
Package ‘gsDesign2’
June 27, 2025

Title Group Sequential Design with Non-Constant Effect

Version 1.1.5

Description The goal of 'gsDesign2' is to enable fixed or group sequential
design under non-proportional hazards. To enable highly flexible enrollment,
time-to-event and time-to-dropout assumptions, 'gsDesign2' offers piecewise
constant enrollment, failure rates, and dropout rates for a stratified
population. This package includes three methods for designs:
average hazard ratio, weighted logrank tests in Yung and Liu (2019)
<doi:10.1111/biom.13196>, and MaxCombo tests.
Substantial flexibility on top of what is in the 'gsDesign' package
is intended for selecting boundaries.

License GPL-3

URL https://merck.github.io/gsDesign2/,

https://github.com/Merck/gsDesign2

BugReports https://github.com/Merck/gsDesign2/issues

Encoding UTF-8

Depends R (>= 3.5.0)

Imports corpcor, data.table, dplyr, gsDesign, gt, methods, mvtnorm,
npsurvSS (>= 1.1.0), r2rtf, stats, survival, tibble, tidyr,
utils, Rcpp

Suggests covr, ggplot2, kableExtra, knitr, rmarkdown, simtrial,
testthat (>= 3.0.0)

VignetteBuilder knitr

LinkingTo Rcpp

RoxygenNote 7.3.2

NeedsCompilation yes

Author Keaven Anderson [aut],
Yujie Zhao [aut, cre],
Yilong Zhang [aut],
John Blischak [aut],
Yihui Xie [aut],

1

https://doi.org/10.1111/biom.13196
https://merck.github.io/gsDesign2/
https://github.com/Merck/gsDesign2
https://github.com/Merck/gsDesign2/issues

2 Contents

Nan Xiao [aut],
Jianxiao Yang [aut],
Amin Shirazi [ctb],
Ruixue Wang [ctb],
Yi Cui [ctb],
Ping Yang [ctb],
Xin Tong Li [ctb],
Chenxiang Li [ctb],
Hiroaki Fukuda [ctb],
Hongtao Zhang [ctb],
Yalin Zhu [ctb],
Shiyu Zhang [ctb],
Dickson Wanjau [ctb],
Merck & Co., Inc., Rahway, NJ, USA and its affiliates [cph]

Maintainer Yujie Zhao <yujie.zhao@merck.com>

Repository CRAN

Date/Publication 2025-06-27 21:40:02 UTC

Contents
ahr . 3
ahr_blinded . 5
as_gt . 6
as_rtf . 10
define_enroll_rate . 14
define_fail_rate . 15
expected_accrual . 16
expected_event . 18
expected_time . 21
fixed_design_ahr . 22
gs_b . 30
gs_bound_summary . 31
gs_cp_npe . 32
gs_create_arm . 33
gs_design_ahr . 35
gs_design_combo . 39
gs_design_npe . 42
gs_design_rd . 47
gs_design_wlr . 50
gs_info_ahr . 54
gs_info_combo . 55
gs_info_rd . 56
gs_info_wlr . 59
gs_power_ahr . 61
gs_power_combo . 65
gs_power_npe . 67
gs_power_rd . 71

ahr 3

gs_power_wlr . 76
gs_spending_bound . 81
gs_spending_combo . 83
gs_update_ahr . 85
ppwe . 87
pw_info . 89
s2pwe . 90
summary.fixed_design . 91
text_summary . 96
to_integer . 97
wlr_weight . 101

Index 104

ahr Average hazard ratio under non-proportional hazards

Description

Provides a geometric average hazard ratio under various non-proportional hazards assumptions for
either single or multiple strata studies. The piecewise exponential distribution allows a simple
method to specify a distribution and enrollment pattern where the enrollment, failure and dropout
rates changes over time.

Usage

ahr(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = define_fail_rate(duration = c(3, 100), fail_rate = log(2)/c(9, 18), hr =

c(0.9, 0.6), dropout_rate = 0.001),
total_duration = 30,
ratio = 1

)

Arguments

enroll_rate An enroll_rate data frame with or without stratum created by define_enroll_rate().

fail_rate A fail_rate data frame with or without stratum created by define_fail_rate().

total_duration Total follow-up from start of enrollment to data cutoff; this can be a single value
or a vector of positive numbers.

ratio Ratio of experimental to control randomization.

Value

A data frame with time (from total_duration), ahr (average hazard ratio), n (sample size), event
(expected number of events), info (information under given scenarios), and info0 (information
under related null hypothesis) for each value of total_duration input.

4 ahr

Specification

• Validate if input enrollment rate contains stratum column.

• Validate if input enrollment rate contains total duration column.

• Validate if input enrollment rate contains rate column.

• Validate if input failure rate contains stratum column.

• Validate if input failure rate contains duration column.

• Validate if input failure rate contains failure rate column.

• Validate if input failure rate contains hazard ratio column.

• Validate if input failure rate contains dropout rate column.

• Validate if input trial total follow-up (total duration) is a non-empty vector of positive integers.

• Validate if strata is the same in enrollment rate and failure rate.

• Compute the proportion in each group.

• Compute the expected events by treatment groups, stratum and time period.

• Calculate the expected number of events for all time points in the total duration and for all
stratification variables.

– Compute the expected events in for each strata.

* Combine the expected number of events of all stratification variables.

* Recompute events, hazard ratio and information under the given scenario of the com-
bined data for each strata.

– Combine the results for all time points by summarizing the results by adding up the
number of events, information under the null and the given scenarios.

• Return a data frame of overall event count, statistical information and average hazard ratio of
each value in total_duration.

• Calculation of ahr for different design scenarios, and the comparison to the simulation studies
are defined in vignette/AHRVignette.Rmd.

Examples

Example 1: default
ahr()

Example 2: default with multiple analysis times (varying total_duration)
ahr(total_duration = c(15, 30))

Example 3: stratified population
enroll_rate <- define_enroll_rate(

stratum = c(rep("Low", 2), rep("High", 3)),
duration = c(2, 10, 4, 4, 8),
rate = c(5, 10, 0, 3, 6)

)
fail_rate <- define_fail_rate(

stratum = c(rep("Low", 2), rep("High", 2)),
duration = c(1, Inf, 1, Inf),
fail_rate = c(.1, .2, .3, .4),

ahr_blinded 5

dropout_rate = .001,
hr = c(.9, .75, .8, .6)

)
ahr(enroll_rate = enroll_rate, fail_rate = fail_rate, total_duration = c(15, 30))

ahr_blinded Blinded estimation of average hazard ratio

Description

Based on blinded data and assumed hazard ratios in different intervals, compute a blinded estimate
of average hazard ratio (AHR) and corresponding estimate of statistical information. This function
is intended for use in computing futility bounds based on spending assuming the input hazard ratio
(hr) values for intervals specified here.

Usage

ahr_blinded(
surv = survival::Surv(time = simtrial::ex1_delayed_effect$month, event =
simtrial::ex1_delayed_effect$evntd),

intervals = c(3, Inf),
hr = c(1, 0.6),
ratio = 1

)

Arguments

surv Input survival object (see survival::Surv()); note that only 0 = censored, 1 =
event for survival::Surv().

intervals Vector containing positive values indicating interval lengths where the exponen-
tial rates are assumed. Note that a final infinite interval is added if any events
occur after the final interval specified.

hr Vector of hazard ratios assumed for each interval.

ratio Ratio of experimental to control randomization.

Value

A tibble with one row containing

• ahr - Blinded average hazard ratio based on assumed period-specific hazard ratios input in
fail_rate and observed events in the corresponding intervals.

• event - Total observed number of events.

• info0 - Information under related null hypothesis.

• theta - Natural parameter for group sequential design representing expected incremental drift
at all analyses.

6 as_gt

Specification

• Validate input hr is a numeric vector.

• Validate input hr is non-negative.

• Validate input intervals is a numeric vector > 0.

• Set final value in intervals to Inf

• Validate that hr and intervals have same length.

• For input time-to-event data, count number of events in each input interval by stratum.

• Compute the blinded estimate of average hazard ratio.

• Compute adjustment for information.

• Return a tibble of the sum of events, average hazard ratio, blinded average hazard ratio, and
the information.

Examples

ahr_blinded(
surv = survival::Surv(
time = simtrial::ex2_delayed_effect$month,
event = simtrial::ex2_delayed_effect$evntd

),
intervals = c(4, 100),
hr = c(1, .55),
ratio = 1

)

as_gt Convert summary table of a fixed or group sequential design object to
a gt object

Description

Convert summary table of a fixed or group sequential design object to a gt object

Usage

as_gt(x, ...)

S3 method for class 'fixed_design'
as_gt(x, title = NULL, footnote = NULL, ...)

S3 method for class 'gs_design'
as_gt(
x,
title = NULL,
subtitle = NULL,
colname_spanner = "Cumulative boundary crossing probability",

as_gt 7

colname_spannersub = c("Alternate hypothesis", "Null hypothesis"),
footnote = NULL,
display_bound = c("Efficacy", "Futility"),
display_columns = NULL,
display_inf_bound = FALSE,
...

)

Arguments

x A summary object of a fixed or group sequential design.

... Additional arguments (not used).

title A string to specify the title of the gt table.

footnote A list containing content, location, and attr. content is a vector of string
to specify the footnote text; location is a vector of string to specify the loca-
tions to put the superscript of the footnote index; attr is a vector of string to
specify the attributes of the footnotes, for example, c("colname", "title",
"subtitle", "analysis", "spanner"); users can use the functions in the gt
package to customize the table. To disable footnotes, use footnote = FALSE.

subtitle A string to specify the subtitle of the gt table.
colname_spanner

A string to specify the spanner of the gt table.
colname_spannersub

A vector of strings to specify the spanner details of the gt table.

display_bound A vector of strings specifying the label of the bounds. The default is c("Efficacy",
"Futility").

display_columns

A vector of strings specifying the variables to be displayed in the summary table.
display_inf_bound

Logical, whether to display the +/-inf bound.

Value

A gt_tbl object.

Examples

Fixed design examples ----

library(dplyr)

Enrollment rate
enroll_rate <- define_enroll_rate(

duration = 18,
rate = 20

)

Failure rates

8 as_gt

fail_rate <- define_fail_rate(
duration = c(4, 100),
fail_rate = log(2) / 12,
dropout_rate = .001,
hr = c(1, .6)

)

Study duration in months
study_duration <- 36

Experimental / Control randomization ratio
ratio <- 1

1-sided Type I error
alpha <- 0.025

Type II error (1 - power)
beta <- 0.1

Example 1 ----
fixed_design_ahr(

alpha = alpha, power = 1 - beta,
enroll_rate = enroll_rate, fail_rate = fail_rate,
study_duration = study_duration, ratio = ratio

) %>%
summary() %>%
as_gt()

Example 2 ----
fixed_design_fh(

alpha = alpha, power = 1 - beta,
enroll_rate = enroll_rate, fail_rate = fail_rate,
study_duration = study_duration, ratio = ratio

) %>%
summary() %>%
as_gt()

Group sequential design examples ---

library(dplyr)
Example 1 ----
The default output

gs_design_ahr() %>%
summary() %>%
as_gt()

gs_power_ahr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%
summary() %>%
as_gt()

gs_design_wlr() %>%
summary() %>%

as_gt 9

as_gt()

gs_power_wlr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%
summary() %>%
as_gt()

gs_power_combo() %>%
summary() %>%
as_gt()

gs_design_rd() %>%
summary() %>%
as_gt()

gs_power_rd() %>%
summary() %>%
as_gt()

Example 2 ----
Usage of title = ..., subtitle = ...
to edit the title/subtitle
gs_power_wlr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%

summary() %>%
as_gt(

title = "Bound Summary",
subtitle = "from gs_power_wlr"

)

Example 3 ----
Usage of colname_spanner = ..., colname_spannersub = ...
to edit the spanner and its sub-spanner
gs_power_wlr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%

summary() %>%
as_gt(

colname_spanner = "Cumulative probability to cross boundaries",
colname_spannersub = c("under H1", "under H0")

)

Example 4 ----
Usage of footnote = ...
to edit the footnote
gs_power_wlr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%

summary() %>%
as_gt(

footnote = list(
content = c(

"approximate weighted hazard ratio to cross bound.",
"wAHR is the weighted AHR.",
"the crossing probability.",
"this table is generated by gs_power_wlr."

),
location = c("~wHR at bound", NA, NA, NA),
attr = c("colname", "analysis", "spanner", "title")

10 as_rtf

)
)

Example 5 ----
Usage of display_bound = ...
to either show efficacy bound or futility bound, or both(default)
gs_power_wlr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%

summary() %>%
as_gt(display_bound = "Efficacy")

Example 6 ----
Usage of display_columns = ...
to select the columns to display in the summary table
gs_power_wlr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%

summary() %>%
as_gt(display_columns = c("Analysis", "Bound", "Nominal p", "Z", "Probability"))

as_rtf Write summary table of a fixed or group sequential design object to an
RTF file

Description

Write summary table of a fixed or group sequential design object to an RTF file

Usage

as_rtf(x, ...)

S3 method for class 'fixed_design'
as_rtf(
x,
title = NULL,
footnote = NULL,
col_rel_width = NULL,
orientation = c("portrait", "landscape"),
text_font_size = 9,
file,
...

)

S3 method for class 'gs_design'
as_rtf(
x,
title = NULL,
subtitle = NULL,
colname_spanner = "Cumulative boundary crossing probability",

as_rtf 11

colname_spannersub = c("Alternate hypothesis", "Null hypothesis"),
footnote = NULL,
display_bound = c("Efficacy", "Futility"),
display_columns = NULL,
display_inf_bound = TRUE,
col_rel_width = NULL,
orientation = c("portrait", "landscape"),
text_font_size = 9,
file,
...

)

Arguments

x A summary object of a fixed or group sequential design.

... Additional arguments (not used).

title A string to specify the title of the RTF table.

footnote A list containing content, location, and attr. content is a vector of string
to specify the footnote text; location is a vector of string to specify the loca-
tions to put the superscript of the footnote index; attr is a vector of string to
specify the attributes of the footnotes, for example, c("colname", "title",
"subtitle", "analysis", "spanner"); users can use the functions in the gt
package to customize the table.

col_rel_width Column relative width in a vector e.g. c(2,1,1) refers to 2:1:1. Default is NULL
for equal column width.

orientation Orientation in ’portrait’ or ’landscape’.

text_font_size Text font size. To vary text font size by column, use numeric vector with length
of vector equal to number of columns displayed e.g. c(9,20,40).

file File path for the output.

subtitle A string to specify the subtitle of the RTF table.
colname_spanner

A string to specify the spanner of the RTF table.
colname_spannersub

A vector of strings to specify the spanner details of the RTF table.

display_bound A vector of strings specifying the label of the bounds. The default is c("Efficacy",
"Futility").

display_columns

A vector of strings specifying the variables to be displayed in the summary table.
display_inf_bound

Logical, whether to display the +/-inf bound.

Value

as_rtf() returns the input x invisibly.

12 as_rtf

Examples

library(dplyr)

Enrollment rate
enroll_rate <- define_enroll_rate(

duration = 18,
rate = 20

)

Failure rates
fail_rate <- define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
dropout_rate = .001,
hr = c(1, .6)

)

Study duration in months
study_duration <- 36

Experimental / Control randomization ratio
ratio <- 1

1-sided Type I error
alpha <- 0.025

Type II error (1 - power)
beta <- 0.1

AHR ----
under fixed power
x <- fixed_design_ahr(

alpha = alpha, power = 1 - beta,
enroll_rate = enroll_rate, fail_rate = fail_rate,
study_duration = study_duration, ratio = ratio

) %>% summary()
x %>% as_rtf(file = tempfile(fileext = ".rtf"))
x %>% as_rtf(title = "Fixed design", file = tempfile(fileext = ".rtf"))
x %>% as_rtf(

footnote = "Power computed with average hazard ratio method given the sample size",
file = tempfile(fileext = ".rtf")

)
x %>% as_rtf(text_font_size = 10, file = tempfile(fileext = ".rtf"))

FH ----
under fixed power
fixed_design_fh(

alpha = alpha, power = 1 - beta,
enroll_rate = enroll_rate, fail_rate = fail_rate,
study_duration = study_duration, ratio = ratio

) %>%
summary() %>%

as_rtf 13

as_rtf(file = tempfile(fileext = ".rtf"))
#'

the default output
library(dplyr)

gs_design_ahr() %>%
summary() %>%
as_rtf(file = tempfile(fileext = ".rtf"))

gs_power_ahr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%
summary() %>%
as_rtf(file = tempfile(fileext = ".rtf"))

gs_design_wlr() %>%
summary() %>%
as_rtf(file = tempfile(fileext = ".rtf"))

gs_power_wlr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%
summary() %>%
as_rtf(file = tempfile(fileext = ".rtf"))

gs_power_combo() %>%
summary() %>%
as_rtf(file = tempfile(fileext = ".rtf"))

gs_design_rd() %>%
summary() %>%
as_rtf(file = tempfile(fileext = ".rtf"))

gs_power_rd() %>%
summary() %>%
as_rtf(file = tempfile(fileext = ".rtf"))

usage of title = ..., subtitle = ...
to edit the title/subtitle
gs_power_wlr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%

summary() %>%
as_rtf(

title = "Bound Summary",
subtitle = "from gs_power_wlr",
file = tempfile(fileext = ".rtf")

)

usage of colname_spanner = ..., colname_spannersub = ...
to edit the spanner and its sub-spanner
gs_power_wlr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%

summary() %>%
as_rtf(

colname_spanner = "Cumulative probability to cross boundaries",
colname_spannersub = c("under H1", "under H0"),
file = tempfile(fileext = ".rtf")

14 define_enroll_rate

)

usage of footnote = ...
to edit the footnote
gs_power_wlr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%

summary() %>%
as_rtf(

footnote = list(
content = c(

"approximate weighted hazard ratio to cross bound.",
"wAHR is the weighted AHR.",
"the crossing probability.",
"this table is generated by gs_power_wlr."

),
location = c("~wHR at bound", NA, NA, NA),
attr = c("colname", "analysis", "spanner", "title")

),
file = tempfile(fileext = ".rtf")

)

usage of display_bound = ...
to either show efficacy bound or futility bound, or both(default)
gs_power_wlr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%

summary() %>%
as_rtf(

display_bound = "Efficacy",
file = tempfile(fileext = ".rtf")

)

usage of display_columns = ...
to select the columns to display in the summary table
gs_power_wlr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%

summary() %>%
as_rtf(

display_columns = c("Analysis", "Bound", "Nominal p", "Z", "Probability"),
file = tempfile(fileext = ".rtf")

)

define_enroll_rate Define enrollment rate

Description

Define the enrollment rate of subjects for a study as following a piecewise exponential distribution.

Usage

define_enroll_rate(duration, rate, stratum = "All")

define_fail_rate 15

Arguments

duration A numeric vector of ordered piecewise study duration interval.
rate A numeric vector of enrollment rate in each duration.
stratum A character vector of stratum name.

Details

The duration are ordered piecewise for a duration equal to ti − ti−1, where 0 = t0 < ti < · · · <
tM = ∞. The enrollment rates are defined in each duration with the same length.
For a study with multiple strata, different duration and rates can be specified in each stratum.

Value

An enroll_rate data frame.

Examples

Define enroll rate without stratum
define_enroll_rate(

duration = c(2, 2, 10),
rate = c(3, 6, 9)

)

Define enroll rate with stratum
define_enroll_rate(

duration = rep(c(2, 2, 2, 18), 3),
rate = c((1:4) / 3, (1:4) / 2, (1:4) / 6),
stratum = c(array("High", 4), array("Moderate", 4), array("Low", 4))

)

define_fail_rate Define failure rate

Description

Define subject failure rate for a study with two treatment groups. Also supports stratified designs
that have different failure rates in each stratum.

Usage

define_fail_rate(duration, fail_rate, dropout_rate, hr = 1, stratum = "All")

Arguments

duration A numeric vector of ordered piecewise study duration interval.
fail_rate A numeric vector of failure rate in each duration in the control group.
dropout_rate A numeric vector of dropout rate in each duration.
hr A numeric vector of hazard ratio between treatment and control group.
stratum A character vector of stratum name.

16 expected_accrual

Details

Define the failure and dropout rate of subjects for a study as following a piecewise exponential
distribution. The duration are ordered piecewise for a duration equal to ti − ti−1, where 0 = t0 <
ti < · · · < tM = ∞. The failure rate, dropout rate, and hazard ratio in a study duration can be
specified.

For a study with multiple strata, different duration, failure rates, dropout rates, and hazard ratios can
be specified in each stratum.

Value

A fail_rate data frame.

Examples

Define enroll rate
define_fail_rate(

duration = c(3, 100),
fail_rate = log(2) / c(9, 18),
hr = c(.9, .6),
dropout_rate = .001

)

Define enroll rate with stratum
define_fail_rate(

stratum = c(rep("Low", 2), rep("High", 2)),
duration = 1,
fail_rate = c(.1, .2, .3, .4),
dropout_rate = .001,
hr = c(.9, .75, .8, .6)

)

expected_accrual Piecewise constant expected accrual

Description

Computes the expected cumulative enrollment (accrual) given a set of piecewise constant enroll-
ment rates and times.

Usage

expected_accrual(
time = 0:24,
enroll_rate = define_enroll_rate(duration = c(3, 3, 18), rate = c(5, 10, 20))

)

expected_accrual 17

Arguments

time Times at which enrollment is to be computed.

enroll_rate An enroll_rate data frame with or without stratum created by define_enroll_rate().

Value

A vector with expected cumulative enrollment for the specified times.

Specification

• Validate if input x is a vector of strictly increasing non-negative numeric elements.

• Validate if input enrollment rate is of type data.frame.

• Validate if input enrollment rate contains duration column.

• Validate if input enrollment rate contains rate column.

• Validate if rate in input enrollment rate is non-negative with at least one positive rate.

• Convert rates to step function.

• Add times where rates change to enrollment rates.

• Make a tibble of the input time points x, duration, enrollment rates at points, and expected
accrual.

• Extract the expected cumulative or survival enrollment.

• Return expected_accrual

Examples

library(tibble)

Example 1: default
expected_accrual()

Example 2: unstratified design
expected_accrual(

time = c(5, 10, 20),
enroll_rate = define_enroll_rate(

duration = c(3, 3, 18),
rate = c(5, 10, 20)

)
)

Example 3: stratified design
expected_accrual(

time = c(24, 30, 40),
enroll_rate = define_enroll_rate(

stratum = c("subgroup", "complement"),
duration = c(33, 33),
rate = c(30, 30)

)
)

18 expected_event

Example 4: expected accrual over time
Scenario 4.1: for the enrollment in the first 3 months,
it is exactly 3 * 5 = 15.
expected_accrual(

time = 3,
enroll_rate = define_enroll_rate(duration = c(3, 3, 18), rate = c(5, 10, 20))

)

Scenario 4.2: for the enrollment in the first 6 months,
it is exactly 3 * 5 + 3 * 10 = 45.
expected_accrual(

time = 6,
enroll_rate = define_enroll_rate(duration = c(3, 3, 18), rate = c(5, 10, 20))

)

Scenario 4.3: for the enrollment in the first 24 months,
it is exactly 3 * 5 + 3 * 10 + 18 * 20 = 405.
expected_accrual(

time = 24,
enroll_rate = define_enroll_rate(duration = c(3, 3, 18), rate = c(5, 10, 20))

)

Scenario 4.4: for the enrollment after 24 months,
it is the same as that from the 24 months, since the enrollment is stopped.
expected_accrual(

time = 25,
enroll_rate = define_enroll_rate(duration = c(3, 3, 18), rate = c(5, 10, 20))

)

Instead of compute the enrolled subjects one time point by one time point,
we can also compute it once.
expected_accrual(

time = c(3, 6, 24, 25),
enroll_rate = define_enroll_rate(duration = c(3, 3, 18), rate = c(5, 10, 20))

)

expected_event Expected events observed under piecewise exponential model

Description

Computes expected events over time and by strata under the assumption of piecewise constant en-
rollment rates and piecewise exponential failure and censoring rates. The piecewise exponential
distribution allows a simple method to specify a distribution and enrollment pattern where the en-
rollment, failure and dropout rates changes over time. While the main purpose may be to generate
a trial that can be analyzed at a single point in time or using group sequential methods, the routine
can also be used to simulate an adaptive trial design. The intent is to enable sample size calculations
under non-proportional hazards assumptions for stratified populations.

expected_event 19

Usage

expected_event(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = define_fail_rate(duration = c(3, 100), fail_rate = log(2)/c(9, 18),

dropout_rate = 0.001),
total_duration = 25,
simple = TRUE

)

Arguments

enroll_rate An enroll_rate data frame with or without stratum created by define_enroll_rate().

fail_rate A fail_rate data frame with or without stratum created by define_fail_rate().

total_duration Total follow-up from start of enrollment to data cutoff.

simple If default (TRUE), return numeric expected number of events, otherwise a data
frame as described below.

Details

More periods will generally be supplied in output than those that are input. The intent is to enable
expected event calculations in a tidy format to maximize flexibility for a variety of purposes.

Value

The default when simple = TRUE is to return the total expected number of events as a real number.
Otherwise, when simple = FALSE, a data frame is returned with the following variables for each
period specified in fail_rate:

• t: start of period.

• fail_rate: failure rate during the period.

• event: expected events during the period.

The records in the returned data frame correspond to the input data frame fail_rate.

Specification

• Validate if input enrollment rate contains total duration column.

• Validate if input enrollment rate contains rate column.

• Validate if input failure rate contains duration column.

• Validate if input failure rate contains failure rate column.

• Validate if input failure rate contains dropout rate column.

• Validate if input trial total follow-up (total duration) is a non-empty vector of positive integers.

• Validate if input simple is logical.

20 expected_event

• Define a data frame with the start opening for enrollment at zero and cumulative duration.
Add the event (or failure) time corresponding to the start of the enrollment. Finally, add
the enrollment rate to the data frame corresponding to the start and end (failure) time. This
will be recursively used to calculate the expected number of events later. For details, see
vignette/eEventsTheory.Rmd

• Define a data frame including the cumulative duration of failure rates, the corresponding start
time of the enrollment, failure rate and dropout rates. For details, see vignette/eEventsTheory.Rmd

• Only consider the failure rates in the interval of the end failure rate and total duration.

• Compute the failure rates over time using stepfun which is used to group rows by periods
defined by fail_rate.

• Compute the dropout rate over time using stepfun.

• Compute the enrollment rate over time using stepfun. Details are available in vignette/eEventsTheory.Rmd.

• Compute expected events by interval at risk using the notations and descriptions in vignette/eEventsTheory.Rmd.

• Return expected_event

Examples

library(gsDesign2)

Default arguments, simple output (total event count only)
expected_event()

Event count by time period
expected_event(simple = FALSE)

Early cutoff
expected_event(total_duration = .5)

Single time period example
expected_event(

enroll_rate = define_enroll_rate(duration = 10, rate = 10),
fail_rate = define_fail_rate(duration = 100, fail_rate = log(2) / 6, dropout_rate = .01),
total_duration = 22,
simple = FALSE

)

Single time period example, multiple enrollment periods
expected_event(

enroll_rate = define_enroll_rate(duration = c(5, 5), rate = c(10, 20)),
fail_rate = define_fail_rate(duration = 100, fail_rate = log(2) / 6, dropout_rate = .01),
total_duration = 22, simple = FALSE

)

expected_time 21

expected_time Predict time at which a targeted event count is achieved

Description

expected_time() is made to match input format with ahr() and to solve for the time at which the
expected accumulated events is equal to an input target. Enrollment and failure rate distributions
are specified as follows. The piecewise exponential distribution allows a simple method to specify
a distribution and enrollment pattern where the enrollment, failure and dropout rates changes over
time.

Usage

expected_time(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9) * 5),
fail_rate = define_fail_rate(stratum = "All", duration = c(3, 100), fail_rate =

log(2)/c(9, 18), hr = c(0.9, 0.6), dropout_rate = rep(0.001, 2)),
target_event = 150,
ratio = 1,
interval = c(0.01, 100)

)

Arguments

enroll_rate An enroll_rate data frame with or without stratum created by define_enroll_rate().

fail_rate A fail_rate data frame with or without stratum created by define_fail_rate().

target_event The targeted number of events to be achieved.

ratio Experimental:Control randomization ratio.

interval An interval that is presumed to include the time at which expected event count
is equal to target_event.

Value

A data frame with Time (computed to match events in target_event), AHR (average hazard ratio),
Events (target_event input), info (information under given scenarios), and info0 (information
under related null hypothesis) for each value of total_duration input.

Specification

• Use root-finding routine with ‘AHR()‘ to find time at which targeted events accrue.

• Return a data frame with a single row with the output from ‘AHR()‘ got the specified output.

22 fixed_design_ahr

Examples

Example 1 ----
default

expected_time()

Example 2 ----
check that result matches a finding using AHR()
Start by deriving an expected event count
enroll_rate <- define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9) * 5)
fail_rate <- define_fail_rate(

duration = c(3, 100),
fail_rate = log(2) / c(9, 18),
hr = c(.9, .6),
dropout_rate = .001

)
total_duration <- 20
xx <- ahr(enroll_rate, fail_rate, total_duration)
xx

Next we check that the function confirms the timing of the final analysis.

expected_time(enroll_rate, fail_rate,
target_event = xx$event, interval = c(.5, 1.5) * xx$time

)

Example 3 ----
In this example, we verify `expected_time()` by `ahr()`.

x <- ahr(
enroll_rate = enroll_rate, fail_rate = fail_rate,
ratio = 1, total_duration = 20

)

cat("The number of events by 20 months is ", x$event, ".\n")

y <- expected_time(
enroll_rate = enroll_rate, fail_rate = fail_rate,
ratio = 1, target_event = x$event

)

cat("The time to get ", x$event, " is ", y$time, "months.\n")

fixed_design_ahr Fixed design under non-proportional hazards

fixed_design_ahr 23

Description

Computes fixed design sample size (given power) or power (given sample size) by:

• fixed_design_ahr() - Average hazard ratio method.

• fixed_design_fh() - Weighted logrank test with Fleming-Harrington weights (Farrington
and Manning, 1990).

• fixed_design_mb() - Weighted logrank test with Magirr-Burman weights.

• fixed_design_lf() - Lachin-Foulkes method (Lachin and Foulkes, 1986).

• fixed_design_maxcombo() - MaxCombo method.

• fixed_design_rmst() - RMST method.

• fixed_design_milestone() - Milestone method.

Additionally, fixed_design_rd() provides fixed design for binary endpoint with treatment effect
measuring in risk difference.

Usage

fixed_design_ahr(
enroll_rate,
fail_rate,
alpha = 0.025,
power = NULL,
ratio = 1,
study_duration = 36,
event = NULL

)

fixed_design_fh(
alpha = 0.025,
power = NULL,
ratio = 1,
study_duration = 36,
enroll_rate,
fail_rate,
rho = 0,
gamma = 0

)

fixed_design_lf(
alpha = 0.025,
power = NULL,
ratio = 1,
study_duration = 36,
enroll_rate,
fail_rate

)

24 fixed_design_ahr

fixed_design_maxcombo(
alpha = 0.025,
power = NULL,
ratio = 1,
study_duration = 36,
enroll_rate,
fail_rate,
rho = c(0, 0, 1),
gamma = c(0, 1, 0),
tau = rep(-1, 3)

)

fixed_design_mb(
alpha = 0.025,
power = NULL,
ratio = 1,
study_duration = 36,
enroll_rate,
fail_rate,
tau = 6,
w_max = Inf

)

fixed_design_milestone(
alpha = 0.025,
power = NULL,
ratio = 1,
enroll_rate,
fail_rate,
study_duration = 36,
tau = NULL

)

fixed_design_rd(
alpha = 0.025,
power = NULL,
ratio = 1,
p_c,
p_e,
rd0 = 0,
n = NULL

)

fixed_design_rmst(
alpha = 0.025,
power = NULL,
ratio = 1,
study_duration = 36,

fixed_design_ahr 25

enroll_rate,
fail_rate,
tau = NULL

)

Arguments

enroll_rate Enrollment rates defined by define_enroll_rate().

fail_rate Failure and dropout rates defined by define_fail_rate().

alpha One-sided Type I error (strictly between 0 and 1).

power Power (NULL to compute power or strictly between 0 and 1 - alpha otherwise).

ratio Experimental:Control randomization ratio.

study_duration Study duration.

event A numerical vector specifying the targeted events at each analysis. See details.

rho A vector of numbers paring with gamma and tau for MaxCombo test.

gamma A vector of numbers paring with rho and tau for MaxCombo test.

tau Test parameter in RMST.

w_max Test parameter of Magirr-Burman method.

p_c A numerical value of the control arm rate.

p_e A numerical value of the experimental arm rate.

rd0 Risk difference under null hypothesis, default is 0.

n Sample size. If NULL with power input, the sample size will be computed to
achieve the targeted power

Value

A list of design characteristic summary.

Examples

AHR method ----
library(dplyr)

Example 1: given power and compute sample size
x <- fixed_design_ahr(

alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

),
study_duration = 36

)
x %>% summary()

26 fixed_design_ahr

Example 2: given sample size and compute power
x <- fixed_design_ahr(

alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(
duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

),
study_duration = 36

)
x %>% summary()

WLR test with FH weights ----
library(dplyr)

Example 1: given power and compute sample size
x <- fixed_design_fh(

alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

),
study_duration = 36,
rho = 1, gamma = 1

)
x %>% summary()

Example 2: given sample size and compute power
x <- fixed_design_fh(

alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

),
study_duration = 36,
rho = 1, gamma = 1

)
x %>% summary()

LF method ----
library(dplyr)

Example 1: given power and compute sample size
x <- fixed_design_lf(

fixed_design_ahr 27

alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(

duration = 100,
fail_rate = log(2) / 12,
hr = .7,
dropout_rate = .001

),
study_duration = 36

)
x %>% summary()

Example 2: given sample size and compute power
x <- fixed_design_lf(

alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(

duration = 100,
fail_rate = log(2) / 12,
hr = .7,
dropout_rate = .001

),
study_duration = 36

)
x %>% summary()

MaxCombo test ----
library(dplyr)

Example 1: given power and compute sample size
x <- fixed_design_maxcombo(

alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

),
study_duration = 36,
rho = c(0, 0.5), gamma = c(0, 0), tau = c(-1, -1)

)
x %>% summary()

Example 2: given sample size and compute power
x <- fixed_design_maxcombo(

alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

28 fixed_design_ahr

),
study_duration = 36,
rho = c(0, 0.5), gamma = c(0, 0), tau = c(-1, -1)

)
x %>% summary()

WLR test with MB weights ----
library(dplyr)

Example 1: given power and compute sample size
x <- fixed_design_mb(

alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

),
study_duration = 36,
tau = 4,
w_max = 2

)
x %>% summary()

Example 2: given sample size and compute power
x <- fixed_design_mb(

alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

),
study_duration = 36,
tau = 4,
w_max = 2

)
x %>% summary()

Milestone method ----
library(dplyr)

Example 1: given power and compute sample size
x <- fixed_design_milestone(

alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(

duration = 100,
fail_rate = log(2) / 12,
hr = .7,
dropout_rate = .001

fixed_design_ahr 29

),
study_duration = 36,
tau = 18

)
x %>% summary()

Example 2: given sample size and compute power
x <- fixed_design_milestone(

alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(

duration = 100,
fail_rate = log(2) / 12,
hr = .7,
dropout_rate = .001

),
study_duration = 36,
tau = 18

)
x %>% summary()

Binary endpoint with risk differences ----
library(dplyr)

Example 1: given power and compute sample size
x <- fixed_design_rd(

alpha = 0.025, power = 0.9, p_c = .15, p_e = .1,
rd0 = 0, ratio = 1

)
x %>% summary()

Example 2: given sample size and compute power
x <- fixed_design_rd(

alpha = 0.025, power = NULL, p_c = .15, p_e = .1,
rd0 = 0, n = 2000, ratio = 1

)
x %>% summary()

RMST method ----
library(dplyr)

Example 1: given power and compute sample size
x <- fixed_design_rmst(

alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(

duration = 100,
fail_rate = log(2) / 12,
hr = .7,
dropout_rate = .001

),
study_duration = 36,
tau = 18

30 gs_b

)
x %>% summary()

Example 2: given sample size and compute power
x <- fixed_design_rmst(

alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(
duration = 100,
fail_rate = log(2) / 12,
hr = .7,
dropout_rate = .001

),
study_duration = 36,
tau = 18

)
x %>% summary()

gs_b Default boundary generation

Description

gs_b() is the simplest version of a function to be used with the upper and lower arguments
in gs_power_npe() and gs_design_npe() or the upper_bound and lower_bound arguments in
gs_prob_combo() and pmvnorm_combo(). It simply returns the vector of Z-values in the input vec-
tor par or, if k is specified, par[k] is returned. Note that if bounds need to change with changing
information at analyses, gs_b() should not be used. For instance, for spending function bounds use
gs_spending_bound().

Usage

gs_b(par = NULL, k = NULL, ...)

Arguments

par For gs_b(), this is just Z-values for the boundaries; can include infinite values.
k Is NULL (default), return par, else return par[k].
... Further arguments passed to or from other methods.

Value

Returns the vector input par if k is NULL, otherwise, par[k].

Specification

• Validate if the input k is null as default.
– If the input k is null as default, return the whole vector of Z-values of the boundaries.
– If the input k is not null, return the corresponding boundary in the vector of Z-values.

• Return a vector of boundaries.

gs_bound_summary 31

Examples

Simple: enter a vector of length 3 for bound
gs_b(par = 4:2)

2nd element of par
gs_b(par = 4:2, k = 2)

Generate an efficacy bound using a spending function
Use Lan-DeMets spending approximation of O'Brien-Fleming bound
as 50%, 75% and 100% of final spending
Information fraction
IF <- c(.5, .75, 1)
gs_b(par = gsDesign::gsDesign(

alpha = .025, k = length(IF),
test.type = 1, sfu = gsDesign::sfLDOF,
timing = IF

)$upper$bound)

gs_bound_summary Bound summary table

Description

Summarizes the efficacy and futility bounds for each analysis.

Usage

gs_bound_summary(
x,
digits = 4,
ddigits = 2,
tdigits = 0,
timename = "Month",
alpha = NULL

)

Arguments

x Design object.

digits Number of digits past the decimal to be printed in the body of the table.

ddigits Number of digits past the decimal to be printed for the natural parameter delta.

tdigits Number of digits past the decimal point to be shown for estimated timing of
each analysis.

timename Text string indicating time unit.

alpha Vector of alpha values to compute additional efficacy columns.

32 gs_cp_npe

Value

A data frame

See Also

gsDesign::gsBoundSummary()

Examples

library(gsDesign2)

x <- gs_design_ahr(info_frac = c(.25, .75, 1), analysis_time = c(12, 25, 36))
gs_bound_summary(x)

x <- gs_design_wlr(info_frac = c(.25, .75, 1), analysis_time = c(12, 25, 36))
gs_bound_summary(x)

Report multiple efficacy bounds (only supported for AHR designs)
x <- gs_design_ahr(analysis_time = 1:3*12, alpha = 0.0125)
gs_bound_summary(x, alpha = c(0.025, 0.05))

gs_cp_npe Conditional power computation with non-constant effect size

Description

Conditional power computation with non-constant effect size

Usage

gs_cp_npe(theta = NULL, info = NULL, a = NULL, b = NULL)

Arguments

theta A vector of length two, which specifies the natural parameter for treatment ef-
fect. The first element of theta is the treatment effect of an interim analysis i.
The second element of theta is the treatment effect of a future analysis j.

info A vector of two, which specifies the statistical information under the treatment
effect theta.

a Interim z-value at analysis i (scalar).

b Future target z-value at analysis j (scalar).

gs_create_arm 33

Details

We assume Z1 and Z2 are the z-values at an interim analysis and later analysis, respectively. We
assume further Z1 and Z2 are bivariate normal with standard group sequential assumptions on
independent increments where for i = 1, 2

E(Zi) = θi
√

Ii

V ar(Zi) = 1/Ii

Cov(Z1, Z2) = t ≡ I1/I2

where θ1, θ2 are real values and 0 < I1 < I2. See https://merck.github.io/gsDesign2/articles/story-
npe-background.html for assumption details. Returned value is

P (Z2 > b | Z1 = a) = 1− Φ

(
b−

√
ta−

√
I2(θ2 − θ1

√
t)√

1− t

)
Value

A scalar with the conditional power P (Z2 > b | Z1 = a).

Examples

library(gsDesign2)
library(dplyr)

Calculate conditional power under arbitrary theta and info
In practice, the value of theta and info commonly comes from a design.
More examples are available at the pkgdown vignettes.
gs_cp_npe(theta = c(.1, .2),

info = c(15, 35),
a = 1.5, b = 1.96)

gs_create_arm Create npsurvSS arm object

Description

Create npsurvSS arm object

Usage

gs_create_arm(enroll_rate, fail_rate, ratio, total_time = 1e+06)

Arguments

enroll_rate Enrollment rates from define_enroll_rate().

fail_rate Failure and dropout rates from define_fail_rate().

ratio Experimental:Control randomization ratio.

total_time Total analysis time.

34 gs_create_arm

Value

A list of the two arms.

Specification

• Validate if there is only one stratum.

• Calculate the accrual duration.

• calculate the accrual intervals.

• Calculate the accrual parameter as the proportion of enrollment rate*duration.

• Set cure proportion to zero.

• set survival intervals and shape.

• Set fail rate in fail_rate to the Weibull scale parameter for the survival distribution in the arm
0.

• Set the multiplication of hazard ratio and fail rate to the Weibull scale parameter for the sur-
vival distribution in the arm 1.

• Set the shape parameter to one as the exponential distribution for shape parameter for the loss
to follow-up distribution

• Set the scale parameter to one as the scale parameter for the loss to follow-up distribution
since the exponential distribution is supported only

• Create arm 0 using npsurvSS::create_arm() using the parameters for arm 0.

• Create arm 1 using npsurvSS::create_arm() using the parameters for arm 1.

• Set the class of the two arms.

• Return a list of the two arms.

Examples

enroll_rate <- define_enroll_rate(
duration = c(2, 2, 10),
rate = c(3, 6, 9)

)

fail_rate <- define_fail_rate(
duration = c(3, 100),
fail_rate = log(2) / c(9, 18),
hr = c(.9, .6),
dropout_rate = .001

)

gs_create_arm(enroll_rate, fail_rate, ratio = 1)

gs_design_ahr 35

gs_design_ahr Calculate sample size and bounds given targeted power and Type I er-
ror in group sequential design using average hazard ratio under non-
proportional hazards

Description

Calculate sample size and bounds given targeted power and Type I error in group sequential design
using average hazard ratio under non-proportional hazards

Usage

gs_design_ahr(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = define_fail_rate(duration = c(3, 100), fail_rate = log(2)/c(9, 18), hr =

c(0.9, 0.6), dropout_rate = 0.001),
alpha = 0.025,
beta = 0.1,
info_frac = NULL,
analysis_time = 36,
ratio = 1,
binding = FALSE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = alpha),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = beta),
h1_spending = TRUE,
test_upper = TRUE,
test_lower = TRUE,
info_scale = c("h0_h1_info", "h0_info", "h1_info"),
r = 18,
tol = 1e-06,
interval = c(0.01, 1000)

)

Arguments

enroll_rate Enrollment rates defined by define_enroll_rate().

fail_rate Failure and dropout rates defined by define_fail_rate().

alpha One-sided Type I error.

beta Type II error.

info_frac Targeted information fraction for analyses. See details.

analysis_time Targeted calendar timing of analyses. See details.

ratio Experimental:Control randomization ratio.

binding Indicator of whether futility bound is binding; default of FALSE is recommended.

36 gs_design_ahr

upper Function to compute upper bound.

• gs_spending_bound(): alpha-spending efficacy bounds.
• gs_b(): fixed efficacy bounds.

upar Parameters passed to upper.

• If upper = gs_b, then upar is a numerical vector specifying the fixed effi-
cacy bounds per analysis.

• If upper = gs_spending_bound, then upar is a list including
– sf for the spending function family.
– total_spend for total alpha spend.
– param for the parameter of the spending function.
– timing specifies spending time if different from information-based spend-

ing; see details.

lower Function to compute lower bound, which can be set up similarly as upper. See
this vignette.

lpar Parameters passed to lower, which can be set up similarly as upar.

h1_spending Indicator that lower bound to be set by spending under alternate hypothesis (in-
put fail_rate) if spending is used for lower bound. If this is FALSE, then the
lower bound spending is under the null hypothesis. This is for two-sided sym-
metric or asymmetric testing under the null hypothesis; See this vignette.

test_upper Indicator of which analyses should include an upper (efficacy) bound; single
value of TRUE (default) indicates all analyses; otherwise, a logical vector of the
same length as info should indicate which analyses will have an efficacy bound.

test_lower Indicator of which analyses should include an lower bound; single value of TRUE
(default) indicates all analyses; single value FALSE indicated no lower bound;
otherwise, a logical vector of the same length as info should indicate which
analyses will have a lower bound.

info_scale Information scale for calculation. Options are:

• "h0_h1_info" (default): variance under both null and alternative hypothe-
ses is used.

• "h0_info": variance under null hypothesis is used.
• "h1_info": variance under alternative hypothesis is used.

r Integer value controlling grid for numerical integration as in Jennison and Turn-
bull (2000); default is 18, range is 1 to 80. Larger values provide larger number
of grid points and greater accuracy. Normally, r will not be changed by the user.

tol Tolerance parameter for boundary convergence (on Z-scale); normally not changed
by the user.

interval An interval presumed to include the times at which expected event count is equal
to targeted event. Normally, this can be ignored by the user as it is set to c(.01,
1000).

Details

The parameters info_frac and analysis_time are used to determine the timing for interim and
final analyses.

https://merck.github.io/gsDesign2/articles/story-seven-test-types.html
https://merck.github.io/gsDesign2/articles/story-seven-test-types.html

gs_design_ahr 37

• If the interim analysis is determined by targeted information fraction and the study duration
is known, then info_frac is a numerical vector where each element (greater than 0 and less
than or equal to 1) represents the information fraction for each analysis. The analysis_time,
which defaults to 36, indicates the time for the final analysis.

• If interim analyses are determined solely by the targeted calendar analysis timing from start
of study, then analysis_time will be a vector specifying the time for each analysis.

• If both the targeted analysis time and the targeted information fraction are utilized for a given
analysis, then timing will be the maximum of the two with both info_frac and analysis_time
provided as vectors.

Value

A list with input parameters, enrollment rate, analysis, and bound.

• The $input is a list including alpha, beta, ratio, etc.

• The $enroll_rate is a table showing the enrollment for arriving the targeted power (1 -
beta).

• The $fail_rate is a table showing the failure and dropout rates, which is the same as input.

• The $bound is a table summarizing the efficacy and futility bound per analysis.

• The analysis is a table summarizing the analysis time, sample size, events, average HR,
treatment effect and statistical information per analysis.

Specification

• Validate if input analysis_time is a positive number or positive increasing sequence.

• Validate if input info_frac is a positive number or positive increasing sequence on (0, 1] with
final value of 1.

• Validate if input info_frac and analysis_time have the same length if both have length > 1.

• Get information at input analysis_time

– Use gs_info_ahr() to get the information and effect size based on AHR approximation.
– Extract the final event.
– Check if input If needed for (any) interim analysis timing.

• Add the analysis column to the information at input analysis_time.

• Add the sample size column to the information at input analysis_time using expected_accural().

• Get sample size and bounds using gs_design_npe() and save them to bounds.

• Add Time, Events, AHR, N that have already been calculated to the bounds.

• Return a list of design enrollment, failure rates, and bounds.

Examples

library(gsDesign)
library(gsDesign2)
library(dplyr)

Example 1 ----

38 gs_design_ahr

call with defaults
gs_design_ahr()

Example 2 ----
Single analysis
gs_design_ahr(analysis_time = 40)

Example 3 ----
Multiple analysis_time
gs_design_ahr(analysis_time = c(12, 24, 36))

Example 4 ----
Specified information fraction

gs_design_ahr(info_frac = c(.25, .75, 1), analysis_time = 36)

Example 5 ----
multiple analysis times & info_frac
driven by times
gs_design_ahr(info_frac = c(.25, .75, 1), analysis_time = c(12, 25, 36))
driven by info_frac

gs_design_ahr(info_frac = c(1 / 3, .8, 1), analysis_time = c(12, 25, 36))

Example 6 ----
2-sided symmetric design with O'Brien-Fleming spending

gs_design_ahr(
analysis_time = c(12, 24, 36),
binding = TRUE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
h1_spending = FALSE

)

2-sided asymmetric design with O'Brien-Fleming upper spending
Pocock lower spending under H1 (NPH)

gs_design_ahr(
analysis_time = c(12, 24, 36),
binding = TRUE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDPocock, total_spend = 0.1, param = NULL, timing = NULL),
h1_spending = TRUE

)

gs_design_combo 39

Example 7 ----

gs_design_ahr(
alpha = 0.0125,
analysis_time = c(12, 24, 36),
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.0125, param = NULL, timing = NULL),
lower = gs_b,
lpar = rep(-Inf, 3)

)

gs_design_ahr(
alpha = 0.0125,
analysis_time = c(12, 24, 36),
upper = gs_b,
upar = gsDesign::gsDesign(
k = 3, test.type = 1, n.I = c(.25, .75, 1),
sfu = sfLDOF, sfupar = NULL, alpha = 0.0125

)$upper$bound,
lower = gs_b,
lpar = rep(-Inf, 3)

)

gs_design_combo Group sequential design using MaxCombo test under non-
proportional hazards

Description

Group sequential design using MaxCombo test under non-proportional hazards

Usage

gs_design_combo(
enroll_rate = define_enroll_rate(duration = 12, rate = 500/12),
fail_rate = define_fail_rate(duration = c(4, 100), fail_rate = log(2)/15, hr = c(1,

0.6), dropout_rate = 0.001),
fh_test = rbind(data.frame(rho = 0, gamma = 0, tau = -1, test = 1, analysis = 1:3,
analysis_time = c(12, 24, 36)), data.frame(rho = c(0, 0.5), gamma = 0.5, tau = -1,
test = 2:3, analysis = 3, analysis_time = 36)),

ratio = 1,
alpha = 0.025,
beta = 0.2,
binding = FALSE,
upper = gs_b,
upar = c(3, 2, 1),
lower = gs_b,
lpar = c(-1, 0, 1),

40 gs_design_combo

algorithm = mvtnorm::GenzBretz(maxpts = 1e+05, abseps = 1e-05),
n_upper_bound = 1000,
...

)

Arguments

enroll_rate Enrollment rates defined by define_enroll_rate().

fail_rate Failure and dropout rates defined by define_fail_rate().

fh_test A data frame to summarize the test in each analysis. See examples for its data
structure.

ratio Experimental:Control randomization ratio.

alpha One-sided Type I error.

beta Type II error.

binding Indicator of whether futility bound is binding; default of FALSE is recommended.

upper Function to compute upper bound.

• gs_spending_bound(): alpha-spending efficacy bounds.

• gs_b(): fixed efficacy bounds.

upar Parameters passed to upper.

• If upper = gs_b, then upar is a numerical vector specifying the fixed effi-
cacy bounds per analysis.

• If upper = gs_spending_bound, then upar is a list including

– sf for the spending function family.

– total_spend for total alpha spend.

– param for the parameter of the spending function.

– timing specifies spending time if different from information-based spend-
ing; see details.

lower Function to compute lower bound, which can be set up similarly as upper. See
this vignette.

lpar Parameters passed to lower, which can be set up similarly as upar.

algorithm an object of class GenzBretz, Miwa or TVPACK specifying both the algorithm to
be used as well as the associated hyper parameters.

n_upper_bound A numeric value of upper limit of sample size.

... Additional parameters passed to mvtnorm::pmvnorm.

Value

A list with input parameters, enrollment rate, analysis, and bound.

https://merck.github.io/gsDesign2/articles/story-seven-test-types.html

gs_design_combo 41

Examples

The example is slow to run
library(dplyr)
library(mvtnorm)
library(gsDesign)

enroll_rate <- define_enroll_rate(
duration = 12,
rate = 500 / 12

)

fail_rate <- define_fail_rate(
duration = c(4, 100),
fail_rate = log(2) / 15, # median survival 15 month
hr = c(1, .6),
dropout_rate = 0.001

)

fh_test <- rbind(
data.frame(
rho = 0, gamma = 0, tau = -1,
test = 1, analysis = 1:3, analysis_time = c(12, 24, 36)

),
data.frame(

rho = c(0, 0.5), gamma = 0.5, tau = -1,
test = 2:3, analysis = 3, analysis_time = 36

)
)

x <- gsSurv(
k = 3,
test.type = 4,
alpha = 0.025,
beta = 0.2,
astar = 0,
timing = 1,
sfu = sfLDOF,
sfupar = 0,
sfl = sfLDOF,
sflpar = 0,
lambdaC = 0.1,
hr = 0.6,
hr0 = 1,
eta = 0.01,
gamma = 10,
R = 12,
S = NULL,
T = 36,
minfup = 24,
ratio = 1

)

42 gs_design_npe

Example 1 ----
User-defined boundary

gs_design_combo(
enroll_rate,
fail_rate,
fh_test,
alpha = 0.025, beta = 0.2,
ratio = 1,
binding = FALSE,
upar = x$upper$bound,
lpar = x$lower$bound

)

Example 2 ----

Boundary derived by spending function
gs_design_combo(

enroll_rate,
fail_rate,
fh_test,
alpha = 0.025,
beta = 0.2,
ratio = 1,
binding = FALSE,
upper = gs_spending_combo,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025), # alpha spending
lower = gs_spending_combo,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2), # beta spending

)

gs_design_npe Group sequential design computation with non-constant effect and in-
formation

Description

Derives group sequential design size, bounds and boundary crossing probabilities based on propor-
tionate information and effect size at analyses. It allows a non-constant treatment effect over time,
but also can be applied for the usual homogeneous effect size designs. It requires treatment effect
and proportionate statistical information at each analysis as well as a method of deriving bounds,
such as spending. The routine enables two things not available in the gsDesign package:

1. non-constant effect, 2) more flexibility in boundary selection. For many applications, the non-
proportional-hazards design function gs_design_nph() will be used; it calls this function.
Initial bound types supported are 1) spending bounds,

2. fixed bounds, and 3) Haybittle-Peto-like bounds. The requirement is to have a boundary up-
date method that can each bound without knowledge of future bounds. As an example, bounds

gs_design_npe 43

based on conditional power that require knowledge of all future bounds are not supported by
this routine; a more limited conditional power method will be demonstrated. Boundary family
designs Wang-Tsiatis designs including the original (non-spending-function-based) O’Brien-
Fleming and Pocock designs are not supported by gs_power_npe().

Usage

gs_design_npe(
theta = 0.1,
theta0 = 0,
theta1 = theta,
info = 1,
info0 = NULL,
info1 = NULL,
info_scale = c("h0_h1_info", "h0_info", "h1_info"),
alpha = 0.025,
beta = 0.1,
upper = gs_b,
upar = qnorm(0.975),
lower = gs_b,
lpar = -Inf,
test_upper = TRUE,
test_lower = TRUE,
binding = FALSE,
r = 18,
tol = 1e-06

)

Arguments

theta Natural parameter for group sequential design representing expected incremen-
tal drift at all analyses; used for power calculation.

theta0 Natural parameter used for upper bound spending; if NULL, this will be set to 0.

theta1 Natural parameter used for lower bound spending; if NULL, this will be set to
theta which yields the usual beta-spending. If set to 0, spending is 2-sided
under null hypothesis.

info Proportionate statistical information at all analyses for input theta.

info0 Proportionate statistical information under null hypothesis, if different than al-
ternative; impacts null hypothesis bound calculation.

info1 Proportionate statistical information under alternate hypothesis; impacts null hy-
pothesis bound calculation.

info_scale Information scale for calculation. Options are:

• "h0_h1_info" (default): variance under both null and alternative hypothe-
ses is used.

• "h0_info": variance under null hypothesis is used.
• "h1_info": variance under alternative hypothesis is used.

44 gs_design_npe

alpha One-sided Type I error.

beta Type II error.

upper Function to compute upper bound.

upar Parameters passed to the function provided in upper.

lower Function to compare lower bound.

lpar Parameters passed to the function provided in lower.

test_upper Indicator of which analyses should include an upper (efficacy) bound; single
value of TRUE (default) indicates all analyses; otherwise, a logical vector of the
same length as info should indicate which analyses will have an efficacy bound.

test_lower Indicator of which analyses should include an lower bound; single value of TRUE
(default) indicates all analyses; single value FALSE indicates no lower bound;
otherwise, a logical vector of the same length as info should indicate which
analyses will have a lower bound.

binding Indicator of whether futility bound is binding; default of FALSE is recommended.

r Integer value controlling grid for numerical integration as in Jennison and Turn-
bull (2000); default is 18, range is 1 to 80. Larger values provide larger number
of grid points and greater accuracy. Normally r will not be changed by the user.

tol Tolerance parameter for boundary convergence (on Z-scale).

Details

The inputs info and info0 should be vectors of the same length with increasing positive numbers.
The design returned will change these by some constant scale factor to ensure the design has power
1 - beta. The bound specifications in upper, lower, upar, lpar will be used to ensure Type I error
and other boundary properties are as specified.

Value

A tibble with columns analysis, bound, z, probability, theta, info, info0.

Specification

• Validate if input info is a numeric vector or NULL, if non-NULL validate if it is strictly
increasing and positive.

• Validate if input info0 is a numeric vector or NULL, if non-NULL validate if it is strictly
increasing and positive.

• Validate if input info1 is a numeric vector or NULL, if non-NULL validate if it is strictly
increasing and positive.

• Validate if input theta is a real vector and has the same length as info.

• Validate if input theta1 is a real vector and has the same length as info.

• Validate if input test_upper and test_lower are logical and have the same length as info.

• Validate if input test_upper value is TRUE.

• Validate if input alpha and beta are positive and of length one.

• Validate if input alpha and beta are from the unit interval and alpha is smaller than beta.

gs_design_npe 45

• Initialize bounds, numerical integration grids, boundary crossing probabilities.

• Compute fixed sample size for desired power and Type I error.

• Find an interval for information inflation to give correct power using gs_power_npe().

•

• If there is no interim analysis, return a tibble including Analysis time, upper bound, Z-value,
Probability of crossing bound, theta, info0 and info1.

• If the design is a group sequential design, return a tibble of Analysis, Bound, Z, Probability,
theta, info, info0.

Author(s)

Keaven Anderson <keaven_anderson@merck.com>

Examples

library(dplyr)
library(gsDesign)

Example 1 ----
Single analysis
Lachin book p 71 difference of proportions example
pc <- .28 # Control response rate
pe <- .40 # Experimental response rate
p0 <- (pc + pe) / 2 # Ave response rate under H0

Information per increment of 1 in sample size
info0 <- 1 / (p0 * (1 - p0) * 4)
info <- 1 / (pc * (1 - pc) * 2 + pe * (1 - pe) * 2)

Result should round up to next even number = 652
Divide information needed under H1 by information per patient added
gs_design_npe(theta = pe - pc, info = info, info0 = info0)

Example 2 ----
Fixed bound
x <- gs_design_npe(

alpha = 0.0125,
theta = c(.1, .2, .3),
info = (1:3) * 80,
info0 = (1:3) * 80,
upper = gs_b,
upar = gsDesign::gsDesign(k = 3, sfu = gsDesign::sfLDOF, alpha = 0.0125)$upper$bound,
lower = gs_b,
lpar = c(-1, 0, 0)

)
x

Same upper bound; this represents non-binding Type I error and will total 0.025
gs_power_npe(

46 gs_design_npe

theta = rep(0, 3),
info = (x %>% filter(bound == "upper"))$info,
upper = gs_b,
upar = (x %>% filter(bound == "upper"))$z,
lower = gs_b,
lpar = rep(-Inf, 3)

)

Example 3 ----
Spending bound examples
Design with futility only at analysis 1; efficacy only at analyses 2, 3
Spending bound for efficacy; fixed bound for futility
NOTE: test_upper and test_lower DO NOT WORK with gs_b; must explicitly make bounds infinite
test_upper and test_lower DO WORK with gs_spending_bound
gs_design_npe(

theta = c(.1, .2, .3),
info = (1:3) * 40,
info0 = (1:3) * 40,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_b,
lpar = c(-1, -Inf, -Inf),
test_upper = c(FALSE, TRUE, TRUE)

)

one can try `info_scale = "h1_info"` or `info_scale = "h0_info"` here
gs_design_npe(

theta = c(.1, .2, .3),
info = (1:3) * 40,
info0 = (1:3) * 30,
info_scale = "h1_info",
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_b,
lpar = c(-1, -Inf, -Inf),
test_upper = c(FALSE, TRUE, TRUE)

)

Example 4 ----
Spending function bounds
2-sided asymmetric bounds
Lower spending based on non-zero effect
gs_design_npe(

theta = c(.1, .2, .3),
info = (1:3) * 40,
info0 = (1:3) * 30,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfHSD, total_spend = 0.1, param = -1, timing = NULL)

)

Example 5 ----

gs_design_rd 47

Two-sided symmetric spend, O'Brien-Fleming spending
Typically, 2-sided bounds are binding
xx <- gs_design_npe(

theta = c(.1, .2, .3),
info = (1:3) * 40,
binding = TRUE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL)

)
xx

Re-use these bounds under alternate hypothesis
Always use binding = TRUE for power calculations
gs_power_npe(

theta = c(.1, .2, .3),
info = (1:3) * 40,
binding = TRUE,
upper = gs_b,
lower = gs_b,
upar = (xx %>% filter(bound == "upper"))$z,
lpar = -(xx %>% filter(bound == "upper"))$z

)

gs_design_rd Group sequential design of binary outcome measuring in risk differ-
ence

Description

Group sequential design of binary outcome measuring in risk difference

Usage

gs_design_rd(
p_c = tibble::tibble(stratum = "All", rate = 0.2),
p_e = tibble::tibble(stratum = "All", rate = 0.15),
info_frac = 1:3/3,
rd0 = 0,
alpha = 0.025,
beta = 0.1,
ratio = 1,
stratum_prev = NULL,
weight = c("unstratified", "ss", "invar"),
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(0.1), rep(-Inf, 2)),

48 gs_design_rd

test_upper = TRUE,
test_lower = TRUE,
info_scale = c("h0_h1_info", "h0_info", "h1_info"),
binding = FALSE,
r = 18,
tol = 1e-06,
h1_spending = TRUE

)

Arguments

p_c Rate at the control group.
p_e Rate at the experimental group.
info_frac Statistical information fraction.
rd0 Treatment effect under super-superiority designs, the default is 0.
alpha One-sided Type I error.
beta Type II error.
ratio Experimental:Control randomization ratio (not yet implemented).
stratum_prev Randomization ratio of different stratum. If it is unstratified design then NULL.

Otherwise it is a tibble containing two columns (stratum and prevalence).
weight The weighting scheme for stratified population.
upper Function to compute upper bound.
lower Function to compute lower bound.
upar Parameters passed to upper.
lpar Parameters passed to lower.
test_upper Indicator of which analyses should include an upper (efficacy) bound; single

value of TRUE (default) indicates all analyses; otherwise, a logical vector of the
same length as info should indicate which analyses will have an efficacy bound.

test_lower Indicator of which analyses should include an lower bound; single value of TRUE
(default) indicates all analyses; single value of FALSE indicates no lower bound;
otherwise, a logical vector of the same length as info should indicate which
analyses will have a lower bound.

info_scale Information scale for calculation. Options are:
• "h0_h1_info" (default): variance under both null and alternative hypothe-

ses is used.
• "h0_info": variance under null hypothesis is used.
• "h1_info": variance under alternative hypothesis is used.

binding Indicator of whether futility bound is binding; default of FALSE is recommended.
r Integer value controlling grid for numerical integration as in Jennison and Turn-

bull (2000); default is 18, range is 1 to 80. Larger values provide larger number
of grid points and greater accuracy. Normally, r will not be changed by the user.

tol Tolerance parameter for boundary convergence (on Z-scale).
h1_spending Indicator that lower bound to be set by spending under alternate hypothesis (in-

put fail_rate) if spending is used for lower bound.

gs_design_rd 49

Details

To be added.

Value

A list with input parameters, analysis, and bound.

Examples

library(gsDesign)

Example 1 ----
unstratified group sequential design
x <- gs_design_rd(

p_c = tibble::tibble(stratum = "All", rate = .2),
p_e = tibble::tibble(stratum = "All", rate = .15),
info_frac = c(0.7, 1),
rd0 = 0,
alpha = .025,
beta = .1,
ratio = 1,
stratum_prev = NULL,
weight = "unstratified",
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 2, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

y <- gs_power_rd(
p_c = tibble::tibble(stratum = "All", rate = .2),
p_e = tibble::tibble(stratum = "All", rate = .15),
n = tibble::tibble(stratum = "All", n = x$analysis$n, analysis = 1:2),
rd0 = 0,
ratio = 1,
weight = "unstratified",
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 2, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

The above 2 design share the same power with the same sample size and treatment effect
x$bound$probability[x$bound$bound == "upper" & x$bound$analysis == 2]
y$bound$probability[y$bound$bound == "upper" & y$bound$analysis == 2]

Example 2 ----
stratified group sequential design
gs_design_rd(

p_c = tibble::tibble(
stratum = c("biomarker positive", "biomarker negative"),
rate = c(.2, .25)

50 gs_design_wlr

),
p_e = tibble::tibble(

stratum = c("biomarker positive", "biomarker negative"),
rate = c(.15, .22)

),
info_frac = c(0.7, 1),
rd0 = 0,
alpha = .025,
beta = .1,
ratio = 1,
stratum_prev = tibble::tibble(

stratum = c("biomarker positive", "biomarker negative"),
prevalence = c(.4, .6)

),
weight = "ss",
upper = gs_spending_bound, lower = gs_b,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lpar = rep(-Inf, 2)

)

gs_design_wlr Group sequential design using weighted log-rank test under non-
proportional hazards

Description

Group sequential design using weighted log-rank test under non-proportional hazards

Usage

gs_design_wlr(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = tibble(stratum = "All", duration = c(3, 100), fail_rate = log(2)/c(9, 18),

hr = c(0.9, 0.6), dropout_rate = rep(0.001, 2)),
weight = "logrank",
approx = "asymptotic",
alpha = 0.025,
beta = 0.1,
ratio = 1,
info_frac = NULL,
info_scale = c("h0_h1_info", "h0_info", "h1_info"),
analysis_time = 36,
binding = FALSE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = alpha),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = beta),
test_upper = TRUE,

gs_design_wlr 51

test_lower = TRUE,
h1_spending = TRUE,
r = 18,
tol = 1e-06,
interval = c(0.01, 1000)

)

Arguments

enroll_rate Enrollment rates defined by define_enroll_rate().

fail_rate Failure and dropout rates defined by define_fail_rate().

weight Weight of weighted log rank test:

• "logrank" = regular logrank test.
• list(method = "fh", param = list(rho = ..., gamma = ...)) = Fleming-

Harrington weighting functions.
• list(method = "mb", param = list(tau = ..., w_max = ...)) = Magirr

and Burman weighting functions.

approx Approximate estimation method for Z statistics.

• "event_driven" = only work under proportional hazard model with log
rank test.

• "asymptotic".

alpha One-sided Type I error.

beta Type II error.

ratio Experimental:Control randomization ratio.

info_frac Targeted information fraction for analyses. See details.

info_scale Information scale for calculation. Options are:

• "h0_h1_info" (default): variance under both null and alternative hypothe-
ses is used.

• "h0_info": variance under null hypothesis is used.
• "h1_info": variance under alternative hypothesis is used.

analysis_time Targeted calendar timing of analyses. See details.

binding Indicator of whether futility bound is binding; default of FALSE is recommended.

upper Function to compute upper bound.

• gs_spending_bound(): alpha-spending efficacy bounds.
• gs_b(): fixed efficacy bounds.

upar Parameters passed to upper.

• If upper = gs_b, then upar is a numerical vector specifying the fixed effi-
cacy bounds per analysis.

• If upper = gs_spending_bound, then upar is a list including
– sf for the spending function family.
– total_spend for total alpha spend.
– param for the parameter of the spending function.

52 gs_design_wlr

– timing specifies spending time if different from information-based spend-
ing; see details.

lower Function to compute lower bound, which can be set up similarly as upper. See
this vignette.

lpar Parameters passed to lower, which can be set up similarly as upar.

test_upper Indicator of which analyses should include an upper (efficacy) bound; single
value of TRUE (default) indicates all analyses; otherwise, a logical vector of the
same length as info should indicate which analyses will have an efficacy bound.

test_lower Indicator of which analyses should include an lower bound; single value of TRUE
(default) indicates all analyses; single value FALSE indicated no lower bound;
otherwise, a logical vector of the same length as info should indicate which
analyses will have a lower bound.

h1_spending Indicator that lower bound to be set by spending under alternate hypothesis (in-
put fail_rate) if spending is used for lower bound. If this is FALSE, then the
lower bound spending is under the null hypothesis. This is for two-sided sym-
metric or asymmetric testing under the null hypothesis; See this vignette.

r Integer value controlling grid for numerical integration as in Jennison and Turn-
bull (2000); default is 18, range is 1 to 80. Larger values provide larger number
of grid points and greater accuracy. Normally, r will not be changed by the user.

tol Tolerance parameter for boundary convergence (on Z-scale); normally not changed
by the user.

interval An interval presumed to include the times at which expected event count is equal
to targeted event. Normally, this can be ignored by the user as it is set to c(.01,
1000).

Value

A list with input parameters, enrollment rate, analysis, and bound.

Specification

• Validate if input analysis_time is a positive number or a positive increasing sequence.

• Validate if input info_frac is a positive number or positive increasing sequence on (0, 1] with
final value of 1.

• Validate if inputs info_frac and analysis_time have the same length if both have length > 1.

• Compute information at input analysis_time using gs_info_wlr().

• Compute sample size and bounds using gs_design_npe().

• Return a list of design enrollment, failure rates, and bounds.

Examples

library(dplyr)
library(mvtnorm)
library(gsDesign)
library(gsDesign2)

https://merck.github.io/gsDesign2/articles/story-seven-test-types.html
https://merck.github.io/gsDesign2/articles/story-seven-test-types.html

gs_design_wlr 53

set enrollment rates
enroll_rate <- define_enroll_rate(duration = 12, rate = 1)

set failure rates
fail_rate <- define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 15, # median survival 15 month
hr = c(1, .6),
dropout_rate = 0.001

)

Example 1 ----
Information fraction driven design
gs_design_wlr(

enroll_rate = enroll_rate,
fail_rate = fail_rate,
ratio = 1,
alpha = 0.025, beta = 0.2,
weight = list(method = "mb", param = list(tau = Inf, w_max = 2)),
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2),
analysis_time = 36,
info_frac = c(0.6, 1)

)

Example 2 ----
Calendar time driven design
gs_design_wlr(

enroll_rate = enroll_rate,
fail_rate = fail_rate,
ratio = 1,
alpha = 0.025, beta = 0.2,
weight = list(method = "mb", param = list(tau = Inf, w_max = 2)),
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2),
analysis_time = c(24, 36),
info_frac = NULL

)

Example 3 ----
Both calendar time and information fraction driven design
gs_design_wlr(

enroll_rate = enroll_rate,
fail_rate = fail_rate,
ratio = 1,
alpha = 0.025, beta = 0.2,
weight = list(method = "mb", param = list(tau = Inf, w_max = 2)),
upper = gs_spending_bound,

54 gs_info_ahr

upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2),
analysis_time = c(24, 36),
info_frac = c(0.6, 1)

)

gs_info_ahr Information and effect size based on AHR approximation

Description

Based on piecewise enrollment rate, failure rate, and dropout rates computes approximate informa-
tion and effect size using an average hazard ratio model.

Usage

gs_info_ahr(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = define_fail_rate(duration = c(3, 100), fail_rate = log(2)/c(9, 18), hr =

c(0.9, 0.6), dropout_rate = 0.001),
ratio = 1,
event = NULL,
analysis_time = NULL,
interval = c(0.01, 1000)

)

Arguments

enroll_rate Enrollment rates from define_enroll_rate().
fail_rate Failure and dropout rates from define_fail_rate().
ratio Experimental:Control randomization ratio.
event Targeted minimum events at each analysis.
analysis_time Targeted minimum study duration at each analysis.
interval An interval that is presumed to include the time at which expected event count

is equal to targeted event.

Details

The ahr() function computes statistical information at targeted event times. The expected_time()
function is used to get events and average HR at targeted analysis_time.

Value

A data frame with columns analysis, time, ahr, event, theta, info, info0. The columns info
and info0 contain statistical information under H1, H0, respectively. For analysis k, time[k] is the
maximum of analysis_time[k] and the expected time required to accrue the targeted event[k].
ahr is the expected average hazard ratio at each analysis.

gs_info_combo 55

Specification

• Validate if input event is a numeric value vector or a vector with increasing values.

• Validate if input analysis_time is a numeric value vector or a vector with increasing values.

• Validate if inputs event and analysis_time have the same length if they are both specified.

• Compute average hazard ratio:

– If analysis_time is specified, calculate average hazard ratio using ahr().
– If event is specified, calculate average hazard ratio using expected_time().

• Return a data frame of Analysis, Time, AHR, Events, theta, info, info0.

Examples

library(gsDesign)
library(gsDesign2)

Example 1 ----

Only put in targeted events
gs_info_ahr(event = c(30, 40, 50))

Example 2 ----
Only put in targeted analysis times
gs_info_ahr(analysis_time = c(18, 27, 36))

Example 3 ----

Some analysis times after time at which targeted event accrue
Check that both Time >= input analysis_time and event >= input event
gs_info_ahr(event = c(30, 40, 50), analysis_time = c(16, 19, 26))
gs_info_ahr(event = c(30, 40, 50), analysis_time = c(14, 20, 24))

gs_info_combo Information and effect size for MaxCombo test

Description

Information and effect size for MaxCombo test

Usage

gs_info_combo(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = define_fail_rate(duration = c(3, 100), fail_rate = log(2)/c(9, 18), hr =

c(0.9, 0.6), dropout_rate = 0.001),
ratio = 1,
event = NULL,

56 gs_info_rd

analysis_time = NULL,
rho,
gamma,
tau = rep(-1, length(rho)),
approx = "asymptotic"

)

Arguments

enroll_rate An enroll_rate data frame with or without stratum created by define_enroll_rate().

fail_rate A fail_rate data frame with or without stratum created by define_fail_rate().

ratio Experimental:Control randomization ratio (not yet implemented).

event Targeted events at each analysis.

analysis_time Minimum time of analysis.

rho Weighting parameters.

gamma Weighting parameters.

tau Weighting parameters.

approx Approximation method.

Value

A tibble with columns as test index, analysis index, analysis time, sample size, number of events,
ahr, delta, sigma2, theta, and statistical information.

Examples

gs_info_combo(rho = c(0, 0.5), gamma = c(0.5, 0), analysis_time = c(12, 24))

gs_info_rd Information and effect size under risk difference

Description

Information and effect size under risk difference

Usage

gs_info_rd(
p_c = tibble::tibble(stratum = "All", rate = 0.2),
p_e = tibble::tibble(stratum = "All", rate = 0.15),
n = tibble::tibble(stratum = "All", n = c(100, 200, 300), analysis = 1:3),
rd0 = 0,
ratio = 1,
weight = c("unstratified", "ss", "invar")

)

gs_info_rd 57

Arguments

p_c Rate at the control group.

p_e Rate at the experimental group.

n Sample size.

rd0 The risk difference under H0.

ratio Experimental:Control randomization ratio.

weight Weighting method, can be "unstratified", "ss", or "invar".

Value

A tibble with columns as analysis index, sample size, risk difference, risk difference under null
hypothesis, theta1 (standardized treatment effect under alternative hypothesis), theta0 (standardized
treatment effect under null hypothesis), and statistical information.

Examples

Example 1 ----
unstratified case with H0: rd0 = 0
gs_info_rd(

p_c = tibble::tibble(stratum = "All", rate = .15),
p_e = tibble::tibble(stratum = "All", rate = .1),
n = tibble::tibble(stratum = "All", n = c(100, 200, 300), analysis = 1:3),
rd0 = 0,
ratio = 1

)

Example 2 ----
unstratified case with H0: rd0 != 0
gs_info_rd(

p_c = tibble::tibble(stratum = "All", rate = .2),
p_e = tibble::tibble(stratum = "All", rate = .15),
n = tibble::tibble(stratum = "All", n = c(100, 200, 300), analysis = 1:3),
rd0 = 0.005,
ratio = 1

)

Example 3 ----
stratified case under sample size weighting and H0: rd0 = 0
gs_info_rd(

p_c = tibble::tibble(stratum = c("S1", "S2", "S3"), rate = c(.15, .2, .25)),
p_e = tibble::tibble(stratum = c("S1", "S2", "S3"), rate = c(.1, .16, .19)),
n = tibble::tibble(
stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(50, 100, 200, 40, 80, 160, 60, 120, 240)

),
rd0 = 0,
ratio = 1,
weight = "ss"

)

58 gs_info_rd

Example 4 ----
stratified case under inverse variance weighting and H0: rd0 = 0
gs_info_rd(

p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)

),
p_e = tibble::tibble(

stratum = c("S1", "S2", "S3"),
rate = c(.1, .16, .19)

),
n = tibble::tibble(

stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(50, 100, 200, 40, 80, 160, 60, 120, 240)

),
rd0 = 0,
ratio = 1,
weight = "invar"

)

Example 5 ----
stratified case under sample size weighting and H0: rd0 != 0
gs_info_rd(

p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)

),
p_e = tibble::tibble(

stratum = c("S1", "S2", "S3"),
rate = c(.1, .16, .19)

),
n = tibble::tibble(

stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(50, 100, 200, 40, 80, 160, 60, 120, 240)

),
rd0 = 0.02,
ratio = 1,
weight = "ss"

)

Example 6 ----
stratified case under inverse variance weighting and H0: rd0 != 0
gs_info_rd(

p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)

),
p_e = tibble::tibble(

stratum = c("S1", "S2", "S3"),
rate = c(.1, .16, .19)

gs_info_wlr 59

),
n = tibble::tibble(

stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(50, 100, 200, 40, 80, 160, 60, 120, 240)

),
rd0 = 0.02,
ratio = 1,
weight = "invar"

)

Example 7 ----
stratified case under inverse variance weighting and H0: rd0 != 0 and
rd0 difference for different statum
gs_info_rd(

p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)

),
p_e = tibble::tibble(

stratum = c("S1", "S2", "S3"),
rate = c(.1, .16, .19)

),
n = tibble::tibble(

stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(50, 100, 200, 40, 80, 160, 60, 120, 240)

),
rd0 = tibble::tibble(

stratum = c("S1", "S2", "S3"),
rd0 = c(0.01, 0.02, 0.03)

),
ratio = 1,
weight = "invar"

)

gs_info_wlr Information and effect size for weighted log-rank test

Description

Based on piecewise enrollment rate, failure rate, and dropout rates computes approximate informa-
tion and effect size using an average hazard ratio model.

Usage

gs_info_wlr(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = define_fail_rate(duration = c(3, 100), fail_rate = log(2)/c(9, 18), hr =

c(0.9, 0.6), dropout_rate = 0.001),

60 gs_info_wlr

ratio = 1,
event = NULL,
analysis_time = NULL,
weight = "logrank",
approx = "asymptotic",
interval = c(0.01, 1000)

)

Arguments

enroll_rate An enroll_rate data frame with or without stratum created by define_enroll_rate().

fail_rate Failure and dropout rates.

ratio Experimental:Control randomization ratio.

event Targeted minimum events at each analysis.

analysis_time Targeted minimum study duration at each analysis.

weight Weight of weighted log rank test:

• "logrank" = regular logrank test.
• list(method = "fh", param = list(rho = ..., gamma = ...)) = Fleming-

Harrington weighting functions.
• list(method = "mb", param = list(tau = ..., w_max = ...)) = Magirr

and Burman weighting functions.

approx Approximate estimation method for Z statistics.

• "event_driven" = only work under proportional hazard model with log
rank test.

• "asymptotic".

interval An interval that is presumed to include the time at which expected event count
is equal to targeted event.

Details

The ahr() function computes statistical information at targeted event times. The expected_time()
function is used to get events and average HR at targeted analysis_time.

Value

A tibble with columns Analysis, Time, N, Events, AHR, delta, sigma2, theta, info, info0. info and
info0 contain statistical information under H1, H0, respectively. For analysis k, Time[k] is the
maximum of analysis_time[k] and the expected time required to accrue the targeted event[k].
AHR is the expected average hazard ratio at each analysis.

Examples

library(gsDesign2)

Set enrollment rates
enroll_rate <- define_enroll_rate(duration = 12, rate = 500 / 12)

gs_power_ahr 61

Set failure rates
fail_rate <- define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 15, # median survival 15 month
hr = c(1, .6),
dropout_rate = 0.001

)

Set the targeted number of events and analysis time
event <- c(30, 40, 50)
analysis_time <- c(10, 24, 30)

gs_info_wlr(
enroll_rate = enroll_rate, fail_rate = fail_rate,
event = event, analysis_time = analysis_time

)

gs_power_ahr Group sequential design power using average hazard ratio under non-
proportional hazards

Description

Calculate power given the sample size in group sequential design power using average hazard ratio
under non-proportional hazards.

Usage

gs_power_ahr(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = define_fail_rate(duration = c(3, 100), fail_rate = log(2)/c(9, 18), hr =

c(0.9, 0.6), dropout_rate = rep(0.001, 2)),
event = c(30, 40, 50),
analysis_time = NULL,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = NULL),
test_lower = TRUE,
test_upper = TRUE,
ratio = 1,
binding = FALSE,
h1_spending = TRUE,
info_scale = c("h0_h1_info", "h0_info", "h1_info"),
r = 18,
tol = 1e-06,
interval = c(0.01, 1000),
integer = FALSE

)

62 gs_power_ahr

Arguments

enroll_rate Enrollment rates defined by define_enroll_rate().

fail_rate Failure and dropout rates defined by define_fail_rate().

event A numerical vector specifying the targeted events at each analysis. See details.

analysis_time Targeted calendar timing of analyses. See details.

upper Function to compute upper bound.

• gs_spending_bound(): alpha-spending efficacy bounds.
• gs_b(): fixed efficacy bounds.

upar Parameters passed to upper.

• If upper = gs_b, then upar is a numerical vector specifying the fixed effi-
cacy bounds per analysis.

• If upper = gs_spending_bound, then upar is a list including
– sf for the spending function family.
– total_spend for total alpha spend.
– param for the parameter of the spending function.
– timing specifies spending time if different from information-based spend-

ing; see details.

lower Function to compute lower bound, which can be set up similarly as upper. See
this vignette.

lpar Parameters passed to lower, which can be set up similarly as upar.

test_lower Indicator of which analyses should include an lower bound; single value of TRUE
(default) indicates all analyses; single value FALSE indicated no lower bound;
otherwise, a logical vector of the same length as info should indicate which
analyses will have a lower bound.

test_upper Indicator of which analyses should include an upper (efficacy) bound; single
value of TRUE (default) indicates all analyses; otherwise, a logical vector of the
same length as info should indicate which analyses will have an efficacy bound.

ratio Experimental:Control randomization ratio.

binding Indicator of whether futility bound is binding; default of FALSE is recommended.

h1_spending Indicator that lower bound to be set by spending under alternate hypothesis (in-
put fail_rate) if spending is used for lower bound. If this is FALSE, then the
lower bound spending is under the null hypothesis. This is for two-sided sym-
metric or asymmetric testing under the null hypothesis; See this vignette.

info_scale Information scale for calculation. Options are:

• "h0_h1_info" (default): variance under both null and alternative hypothe-
ses is used.

• "h0_info": variance under null hypothesis is used.
• "h1_info": variance under alternative hypothesis is used.

r Integer value controlling grid for numerical integration as in Jennison and Turn-
bull (2000); default is 18, range is 1 to 80. Larger values provide larger number
of grid points and greater accuracy. Normally, r will not be changed by the user.

https://merck.github.io/gsDesign2/articles/story-seven-test-types.html
https://merck.github.io/gsDesign2/articles/story-seven-test-types.html

gs_power_ahr 63

tol Tolerance parameter for boundary convergence (on Z-scale); normally not changed
by the user.

interval An interval presumed to include the times at which expected event count is equal
to targeted event. Normally, this can be ignored by the user as it is set to c(.01,
1000).

integer Indicator of whether integer sample size and events are intended. This argument
is used when using to_integer().

Details

Note that time units are arbitrary, but should be the same for all rate parameters in enroll_rate,
fail_rate, and analysis_time.

Computed bounds satisfy input upper bound specification in upper, upar, and lower bound spec-
ification in lower, lpar. ahr() computes statistical information at targeted event times. The
expected_time() function is used to get events and average HR at targeted analysis_time.

The parameters event and analysis_time are used to determine the timing for interim and final
analyses.

• If analysis timing is to be determined by targeted events, then event is a numerical vector
specifying the targeted events for each analysis; note that this can be NULL.

• If interim analysis is determined by targeted calendar timing relative to start of enrollment,
then analysis_time will be a vector specifying the calendar time from start of study for each
analysis; note that this can be NULL.

• A corresponding element of event or analysis_time should be provided for each analysis.

• If both event[i] and analysis[i] are provided for analysis i, then the time corresponding
to the later of these is used for analysis i.

Value

A list with input parameters, enrollment rate, analysis, and bound.

• $input a list including alpha, beta, ratio, etc.
• $enroll_rate a table showing the enrollment, which is the same as input.
• $fail_rate a table showing the failure and dropout rates, which is the same as input.
• $bound a table summarizing the efficacy and futility bound at each analysis.

• analysis a table summarizing the analysis time, sample size, events, average HR, treatment
effect and statistical information at each analysis.

Specification

• Calculate information and effect size based on AHR approximation using gs_info_ahr().

• Return a tibble of with columns Analysis, Bound, Z, Probability, theta, Time, AHR, Events
and contains a row for each analysis and each bound.

64 gs_power_ahr

Examples

library(gsDesign2)
library(dplyr)

Example 1 ----
The default output of `gs_power_ahr()` is driven by events,
i.e., `event = c(30, 40, 50)`, `analysis_time = NULL`

gs_power_ahr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1))

Example 2 ----
2-sided symmetric O'Brien-Fleming spending bound, driven by analysis time,
i.e., `event = NULL`, `analysis_time = c(12, 24, 36)`

gs_power_ahr(
analysis_time = c(12, 24, 36),
event = NULL,
binding = TRUE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.025)

)

Example 3 ----
2-sided symmetric O'Brien-Fleming spending bound, driven by event,
i.e., `event = c(20, 50, 70)`, `analysis_time = NULL`
Note that this assumes targeted final events for the design is 70 events.
If actual targeted final events were 65, then `timing = c(20, 50, 70) / 65`
would be added to `upar` and `lpar` lists.
NOTE: at present the computed information fraction in output `analysis` is based
on 70 events rather than 65 events when the `timing` argument is used in this way.
A vignette on this topic will be forthcoming.

gs_power_ahr(
analysis_time = NULL,
event = c(20, 50, 70),
binding = TRUE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.025)

)

Example 4 ----
2-sided symmetric O'Brien-Fleming spending bound,
driven by both `event` and `analysis_time`, i.e.,
both `event` and `analysis_time` are not `NULL`,
then the analysis will driven by the maximal one, i.e.,
Time = max(analysis_time, calculated Time for targeted event)
Events = max(events, calculated events for targeted analysis_time)

gs_power_combo 65

gs_power_ahr(
analysis_time = c(12, 24, 36),
event = c(30, 40, 50), h1_spending = FALSE,
binding = TRUE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.025)

)

gs_power_combo Group sequential design power using MaxCombo test under non-
proportional hazards

Description

Group sequential design power using MaxCombo test under non-proportional hazards

Usage

gs_power_combo(
enroll_rate = define_enroll_rate(duration = 12, rate = 500/12),
fail_rate = define_fail_rate(duration = c(4, 100), fail_rate = log(2)/15, hr = c(1,

0.6), dropout_rate = 0.001),
fh_test = rbind(data.frame(rho = 0, gamma = 0, tau = -1, test = 1, analysis = 1:3,
analysis_time = c(12, 24, 36)), data.frame(rho = c(0, 0.5), gamma = 0.5, tau = -1,
test = 2:3, analysis = 3, analysis_time = 36)),

ratio = 1,
binding = FALSE,
upper = gs_b,
upar = c(3, 2, 1),
lower = gs_b,
lpar = c(-1, 0, 1),
algorithm = mvtnorm::GenzBretz(maxpts = 1e+05, abseps = 1e-05),
...

)

Arguments

enroll_rate Enrollment rates defined by define_enroll_rate().

fail_rate Failure and dropout rates defined by define_fail_rate().

fh_test A data frame to summarize the test in each analysis. See examples for its data
structure.

ratio Experimental:Control randomization ratio.

binding Indicator of whether futility bound is binding; default of FALSE is recommended.

66 gs_power_combo

upper Function to compute upper bound.

• gs_spending_bound(): alpha-spending efficacy bounds.
• gs_b(): fixed efficacy bounds.

upar Parameters passed to upper.

• If upper = gs_b, then upar is a numerical vector specifying the fixed effi-
cacy bounds per analysis.

• If upper = gs_spending_bound, then upar is a list including
– sf for the spending function family.
– total_spend for total alpha spend.
– param for the parameter of the spending function.
– timing specifies spending time if different from information-based spend-

ing; see details.

lower Function to compute lower bound, which can be set up similarly as upper. See
this vignette.

lpar Parameters passed to lower, which can be set up similarly as upar.

algorithm an object of class GenzBretz, Miwa or TVPACK specifying both the algorithm to
be used as well as the associated hyper parameters.

... Additional parameters passed to mvtnorm::pmvnorm.

Value

A list with input parameters, enrollment rate, analysis, and bound.

Specification

• Validate if lower and upper bounds have been specified.

• Extract info, info_fh, theta_fh and corr_fh from utility.

• Extract sample size via the maximum sample size of info.

• Calculate information fraction either for fixed or group sequential design.

• Compute spending function using gs_bound().

• Compute probability of crossing bounds under the null and alternative hypotheses using gs_prob_combo().

• Export required information for boundary and crossing probability

Examples

library(dplyr)
library(mvtnorm)
library(gsDesign)
library(gsDesign2)

enroll_rate <- define_enroll_rate(
duration = 12,
rate = 500 / 12

)

https://merck.github.io/gsDesign2/articles/story-seven-test-types.html

gs_power_npe 67

fail_rate <- define_fail_rate(
duration = c(4, 100),
fail_rate = log(2) / 15, # median survival 15 month
hr = c(1, .6),
dropout_rate = 0.001

)

fh_test <- rbind(
data.frame(rho = 0, gamma = 0, tau = -1, test = 1, analysis = 1:3, analysis_time = c(12, 24, 36)),
data.frame(rho = c(0, 0.5), gamma = 0.5, tau = -1, test = 2:3, analysis = 3, analysis_time = 36)

)

Example 1 ----
Minimal Information Fraction derived bound

gs_power_combo(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
fh_test = fh_test,
upper = gs_spending_combo,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_combo,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2)

)

gs_power_npe Group sequential bound computation with non-constant effect

Description

Derives group sequential bounds and boundary crossing probabilities for a design. It allows a non-
constant treatment effect over time, but also can be applied for the usual homogeneous effect size
designs. It requires treatment effect and statistical information at each analysis as well as a method
of deriving bounds, such as spending. The routine enables two things not available in the gsDesign
package:

1. non-constant effect, 2) more flexibility in boundary selection. For many applications, the non-
proportional-hazards design function gs_design_nph() will be used; it calls this function.
Initial bound types supported are 1) spending bounds,

2. fixed bounds, and 3) Haybittle-Peto-like bounds. The requirement is to have a boundary up-
date method that can each bound without knowledge of future bounds. As an example, bounds
based on conditional power that require knowledge of all future bounds are not supported by
this routine; a more limited conditional power method will be demonstrated. Boundary family
designs Wang-Tsiatis designs including the original (non-spending-function-based) O’Brien-
Fleming and Pocock designs are not supported by gs_power_npe().

68 gs_power_npe

Usage

gs_power_npe(
theta = 0.1,
theta0 = 0,
theta1 = theta,
info = 1,
info0 = NULL,
info1 = NULL,
info_scale = c("h0_h1_info", "h0_info", "h1_info"),
upper = gs_b,
upar = qnorm(0.975),
lower = gs_b,
lpar = -Inf,
test_upper = TRUE,
test_lower = TRUE,
binding = FALSE,
r = 18,
tol = 1e-06

)

Arguments

theta Natural parameter for group sequential design representing expected incremen-
tal drift at all analyses; used for power calculation.

theta0 Natural parameter for null hypothesis, if needed for upper bound computation.

theta1 Natural parameter for alternate hypothesis, if needed for lower bound computa-
tion.

info Statistical information at all analyses for input theta.

info0 Statistical information under null hypothesis, if different than info; impacts null
hypothesis bound calculation.

info1 Statistical information under hypothesis used for futility bound calculation if
different from info; impacts futility hypothesis bound calculation.

info_scale Information scale for calculation. Options are:

• "h0_h1_info" (default): variance under both null and alternative hypothe-
ses is used.

• "h0_info": variance under null hypothesis is used.
• "h1_info": variance under alternative hypothesis is used.

upper Function to compute upper bound.

upar Parameters passed to upper.

lower Function to compare lower bound.

lpar parameters passed to lower.

test_upper Indicator of which analyses should include an upper (efficacy) bound; single
value of TRUE (default) indicates all analyses; otherwise, a logical vector of the
same length as info should indicate which analyses will have an efficacy bound.

gs_power_npe 69

test_lower Indicator of which analyses should include a lower bound; single value of TRUE
(default) indicates all analyses; single value of FALSE indicated no lower bound;
otherwise, a logical vector of the same length as info should indicate which
analyses will have a lower bound.

binding Indicator of whether futility bound is binding; default of FALSE is recommended.

r Integer value controlling grid for numerical integration as in Jennison and Turn-
bull (2000); default is 18, range is 1 to 80. Larger values provide larger number
of grid points and greater accuracy. Normally, r will not be changed by the user.

tol Tolerance parameter for boundary convergence (on Z-scale).

Value

A tibble with columns as analysis index, bounds, z, crossing probability, theta (standardized treat-
ment effect), theta1 (standardized treatment effect under alternative hypothesis), information frac-
tion, and statistical information.

Specification

• Extract the length of input info as the number of interim analysis.

• Validate if input info0 is NULL, so set it equal to info.

• Validate if the length of inputs info and info0 are the same.

• Validate if input theta is a scalar, so replicate the value for all k interim analysis.

• Validate if input theta1 is NULL and if it is a scalar. If it is NULL, set it equal to input theta.
If it is a scalar, replicate the value for all k interim analysis.

• Validate if input test_upper is a scalar, so replicate the value for all k interim analysis.

• Validate if input test_lower is a scalar, so replicate the value for all k interim analysis.

• Define vector a to be -Inf with length equal to the number of interim analysis.

• Define vector b to be Inf with length equal to the number of interim analysis.

• Define hgm1_0 and hgm1 to be NULL.

• Define upper_prob and lower_prob to be vectors of NA with length of the number of interim
analysis.

• Update lower and upper bounds using gs_b().

• If there are no interim analysis, compute probabilities of crossing upper and lower bounds
using h1().

• Compute cross upper and lower bound probabilities using hupdate() and h1().

• Return a tibble of analysis number, bound, z-values, probability of crossing bounds, theta,
theta1, info, and info0.

Examples

library(gsDesign)
library(gsDesign2)
library(dplyr)

70 gs_power_npe

Default (single analysis; Type I error controlled)
gs_power_npe(theta = 0) %>% filter(bound == "upper")

Fixed bound
gs_power_npe(

theta = c(.1, .2, .3),
info = (1:3) * 40,
upper = gs_b,
upar = gsDesign::gsDesign(k = 3, sfu = gsDesign::sfLDOF)$upper$bound,
lower = gs_b,
lpar = c(-1, 0, 0)

)

Same fixed efficacy bounds, no futility bound (i.e., non-binding bound), null hypothesis
gs_power_npe(

theta = rep(0, 3),
info = (1:3) * 40,
upar = gsDesign::gsDesign(k = 3, sfu = gsDesign::sfLDOF)$upper$bound,
lpar = rep(-Inf, 3)

) %>%
filter(bound == "upper")

Fixed bound with futility only at analysis 1; efficacy only at analyses 2, 3
gs_power_npe(

theta = c(.1, .2, .3),
info = (1:3) * 40,
upper = gs_b,
upar = c(Inf, 3, 2),
lower = gs_b,
lpar = c(qnorm(.1), -Inf, -Inf)

)

Spending function bounds
Lower spending based on non-zero effect
gs_power_npe(

theta = c(.1, .2, .3),
info = (1:3) * 40,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfHSD, total_spend = 0.1, param = -1, timing = NULL)

)

Same bounds, but power under different theta
gs_power_npe(

theta = c(.15, .25, .35),
info = (1:3) * 40,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfHSD, total_spend = 0.1, param = -1, timing = NULL)

)

gs_power_rd 71

Two-sided symmetric spend, O'Brien-Fleming spending
Typically, 2-sided bounds are binding
x <- gs_power_npe(

theta = rep(0, 3),
info = (1:3) * 40,
binding = TRUE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL)

)

Re-use these bounds under alternate hypothesis
Always use binding = TRUE for power calculations
gs_power_npe(

theta = c(.1, .2, .3),
info = (1:3) * 40,
binding = TRUE,
upar = (x %>% filter(bound == "upper"))$z,
lpar = -(x %>% filter(bound == "upper"))$z

)

Different values of `r` and `tol` lead to different numerical accuracy
Larger `r` and smaller `tol` give better accuracy, but leads to slow computation
n_analysis <- 5
gs_power_npe(

theta = 0.1,
info = 1:n_analysis,
info0 = 1:n_analysis,
info1 = NULL,
info_scale = "h0_info",
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_b,
lpar = -rep(Inf, n_analysis),
test_upper = TRUE,
test_lower = FALSE,
binding = FALSE,
Try different combinations of (r, tol) with
r in 6, 18, 24, 30, 35, 40, 50, 60, 70, 80, 90, 100
tol in 1e-6, 1e-12
r = 6,
tol = 1e-6

)

gs_power_rd Group sequential design power of binary outcome measuring in risk
difference

72 gs_power_rd

Description

Group sequential design power of binary outcome measuring in risk difference

Usage

gs_power_rd(
p_c = tibble::tibble(stratum = "All", rate = 0.2),
p_e = tibble::tibble(stratum = "All", rate = 0.15),
n = tibble::tibble(stratum = "All", n = c(40, 50, 60), analysis = 1:3),
rd0 = 0,
ratio = 1,
weight = c("unstratified", "ss", "invar"),
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(0.1), rep(-Inf, 2)),
info_scale = c("h0_h1_info", "h0_info", "h1_info"),
binding = FALSE,
test_upper = TRUE,
test_lower = TRUE,
r = 18,
tol = 1e-06

)

Arguments

p_c Rate at the control group.

p_e Rate at the experimental group.

n Sample size.

rd0 Treatment effect under super-superiority designs, the default is 0.

ratio Experimental:control randomization ratio.

weight Weighting method, can be "unstratified", "ss", or "invar".

upper Function to compute upper bound.

lower Function to compare lower bound.

upar Parameters passed to upper.

lpar Parameters passed to lower.

info_scale Information scale for calculation. Options are:

• "h0_h1_info" (default): variance under both null and alternative hypothe-
ses is used.

• "h0_info": variance under null hypothesis is used.
• "h1_info": variance under alternative hypothesis is used.

binding Indicator of whether futility bound is binding; default of FALSE is recommended.

test_upper Indicator of which analyses should include an upper (efficacy) bound; single
value of TRUE (default) indicates all analyses; otherwise, a logical vector of the
same length as info should indicate which analyses will have an efficacy bound.

gs_power_rd 73

test_lower Indicator of which analyses should include a lower bound; single value of TRUE
(default) indicates all analyses; single value FALSE indicated no lower bound;
otherwise, a logical vector of the same length as info should indicate which
analyses will have a lower bound.

r Integer value controlling grid for numerical integration as in Jennison and Turn-
bull (2000); default is 18, range is 1 to 80. Larger values provide larger number
of grid points and greater accuracy. Normally, r will not be changed by the user.

tol Tolerance parameter for boundary convergence (on Z-scale).

Value

A list with input parameter, analysis, and bound.

Examples

Example 1 ----
library(gsDesign)

unstratified case with H0: rd0 = 0
gs_power_rd(

p_c = tibble::tibble(
stratum = "All",
rate = .2

),
p_e = tibble::tibble(

stratum = "All",
rate = .15

),
n = tibble::tibble(

stratum = "All",
n = c(20, 40, 60),
analysis = 1:3

),
rd0 = 0,
ratio = 1,
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

Example 2 ----
unstratified case with H0: rd0 != 0
gs_power_rd(

p_c = tibble::tibble(
stratum = "All",
rate = .2

),
p_e = tibble::tibble(

stratum = "All",
rate = .15

74 gs_power_rd

),
n = tibble::tibble(

stratum = "All",
n = c(20, 40, 60),
analysis = 1:3

),
rd0 = 0.005,
ratio = 1,
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

use spending function
gs_power_rd(

p_c = tibble::tibble(
stratum = "All",
rate = .2

),
p_e = tibble::tibble(

stratum = "All",
rate = .15

),
n = tibble::tibble(

stratum = "All",
n = c(20, 40, 60),
analysis = 1:3

),
rd0 = 0.005,
ratio = 1,
upper = gs_spending_bound,
lower = gs_b,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lpar = c(qnorm(.1), rep(-Inf, 2))

)

Example 3 ----
stratified case under sample size weighting and H0: rd0 = 0
gs_power_rd(

p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)

),
p_e = tibble::tibble(

stratum = c("S1", "S2", "S3"),
rate = c(.1, .16, .19)

),
n = tibble::tibble(

stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(10, 20, 24, 18, 26, 30, 10, 20, 24)

),

gs_power_rd 75

rd0 = 0,
ratio = 1,
weight = "ss",
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

Example 4 ----
stratified case under inverse variance weighting and H0: rd0 = 0
gs_power_rd(

p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)

),
p_e = tibble::tibble(

stratum = c("S1", "S2", "S3"),
rate = c(.1, .16, .19)

),
n = tibble::tibble(

stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(10, 20, 24, 18, 26, 30, 10, 20, 24)

),
rd0 = 0,
ratio = 1,
weight = "invar",
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

Example 5 ----
stratified case under sample size weighting and H0: rd0 != 0
gs_power_rd(

p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)

),
p_e = tibble::tibble(

stratum = c("S1", "S2", "S3"),
rate = c(.1, .16, .19)

),
n = tibble::tibble(

stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(10, 20, 24, 18, 26, 30, 10, 20, 24)

),
rd0 = 0.02,
ratio = 1,
weight = "ss",

76 gs_power_wlr

upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

Example 6 ----
stratified case under inverse variance weighting and H0: rd0 != 0
gs_power_rd(

p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)

),
p_e = tibble::tibble(

stratum = c("S1", "S2", "S3"),
rate = c(.1, .16, .19)

),
n = tibble::tibble(

stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(10, 20, 24, 18, 26, 30, 10, 20, 24)

),
rd0 = 0.03,
ratio = 1,
weight = "invar",
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

gs_power_wlr Group sequential design power using weighted log rank test under
non-proportional hazards

Description

Group sequential design power using weighted log rank test under non-proportional hazards

Usage

gs_power_wlr(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = tibble(stratum = "All", duration = c(3, 100), fail_rate = log(2)/c(9, 18),

hr = c(0.9, 0.6), dropout_rate = rep(0.001, 2)),
event = c(30, 40, 50),
analysis_time = NULL,
binding = FALSE,
upper = gs_spending_bound,

gs_power_wlr 77

lower = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lpar = list(sf = gsDesign::sfLDOF, total_spend = NULL),
test_upper = TRUE,
test_lower = TRUE,
ratio = 1,
weight = "logrank",
info_scale = c("h0_h1_info", "h0_info", "h1_info"),
approx = "asymptotic",
r = 18,
tol = 1e-06,
interval = c(0.01, 1000),
integer = FALSE

)

Arguments

enroll_rate Enrollment rates defined by define_enroll_rate().

fail_rate Failure and dropout rates defined by define_fail_rate().

event A numerical vector specifying the targeted events at each analysis. See details.

analysis_time Targeted calendar timing of analyses. See details.

binding Indicator of whether futility bound is binding; default of FALSE is recommended.

upper Function to compute upper bound.

• gs_spending_bound(): alpha-spending efficacy bounds.
• gs_b(): fixed efficacy bounds.

lower Function to compute lower bound, which can be set up similarly as upper. See
this vignette.

upar Parameters passed to upper.

• If upper = gs_b, then upar is a numerical vector specifying the fixed effi-
cacy bounds per analysis.

• If upper = gs_spending_bound, then upar is a list including
– sf for the spending function family.
– total_spend for total alpha spend.
– param for the parameter of the spending function.
– timing specifies spending time if different from information-based spend-

ing; see details.

lpar Parameters passed to lower, which can be set up similarly as upar.

test_upper Indicator of which analyses should include an upper (efficacy) bound; single
value of TRUE (default) indicates all analyses; otherwise, a logical vector of the
same length as info should indicate which analyses will have an efficacy bound.

test_lower Indicator of which analyses should include an lower bound; single value of TRUE
(default) indicates all analyses; single value FALSE indicated no lower bound;
otherwise, a logical vector of the same length as info should indicate which
analyses will have a lower bound.

https://merck.github.io/gsDesign2/articles/story-seven-test-types.html

78 gs_power_wlr

ratio Experimental:Control randomization ratio.

weight Weight of weighted log rank test:

• "logrank" = regular logrank test.
• list(method = "fh", param = list(rho = ..., gamma = ...)) = Fleming-

Harrington weighting functions.
• list(method = "mb", param = list(tau = ..., w_max = ...)) = Magirr

and Burman weighting functions.

info_scale Information scale for calculation. Options are:

• "h0_h1_info" (default): variance under both null and alternative hypothe-
ses is used.

• "h0_info": variance under null hypothesis is used.
• "h1_info": variance under alternative hypothesis is used.

approx Approximate estimation method for Z statistics.

• "event_driven" = only work under proportional hazard model with log
rank test.

• "asymptotic".

r Integer value controlling grid for numerical integration as in Jennison and Turn-
bull (2000); default is 18, range is 1 to 80. Larger values provide larger number
of grid points and greater accuracy. Normally, r will not be changed by the user.

tol Tolerance parameter for boundary convergence (on Z-scale); normally not changed
by the user.

interval An interval presumed to include the times at which expected event count is equal
to targeted event. Normally, this can be ignored by the user as it is set to c(.01,
1000).

integer Indicator of whether integer sample size and events are intended. This argument
is used when using to_integer().

Value

A list with input parameters, enrollment rate, analysis, and bound.

Specification

• Compute information and effect size for Weighted Log-rank test using gs_info_wlr().

• Compute group sequential bound computation with non-constant effect using gs_power_npe().

• Combine information and effect size and power and return a tibble with columns Analysis,
Bound, Time, Events, Z, Probability, AHR, theta, info, and info0.

Examples

library(gsDesign)
library(gsDesign2)

set enrollment rates
enroll_rate <- define_enroll_rate(duration = 12, rate = 500 / 12)

gs_power_wlr 79

set failure rates
fail_rate <- define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 15, # median survival 15 month
hr = c(1, .6),
dropout_rate = 0.001

)

set the targeted number of events and analysis time
target_events <- c(30, 40, 50)
target_analysisTime <- c(10, 24, 30)

Example 1 ----

fixed bounds and calculate the power for targeted number of events
gs_power_wlr(

enroll_rate = enroll_rate,
fail_rate = fail_rate,
event = target_events,
analysis_time = NULL,
upper = gs_b,
upar = gsDesign(
k = length(target_events),
test.type = 1,
n.I = target_events,
maxn.IPlan = max(target_events),
sfu = sfLDOF,
sfupar = NULL

)$upper$bound,
lower = gs_b,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

Example 2 ----
fixed bounds and calculate the power for targeted analysis time

gs_power_wlr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
event = NULL,
analysis_time = target_analysisTime,
upper = gs_b,
upar = gsDesign(

k = length(target_events),
test.type = 1,
n.I = target_events,
maxn.IPlan = max(target_events),
sfu = sfLDOF,
sfupar = NULL

)$upper$bound,
lower = gs_b,
lpar = c(qnorm(.1), rep(-Inf, 2))

80 gs_power_wlr

)

Example 3 ----
fixed bounds and calculate the power for targeted analysis time & number of events

gs_power_wlr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
event = target_events,
analysis_time = target_analysisTime,
upper = gs_b,
upar = gsDesign(
k = length(target_events),
test.type = 1,
n.I = target_events,
maxn.IPlan = max(target_events),
sfu = sfLDOF,
sfupar = NULL

)$upper$bound,
lower = gs_b,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

Example 4 ----
spending bounds and calculate the power for targeted number of events

gs_power_wlr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
event = target_events,
analysis_time = NULL,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2)

)

Example 5 ----
spending bounds and calculate the power for targeted analysis time

gs_power_wlr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
event = NULL,
analysis_time = target_analysisTime,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2)

)

Example 6 ----
spending bounds and calculate the power for targeted analysis time & number of events

gs_spending_bound 81

gs_power_wlr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
event = target_events,
analysis_time = target_analysisTime,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2)

)

gs_spending_bound Derive spending bound for group sequential boundary

Description

Computes one bound at a time based on spending under given distributional assumptions. While
user specifies gs_spending_bound() for use with other functions, it is not intended for use on
its own. Most important user specifications are made through a list provided to functions using
gs_spending_bound(). Function uses numerical integration and Newton-Raphson iteration to de-
rive an individual bound for a group sequential design that satisfies a targeted boundary crossing
probability. Algorithm is a simple extension of that in Chapter 19 of Jennison and Turnbull (2000).

Usage

gs_spending_bound(
k = 1,
par = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL,

max_info = NULL),
hgm1 = NULL,
theta = 0.1,
info = 1:3,
efficacy = TRUE,
test_bound = TRUE,
r = 18,
tol = 1e-06

)

Arguments

k Analysis for which bound is to be computed.

par A list with the following items:

• sf (class spending function).
• total_spend (total spend).
• param (any parameters needed by the spending function sf()).

82 gs_spending_bound

• timing (a vector containing values at which spending function is to be eval-
uated or NULL if information-based spending is used).

• max_info (when timing is NULL, this can be input as positive number to be
used with info for information fraction at each analysis).

hgm1 Subdensity grid from h1() (k=2) or hupdate() (k>2) for analysis k-1; if k=1,
this is not used and may be NULL.

theta Natural parameter used for lower bound only spending; represents average drift
at each time of analysis at least up to analysis k; upper bound spending is always
set under null hypothesis (theta = 0).

info Statistical information at all analyses, at least up to analysis k.

efficacy TRUE (default) for efficacy bound, FALSE otherwise.

test_bound A logical vector of the same length as info should indicate which analyses will
have a bound.

r Integer value controlling grid for numerical integration as in Jennison and Turn-
bull (2000); default is 18, range is 1 to 80. Larger values provide larger number
of grid points and greater accuracy. Normally r will not be changed by the user.

tol Tolerance parameter for convergence (on Z-scale).

Value

Returns a numeric bound (possibly infinite) or, upon failure, generates an error message.

Specification

• Set the spending time at analysis.

• Compute the cumulative spending at analysis.

• Compute the incremental spend at each analysis.

• Set test_bound a vector of length k > 1 if input as a single value.

• Compute spending for current bound.

• Iterate to convergence as in gsbound.c from gsDesign.

• Compute subdensity for final analysis in rejection region.

• Validate the output and return an error message in case of failure.

• Return a numeric bound (possibly infinite).

Author(s)

Keaven Anderson <keaven_anderson@merck.com>

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical Tri-
als. Boca Raton: Chapman and Hall.

gs_spending_combo 83

Examples

gs_power_ahr(
analysis_time = c(12, 24, 36),
event = c(30, 40, 50),
binding = TRUE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL)

)

gs_spending_combo Derive spending bound for MaxCombo group sequential boundary

Description

Derive spending bound for MaxCombo group sequential boundary

Usage

gs_spending_combo(par = NULL, info = NULL)

Arguments

par A list with the following items:

• sf (class spending function).
• total_spend (total spend).
• param (any parameters needed by the spending function sf()).
• timing (a vector containing values at which spending function is to be eval-

uated or NULL if information-based spending is used).
• max_info (when timing is NULL, this can be input as positive number to be

used with info for information fraction at each analysis).

info Statistical information at all analyses, at least up to analysis k.

Value

A vector of the alpha spending per analysis.

Examples

alpha-spending
par <- list(sf = gsDesign::sfLDOF, total_spend = 0.025)
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfLDPocock, total_spend = 0.025)
gs_spending_combo(par, info = 1:3 / 3)

84 gs_spending_combo

par <- list(sf = gsDesign::sfHSD, total_spend = 0.025, param = -40)
gs_spending_combo(par, info = 1:3 / 3)

Kim-DeMets (power) Spending Function
par <- list(sf = gsDesign::sfPower, total_spend = 0.025, param = 1.5)
gs_spending_combo(par, info = 1:3 / 3)

Exponential Spending Function
par <- list(sf = gsDesign::sfExponential, total_spend = 0.025, param = 1)
gs_spending_combo(par, info = 1:3 / 3)

Two-parameter Spending Function Families
par <- list(sf = gsDesign::sfLogistic, total_spend = 0.025, param = c(.1, .4, .01, .1))
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfBetaDist, total_spend = 0.025, param = c(.1, .4, .01, .1))
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfCauchy, total_spend = 0.025, param = c(.1, .4, .01, .1))
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfExtremeValue, total_spend = 0.025, param = c(.1, .4, .01, .1))
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfExtremeValue2, total_spend = 0.025, param = c(.1, .4, .01, .1))
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfNormal, total_spend = 0.025, param = c(.1, .4, .01, .1))
gs_spending_combo(par, info = 1:3 / 3)

t-distribution Spending Function
par <- list(sf = gsDesign::sfTDist, total_spend = 0.025, param = c(-1, 1.5, 4))
gs_spending_combo(par, info = 1:3 / 3)

Piecewise Linear and Step Function Spending Functions
par <- list(sf = gsDesign::sfLinear, total_spend = 0.025, param = c(.2, .4, .05, .2))
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfStep, total_spend = 0.025, param = c(1 / 3, 2 / 3, .1, .1))
gs_spending_combo(par, info = 1:3 / 3)

Pointwise Spending Function
par <- list(sf = gsDesign::sfPoints, total_spend = 0.025, param = c(.25, .25))
gs_spending_combo(par, info = 1:3 / 3)

Truncated, trimmed and gapped spending functions
par <- list(sf = gsDesign::sfTruncated, total_spend = 0.025,

param = list(trange = c(.2, .8), sf = gsDesign::sfHSD, param = 1))
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfTrimmed, total_spend = 0.025,
param = list(trange = c(.2, .8), sf = gsDesign::sfHSD, param = 1))

gs_spending_combo(par, info = 1:3 / 3)

gs_update_ahr 85

par <- list(sf = gsDesign::sfGapped, total_spend = 0.025,
param = list(trange = c(.2, .8), sf = gsDesign::sfHSD, param = 1))

gs_spending_combo(par, info = 1:3 / 3)

Xi and Gallo conditional error spending functions
par <- list(sf = gsDesign::sfXG1, total_spend = 0.025, param = 0.5)
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfXG2, total_spend = 0.025, param = 0.14)
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfXG3, total_spend = 0.025, param = 0.013)
gs_spending_combo(par, info = 1:3 / 3)

beta-spending
par <- list(sf = gsDesign::sfLDOF, total_spend = 0.2)
gs_spending_combo(par, info = 1:3 / 3)

gs_update_ahr Group sequential design using average hazard ratio under non-
proportional hazards

Description

Group sequential design using average hazard ratio under non-proportional hazards

Usage

gs_update_ahr(
x = NULL,
alpha = NULL,
ustime = NULL,
lstime = NULL,
event_tbl = NULL

)

Arguments

x A design created by either gs_design_ahr() or gs_power_ahr().

alpha Type I error for the updated design.

ustime Default is NULL in which case upper bound spending time is determined by
timing. Otherwise, this should be a vector of length k (total number of analyses)
with the spending time at each analysis.

lstime Default is NULL in which case lower bound spending time is determined by
timing. Otherwise, this should be a vector of length k (total number of analyses)
with the spending time at each analysis.

86 gs_update_ahr

event_tbl A data frame with two columns: (1) analysis and (2) event, which represents
the events observed at each analysis per piecewise interval. This can be defined
via the pw_observed_event() function or manually entered. For example, con-
sider a scenario with two intervals in the piecewise model: the first interval lasts
6 months with a hazard ratio (HR) of 1, and the second interval follows with
an HR of 0.6. The data frame event_tbl = data.frame(analysis = c(1, 1,
2, 2), event = c(30, 100, 30, 200)) indicates that 30 events were observed
during the delayed effect period, 130 events were observed at the IA, and 230
events were observed at the FA.

Value

A list with input parameters, enrollment rate, failure rate, analysis, and bound.

Examples

library(gsDesign)
library(gsDesign2)
library(dplyr)

alpha <- 0.025
beta <- 0.1
ratio <- 1

Enrollment
enroll_rate <- define_enroll_rate(

duration = c(2, 2, 10),
rate = (1:3) / 3)

Failure and dropout
fail_rate <- define_fail_rate(

duration = c(3, Inf), fail_rate = log(2) / 9,
hr = c(1, 0.6), dropout_rate = .0001)

IA and FA analysis time
analysis_time <- c(20, 36)

Randomization ratio
ratio <- 1

Two-sided asymmetric design,
beta-spending with non-binding lower bound

Original design
x <- gs_design_ahr(

enroll_rate = enroll_rate, fail_rate = fail_rate,
alpha = alpha, beta = beta, ratio = ratio,
info_scale = "h0_info",
info_frac = NULL, analysis_time = c(20, 36),
upper = gs_spending_bound,
upar = list(sf = sfLDOF, total_spend = alpha),

ppwe 87

test_upper = TRUE,
lower = gs_spending_bound,
lpar = list(sf = sfLDOF, total_spend = beta),
test_lower = c(TRUE, FALSE),
binding = FALSE) %>% to_integer()

planned_event_ia <- x$analysis$event[1]
planned_event_fa <- x$analysis$event[2]

Updated design with 190 events observed at IA,
where 50 events observed during the delayed effect.
IA spending = observed events / final planned events, the remaining alpha will be allocated to FA.
gs_update_ahr(

x = x,
ustime = c(190 / planned_event_fa, 1),
lstime = c(190 / planned_event_fa, 1),
event_tbl = data.frame(analysis = c(1, 1),

event = c(50, 140)))

Updated design with 190 events observed at IA, and 300 events observed at FA,
where 50 events observed during the delayed effect.
IA spending = observed events / final planned events, the remaining alpha will be allocated to FA.
gs_update_ahr(

x = x,
ustime = c(190 / planned_event_fa, 1),
lstime = c(190 / planned_event_fa, 1),
event_tbl = data.frame(analysis = c(1, 1, 2, 2),

event = c(50, 140, 50, 250)))

Updated design with 190 events observed at IA, and 300 events observed at FA,
where 50 events observed during the delayed effect.
IA spending = minimal of planned and actual information fraction spending
gs_update_ahr(

x = x,
ustime = c(min(190, planned_event_ia) / planned_event_fa, 1),
lstime = c(min(190, planned_event_ia) / planned_event_fa, 1),
event_tbl = data.frame(analysis = c(1, 1, 2, 2),

event = c(50, 140, 50, 250)))

Alpha is updated to 0.05
gs_update_ahr(x = x, alpha = 0.05)

ppwe Piecewise exponential cumulative distribution function

Description

Computes the cumulative distribution function (CDF) or survival rate for a piecewise exponential
distribution.

88 ppwe

Usage

ppwe(x, duration, rate, lower_tail = FALSE)

Arguments

x Times at which distribution is to be computed.

duration A numeric vector of time duration.

rate A numeric vector of event rate.

lower_tail Indicator of whether lower (TRUE) or upper tail (FALSE; default) of CDF is to be
computed.

Details

Suppose λi is the failure rate in the interval (ti−1, ti], i = 1, 2, . . . ,M where 0 = t0 < ti . . . , tM =
∞. The cumulative hazard function at an arbitrary time t > 0 is then:

Λ(t) =

M∑
i=1

δ(t ≤ ti)(min(t, ti)− ti−1)λi.

The survival at time t is then

S(t) = exp(−Λ(t)).

Value

A vector with cumulative distribution function or survival values.

Specification

• Validate if input enrollment rate is a strictly increasing non-negative numeric vector.

• Validate if input failure rate is of type data.frame.

• Validate if input failure rate contains duration column.

• Validate if input failure rate contains rate column.

• Validate if input lower_tail is logical.

• Convert rates to step function.

• Add times where rates change to enrollment rates.

• Make a tibble of the input time points x, duration, hazard rates at points, cumulative hazard
and survival.

• Extract the expected cumulative or survival of piecewise exponential distribution.

• If input lower_tail is true, return the CDF, else return the survival for ppwe

pw_info 89

Examples

Plot a survival function with 2 different sets of time values
to demonstrate plot precision corresponding to input parameters.

x1 <- seq(0, 10, 10 / pi)
duration <- c(3, 3, 1)
rate <- c(.2, .1, .005)

survival <- ppwe(
x = x1,
duration = duration,
rate = rate

)
plot(x1, survival, type = "l", ylim = c(0, 1))

x2 <- seq(0, 10, .25)
survival <- ppwe(

x = x2,
duration = duration,
rate = rate

)
lines(x2, survival, col = 2)

pw_info Average hazard ratio under non-proportional hazards

Description

Provides a geometric average hazard ratio under various non-proportional hazards assumptions for
either single or multiple strata studies. The piecewise exponential distribution allows a simple
method to specify a distribution and enrollment pattern where the enrollment, failure and dropout
rates changes over time.

Usage

pw_info(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = define_fail_rate(duration = c(3, 100), fail_rate = log(2)/c(9, 18), hr =

c(0.9, 0.6), dropout_rate = 0.001),
total_duration = 30,
ratio = 1

)

Arguments

enroll_rate An enroll_rate data frame with or without stratum created by define_enroll_rate().

fail_rate A fail_rate data frame with or without stratum created by define_fail_rate().

90 s2pwe

total_duration Total follow-up from start of enrollment to data cutoff; this can be a single value
or a vector of positive numbers.

ratio Ratio of experimental to control randomization.

Value

A data frame with time (from total_duration), stratum, t, hr (hazard ratio), event (expected
number of events), info (information under given scenarios), info0 (information under related null
hypothesis), and n (sample size) for each value of total_duration input

Examples

Example: default
pw_info()

Example: default with multiple analysis times (varying total_duration)
pw_info(total_duration = c(15, 30))

Stratified population
enroll_rate <- define_enroll_rate(

stratum = c(rep("Low", 2), rep("High", 3)),
duration = c(2, 10, 4, 4, 8),
rate = c(5, 10, 0, 3, 6)

)
fail_rate <- define_fail_rate(

stratum = c(rep("Low", 2), rep("High", 2)),
duration = c(1, Inf, 1, Inf),
fail_rate = c(.1, .2, .3, .4),
dropout_rate = .001,
hr = c(.9, .75, .8, .6)

)
Give results by change-points in the piecewise model
ahr(enroll_rate = enroll_rate, fail_rate = fail_rate, total_duration = c(15, 30))

Same example, give results by strata and time period
pw_info(enroll_rate = enroll_rate, fail_rate = fail_rate, total_duration = c(15, 30))

s2pwe Approximate survival distribution with piecewise exponential distribu-
tion

Description

Converts a discrete set of points from an arbitrary survival distribution to a piecewise exponential
approximation.

Usage

s2pwe(times, survival)

summary.fixed_design 91

Arguments

times Positive increasing times at which survival distribution is provided.

survival Survival (1 - cumulative distribution function) at specified times.

Value

A tibble containing the duration and rate.

Specification

• Validate if input times is increasing positive finite numbers.

• Validate if input survival is numeric and same length as input times.

• Validate if input survival is positive, non-increasing, less than or equal to 1 and greater than 0.

• Create a tibble of inputs times and survival.

• Calculate the duration, hazard and the rate.

• Return the duration and rate by s2pwe

Examples

Example: arbitrary numbers
s2pwe(1:9, (9:1) / 10)
Example: lognormal
s2pwe(c(1:6, 9), plnorm(c(1:6, 9), meanlog = 0, sdlog = 2, lower.tail = FALSE))

summary.fixed_design Summary for fixed design or group sequential design objects

Description

Summary for fixed design or group sequential design objects

Usage

S3 method for class 'fixed_design'
summary(object, ...)

S3 method for class 'gs_design'
summary(
object,
analysis_vars = NULL,
analysis_decimals = NULL,
col_vars = NULL,
col_decimals = NULL,
bound_names = c("Efficacy", "Futility"),
...

)

92 summary.fixed_design

Arguments

object A design object returned by fixed_design_xxx() and gs_design_xxx().

... Additional parameters (not used).

analysis_vars The variables to be put at the summary header of each analysis.
analysis_decimals

The displayed number of digits of analysis_vars. If the vector is unnamed,
it must match the length of analysis_vars. If the vector is named, you only
have to specify the number of digits for the variables you want to be displayed
differently than the defaults.

col_vars The variables to be displayed.

col_decimals The decimals to be displayed for the displayed variables in col_vars. If the
vector is unnamed, it must match the length of col_vars. If the vector is named,
you only have to specify the number of digits for the columns you want to be
displayed differently than the defaults.

bound_names Names for bounds; default is c("Efficacy", "Futility").

Value

A summary table (data frame).

Examples

library(dplyr)

Enrollment rate
enroll_rate <- define_enroll_rate(

duration = 18,
rate = 20

)

Failure rates
fail_rate <- define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

)

Study duration in months
study_duration <- 36

Experimental / Control randomization ratio
ratio <- 1

1-sided Type I error
alpha <- 0.025
Type II error (1 - power)
beta <- 0.1

summary.fixed_design 93

AHR ----
under fixed power
fixed_design_ahr(

alpha = alpha,
power = 1 - beta,
enroll_rate = enroll_rate,
fail_rate = fail_rate,
study_duration = study_duration,
ratio = ratio

) %>% summary()

FH ----
under fixed power
fixed_design_fh(

alpha = alpha,
power = 1 - beta,
enroll_rate = enroll_rate,
fail_rate = fail_rate,
study_duration = study_duration,
ratio = ratio

) %>% summary()

Design parameters ----
library(gsDesign)
library(gsDesign2)
library(dplyr)

enrollment/failure rates
enroll_rate <- define_enroll_rate(

stratum = "All",
duration = 12,
rate = 1

)
fail_rate <- define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

)

Information fraction
info_frac <- (1:3) / 3

Analysis times in months; first 2 will be ignored as info_frac will not be achieved
analysis_time <- c(.01, .02, 36)

Experimental / Control randomization ratio
ratio <- 1

1-sided Type I error
alpha <- 0.025

Type II error (1 - power)

94 summary.fixed_design

beta <- .1

Upper bound
upper <- gs_spending_bound
upar <- list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL)

Lower bound
lower <- gs_spending_bound
lpar <- list(sf = gsDesign::sfHSD, total_spend = 0.1, param = 0, timing = NULL)

test in COMBO
fh_test <- rbind(
data.frame(rho = 0, gamma = 0, tau = -1, test = 1, analysis = 1:3, analysis_time = c(12, 24, 36)),
data.frame(rho = c(0, 0.5), gamma = 0.5, tau = -1, test = 2:3, analysis = 3, analysis_time = 36)

)

Example 1 ----

x_ahr <- gs_design_ahr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
info_frac = info_frac, # Information fraction
analysis_time = analysis_time,
ratio = ratio,
alpha = alpha,
beta = beta,
upper = upper,
upar = upar,
lower = lower,
lpar = lpar

)

x_ahr %>% summary()

Customize the digits to display
x_ahr %>% summary(analysis_vars = c("time", "event", "info_frac"), analysis_decimals = c(1, 0, 2))

Customize the labels of the crossing probability
x_ahr %>% summary(bound_names = c("A is better", "B is better"))

Customize the variables to be summarized for each analysis
x_ahr %>% summary(analysis_vars = c("n", "event"), analysis_decimals = c(1, 1))

Customize the digits for the columns
x_ahr %>% summary(col_decimals = c(z = 4))

Customize the columns to display
x_ahr %>% summary(col_vars = c("z", "~hr at bound", "nominal p"))

Customize columns and digits
x_ahr %>% summary(col_vars = c("z", "~hr at bound", "nominal p"),

col_decimals = c(4, 2, 2))

summary.fixed_design 95

Example 2 ----

x_wlr <- gs_design_wlr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
weight = list(method = "fh", param = list(rho = 0, gamma = 0.5)),
info_frac = NULL,
analysis_time = sort(unique(x_ahr$analysis$time)),
ratio = ratio,
alpha = alpha,
beta = beta,
upper = upper,
upar = upar,
lower = lower,
lpar = lpar

)
x_wlr %>% summary()

Maxcombo ----

x_combo <- gs_design_combo(
ratio = 1,
alpha = 0.025,
beta = 0.2,
enroll_rate = define_enroll_rate(duration = 12, rate = 500 / 12),
fail_rate = tibble::tibble(
stratum = "All",
duration = c(4, 100),
fail_rate = log(2) / 15, hr = c(1, .6), dropout_rate = .001

),
fh_test = fh_test,
upper = gs_spending_combo,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_combo,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2)

)
x_combo %>% summary()

Risk difference ----

gs_design_rd(
p_c = tibble::tibble(stratum = "All", rate = .2),
p_e = tibble::tibble(stratum = "All", rate = .15),
info_frac = c(0.7, 1),
rd0 = 0,
alpha = .025,
beta = .1,
ratio = 1,
stratum_prev = NULL,
weight = "unstratified",
upper = gs_b,
lower = gs_b,

96 text_summary

upar = gsDesign::gsDesign(
k = 3, test.type = 1, sfu = gsDesign::sfLDOF, sfupar = NULL

)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))

) %>% summary()

text_summary Generates a textual summary of a group sequential design using the
AHR method.

Description

Generates a textual summary of a group sequential design using the AHR method.

Usage

text_summary(x, information = FALSE, time_unit = "months")

Arguments

x A design object created by gs_design_ahr() with or without to_integer().

information A logical value indicating whether to include statistical information in the tex-
tual summary. Default is FALSE.

time_unit A character string specifying the time unit used in the design. Options include
"days", "weeks", "months" (default), and "years".

Value

A character string containing a paragraph that summarizes the design.

Examples

library(gsDesign)

Text summary of a 1-sided design
x <- gs_design_ahr(info_frac = 1:3/3, test_lower = FALSE) %>% to_integer()
x %>% text_summary()

Text summary of a 2-sided symmetric design
x <- gs_design_ahr(info_frac = 1:3/3,

upper = gs_spending_bound, lower = gs_spending_bound,
upar = list(sf = sfLDOF, total_spend = 0.025),
lpar = list(sf = sfLDOF, total_spend = 0.025),
binding = TRUE, h1_spending = FALSE) %>% to_integer()

x %>% text_summary()

Text summary of a asymmetric 2-sided design with beta-spending and non-binding futility bound
x <- gs_design_ahr(info_frac = 1:3/3, alpha = 0.025, beta = 0.1,

to_integer 97

upper = gs_spending_bound, lower = gs_spending_bound,
upar = list(sf = sfLDOF, total_spend = 0.025),
lpar = list(sf = sfHSD, total_spend = 0.1, param = -4),
binding = FALSE, h1_spending = TRUE) %>% to_integer()

x %>% text_summary()

Text summary of a asymmetric 2-sided design with fixed non-binding futility bound
x <- gs_design_ahr(info_frac = 1:3/3, alpha = 0.025, beta = 0.1,

upper = gs_spending_bound, lower = gs_b,
upar = list(sf = sfLDOF, total_spend = 0.025),
test_upper = c(FALSE, TRUE, TRUE),
lpar = c(-1, -Inf, -Inf),
test_lower = c(TRUE, FALSE, FALSE),
binding = FALSE, h1_spending = TRUE) %>% to_integer()

x %>% text_summary()

If there are >5 pieces of HRs, we provide a brief summary of HR.
gs_design_ahr(

fail_rate = define_fail_rate(duration = c(rep(3, 5), Inf),
hr = c(0.9, 0.8, 0.7, 0.6, 0.5, 0.4),
fail_rate = log(2) / 10, dropout_rate = 0.001),

info_frac = 1:3/3, test_lower = FALSE) %>%
text_summary()

to_integer Round sample size and events

Description

Round sample size and events

Usage

to_integer(x, ...)

S3 method for class 'fixed_design'
to_integer(x, round_up_final = TRUE, ratio = x$input$ratio, ...)

S3 method for class 'gs_design'
to_integer(x, round_up_final = TRUE, ratio = x$input$ratio, ...)

Arguments

x An object returned by fixed_design_xxx() and gs_design_xxx().

... Additional parameters (not used).

round_up_final Events at final analysis is rounded up if TRUE; otherwise, just rounded, unless it
is very close to an integer.

98 to_integer

ratio Positive integer for randomization ratio (experimental:control). A positive in-
teger will result in rounded sample size, which is a multiple of (ratio + 1). A
positive non-integer will result in round sample size, which may not be a multi-
ple of (ratio + 1). A negative number will result in an error.

Details

For the sample size of the fixed design:

• When ratio is a positive integer, the sample size is rounded up to a multiple of ratio + 1 if
round_up_final = TRUE, and just rounded to a multiple of ratio + 1 if round_up_final =
FALSE.

• When ratio is a positive non-integer, the sample size is rounded up if round_up_final =
TRUE, (may not be a multiple of ratio + 1), and just rounded if round_up_final = FALSE
(may not be a multiple of ratio + 1). Note the default ratio is taken from x$input$ratio.

For the number of events of the fixed design:

• If the continuous event is very close to an integer within 0.01 differences, say 100.001 or
99.999, then the integer events is 100.

• Otherwise, round up if round_up_final = TRUE and round if round_up_final = FALSE.

For the sample size of group sequential designs:

• When ratio is a positive integer, the final sample size is rounded to a multiple of ratio + 1.
– For 1:1 randomization (experimental:control), set ratio = 1 to round to an even sample

size.
– For 2:1 randomization, set ratio = 2 to round to a multiple of 3.
– For 3:2 randomization, set ratio = 4 to round to a multiple of 5.
– Note that for the final analysis, the sample size is rounded up to the nearest multiple of
ratio + 1 if round_up_final = TRUE. If round_up_final = FALSE, the final sample size
is rounded to the nearest multiple of ratio + 1.

• When ratio is positive non-integer, the final sample size MAY NOT be rounded to a multiple
of ratio + 1.

– The final sample size is rounded up if round_up_final = TRUE.
– Otherwise, it is just rounded.

For the events of group sequential designs:

• For events at interim analysis, it is rounded.
• For events at final analysis:

– If the continuous event is very close to an integer within 0.01 differences, say 100.001 or
99.999, then the integer events is 100.

– Otherwise, final events is rounded up if round_up_final = TRUE and rounded if round_up_final
= FALSE.

Value

A list similar to the output of fixed_design_xxx() and gs_design_xxx(), except the sample size is an
integer.

to_integer 99

Examples

library(dplyr)
library(gsDesign2)

Average hazard ratio

x <- fixed_design_ahr(
alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(
duration = c(4, 100),
fail_rate = log(2) / 12, hr = c(1, .6),
dropout_rate = .001

),
study_duration = 36

)
x %>%

to_integer() %>%
summary()

FH
x <- fixed_design_fh(

alpha = 0.025, power = 0.9,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

),
rho = 0.5, gamma = 0.5,
study_duration = 36, ratio = 1

)
x %>%

to_integer() %>%
summary()

MB
x <- fixed_design_mb(

alpha = 0.025, power = 0.9,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12, hr = c(1, .6),
dropout_rate = .001

),
tau = Inf, w_max = 2,
study_duration = 36, ratio = 1

)
x %>%

to_integer() %>%
summary()

100 to_integer

Example 1: Information fraction based spending
gs_design_ahr(

analysis_time = c(18, 30),
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL),
lower = gs_b,
lpar = c(-Inf, -Inf)

) %>%
to_integer() %>%
summary()

gs_design_wlr(
analysis_time = c(18, 30),
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL),
lower = gs_b,
lpar = c(-Inf, -Inf)

) %>%
to_integer() %>%
summary()

gs_design_rd(
p_c = tibble::tibble(stratum = c("A", "B"), rate = c(.2, .3)),
p_e = tibble::tibble(stratum = c("A", "B"), rate = c(.15, .27)),
weight = "ss",
stratum_prev = tibble::tibble(stratum = c("A", "B"), prevalence = c(.4, .6)),
info_frac = c(0.7, 1),
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL),
lower = gs_b,
lpar = c(-Inf, -Inf)

) %>%
to_integer() %>%
summary()

Example 2: Calendar based spending
x <- gs_design_ahr(

upper = gs_spending_bound,
analysis_time = c(18, 30),
upar = list(
sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL,
timing = c(18, 30) / 30

),
lower = gs_b,
lpar = c(-Inf, -Inf)

) %>% to_integer()

The IA nominal p-value is the same as the IA alpha spending
x$bound$`nominal p`[1]
gsDesign::sfLDOF(alpha = 0.025, t = 18 / 30)$spend

wlr_weight 101

wlr_weight Weight functions for weighted log-rank test

Description

• wlr_weight_fh is Fleming-Harrington, FH(rho, gamma) weight function.
• wlr_weight_1 is constant for log rank test.
• wlr_weight_power is Gehan-Breslow and Tarone-Ware weight function.
• wlr_weight_mb is Magirr (2021) weight function.

Usage

wlr_weight_fh(x, arm0, arm1, rho = 0, gamma = 0, tau = NULL)

wlr_weight_1(x, arm0, arm1)

wlr_weight_n(x, arm0, arm1, power = 1)

wlr_weight_mb(x, arm0, arm1, tau = NULL, w_max = Inf)

Arguments

x A vector of numeric values.
arm0 An arm object defined in the npsurvSS package.
arm1 An arm object defined in the npsurvSS package.
rho A scalar parameter that controls the type of test.
gamma A scalar parameter that controls the type of test.
tau A scalar parameter of the cut-off time for modest weighted log rank test.
power A scalar parameter that controls the power of the weight function.
w_max A scalar parameter of the cut-off weight for modest weighted log rank test.

Value

A vector of weights.

A vector of weights.

A vector of weights.

A vector of weights.

Specification

• Compute the sample size via the sum of arm sizes.
• Compute the proportion of size in the two arms.
• If the input tau is specified, define time up to the cut off time tau.
• Compute the CDF using the proportion of the size in the two arms and npsruvSS::psurv().
• Return the Fleming-Harrington weights for weighted Log-rank test.

102 wlr_weight

Examples

enroll_rate <- define_enroll_rate(
duration = c(2, 2, 10),
rate = c(3, 6, 9)

)

fail_rate <- define_fail_rate(
duration = c(3, 100),
fail_rate = log(2) / c(9, 18),
hr = c(.9, .6),
dropout_rate = .001

)

gs_arm <- gs_create_arm(enroll_rate, fail_rate, ratio = 1)
arm0 <- gs_arm$arm0
arm1 <- gs_arm$arm1

wlr_weight_fh(1:3, arm0, arm1, rho = 0, gamma = 0, tau = NULL)
enroll_rate <- define_enroll_rate(

duration = c(2, 2, 10),
rate = c(3, 6, 9)

)

fail_rate <- define_fail_rate(
duration = c(3, 100),
fail_rate = log(2) / c(9, 18),
hr = c(.9, .6),
dropout_rate = .001

)

gs_arm <- gs_create_arm(enroll_rate, fail_rate, ratio = 1)
arm0 <- gs_arm$arm0
arm1 <- gs_arm$arm1

wlr_weight_1(1:3, arm0, arm1)
enroll_rate <- define_enroll_rate(

duration = c(2, 2, 10),
rate = c(3, 6, 9)

)

fail_rate <- define_fail_rate(
duration = c(3, 100),
fail_rate = log(2) / c(9, 18),
hr = c(.9, .6),
dropout_rate = .001

)

gs_arm <- gs_create_arm(enroll_rate, fail_rate, ratio = 1)
arm0 <- gs_arm$arm0
arm1 <- gs_arm$arm1

wlr_weight_n(1:3, arm0, arm1, power = 2)

wlr_weight 103

enroll_rate <- define_enroll_rate(
duration = c(2, 2, 10),
rate = c(3, 6, 9)

)

fail_rate <- define_fail_rate(
duration = c(3, 100),
fail_rate = log(2) / c(9, 18),
hr = c(.9, .6),
dropout_rate = .001

)

gs_arm <- gs_create_arm(enroll_rate, fail_rate, ratio = 1)
arm0 <- gs_arm$arm0
arm1 <- gs_arm$arm1

wlr_weight_mb(1:3, arm0, arm1, tau = -1, w_max = 1.2)

Index

ahr, 3
ahr(), 21, 54, 60, 63
ahr_blinded, 5
as_gt, 6
as_rtf, 10

define_enroll_rate, 14
define_enroll_rate(), 3, 17, 19, 21, 33, 54,

56, 60, 89
define_fail_rate, 15
define_fail_rate(), 3, 19, 21, 33, 54, 56, 89

expected_accrual, 16
expected_event, 18
expected_time, 21
expected_time(), 54, 60, 63

fixed_design_ahr, 22
fixed_design_ahr(), 23
fixed_design_fh (fixed_design_ahr), 22
fixed_design_fh(), 23
fixed_design_lf (fixed_design_ahr), 22
fixed_design_lf(), 23
fixed_design_maxcombo

(fixed_design_ahr), 22
fixed_design_maxcombo(), 23
fixed_design_mb (fixed_design_ahr), 22
fixed_design_mb(), 23
fixed_design_milestone

(fixed_design_ahr), 22
fixed_design_milestone(), 23
fixed_design_rd (fixed_design_ahr), 22
fixed_design_rd(), 23
fixed_design_rmst (fixed_design_ahr), 22
fixed_design_rmst(), 23

GenzBretz, 40, 66
gs_b, 30
gs_bound_summary, 31
gs_cp_npe, 32

gs_create_arm, 33
gs_design_ahr, 35
gs_design_ahr(), 85, 96
gs_design_combo, 39
gs_design_npe, 42
gs_design_npe(), 30
gs_design_rd, 47
gs_design_wlr, 50
gs_info_ahr, 54
gs_info_combo, 55
gs_info_rd, 56
gs_info_wlr, 59
gs_power_ahr, 61
gs_power_ahr(), 85
gs_power_combo, 65
gs_power_npe, 67
gs_power_npe(), 30, 43
gs_power_rd, 71
gs_power_wlr, 76
gs_spending_bound, 81
gs_spending_bound(), 30
gs_spending_combo, 83
gs_update_ahr, 85
gsDesign::gsBoundSummary(), 32

Miwa, 40, 66
mvtnorm::pmvnorm, 40, 66

ppwe, 87
pw_info, 89

s2pwe, 90
summary.fixed_design, 91
summary.gs_design

(summary.fixed_design), 91
survival::Surv(), 5

text_summary, 96
to_integer, 97
to_integer(), 63, 78, 96

104

INDEX 105

TVPACK, 40, 66

wlr_weight, 101
wlr_weight_1 (wlr_weight), 101
wlr_weight_fh (wlr_weight), 101
wlr_weight_mb (wlr_weight), 101
wlr_weight_n (wlr_weight), 101

	ahr
	ahr_blinded
	as_gt
	as_rtf
	define_enroll_rate
	define_fail_rate
	expected_accrual
	expected_event
	expected_time
	fixed_design_ahr
	gs_b
	gs_bound_summary
	gs_cp_npe
	gs_create_arm
	gs_design_ahr
	gs_design_combo
	gs_design_npe
	gs_design_rd
	gs_design_wlr
	gs_info_ahr
	gs_info_combo
	gs_info_rd
	gs_info_wlr
	gs_power_ahr
	gs_power_combo
	gs_power_npe
	gs_power_rd
	gs_power_wlr
	gs_spending_bound
	gs_spending_combo
	gs_update_ahr
	ppwe
	pw_info
	s2pwe
	summary.fixed_design
	text_summary
	to_integer
	wlr_weight
	Index

