## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = identical(tolower(Sys.getenv("NOT_CRAN")), "true"), out.width = "100%" ) ## ----message = FALSE, eval = FALSE-------------------------------------------- # # CRAN # install.packages("aopdata") # # # dev version from github # utils::remove.packages('aopdata') # devtools::install_github("ipeaGIT/aopdata", subdir = "r-package") # ## ----message = FALSE, eval = TRUE--------------------------------------------- library(aopdata) ## ----message = FALSE, eval = TRUE--------------------------------------------- # for English aopdata_dictionary(lang = 'en') # for Portuguese aopdata_dictionary(lang = 'pt') ## ----message = FALSE, eval = TRUE--------------------------------------------- # Download accessibility, population and land use data cur <- read_access( city = 'Curitiba', mode = 'public_transport', peak = TRUE, year = 2019, showProgress = FALSE ) ## ----message = FALSE, eval = TRUE--------------------------------------------- # Download accessibility, population and land use data cur <- read_access( city = 'Curitiba', mode = 'public_transport', peak = TRUE, year = 2019, geometry = TRUE ) ## ----message = FALSE, eval = TRUE--------------------------------------------- # Land use data lnu_for <- read_landuse( city = 'Fortaleza', year = 2019, geometry = TRUE, showProgress = FALSE ) # Population data pop_for <- read_population( city = 'Fortaleza', year = 2010, geometry = TRUE, showProgress = FALSE ) ## ----message = FALSE, eval = TRUE--------------------------------------------- h3_for <- read_grid(city = 'Fortaleza', showProgress = FALSE) head(h3_for) ## ----message = FALSE, eval = TRUE--------------------------------------------- df <- read_access(city = 'cur', mode = 'public_transport', year = 2019, peak = TRUE, showProgress = FALSE) df <- read_grid(city = 'for', showProgress = FALSE) ## ----message = FALSE, eval = FALSE-------------------------------------------- # all <- read_landuse(city = 'all', year = 2019) #