## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE, message = FALSE, error = FALSE ) ## ----eval = FALSE------------------------------------------------------------- # install.packages("ppseq") # install.packages("future") ## ----------------------------------------------------------------------------- library(ppseq) ## ----eval = FALSE------------------------------------------------------------- # library(future) ## ----eval = FALSE------------------------------------------------------------- # set.seed(123) # # future::plan(future::multicore(workers = 40)) # # one_sample_cal_tbl <- # calibrate_thresholds(p_null = 0.1, # p_alt = 0.2, # n = seq(5, 95, 5), # N = 95, # pp_threshold = seq(0.9, 0.99, 0.01), # ppp_threshold = seq(0.05, 0.2, 0.05), # direction = "greater", # delta = NULL, # prior = c(0.5, 0.5), # S = 5000, # nsim = 1000 # ) ## ----eval = FALSE------------------------------------------------------------- # print(one_sample_cal_tbl, # type1_range = c(0.05, 0.1), # minimum_power = 0.7) ## ----echo = FALSE------------------------------------------------------------- library(gt) gt(dplyr::filter(one_sample_cal_tbl$res_summary, prop_pos_null >= 0.05, prop_pos_null <= 0.1, prop_pos_alt >= 0.7)) ## ----------------------------------------------------------------------------- optimize_design(one_sample_cal_tbl, type1_range = c(0.05, 0.1), minimum_power = 0.7) ## ----eval = FALSE------------------------------------------------------------- # set.seed(123) # # one_sample_decision_tbl <- # calc_decision_rules( # n = seq(5, 95, 5), # N = 95, # theta = 0.92, # ppp = 0.1, # p0 = 0.1, # direction = "greater", # delta = NULL, # prior = c(0.5, 0.5), # S = 5000 # ) ## ----eval = FALSE------------------------------------------------------------- # one_sample_decision_tbl ## ----echo = FALSE------------------------------------------------------------- gt::gt(one_sample_decision_tbl) ## ----eval = FALSE------------------------------------------------------------- # plot(one_sample_cal_tbl, # type1_range = c(0.05, 0.1), # minimum_power = 0.7, # plotly = TRUE) ## ----echo = FALSE------------------------------------------------------------- ptest <- plot(one_sample_cal_tbl, type1_range = c(0.05, 0.1), minimum_power = 0.7, plotly = TRUE) ## ----echo = FALSE, fig.width = 8, fig.height = 6------------------------------ ptest[[1]] ptest[[2]] ## ----message = FALSE, fig.width = 8, fig.height = 12-------------------------- plot(one_sample_decision_tbl)