## ----------------------------------------------------------------------------- set.seed(1234) n <- 1000 x <- rnorm(n) w <- x + rnorm(n) y <- x + rnorm(n) x[(n * 0.1):n] <- NA simData <- data.frame(x, w, y) ## ----------------------------------------------------------------------------- library(smcfcs) imps <- smcfcs(simData, smtype = "lm", smformula = "y~x", method = c("norm", "", ""), m = 5 ) ## ----------------------------------------------------------------------------- predMat <- array(0, dim = c(3, 3)) predMat[1, 2] <- 1 ## ----------------------------------------------------------------------------- imps <- smcfcs(simData, smtype = "lm", smformula = "y~x", method = c("norm", "", ""), m = 5, predictorMatrix = predMat ) ## ----------------------------------------------------------------------------- library(mitools) impobj <- imputationList(imps$impDatasets) models <- with(impobj, lm(y ~ x)) summary(MIcombine(models)) ## ----------------------------------------------------------------------------- x <- rnorm(n) w1 <- x + rnorm(n) w2 <- x + rnorm(n) w2[(n * 0.1):n] <- NA y <- x + rnorm(n) x <- rep(NA, n) simData <- data.frame(x, w1, w2, y) ## ----------------------------------------------------------------------------- errMat <- array(0, dim = c(4, 4)) errMat[1, c(2, 3)] <- 1 imps <- smcfcs(simData, smtype = "lm", smformula = "y~x", method = c("latnorm", "", "", ""), m = 5, errorProneMatrix = errMat ) ## ----------------------------------------------------------------------------- impobj <- imputationList(imps$impDatasets) models <- with(impobj, lm(y ~ x)) summary(MIcombine(models)) ## ----------------------------------------------------------------------------- summary(imps$impDatasets[[1]]) ## ----fig.width=6-------------------------------------------------------------- imps <- smcfcs(simData, smtype = "lm", smformula = "y~x", method = c("latnorm", "", "", ""), m = 1, numit = 100, errorProneMatrix = errMat ) plot(imps) ## ----------------------------------------------------------------------------- x <- rnorm(n) x1 <- x + rnorm(n) x2 <- x + rnorm(n) w2[(n * 0.1):n] <- NA z <- x + rnorm(n) z1 <- z + 0.1 * rnorm(n) z2 <- z + 0.1 * rnorm(n) y <- x - z + rnorm(n) x <- rep(NA, n) z <- rep(NA, n) simData <- data.frame(x, x1, x2, z, z1, z2, y) errMat <- array(0, dim = c(7, 7)) errMat[1, c(2, 3)] <- 1 errMat[4, c(5, 6)] <- 1 imps <- smcfcs(simData, smtype = "lm", smformula = "y~x+z", method = c("latnorm", "", "", "latnorm", "", "", ""), m = 5, errorProneMatrix = errMat ) ## ----------------------------------------------------------------------------- impobj <- imputationList(imps$impDatasets) models <- with(impobj, lm(y ~ x + z)) summary(MIcombine(models))