The Statistical Distributions section of the Boost Math library cover a broad range of areas
# Hyperexponential distribution with probabilities = c(0.5, 0.5) and rates = c(1, 2)
hyperexponential_pdf(2, c(0.5, 0.5), c(1, 2))
#> [1] 0.08598328
hyperexponential_lpdf(2, c(0.5, 0.5), c(1, 2))
#> [1] -2.453602
hyperexponential_cdf(2, c(0.5, 0.5), c(1, 2))
#> [1] 0.9231745
hyperexponential_lcdf(2, c(0.5, 0.5), c(1, 2))
#> [1] -0.07993696
hyperexponential_quantile(0.5, c(0.5, 0.5), c(1, 2))
#> [1] 0.4812118
# Hypergeometric distribution with r = 5, n = 10, N = 20
hypergeometric_pdf(3, 5, 10, 20)
#> [1] 0.3482972
hypergeometric_lpdf(3, 5, 10, 20)
#> [1] -1.054699
hypergeometric_cdf(3, 5, 10, 20)
#> [1] 0.8482972
hypergeometric_lcdf(3, 5, 10, 20)
#> [1] -0.1645242
hypergeometric_quantile(0.5, 5, 10, 20)
#> [1] 3
# Inverse Chi-Squared distribution with 3 degrees of freedom, scale = 1
inverse_chi_squared_pdf(2, 3, 1)
#> [1] 0.1730996
inverse_chi_squared_lpdf(2, 3, 1)
#> [1] -1.753888
inverse_chi_squared_cdf(2, 3, 1)
#> [1] 0.6822703
inverse_chi_squared_lcdf(2, 3, 1)
#> [1] -0.3823293
inverse_chi_squared_quantile(0.5, 3, 1)
#> [1] 1.267977
# Kolmogorov-Smirnov distribution with sample size n = 10
kolmogorov_smirnov_pdf(0.5, 10)
#> [1] 0.2695176
kolmogorov_smirnov_lpdf(0.5, 10)
#> [1] -1.311122
kolmogorov_smirnov_cdf(0.5, 10)
#> [1] 0.9865241
kolmogorov_smirnov_lcdf(0.5, 10)
#> [1] -0.01356751
kolmogorov_smirnov_quantile(0.5, 10)
#> [1] 0.2617017
# Noncentral Beta distribution with shape parameters alpha = 2, beta = 3
# and noncentrality parameter lambda = 1
non_central_beta_pdf(0.5, 2, 3, 1)
#> [1] 1.643543
non_central_beta_lpdf(0.5, 2, 3, 1)
#> [1] 0.4968546
non_central_beta_cdf(0.5, 2, 3, 1)
#> [1] 0.5977904
non_central_beta_lcdf(0.5, 2, 3, 1)
#> [1] -0.514515
non_central_beta_quantile(0.5, 2, 3, 1)
#> [1] 0.4416064
# Noncentral Chi-Squared distribution with 3 degrees of freedom and noncentrality
# parameter 1
non_central_chi_squared_pdf(2, 3, 1)
#> [1] 0.172252
non_central_chi_squared_lpdf(2, 3, 1)
#> [1] -1.758797
non_central_chi_squared_cdf(2, 3, 1)
#> [1] 0.3082525
non_central_chi_squared_lcdf(2, 3, 1)
#> [1] -1.176836
non_central_chi_squared_quantile(0.5, 3, 1)
#> [1] 3.213009
# Noncentral F distribution with df1 = 5, df2 = 2 and noncentrality
# parameter 1
non_central_f_pdf(1, 5, 2, 1)
#> [1] 0.3051418
non_central_f_lpdf(1, 5, 2, 1)
#> [1] -1.186979
non_central_f_cdf(1, 5, 2, 1)
#> [1] 0.3737987
non_central_f_lcdf(1, 5, 2, 1)
#> [1] -0.9840377
non_central_f_quantile(0.5, 5, 2, 1)
#> [1] 1.507635
# Noncentral T distribution with 3 degrees of freedom and noncentrality parameter 1
non_central_t_pdf(0, 3, 1)
#> [1] 0.2229319
non_central_t_lpdf(0, 3, 1)
#> [1] -1.500889
non_central_t_cdf(0, 3, 1)
#> [1] 0.1586553
non_central_t_lcdf(0, 3, 1)
#> [1] -1.841022
non_central_t_quantile(0.5, 3, 1)
#> [1] 1.091153