
GnuTLS-Guile
Guile binding for GNU TLS

for version 3.0.10, 4 November 2011

This manual is last updated 4 November 2011 for version 3.0.10 of GnuTLS.

Copyright c© 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software
Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

i

Table of Contents

1 Preface . 1

2 Guile Preparations . 2

3 Guile API Conventions . 3
3.1 Enumerates and Constants . 3
3.2 Procedure Names . 4
3.3 Representation of Binary Data . 4
3.4 Input and Output . 4
3.5 Exception Handling . 5

4 Guile Examples . 7
4.1 Anonymous Authentication Guile Example . 7
4.2 OpenPGP Authentication Guile Example . 8
4.3 Importing OpenPGP Keys Guile Example . 9

5 Guile Reference . 11

Appendix A Copying Information 20

Chapter 1: Preface 1

1 Preface

This manual describes the GNU Guile Scheme programming interface to GnuTLS. The
reader is assumed to have basic knowledge of the protocol and library. Details missing from
this chapter may be found in Function reference, of the C API reference.

At this stage, not all the C functions are available from Scheme, but a large subset thereof
is available.

http://www.gnu.org/software/guile/

Chapter 2: Guile Preparations 2

2 Guile Preparations

The GnuTLS Guile bindings are available for both the 1.8 and 2.0 stable series of Guile.

By default they are installed under the GnuTLS installation directory, typically
‘/usr/local/share/guile/site/’). Normally Guile will not find the module there
without help. You may experience something like this:

$ guile

guile> (use-modules (gnutls))

<unnamed port>: no code for module (gnutls)

guile>

There are two ways to solve this. The first is to make sure that when building GnuTLS,
the Guile bindings will be installed in the same place where Guile looks. You may do this
by using the --with-guile-site-dir parameter as follows:

$./configure --with-guile-site-dir=no

This will instruct GnuTLS to attempt to install the Guile bindings where Guile will look
for them. It will use guile-config info pkgdatadir to learn the path to use.

If Guile was installed into /usr, you may also install GnuTLS using the same prefix:

$./configure --prefix=/usr

If you want to specify the path to install the Guile bindings you can also specify the path
directly:

$./configure --with-guile-site-dir=/opt/guile/share/guile/site

The second solution requires some more work but may be easier to use if you do not have
system administrator rights to your machine. You need to instruct Guile so that it finds the
GnuTLS Guile bindings. Either use the GUILE_LOAD_PATH environment variable as follows:

$ GUILE_LOAD_PATH="/usr/local/share/guile/site:$GUILE_LOAD_PATH" guile

guile> (use-modules (gnutls))

guile>

Alternatively, you can modify Guile’s %load-path variable (see Section “Build Config” in
The GNU Guile Reference Manual).

At this point, you might get an error regarding ‘libguile-gnutls-v-0’ similar to:

gnutls.scm:361:1: In procedure dynamic-link in expression (load-extension "libguile-gnutls-v-0" "scm_init_gnutls"):

gnutls.scm:361:1: file: "libguile-gnutls-v-0", message: "libguile-gnutls-v-0.so: cannot open shared object file: No such file or directory"

In this case, you will need to modify the run-time linker path, for example as follows:

$ LD_LIBRARY_PATH=/usr/local/lib GUILE_LOAD_PATH=/usr/local/share/guile/site guile

guile> (use-modules (gnutls))

guile>

To check that you got the intended GnuTLS library version, you may print the version
number of the loaded library as follows:

$ guile

guile> (use-modules (gnutls))

guile> (gnutls-version)

"3.0.10"

guile>

Chapter 3: Guile API Conventions 3

3 Guile API Conventions

This chapter details the conventions used by Guile API, as well as specificities of the map-
ping of the C API to Scheme.

3.1 Enumerates and Constants

Lots of enumerates and constants are used in the GnuTLS C API. For each C enumerate
type, a disjoint Scheme type is used—thus, enumerate values and constants are not repre-
sented by Scheme symbols nor by integers. This makes it impossible to use an enumerate
value of the wrong type on the Scheme side: such errors are automatically detected by
type-checking.

The enumerate values are bound to variables exported by the (gnutls) module. These
variables are named according to the following convention:

• All variable names are lower-case; the underscore _ character used in the C API is
replaced by hyphen -.

• All variable names are prepended by the name of the enumerate type and the slash /

character.

• In some cases, the variable name is made more explicit than the one of the C API, e.g.,
by avoid abbreviations.

Consider for instance this C-side enumerate:

typedef enum

{

GNUTLS_CRD_CERTIFICATE = 1,

GNUTLS_CRD_ANON,

GNUTLS_CRD_SRP,

GNUTLS_CRD_PSK,

GNUTLS_CRD_IA

} gnutls_credentials_type_t;

The corresponding Scheme values are bound to the following variables exported by the
(gnutls) module:

credentials/certificate

credentials/anonymous

credentials/srp

credentials/psk

credentials/ia

Hopefully, most variable names can be deduced from this convention.

Scheme-side “enumerate” values can be compared using eq? (see Section “Equality” in The
GNU Guile Reference Manual). Consider the following example:

(let ((session (make-session connection-end/client)))

;;

;; ...

;;

Chapter 3: Guile API Conventions 4

;; Check the ciphering algorithm currently used by SESSION.

(if (eq? cipher/arcfour (session-cipher session))

(format #t "We’re using the ARCFOUR algorithm")))

In addition, all enumerate values can be converted to a human-readable string,
in a type-specific way. For instance, (cipher->string cipher/arcfour) yields
"ARCFOUR 128", while (key-usage->string key-usage/digital-signature) yields
"digital-signature". Note that these strings may not be sufficient for use in a user
interface since they are fairly concise and not internationalized.

3.2 Procedure Names

Unlike C functions in GnuTLS, the corresponding Scheme procedures are named in a
way that is close to natural English. Abbreviations are also avoided. For instance, the
Scheme procedure corresponding to gnutls_certificate_set_dh_params is named set-

certificate-credentials-dh-parameters!. The gnutls_ prefix is always omitted from
variable names since a similar effect can be achieved using Guile’s nifty binding renam-
ing facilities, should it be needed (see Section “Using Guile Modules” in The GNU Guile
Reference Manual).

Often Scheme procedure names differ from C function names in a way that makes it clearer
what objects they operate on. For example, the Scheme procedure named set-session-

transport-port! corresponds to gnutls_transport_set_ptr, making it clear that this
procedure applies to session.

3.3 Representation of Binary Data

Many procedures operate on binary data. For instance, pkcs3-import-dh-parameters
expects binary data as input and, similarly, procedures like pkcs1-export-rsa-parameters
return binary data.

Binary data is represented on the Scheme side using SRFI-4 homogeneous vectors (see
Section “SRFI-4” in The GNU Guile Reference Manual). Although any type of homoge-
neous vector may be used, u8vectors (i.e., vectors of bytes) are highly recommended.

As an example, generating and then exporting RSA parameters in the PEM format can be
done as follows:

(let* ((rsa-params (make-rsa-parameters 1024))

(raw-data

(pkcs1-export-rsa-parameters rsa-params

x509-certificate-format/pem)))

(uniform-vector-write raw-data (open-output-file "some-file.pem")))

For an example of OpenPGP key import from a file, see Section 4.3 [Importing OpenPGP
Keys Guile Example], page 9.

3.4 Input and Output

The underlying transport of a TLS session can be any Scheme input/output port (see
Section “Ports and File Descriptors” in The GNU Guile Reference Manual). This has to
be specified using set-session-transport-port!.

Chapter 3: Guile API Conventions 5

However, for better performance, a raw file descriptor can be specified, using set-session-
transport-fd!. For instance, if the transport layer is a socket port over an OS-provided
socket, you can use the port->fdes or fileno procedure to obtain the underlying file
descriptor and pass it to set-session-transport-fd! (see Section “Ports and File De-
scriptors” in The GNU Guile Reference Manual). This would work as follows:

(let ((socket (socket PF_INET SOCK_STREAM 0))

(session (make-session connection-end/client)))

;;

;; Establish a TCP connection...

;;

;; Use the file descriptor that underlies SOCKET.

(set-session-transport-fd! session (fileno socket)))

Once a TLS session is established, data can be communicated through it (i.e., via the TLS
record layer) using the port returned by session-record-port:

(let ((session (make-session connection-end/client)))

;;

;; Initialize the various parameters of SESSION, set up

;; a network connection, etc...

;;

(let ((i/o (session-record-port session)))

(write "Hello peer!" i/o)

(let ((greetings (read i/o)))

;; ...

(bye session close-request/rdwr))))

A lower-level I/O API is provided by record-send and record-receive! which take an
SRFI-4 vector to represent the data sent or received. While it might improve performance,
it is much less convenient than the above and should rarely be needed.

3.5 Exception Handling

GnuTLS errors are implemented as Scheme exceptions (see Section “Exceptions” in The
GNU Guile Reference Manual). Each time a GnuTLS function returns an error, an excep-
tion with key gnutls-error is raised. The additional arguments that are thrown include
an error code and the name of the GnuTLS procedure that raised the exception. The error
code is pretty much like an enumerate value: it is one of the error/ variables exported by
the (gnutls) module (see Section 3.1 [Enumerates and Constants], page 3). Exceptions
can be turned into error messages using the error->string procedure.

The following examples illustrates how GnuTLS exceptions can be handled:

(let ((session (make-session connection-end/server)))

Chapter 3: Guile API Conventions 6

;;

;; ...

;;

(catch ’gnutls-error

(lambda ()

(handshake session))

(lambda (key err function . currently-unused)

(format (current-error-port)

"a GnuTLS error was raised by ‘~a’: ~a~%"

function (error->string err)))))

Again, error values can be compared using eq?:

;; ‘gnutls-error’ handler.

(lambda (key err function . currently-unused)

(if (eq? err error/fatal-alert-received)

(format (current-error-port)

"a fatal alert was caught!~%")

(format (current-error-port)

"something bad happened: ~a~%"

(error->string err))))

Note that the catch handler is currently passed only 3 arguments but future versions might
provide it with additional arguments. Thus, it must be prepared to handle more than 3
arguments, as in this example.

Chapter 4: Guile Examples 7

4 Guile Examples

This chapter provides examples that illustrate common use cases.

4.1 Anonymous Authentication Guile Example

Anonymous authentication is very easy to use. No certificates are needed by the commu-
nicating parties. Yet, it allows them to benefit from end-to-end encryption and integrity
checks.

The client-side code would look like this (assuming some-socket is bound to an open socket
port):

;; Client-side.

(let ((client (make-session connection-end/client)))

;; Use the default settings.

(set-session-default-priority! client)

;; Don’t use certificate-based authentication.

(set-session-certificate-type-priority! client ’())

;; Request the "anonymous Diffie-Hellman" key exchange method.

(set-session-kx-priority! client (list kx/anon-dh))

;; Specify the underlying socket.

(set-session-transport-fd! client (fileno some-socket))

;; Create anonymous credentials.

(set-session-credentials! client

(make-anonymous-client-credentials))

;; Perform the TLS handshake with the server.

(handshake client)

;; Send data over the TLS record layer.

(write "hello, world!" (session-record-port client))

;; Terminate the TLS session.

(bye client close-request/rdwr))

The corresponding server would look like this (again, assuming some-socket is bound to a
socket port):

;; Server-side.

(let ((server (make-session connection-end/server)))

(set-session-default-priority! server)

(set-session-certificate-type-priority! server ’())

(set-session-kx-priority! server (list kx/anon-dh))

Chapter 4: Guile Examples 8

;; Specify the underlying transport socket.

(set-session-transport-fd! server (fileno some-socket))

;; Create anonymous credentials.

(let ((cred (make-anonymous-server-credentials))

(dh-params (make-dh-parameters 1024)))

;; Note: DH parameter generation can take some time.

(set-anonymous-server-dh-parameters! cred dh-params)

(set-session-credentials! server cred))

;; Perform the TLS handshake with the client.

(handshake server)

;; Receive data over the TLS record layer.

(let ((message (read (session-record-port server))))

(format #t "received the following message: ~a~%"

message)

(bye server close-request/rdwr)))

This is it!

4.2 OpenPGP Authentication Guile Example

GnuTLS allows users to authenticate using OpenPGP certificates. Using OpenPGP-based
authentication is not more complicated than using anonymous authentication. It requires
a bit of extra work, though, to import the OpenPGP public and private key of the
client/server. Key import is omitted here and is left as an exercise to the reader (see
Section 4.3 [Importing OpenPGP Keys Guile Example], page 9).

Assuming some-socket is bound to an open socket port and pub and sec are bound to the
client’s OpenPGP public and secret key, respectively, client-side code would look like this:

;; Client-side.

(define %certs (list certificate-type/openpgp))

(let ((client (make-session connection-end/client))

(cred (make-certificate-credentials)))

(set-session-default-priority! client)

;; Choose OpenPGP certificates.

(set-session-certificate-type-priority! client %certs)

;; Prepare appropriate client credentials.

(set-certificate-credentials-openpgp-keys! cred pub sec)

(set-session-credentials! client cred)

;; Specify the underlying transport socket.

Chapter 4: Guile Examples 9

(set-session-transport-fd! client (fileno some-socket))

(handshake client)

(write "hello, world!" (session-record-port client))

(bye client close-request/rdwr))

Similarly, server-side code would be along these lines:

;; Server-side.

(define %certs (list certificate-type/openpgp))

(let ((server (make-session connection-end/server))

(rsa (make-rsa-parameters 1024))

(dh (make-dh-parameters 1024)))

(set-session-default-priority! server)

;; Choose OpenPGP certificates.

(set-session-certificate-type-priority! server %certs)

(let ((cred (make-certificate-credentials)))

;; Prepare credentials with RSA and Diffie-Hellman parameters.

(set-certificate-credentials-dh-parameters! cred dh)

(set-certificate-credentials-rsa-export-parameters! cred rsa)

(set-certificate-credentials-openpgp-keys! cred pub sec)

(set-session-credentials! server cred))

(set-session-transport-fd! server (fileno some-socket))

(handshake server)

(let ((msg (read (session-record-port server))))

(format #t "received: ~a~%" msg)

(bye server close-request/rdwr)))

In practice, generating RSA parameters (and Diffie-Hellman parameters) can time a long
time. Thus, you may want to generate them once and store them in a file for future re-use
(see Chapter 5 [Guile Reference], page 11).

4.3 Importing OpenPGP Keys Guile Example

The following example provides a simple way of importing “ASCII-armored” OpenPGP
keys from files, using the import-openpgp-certificate and import-openpgp-private-

key procedures.

(use-modules (srfi srfi-4)

(gnutls))

(define (import-key-from-file import-proc file)

;; Import OpenPGP key from FILE using IMPORT-PROC.

Chapter 4: Guile Examples 10

;; Prepare a u8vector large enough to hold the raw

;; key contents.

(let* ((size (stat:size (stat path)))

(raw (make-u8vector size)))

;; Fill in the u8vector with the contents of FILE.

(uniform-vector-read! raw (open-input-file file))

;; Pass the u8vector to the import procedure.

(import-proc raw openpgp-certificate-format/base64)))

(define (import-public-key-from-file file)

(import-key-from-file import-openpgp-certificate file))

(define (import-private-key-from-file file)

(import-key-from-file import-openpgp-private-key file))

The procedures import-public-key-from-file and import-private-key-from-file can
be passed a file name. They return an OpenPGP public key and private key object, respec-
tively (see Chapter 5 [Guile Reference], page 11).

Chapter 5: Guile Reference 11

5 Guile Reference

This chapter lists the GnuTLS Scheme procedures exported by the (gnutls) module (see
Section “The Guile module system” in The GNU Guile Reference Manual).

[Scheme Procedure]set-log-level! level
Enable GnuTLS logging up to level (an integer).

[Scheme Procedure]set-log-procedure! proc
Use proc (a two-argument procedure) as the global GnuTLS log procedure.

[Scheme Procedure]set-certificate-credentials-openpgp-keys! cred pub
sec

Use certificate pub and secret key sec in certificate credentials cred.

[Scheme Procedure]openpgp-keyring-contains-key-id? keyring id
Return #f if key ID id is in keyring , #f otherwise.

[Scheme Procedure]import-openpgp-keyring data format
Import data (a u8vector) according to format and return the imported keyring.

[Scheme Procedure]openpgp-certificate-usage key
Return a list of values denoting the key usage of key .

[Scheme Procedure]openpgp-certificate-version key
Return the version of the OpenPGP message format (RFC2440) honored by key .

[Scheme Procedure]openpgp-certificate-algorithm key
Return two values: the certificate algorithm used by key and the number of bits used.

[Scheme Procedure]openpgp-certificate-names key
Return the list of names for key .

[Scheme Procedure]openpgp-certificate-name key index
Return the indexth name of key .

[Scheme Procedure]openpgp-certificate-fingerprint key
Return a new u8vector denoting the fingerprint of key .

[Scheme Procedure]openpgp-certificate-fingerprint! key fpr
Store in fpr (a u8vector) the fingerprint of key . Return the number of bytes stored
in fpr.

[Scheme Procedure]openpgp-certificate-id! key id
Store the ID (an 8 byte sequence) of certificate key in id (a u8vector).

[Scheme Procedure]openpgp-certificate-id key
Return the ID (an 8-element u8vector) of certificate key .

[Scheme Procedure]import-openpgp-private-key data format [pass]
Return a new OpenPGP private key object resulting from the import of data (a
uniform array) according to format. Optionally, a passphrase may be provided.

Chapter 5: Guile Reference 12

[Scheme Procedure]import-openpgp-certificate data format
Return a new OpenPGP certificate object resulting from the import of data (a uniform
array) according to format.

[Scheme Procedure]x509-certificate-subject-alternative-name cert index
Return two values: the alternative name type for cert (i.e., one of the x509-subject-
alternative-name/ values) and the actual subject alternative name (a string) at
index. Both values are #f if no alternative name is available at index.

[Scheme Procedure]x509-certificate-subject-key-id cert
Return the subject key ID (a u8vector) for cert.

[Scheme Procedure]x509-certificate-authority-key-id cert
Return the key ID (a u8vector) of the X.509 certificate authority of cert.

[Scheme Procedure]x509-certificate-key-id cert
Return a statistically unique ID (a u8vector) for cert that depends on its public key
parameters. This is normally a 20-byte SHA-1 hash.

[Scheme Procedure]x509-certificate-version cert
Return the version of cert.

[Scheme Procedure]x509-certificate-key-usage cert
Return the key usage of cert (i.e., a list of key-usage/ values), or the empty list if
cert does not contain such information.

[Scheme Procedure]x509-certificate-public-key-algorithm cert
Return two values: the public key algorithm (i.e., one of the pk-algorithm/ values)
of cert and the number of bits used.

[Scheme Procedure]x509-certificate-signature-algorithm cert
Return the signature algorithm used by cert (i.e., one of the sign-algorithm/ values).

[Scheme Procedure]x509-certificate-matches-hostname? cert hostname
Return true if cert matches hostname, a string denoting a DNS host name. This is
the basic implementation of RFC 2818 (aka. HTTPS).

[Scheme Procedure]x509-certificate-issuer-dn-oid cert index
Return the OID (a string) at index from cert’s issuer DN. Return #f if no OID is
available at index.

[Scheme Procedure]x509-certificate-dn-oid cert index
Return OID (a string) at index from cert. Return #f if no OID is available at index.

[Scheme Procedure]x509-certificate-issuer-dn cert
Return the distinguished name (DN) of X.509 certificate cert.

[Scheme Procedure]x509-certificate-dn cert
Return the distinguished name (DN) of X.509 certificate cert. The form of the DN is
as described in RFC 2253.

http://tools.ietf.org/html/rfc2818
http://tools.ietf.org/html/rfc2253

Chapter 5: Guile Reference 13

[Scheme Procedure]pkcs8-import-x509-private-key data format [pass
[encrypted]]

Return a new X.509 private key object resulting from the import of data (a uniform
array) according to format. Optionally, if pass is not #f, it should be a string denoting
a passphrase. encrypted tells whether the private key is encrypted (#t by default).

[Scheme Procedure]import-x509-private-key data format
Return a new X.509 private key object resulting from the import of data (a uniform
array) according to format.

[Scheme Procedure]import-x509-certificate data format
Return a new X.509 certificate object resulting from the import of data (a uniform
array) according to format.

[Scheme Procedure]server-session-psk-username session
Return the username associated with PSK server session session.

[Scheme Procedure]set-psk-client-credentials! cred username key key-format
Set the client credentials for cred, a PSK client credentials object.

[Scheme Procedure]make-psk-client-credentials
Return a new PSK client credentials object.

[Scheme Procedure]set-psk-server-credentials-file! cred file
Use file as the password file for PSK server credentials cred.

[Scheme Procedure]make-psk-server-credentials
Return new PSK server credentials.

[Scheme Procedure]peer-certificate-status session
Verify the peer certificate for session and return a list of certificate-status values
(such as certificate-status/revoked), or the empty list if the certificate is valid.

[Scheme Procedure]set-certificate-credentials-verify-flags! cred
[flags...]

Set the certificate verification flags to flags, a series of certificate-verify values.

[Scheme Procedure]set-certificate-credentials-verify-limits! cred
max-bits max-depth

Set the verification limits of peer-certificate-status for certificate credentials
cred to max bits bits for an acceptable certificate and max depth as the maximum
depth of a certificate chain.

[Scheme Procedure]set-certificate-credentials-x509-keys! cred certs
privkey

Have certificate credentials cred use the X.509 certificates listed in certs and X.509
private key privkey .

[Scheme Procedure]set-certificate-credentials-x509-key-data! cred cert
key format

Use X.509 certificate cert and private key key , both uniform arrays containing the
X.509 certificate and key in format format, for certificate credentials cred.

Chapter 5: Guile Reference 14

[Scheme Procedure]set-certificate-credentials-x509-crl-data! cred data
format

Use data (a uniform array) as the X.509 CRL (certificate revocation list) database
for cred. On success, return the number of CRLs processed.

[Scheme Procedure]set-certificate-credentials-x509-trust-data! cred
data format

Use data (a uniform array) as the X.509 trust database for cred. On success, return
the number of certificates processed.

[Scheme Procedure]set-certificate-credentials-x509-crl-file! cred file
format

Use file as the X.509 CRL (certificate revocation list) file for certificate credentials
cred. On success, return the number of CRLs processed.

[Scheme Procedure]set-certificate-credentials-x509-trust-file! cred file
format

Use file as the X.509 trust file for certificate credentials cred. On success, return the
number of certificates processed.

[Scheme Procedure]set-certificate-credentials-x509-key-files! cred
cert-file key-file format

Use file as the password file for PSK server credentials cred.

[Scheme Procedure]set-certificate-credentials-rsa-export-parameters!
cred rsa-params

Use RSA parameters rsa params for certificate credentials cred.

[Scheme Procedure]set-certificate-credentials-dh-parameters! cred
dh-params

Use Diffie-Hellman parameters dh params for certificate credentials cred.

[Scheme Procedure]make-certificate-credentials
Return new certificate credentials (i.e., for use with either X.509 or OpenPGP cer-
tificates.

[Scheme Procedure]pkcs1-export-rsa-parameters rsa-params format
Export Diffie-Hellman parameters rsa params in PKCS1 format according for format
(an x509-certificate-format value). Return a u8vector containing the result.

[Scheme Procedure]pkcs1-import-rsa-parameters array format
Import Diffie-Hellman parameters in PKCS1 format (further specified by format, an
x509-certificate-format value) from array (a homogeneous array) and return a
new rsa-params object.

[Scheme Procedure]make-rsa-parameters bits
Return new RSA parameters.

[Scheme Procedure]set-anonymous-server-dh-parameters! cred dh-params
Set the Diffie-Hellman parameters of anonymous server credentials cred.

Chapter 5: Guile Reference 15

[Scheme Procedure]make-anonymous-client-credentials
Return anonymous client credentials.

[Scheme Procedure]make-anonymous-server-credentials
Return anonymous server credentials.

[Scheme Procedure]set-session-dh-prime-bits! session bits
Use bits DH prime bits for session.

[Scheme Procedure]pkcs3-export-dh-parameters dh-params format
Export Diffie-Hellman parameters dh params in PKCS3 format according for format
(an x509-certificate-format value). Return a u8vector containing the result.

[Scheme Procedure]pkcs3-import-dh-parameters array format
Import Diffie-Hellman parameters in PKCS3 format (further specified by format, an
x509-certificate-format value) from array (a homogeneous array) and return a
new dh-params object.

[Scheme Procedure]make-dh-parameters bits
Return new Diffie-Hellman parameters.

[Scheme Procedure]set-session-transport-port! session port
Use port as the input/output port for session.

[Scheme Procedure]set-session-transport-fd! session fd
Use file descriptor fd as the underlying transport for session.

[Scheme Procedure]session-record-port session
Return a read-write port that may be used to communicate over session. All invo-
cations of session-port on a given session return the same object (in the sense of
eq?).

[Scheme Procedure]record-receive! session array
Receive data from session into array , a uniform homogeneous array. Return the
number of bytes actually received.

[Scheme Procedure]record-send session array
Send the record constituted by array through session.

[Scheme Procedure]set-session-credentials! session cred
Use cred as session’s credentials.

[Scheme Procedure]cipher-suite->string kx cipher mac
Return the name of the given cipher suite.

[Scheme Procedure]set-session-priorities! session priorities
Have session use the given priorities for the ciphers, key exchange methods, MACs
and compression methods. priorities must be a string (see Priority Strings). When
priorities cannot be parsed, an error/invalid-request error is raised, with an extra
argument indication the position of the error.

Chapter 5: Guile Reference 16

[Scheme Procedure]set-session-default-export-priority! session
Have session use the default export priorities.

[Scheme Procedure]set-session-default-priority! session
Have session use the default priorities.

[Scheme Procedure]set-session-certificate-type-priority! session items
Use items (a list) as the list of preferred certificate-type for session.

[Scheme Procedure]set-session-protocol-priority! session items
Use items (a list) as the list of preferred protocol for session.

[Scheme Procedure]set-session-kx-priority! session items
Use items (a list) as the list of preferred kx for session.

[Scheme Procedure]set-session-compression-method-priority! session items
Use items (a list) as the list of preferred compression-method for session.

[Scheme Procedure]set-session-mac-priority! session items
Use items (a list) as the list of preferred mac for session.

[Scheme Procedure]set-session-cipher-priority! session items
Use items (a list) as the list of preferred cipher for session.

[Scheme Procedure]set-server-session-certificate-request! session request
Tell how session, a server-side session, should deal with certificate requests.
request should be either certificate-request/request or certificate-

request/require.

[Scheme Procedure]session-our-certificate-chain session
Return our certificate chain for session (as sent to the peer) in raw format (a u8vector).
In the case of OpenPGP there is exactly one certificate. Return the empty list if no
certificate was used.

[Scheme Procedure]session-peer-certificate-chain session
Return the a list of certificates in raw format (u8vectors) where the first one is the
peer’s certificate. In the case of OpenPGP, there is always exactly one certificate. In
the case of X.509, subsequent certificates indicate form a certificate chain. Return
the empty list if no certificate was sent.

[Scheme Procedure]session-client-authentication-type session
Return the client authentication type (a credential-type value) used in session.

[Scheme Procedure]session-server-authentication-type session
Return the server authentication type (a credential-type value) used in session.

[Scheme Procedure]session-authentication-type session
Return the authentication type (a credential-type value) used by session.

[Scheme Procedure]session-protocol session
Return the protocol used by session.

Chapter 5: Guile Reference 17

[Scheme Procedure]session-certificate-type session
Return session’s certificate type.

[Scheme Procedure]session-compression-method session
Return session’s compression method.

[Scheme Procedure]session-mac session
Return session’s MAC.

[Scheme Procedure]session-kx session
Return session’s kx.

[Scheme Procedure]session-cipher session
Return session’s cipher.

[Scheme Procedure]alert-send session level alert
Send alert via session.

[Scheme Procedure]alert-get session
Get an aleter from session.

[Scheme Procedure]rehandshake session
Perform a re-handshaking for session.

[Scheme Procedure]handshake session
Perform a handshake for session.

[Scheme Procedure]bye session how
Close session according to how .

[Scheme Procedure]make-session end
Return a new session for connection end end, either connection-end/server or
connection-end/client.

[Scheme Procedure]gnutls-version
Return a string denoting the version number of the underlying GnuTLS library, e.g.,
"1.7.2".

[Scheme Procedure]openpgp-keyring? obj
Return true if obj is of type openpgp-keyring.

[Scheme Procedure]openpgp-private-key? obj
Return true if obj is of type openpgp-private-key.

[Scheme Procedure]openpgp-certificate? obj
Return true if obj is of type openpgp-certificate.

[Scheme Procedure]x509-private-key? obj
Return true if obj is of type x509-private-key.

[Scheme Procedure]x509-certificate? obj
Return true if obj is of type x509-certificate.

Chapter 5: Guile Reference 18

[Scheme Procedure]psk-client-credentials? obj
Return true if obj is of type psk-client-credentials.

[Scheme Procedure]psk-server-credentials? obj
Return true if obj is of type psk-server-credentials.

[Scheme Procedure]srp-client-credentials? obj
Return true if obj is of type srp-client-credentials.

[Scheme Procedure]srp-server-credentials? obj
Return true if obj is of type srp-server-credentials.

[Scheme Procedure]certificate-credentials? obj
Return true if obj is of type certificate-credentials.

[Scheme Procedure]rsa-parameters? obj
Return true if obj is of type rsa-parameters.

[Scheme Procedure]dh-parameters? obj
Return true if obj is of type dh-parameters.

[Scheme Procedure]anonymous-server-credentials? obj
Return true if obj is of type anonymous-server-credentials.

[Scheme Procedure]anonymous-client-credentials? obj
Return true if obj is of type anonymous-client-credentials.

[Scheme Procedure]session? obj
Return true if obj is of type session.

[Scheme Procedure]openpgp-certificate-format->string enumval
Return a string describing enumval, a openpgp-certificate-format value.

[Scheme Procedure]error->string enumval
Return a string describing enumval, a error value.

[Scheme Procedure]certificate-verify->string enumval
Return a string describing enumval, a certificate-verify value.

[Scheme Procedure]key-usage->string enumval
Return a string describing enumval, a key-usage value.

[Scheme Procedure]psk-key-format->string enumval
Return a string describing enumval, a psk-key-format value.

[Scheme Procedure]sign-algorithm->string enumval
Return a string describing enumval, a sign-algorithm value.

[Scheme Procedure]pk-algorithm->string enumval
Return a string describing enumval, a pk-algorithm value.

[Scheme Procedure]x509-subject-alternative-name->string enumval
Return a string describing enumval, a x509-subject-alternative-name value.

Chapter 5: Guile Reference 19

[Scheme Procedure]x509-certificate-format->string enumval
Return a string describing enumval, a x509-certificate-format value.

[Scheme Procedure]certificate-type->string enumval
Return a string describing enumval, a certificate-type value.

[Scheme Procedure]protocol->string enumval
Return a string describing enumval, a protocol value.

[Scheme Procedure]close-request->string enumval
Return a string describing enumval, a close-request value.

[Scheme Procedure]certificate-request->string enumval
Return a string describing enumval, a certificate-request value.

[Scheme Procedure]certificate-status->string enumval
Return a string describing enumval, a certificate-status value.

[Scheme Procedure]handshake-description->string enumval
Return a string describing enumval, a handshake-description value.

[Scheme Procedure]alert-description->string enumval
Return a string describing enumval, a alert-description value.

[Scheme Procedure]alert-level->string enumval
Return a string describing enumval, a alert-level value.

[Scheme Procedure]connection-end->string enumval
Return a string describing enumval, a connection-end value.

[Scheme Procedure]compression-method->string enumval
Return a string describing enumval, a compression-method value.

[Scheme Procedure]digest->string enumval
Return a string describing enumval, a digest value.

[Scheme Procedure]mac->string enumval
Return a string describing enumval, a mac value.

[Scheme Procedure]credentials->string enumval
Return a string describing enumval, a credentials value.

[Scheme Procedure]params->string enumval
Return a string describing enumval, a params value.

[Scheme Procedure]kx->string enumval
Return a string describing enumval, a kx value.

[Scheme Procedure]cipher->string enumval
Return a string describing enumval, a cipher value.

Appendix A: Copying Information 20

Appendix A Copying Information

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

http://fsf.org/

Appendix A: Copying Information 21

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

Appendix A: Copying Information 22

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

Appendix A: Copying Information 23

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at

Appendix A: Copying Information 24

your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: Copying Information 25

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix A: Copying Information 26

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix A: Copying Information 27

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

	Preface
	Guile Preparations
	Guile API Conventions
	Enumerates and Constants
	Procedure Names
	Representation of Binary Data
	Input and Output
	Exception Handling

	Guile Examples
	Anonymous Authentication Guile Example
	OpenPGP Authentication Guile Example
	Importing OpenPGP Keys Guile Example

	Guile Reference
	Copying Information

