## ----echo = FALSE, warning=FALSE, message = FALSE, results = 'hide'----------- cat("this will be hidden; use for general initializations.\n") library(superb) options("superb.feedback" = c("warnings","design")) library(ggplot2) dta = GRD(WSFactors="Moments(3)", SubjectsPerGroup =20, Population = list(mean = 12, stddev = 1, rho = 0.45), Effects = list("Moments" = custom(2,3,5) ), RenameDV = "Score" ) ## ----------------------------------------------------------------------------- pCM <- superb( crange(Score.1,Score.3) ~ ., dta, WSFactors = "moment(3)", adjustments=list(decorrelation="none"), preprocessfct = "subjectCenteringTransform", postprocessfct = "biasCorrectionTransform", plotStyle = "pointjitter", errorbarParams = list(color="red", width= 0.1, position = position_nudge(-0.05) ) ) ## ----------------------------------------------------------------------------- pLM <- superb( crange(Score.1,Score.3) ~ ., dta, WSFactors = "moment(3)", adjustments=list(decorrelation="none"), preprocessfct = "subjectCenteringTransform", postprocessfct = c("biasCorrectionTransform","poolSDTransform"), plotStyle = "line", errorbarParams = list(color="orange", width= 0.1, position = position_nudge(-0.0) ) ) ## ----------------------------------------------------------------------------- pNKM <- superb( crange(Score.1,Score.3) ~ ., dta, WSFactors = "moment(3)", adjustments=list(decorrelation="none"), preprocessfct = "subjectCenteringTransform", postprocessfct = c("poolSDTransform"), plotStyle = "line", errorbarParams = list(color="blue", width= 0.1, position = position_nudge(+0.05) ) ) ## ----fig.height=4, fig.width=7, fig.cap = "**Figure 1**. Plot of the tree decorrelation methods based on subject transformation."---- tlbl <- paste( "(red) Subject centering & Bias correction == CM\n", "(orange) Subject centering, Bias correction & Pooling SDs == LM\n", "(blue) Subject centering & Pooling SDs == NKM", sep="") ornate <- list( xlab("Group"), ylab("Score"), labs( title=tlbl), coord_cartesian( ylim = c(12,18) ), theme_light(base_size=10) ) # the plots on top are made transparent pCM2 <- ggplotGrob(pCM + ornate) pLM2 <- ggplotGrob(pLM + ornate + makeTransparent() ) pNKM2 <- ggplotGrob(pNKM + ornate + makeTransparent() ) # put the grobs onto an empty ggplot ggplot() + annotation_custom(grob=pCM2) + annotation_custom(grob=pLM2) + annotation_custom(grob=pNKM2)