Old friends

Create the ggmice equivalent of mice plots

How to re-create the output of the plotting functions from mice with ggmice. In alphabetical order of the mice functions.

First load the ggmice, mice, and ggplot2 packages, some incomplete data and a mids object into your workspace.

# load packages
library(ggmice)
library(mice)
library(ggplot2)
# load incomplete dataset from mice
dat <- boys
# generate imputations
imp <- mice(dat, method = "pmm", printFlag = FALSE)

bwplot

Box-and-whisker plot of observed and imputed data.

# original plot
mice::bwplot(imp, hgt ~ .imp)

# ggmice equivalent
ggmice(imp, aes(x = .imp, y = hgt)) +
  geom_boxplot() +
  labs(x = "Imputation number")

# extended reproduction with ggmice
ggmice(imp, aes(x = .imp, y = hgt)) +
  stat_boxplot(geom = "errorbar", linetype = "dashed") +
  geom_boxplot(outlier.colour = "grey", outlier.shape = 1) +
  labs(x = "Imputation number") +
  theme(legend.position = "none")

densityplot

Density plot of observed and imputed data.

# original plot
mice::densityplot(imp, ~hgt)

# ggmice equivalent
ggmice(imp, aes(x = hgt, group = .imp)) +
  geom_density()

# extended reproduction with ggmice
ggmice(imp, aes(x = hgt, group = .imp, size = .where)) +
  geom_density() +
  scale_size_manual(
    values = c("observed" = 1, "imputed" = 0.5),
    guide = "none"
  ) +
  theme(legend.position = "none")

fluxplot

Influx and outflux plot of multivariate missing data patterns.

# original plot
fluxplot(dat)

# ggmice equivalent
plot_flux(dat)

md.pattern

Missing data pattern plot.

# original plot
md <- md.pattern(dat)

# ggmice equivalent
plot_pattern(dat)

# extended reproduction with ggmice
plot_pattern(dat, square = TRUE) +
  theme(
    legend.position = "none",
    axis.title = element_blank(),
    axis.title.x.top = element_blank(),
    axis.title.y.right = element_blank()
  )

plot.mids

Plot the trace lines of the MICE algorithm.

# original plot
plot(imp, hgt ~ .it | .ms)

# ggmice equivalent
plot_trace(imp, "hgt")

stripplot

Stripplot of observed and imputed data.

# original plot
mice::stripplot(imp, hgt ~ .imp)

# ggmice equivalent
ggmice(imp, aes(x = .imp, y = hgt)) +
  geom_jitter(width = 0.25) +
  labs(x = "Imputation number")

# extended reproduction with ggmice (not recommended)
ggmice(imp, aes(x = .imp, y = hgt)) +
  geom_jitter(
    shape = 1,
    width = 0.1,
    na.rm = TRUE,
    data = data.frame(
      hgt = dat$hgt,
      .imp = factor(rep(1:imp$m, each = nrow(dat))),
      .where = "observed"
    )
  ) +
  geom_jitter(shape = 1, width = 0.1) +
  labs(x = "Imputation number") +
  theme(legend.position = "none")

xyplot

Scatterplot of observed and imputed data.

# original plot
mice::xyplot(imp, hgt ~ age)

# ggmice equivalent
ggmice(imp, aes(age, hgt)) +
  geom_point()

# extended reproduction with ggmice
ggmice(imp, aes(age, hgt)) +
  geom_point(size = 2, shape = 1) +
  theme(legend.position = "none")

Extensions

Interactive plots

To make ggmice visualizations interactive, the plotly package can be used. For example, an interactive influx and outflux plot may be more legible than a static one.

# load packages
library(plotly)
# influx and outflux plot
p <- plot_flux(dat)
ggplotly(p)

Plot multiple variables

You may want to create a plot visualizing the imputations of multiple variables as one object. To visualize multiple variables at once, the variable names are saved in a vector. This vector is used together with the functional programming package purrr and visualization package patchwork to map() over the variables and subsequently wrap_plots to create a single figure.

# load packages
library(purrr)
library(patchwork)
# create vector with variable names
vrb <- names(dat)

Display box-and-whisker plots for all variables.

# original plot
mice::bwplot(imp)

# ggmice equivalent
p <- map(vrb, ~ {
  ggmice(imp, aes(x = .imp, y = .data[[.x]])) +
    geom_boxplot() +
    scale_x_discrete(drop = FALSE) +
    labs(x = "Imputation number")
})
wrap_plots(p, guides = "collect") &
  theme(legend.position = "bottom")

Display density plots for all variables.

# original plot
mice::densityplot(imp)

# ggmice equivalent
p <- map(vrb, ~ {
  ggmice(imp, aes(x = .data[[.x]], group = .imp)) +
    geom_density()
})
wrap_plots(p, guides = "collect") &
  theme(legend.position = "bottom")

Display strip plots for all variables.

# original plot
mice::stripplot(imp)

# ggmice equivalent
p <- map(vrb, ~ {
  ggmice(imp, aes(x = .imp, y = .data[[.x]])) +
    geom_jitter() +
    labs(x = "Imputation number")
})
wrap_plots(p, guides = "collect") &
  theme(legend.position = "bottom")


This is the end of the vignette. This document was generated using:

sessionInfo()
#> R version 4.5.0 (2025-04-11)
#> Platform: aarch64-apple-darwin20
#> Running under: macOS Sequoia 15.5
#> 
#> Matrix products: default
#> BLAS:   /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRblas.0.dylib 
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.1
#> 
#> locale:
#> [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#> 
#> time zone: Europe/Amsterdam
#> tzcode source: internal
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] patchwork_1.3.1 purrr_1.0.4     plotly_4.11.0   ggmice_0.1.1   
#> [5] ggplot2_3.5.2   mice_3.18.0    
#> 
#> loaded via a namespace (and not attached):
#>  [1] gtable_0.3.6       shape_1.4.6.1      xfun_0.52          bslib_0.9.0       
#>  [5] htmlwidgets_1.6.4  lattice_0.22-6     crosstalk_1.2.1    vctrs_0.6.5       
#>  [9] tools_4.5.0        Rdpack_2.6.4       generics_0.1.4     tibble_3.3.0      
#> [13] pan_1.9            pkgconfig_2.0.3    jomo_2.7-6         Matrix_1.7-3      
#> [17] data.table_1.17.8  RColorBrewer_1.1-3 lifecycle_1.0.4    compiler_4.5.0    
#> [21] farver_2.1.2       stringr_1.5.1      codetools_0.2-20   htmltools_0.5.8.1 
#> [25] sass_0.4.10        yaml_2.3.10        lazyeval_0.2.2     glmnet_4.1-9      
#> [29] pillar_1.11.0      nloptr_2.2.1       jquerylib_0.1.4    tidyr_1.3.1       
#> [33] MASS_7.3-65        cachem_1.1.0       reformulas_0.4.1   iterators_1.0.14  
#> [37] rpart_4.1.24       boot_1.3-31        foreach_1.5.2      mitml_0.4-5       
#> [41] nlme_3.1-168       tidyselect_1.2.1   digest_0.6.37      stringi_1.8.7     
#> [45] dplyr_1.1.4        labeling_0.4.3     splines_4.5.0      fastmap_1.2.0     
#> [49] grid_4.5.0         cli_3.6.5          magrittr_2.0.3     survival_3.8-3    
#> [53] broom_1.0.8        withr_3.0.2        scales_1.4.0       backports_1.5.0   
#> [57] rmarkdown_2.29     httr_1.4.7         nnet_7.3-20        lme4_1.1-37       
#> [61] evaluate_1.0.4     knitr_1.50         rbibutils_2.3      viridisLite_0.4.2 
#> [65] rlang_1.1.6        Rcpp_1.0.14        glue_1.8.0         rstudioapi_0.17.1 
#> [69] minqa_1.2.8        jsonlite_2.0.0     R6_2.6.1