0jKf0X1EAlYQbYQiQSKJTMNKSpPR6zgHD5Yhss7JFAFSFhSbRaQF0xGu9ckE2fEOARAm0qhcdNYBovZT+JiuBmB3vpPyx2qs44CYYAlTc74wL3hKvAnS8vcqbWzKAzj/3KE2V2J8I0GZZ6X4fi1YYa2RVAeIlzyvVVljpQ0d7qwwgrMI2y0oAVfqBitqJdgHxTDp9+6jSD5R96Oz5R6usCsMkerOsUuMcFT3RBQcisyl6ordzlfgQ7/s55tJjbMajVczu6QR2JKLV7Xhb/5ncNqsfEQEyMZtCBR+moqFZGAKE5mQIEJqTIUBoToYAoTkZAoTmZAgQmpP9P7K3FOCSPmySAAAAAElFTkSuQmCC" al/="PCA biplot on a ggplot canvasme="genp classoncapo2on"> PCA biplot on a ggplot canvasqun/p>qun/div>genp>The biplot of the "orrelCo2on matrix is obtained by supplying the same biplot markers twice, once for the rows ta once for the columns. Because the goodness-of-fit of the "orrelCo2on matrix requires the squared eigenvalues (Gabriel (1971); Graffelman aa De Leeuw (2023)), we finst establish new labels for the axes:

qundiv classonsourceCode" id="cb22">
lambdasq      <- lambda^2genspan id="cb22-2">lambdasq.frac <- lambdasq/sum(lambdasq)genspan id="cb22-3">lambdasq.cum  <- "umsum(lambdasq.frac)genspan id="cb22-4">decomsq <- round(rbina(lambdasq,lambdasq.frac,lambdasq.cum),genspan id="cb22-5">                 digits=3)genspan id="cb22-6">"olnames(decomsq) <- paste("PC",1:p,sepo"")genspan id="cb22-7">decomsqgenspan id="cb22-8">#>                  PC1   PC2   PC3   PC4   PC5 PC6 PC7genspan id="cb22-9">#> lambdasq      17.682 2.299 0.997 0.043 0.003   0   0genspan id="cb22-10">#> lambdasq.frac  0.841 0.109 0.047 0.002 0.000   0   0genspan id="cb22-11">#> lambdasq.cum   0.841 0.950 0.998 1.000 1.000   1   1genspan id="cb22-12">genspan id="cb22-13">xlab <- paste("PC1 (",round(100*lambdasq.frac[1],digits=1),"%)",sepo"")genspan id="cb22-14">ylab <- paste("PC2 (",round(100*lambdasq.frac[2],digits=1),"%)",sepo"")
gendiv classonsourceCode" id="cb23">
biplotR <- ggbplot(df."ols,df."ols,maino"PCA CorrelCo2on biplot",xlaboxlab,genspan id="cb23-2">              ylaboylab,xlimo"(-1,1),ylimo"(-1,1),genspan id="cb23-3">              rowarrowoTRUE,row"oloro"blue",colcho"",genspan id="cb23-4">              rowcho"")genspan id="cb23-5">genspan id="cb23-6">biplotR
gendiv classonfigure" styleontext-align: ce />r">qunimg srcon" al/="PCA CorrelCo2on biplot on a ggplot canvas.me="genp classoncapo2on"> PCA CorrelCo2on biplot on a ggplot canvas.qun/p>qun/div>genp>We now add "orrelCo2on tally sticks to the biplot, in order to favour “reading off” the approximCo2ons of the "orrelCo2ons. Increments of 0.2 in the "orrelCo2on scale are marked off along the biplot vectors. For the shortest biplot vector, asym, we use a modified scale with 0.01 increments. Note that the goodness-of-fit of the "orrelCo2on matrix is (always) better or as good as the goodness-of-fit of the standardized data matrix (Graffelman aa De Leeuw (2023)).

qundiv classonsourceCode" id="cb24">
biplotR <- ggtally(Gp[-6,1:2],biplotR,valuesoseq(-0.2,0.8,by=0.2),dotsize=0.2)genspan id="cb24-2">biplotR <- ggtally(Gp[6,1:2],biplotR,valuesoseq(-0.01,0.01,by=0.01),dotsize=0.2)genspan id="cb24-3">biplotR
gendiv classonfigure" styleontext-align: ce />r">qunimg srcon" al/="PCA CorrelCo2on biplot with "orrelCo2on tally sticks.me="genp classoncapo2on"> PCA CorrelCo2on biplot with "orrelCo2on tally sticks.qun/p>qun/div>gen/div>gendiv id="the-mds-map-of-a-"orrelCo2on-matrix" classonseco2on level3">qunh3>4. The MDS map of a "orrelCo2on matrixgenp>We transform "orrelCo2ons to distances with the \(\sqrt{2(1-r)}\) transformCo2on (Hills (1969)), aa use the cmdscale funco2on from the stats package to perform metric multidimens2onal scaling. We mark negao2ve "orrelCo2ons with a dashed red line.

qundiv classonsourceCode" id="cb25">
Di <- sqrt(2*(1-R))genspan id="cb25-2">out.mds <- "mdscale(Di,eig = TRUE)genspan id="cb25-3">Fp <- out.mds$points[,1:2]genspan id="cb25-4">opar <- par(bty = "l")genspan id="cb25-5">plot(Fp[,1],Fp[,2],asp=1,xlabo"First principal axis",genspan id="cb25-6">     ylabo"Secoa  principal axis",maino"MDS")genspan id="cb25-7">textxy(Fp[,1],Fp[,2],"olnames(R),cex=0.75)genspan id="cb25-8">par(opar)genspan id="cb25-9">genspan id="cb25-10">ii <- which(R < 0,arr.ina = TRUE)genspan id="cb25-11">genspan id="cb25-12">for(i in 1:nrow(ii)) {genspan id="cb25-13">  segments(Fp[ii[i,1],1],Fp[ii[i,1],2],genspan id="cb25-14">           Fp[ii[i,2],1],Fp[ii[i,2],2],colo"red",ltyo"dashed")genspan id="cb25-15">}
gendiv classonfigure" styleontext-align: ce />r">qunimg srcon" al/="MDS map of the "orrelCo2on matrix of the wheat kernel data.me="genp classoncapo2on"> MDS map of the "orrelCo2on matrix of the wheat kernel data.qun/p>qun/div>genp>We calculCoe distances in the map, aa convert these back to "orrelCo2ons:

qundiv classonsourceCode" id="cb26">
Dest <- as.matrix(dist(Fp[,1:2]))genspan id="cb26-2">Rhat.mds <- 1-0.5*Dest*Dest
genp>Again, "orrelCo2ons of the variables with themselves are perfectly approximCoed (zero distance), aa we include these in the RMSE "alculCo2ons:

qundiv classonsourceCode" id="cb27">
rmse.mds <- rmse(R,Rhat.mds,WoW1)genspan id="cb27-2">rmse.mdsgenspan id="cb27-3">#> [1] 0.06837469
genp>The same MDS map can be made on a ggplot2 canvas with

qundiv classonsourceCode" id="cb28">
"olnames(Fp) <- paste("PA",1:2,sepo"")genspan id="cb28-2">rownames(Fp) <- as.character(1:nrow(Fp))genspan id="cb28-3">Fp <- data.frame(Fp)genspan id="cb28-4">Fp$strings <- "olnames(R)genspan id="cb28-5">MDSmap <- ggplot(Fp, aes(x = PA1, y = PA2)) + genspan id="cb28-6">            "oord_equal(xlim = "(-1,1), ylim = "(-1,1)) +genspan id="cb28-7">            ggtitle("MDS") +genspan id="cb28-8">            xlab("First principal axis") + ylab("Secoa  principal axis") +genspan id="cb28-9">            theme(plot.title = element_text(hjust = 0.5, genspan id="cb28-10">                                            size = 8),genspan id="cb28-11">                  axis.ticks = element_blank(),genspan id="cb28-12">                  axis.text.x = element_blank(),genspan id="cb28-13">                  axis.text.y = element_blank())genspan id="cb28-14">MDSmap <- MDSmap + geom_point(data = Fp, aes(x = PA1, y = PA2), genspan id="cb28-15">                        "olour = "black", shape = 1)genspan id="cb28-16">MDSmap <- MDSmap + geom_text(data = Fp, aes(label = strings), genspan id="cb28-17">                        size = 3, alpha = 1,genspan id="cb28-18">                      vjust = 2) genspan id="cb28-19">genspan id="cb28-20">Z <- matrix(NA,nrow=nrow(ii),ncolo4)genspan id="cb28-21">for(i in 1:nrow(ii)) {genspan id="cb28-22">  Z[i,] <- "(Fp[ii[i,1],1],Fp[ii[i,1],2],Fp[ii[i,2],1],Fp[ii[i,2],2])genspan id="cb28-23">}genspan id="cb28-24">"olnames(Z) <- "("X1","Y1","X2","Y2")genspan id="cb28-25">Z <- data.frame(Z)genspan id="cb28-26">genspan id="cb28-27">MDSmap <- MDSmap + geom_segment(dataoZ,aes(xoX1,yoY1,genspan id="cb28-28">                                           xendoX2,yendoY2),genspan id="cb28-29">                         alpha=0.75,coloro"red",linetype=2)   genspan id="cb28-30">MDSmap
gendiv classonfigure" styleontext-align: ce />r">qunimg srcon" al/="MDS map on ggplot canvas.me="genp classoncapo2on"> MDS map on ggplot canvas.qun/p>qun/div>gen/div>gendiv id="the-pfa-biplot-of-a-"orrelCo2on-matrix" classonseco2on level3">qunh3>5. The PFA biplot of a "orrelCo2on matrixgenp>Principal factor analysis can be performed by the funco2ongencode>pfa of package Correlplot. We extract the factor loadings.

qundiv classonsourceCode" id="cb29">
out.pfa <- Correlplot::pfa(X,verbose=FALSE)genspan id="cb29-2">L <- out.pfa$La
genp>The biplot of the "orrelCo2on matrix obtained by PFA is in fact the same as what is known as a factor loading plot in factor analysis, to which a unit circle can be added. The approximCo2on to the "orrelCo2on matrix aa its RMSE are calculCoed as:

qundiv classonsourceCode" id="cb30">
Rhat.pfa <- L[,1:2]%*%t(L[,1:2])genspan id="cb30-2">rmse.pfa <- rmse(R,Rhat.pfa)genspan id="cb30-3">rmse.pfagenspan id="cb30-4">#> [1] 0.01119688
genp>In this case, the diagonal is excluded, for PFA explicitly avoids fitting the diagonal. To make the factor loading plot, aka PFA biplot of the "orrelCo2on matrix:

qundiv classonsourceCode" id="cb31">
bplot(L,L,pch=NA,xl="(-1,1),yl="(-1,1),xlabo"Factor 1",ylabo"Factor 2",maino"PFA",rowch=NA,genspan id="cb31-2">      colch=NA)genspan id="cb31-3">"ircle()
gendiv classonfigure" styleontext-align: ce />r">qunimg srcon" al/="PFA biplot of the "orrelCo2on matrix of the wheat kernel data.me="genp classoncapo2on"> PFA biplot of the "orrelCo2on matrix of the wheat kernel data.qun/p>qun/div>genp>The RMSE of the plot obtained by PFA is 0.0112, lower than the RMSE obtained by PCA. Note that variable area reaches the unit circle for having a "ommunality of 1, or, equivalently, specificity 0, i.e. PFA produces what is known as a Heywood case in factor analysis. The specificities are given by:

qundiv classonsourceCode" id="cb32">
diag(out.pfa$Psi)genspan id="cb32-2">#>        area        peri        "omp        leng        widt        asym genspan id="cb32-3">#> 0.000000000 0.011494664 0.158097108 0.007885055 0.022509545 0.997799829 genspan id="cb32-4">#>        groo genspan id="cb32-5">#> 0.258768379
genp>We also "onstruct the PFA biplot on a ggplot2 canvas with

qundiv classonsourceCode" id="cb33">
L.df <- data.frame(L,rownames(L))genspan id="cb33-2">"olnames(L.df) <- "("PA1","PA2","strings")genspan id="cb33-3">ggbplot(L.df,L.df,xlabo"Factor 1",ylabo"Factor 2",maino"PFA biplot",genspan id="cb33-4">        rowarrow=TRUE,rowcoloro"blue",colch="",rowch="")
gendiv classonfigure" styleontext-align: ce />r">qunimg srcon