GNU Hyperbole Manual

The Everyday Hypertextual Information Manager

EXAMPLE.kotl - =] x

File

B B X

F 1. The Knutlinerlis a part of the Hyperbole information management system.
2. The Koutliner produces hierarchically structured files consisting of...
2a. A cell is an element of the ocutline which has its own display label...
2b. Idstamps support the creation of hyperlinks to cells which are...
Features implemented include:
3a. Full on screen editing (just like a Macintosh). Click to type in a...
3b. Advanced outline processing
Full auto-numbering im Augment (1la2) or...
By default, the Koutliner separates labels from...
{C-j} adds a new cell as a sibling following the...
{C-c C-k} kills the current cell and its...
Tree Demotion and Promotion: Trees may be demoted or...
{M-q} or {M-j} refills a paragraph within a...
In addition to normal Emacs movement commands, ...
Tree Movement and Copying: Entire ocutline trees can be moved or...
TERAMPLE. ko¥1 2]ns" " fop L1
*If your <(Info-directory-list)> or <(Info-directory)> variables include the
directory that contains the online GNU Emacs manual, activation of the next
button will tell you about <(keyboard macros)=. Can't remember a Hyperbole
Check out the Hyperbole Manual <{glossary)=.

s

term?

Here is a ={keyboard macro)= button.
first Emacs Lisp function that follows it, e.g. (hbut:report). You can SEED
that a button label can consist of a number of words, up to a set <=(maximum

Edit

3b1.
3b2.
3b3.
3b4.
3b5.
3b6.
3b7.
3p8.

length)=.
+

Next:

+

Bob Weiner

Rolo Menu, lo
fHere is an example of a simple rolo file. The date at the end is
automatically added by the role system whenever a new record is added.

Label Separators:
Cell and Tree Deletion:

Cell and Tree Filling:

T ket Fill Narrow)

Hyperbole Koutline Text Help

)Undo &8 % % Q

It displays documentation for the

<Last-Name=,

PERSONAL ROLO

W<klo rk#= F<Fax#=

*

<js@hiho.com> W788-555-2001 F78B-321-1492

Chief Ether Maintainer, HiHo Industries

This manual is for GNU Hyperbole (Edition 7.1.1, Published March 1, 2020).
Copyright (©) 1989-2019 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation.

GNU Hyperbole sofware is distributed under the terms of the GNU General
Public License version 3 or later, as published by the Free Software Foundation,
Inc.

GNU Hyperbole is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY, without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details in the file, “COPYING”,
within the Hyperbole package directory.

Published by the Free Software Foundation, Inc.

Author: Bob Weiner
E-mail: <hyperbole-users@gnu.org> (This is a mail list).
Web: www.gnu.org/software/hyperbole

The body of the manual was written in Emacs and laid out using the GNU Texinfo markup
language.

Short Contents

GNU Hyperboleo 1
1 Introduction.......... 2
2 Smart Keys 7
3 Buttons i 18
A MeNUS. .« vttt e 38
5 HyControl 42
6 Koutliner...... 47
7 HyRolo. ... oo 59
8 Window Configurations. 66
9 Developing with Hyperbole. 68
A GlosSary « oo 74
B Setup ... e 81
C Global Key Bindings 91
D Koutliner Keys.o 94
E Smart Key Reference........ 102
F Suggestion or Bug Reporting 126
G Questions and ANSWersttt 127
H Future Work. 129
I Referenceso 131
KeyIndexo 133
Function, Variable and FileIndex 137

Table of Contents

GNU Hyperbole.............. i, 1
1 Introduction................. 2
1.1 Manual Overviewt 2
1.2 Motivationooo e 3
1.3 Hyperbole Overviewo 3
1.4 Mail Lists ..o 6

2 Smart Keys........oooiiiiiiiiii 7
2.1 Smart Key Bindings ... 7
2.2 Smart Key Operations..........ooouiiiiiiieiiiie i, 7
2.3 Smart Key Argument Selection.................. 10
2.4 Smart Key Debugging....... ... 11
2.5 Smart Key Thing Selectionc.oooiiiiiiiiiii... 11
2.6 Smart Mouse Key Modeline Clicks................ 12
2.7 Smart Mouse Key Drags. ..o, 14
2.7.1 Creating and Deleting Windows.............. 14

2.7.2 Saving and Restoring Window Configurations............. 14

2.7.3 Resizing Windows ..., 14

2.74 Moving Frames........ ... 15

2.7.5 Dragging Buffers, Windows and Items..................... 15
2.7.5.1 Swapping Buffers.......... ...l 15

2.7.5.2 Displaying Buffers.........l 15

2.7.5.3 Cloning Windows ..., 15

2.7.5.4 Displaying File and Buffer Items..................... 15

2.7.5.5 Keyboard Drags............cooiiiiiiiiiii 16

3 Buttons........... ... 18
3.1 Explicit Buttons. ... i 19
3.2 Global Buttons.c.cooiiiiiii 19
3.3 TImplicit Buttons. 20
3.3.1 Implicit Button Types........cooiiiiiiiiiiiii i, 21

3.3.2 Action Buttons...........o. i 28

3.4 Button Files. ... i 28
3.5 Action Types. ..ot 29
3.6 Button Type Precedence.......... i 32
3.7 Utilizing Explicit Buttons o i 33
371 Creation.ooun et e 33
3.7.1.1 Creation Via Action Key Drags...................... 33

3.7.1.2 Creation Via Menusooouiiiiiiniiiinnan.. 34

3.7.2 Renamingoooiiiiiiii 34

3.7.3 Deletion . ..ooo i 35

ii

3.7.4 Modificationoviuiii i 35

3.7.5 Searching and Summarizing.................. oL 35
3.7.6 Buttonsin Mail 35
3.7.7 Buttonsin News...... ... 37

4 Menus. 38
5 HyControl............ 42
6 Koutliner............... ... 47
6.1 Menu Commands.ouuuiimit i 48
6.2 Creating Outlines ... 49
6.3 Autonumbering........ 50
6.4 Idstampscooiiiiii e 51
6.5 BEditing.c.ooiii 51
6.5.1 Adding and Killing o i 51
6.5.2 Relocating and Copying ..., 51
6.5.3 Moving Around......... ... 53
6.5.4 Filling. ..o 53
6.5.5 Transposingc..uueiimiiii i 53
6.5.6 Splitting and Appending............. ... L. 54
6.5.7 Inserting and Importing i i 54
6.5.8 EXPOTtingc.ouueiiiiiiiiii e e 55

6.6 VIeWIngoouuti i 55
6.6.1 Hiding and Showing 55
6.6.2 VIEW SPECS . .ttt ittt e 56

6.7 LAnKs. ... 56
6.8 Cell Attributesot 57
6.9 Koutliner History........ .o i 58
7 HyRolo..... ... 59
7.1 HyRolo Concepts........oviuuiiii i 59
7.2 RoloMenu.o 60
7.3 HyRolo Searching i 61
7.4 HyRolo Keys. ... 62
7.5 HyRolo Settings...... ..o 63

8 Window Configurations........................ 66

9 Developing with Hyperbole 68

9.1 Hook Variables. ... 68
9.2 Creating Types. . ..ot e 69
9.2.1 Action Type Creationc.oouiiiiiiiiniieann.n.. 70

9.2.2 Implicit Button Type Creation............... 71

9.3 Explicit Button Technicalities..................cooiiiiiiiiii.. 72
9.3.1 Button Label Normalization 72

9.3.2 Operational and Storage Formats......................... 72

9.3.3 Programmatic Button Creation........................... 73

9.4 Encapsulating Systemso i i 73
9.5 Embedding Hyperbole........o i 73
Appendix A Glossary 74
Appendix B Setup............... 81
B.1 Installationc..o i 81
B2 Invocation............ooiiiiii e 81
B.3 Customizationt 83
B.3.1 Referent Display ... 84

B.3.2 Internal Viewers............ccoiiiiiiiiiiiiiiiiiennin... 84

B.3.3 External Viewers...........ooiiiiiiiiiiiiiiieannan. 86

B.3.4 Link Variable Substitution 87

B.3.5 Web Search Engines........... L. 87

B.3.6 Using URLs with Find-File............... 88

B.3.7 Invisible Text Searches............ ..., 89

B.3.8 Configuring Button Colors ..., 90
Appendix C Global Key Bindings 91
Appendix D Koutliner Keys..................... 94
Appendix E Smart Key Reference............. 102
E.1 Smart Mouse Keys. ... 102
E.1.1 Minibuffer Menu Activation............................. 102

E.1.2 Thing Selection ... 102

E.1.3 Side-by-Side Window Resizing........................... 103

E.1.4 Modeline Clicks and Drags................. ..ot 103

E.1.5 Smart Mouse Drags between Windows................... 105

E.1.6 Smart Mouse Drags within a Window 106

E.1.7 Smart Mouse Drags outside a Window................... 107

E.2 Smart Keyboard Keysooi i, 107
E.2.1 Smart Key - Company Mode............................ 107

E.2.2 Smart Key - Treemacs ..., 107

E.2.3 Smart Key - Emacs Pushbuttons........................ 108

E.2.4 Smart Key - Argument Completion...................... 108

E.2.5

E.2.6

E.2.7

E.2.8

E.29

E.2.10
E2.11
E.2.12
E.2.13
E.2.14
E.2.15
E.2.16
E.2.17
E.2.18
E.2.19
E.2.20
E.2.21
E.2.22
E.2.23
E.2.24
E.2.25
E.2.26
E.2.27
E.2.28
E.2.29
E.2.30
E.2.31
E.2.32
E.2.33
E.2.34
E.2.35
E.2.36
E.2.37
E.2.38
E.2.39
E.2.40
E241
E.2.42
E.2.43

Smart Key - ID Edit Mode................. ..., 108

Smart Key - Emacs Cross-references (Xrefs) 109
Smart Key - Smart Scrolling 109
Smart Key - Smart Menus..................coooiiia.. 109
Smart Key - Dired Mode............ ..., 110
Smart Key - Hyperbole Buttons........................ 110
Smart Key - View Mode ...t 110
Smart Key - Delimited Things 111
Smart Key - The Koutliner............................. 111
Smart Key - RDB Mode ...t 112
Smart Key - Help Buffers 112
Smart Key - Bookmark Mode 112
Smart Key - Pages Directory Mode..................... 113
Smart Key - Python Source Code 113
Smart Key - Identifier Menu Mode 113
Smart Key - C Source Code..............oooiiiiiii.n. 114
Smart Key - C++4 Source Code 114
Smart Key - Assembly Source Code 115
Smart Key - Lisp Source Codeoooo.... 115
Smart Key - Java Source Code......................... 116
Smart Key - JavaScript Source Code 116
Smart Key - Objective-C Source Code.................. 117
Smart Key - Fortran Source Code 117
Smart Key - Occurrence Matches....................... 118
Smart Key - Calendar Mode 118
Smart Key - Man Page Apropos........................ 118
Smart Key - Emacs Outline Mode...................... 119
Smart Key - Info Manuals........................ ..., 119
Smart Key - Email Composers 120
Smart Key - GNUS Newsreader........................ 121
Smart Key - Buffer Menus 122
Smart Key - Tar File Mode, 122
Smart Key - Man Pages. ...t 123
Smart Key - WWW URLs ...t 123
Smart Key - HyRolo Match Buffers 123
Smart Key - Image Thumbnails 123
Smart Key - Gomoku Game............................ 123
Smart Key - The OO-Browser.......................... 124
Smart Key - Default Context........................... 125

Appendix F Suggestion or Bug Reporting.... 126

Appendix G Questions and Answers........... 127

Appendix H Future Work 129

Appendix 1

Key Index

Function, Variable and File Index

Concept Index

vi

GNU Hyperbole

GNU Hyperbole was designed and written by Bob Weiner. See Appendix B [Setup], page 81,
for information on how to obtain and to install Hyperbole.

This manual explains user operation and summarizes basic developer facilities of GNU
Hyperbole. Hyperbole provides convenient access to information, control over its display
and easy linking of items across documents and across the web. The Hyperbole Koutliner
offers flexible views and structure manipulation within bodies of information.

We hope you enjoy using Hyperbole and that it improves your productivity. If it does,
consider sending us a quote or short note discussing how it helps you. We may use your
submission to help promote further use of Hyperbole; all submissions will be considered
freely reusable and will fall under the same license as Hyperbole. E-mail your quote to
<hyperbole-users@gnu.org>. We volunteer our time on Hyperbole and love to hear user
stories in addition to any problem reports.

Before we delve into Hyperbole, a number of acknowledgments are in order. Peter
Wegner and Morris Moore encouraged the growth of this work. Douglas Engelbart showed
us the bigger picture and will forever be an inspiration. His life-long quest at augmenting
individual and team capabilities represents a model from which we continue to draw. Chris
Nuzum has used Hyperbole since its inception, often demonstrating its power in creative
ways. Many thanks to Mats Lidell, a long-time Hyperbole user, who has helped maintain
it throughout the years. The Koutliner is dedicated to my lovely wife, Kathy.

1 Introduction

This edition of the GNU Hyperbole Manual is for use with any version 7.1.1 or greater of
GNU Hyperbole. Hyperbole runs atop GNU Emacs 24.3 or higher. It will trigger an error
if your Emacs is older.

This chapter summarizes the structure of the rest of the manual, describes Hyperbole,
lists some of its potential applications, and explains how to subscribe to its mail lists.

Throughout this manual, sequences of keystrokes are delimited by curly braces { },
function and variable names use this typeface.

1.1 Manual Overview

This is a reference manual with extensive details about Hyperbole use. If you prefer a
simpler, more interactive introduction to Hyperbole, the DEMO file included in the Hyperbole
distribution demonstrates many of Hyperbole’s standard facilities without the need to read
through this reference manual. The DEMO is a good way to rapidly understand some of
what Hyperbole can do for you. Once Hyperbole is installed, (see Appendix B [Setup],
page 81), you can access the DEMO with the key sequence {C-h h d d}.

See Appendix A [Glossary|, page 74, for definitions of Hyperbole terms. In some cases,
terms are not precisely defined within the body of this manual since they are defined within
the glossary. Be sure to reference the glossary if a term is unclear to you. Although you
need not have a keen understanding of all of these terms, a quick scan of the glossary helps
throughout Hyperbole use.

See Appendix B [Setup|, page 81, for explanations of how to obtain, install, configure
and load Hyperbole for use. This appendix includes information on user-level settings that
you may want to modify after you understand Hyperbole’s basic operation.

See Appendix F [Suggestion or Bug Reporting], page 126, for instructions on how to
ask a question, suggest a feature or report a bug in Hyperbole. A few commonly asked
questions are answered in this manual, see Appendix G [Questions and Answers|, page 127.
If you are interested in classic articles on hypertext, see Appendix I [References], page 131.

See Chapter 2 [Smart Keys], page 7, for an explanation of the innovative, context-
sensitive mouse and keyboard Action and Assist Keys offered by Hyperbole. See Appendix E
[Smart Key Reference], page 102, for a complete reference on what the Action and Assist
Keys do in each particular context that they recognize. See Section 2.3 [Smart Key Argu-
ment Selection], page 10, for how Hyperbole speeds selection of prompted for arguments.

Keep in mind as you read about using Hyperbole that in many cases, it provides a
number of overlapping interaction methods that support differing work styles and hardware
limitations. In such instances, you need learn only one technique that suits you.

See Chapter 3 [Buttons], page 18, for an overview of Hyperbole buttons and how to use
them.

See Chapter 4 [Menus|, page 38, for summaries of Hyperbole menu commands and how
to use the minibuffer-based menus that work on dumb terminals, PCs or workstations.

See Chapter 5 [HyControl], page 42, for how to quickly and interactively control your
Emacs windows and frames and what they display.

Chapter 1: Introduction 3

See Chapter 6 [Koutliner], page 47, for concept and usage information on the autonum-
bered, hypertextual outliner. See Appendix D [Koutliner Keys], page 94, for a full summary
of the outliner commands that are bound to keys.

See Chapter 7 [HyRolo|, page 59, for concept and usage information on the rapid lookup,
hierarchical, free text record management system included with Hyperbole.

See Chapter 8 [Window Configurations|, page 66, for instructions on how to save and
restore the set of buffers and windows that appear within a frame. This feature lets you
switch among working contexts easily, even on a dumb terminal. Such configurations last
only throughout a single session of editor usage.

See Chapter 9 [Developing with Hyperbole|, page 68, if you are a developer who is
comfortable with Lisp.

See Appendix H [Future Work], page 129, for future directions in Hyperbole’s evolution.

1.2 Motivation

Database vendors apply tremendous resources to help solve corporate information manage-
ment problems. But the information that people deal with in their everyday worklife is
seldom stored away in neatly defined database schemas. Instead it is scattered among local
and remote files, e-mail messages, faxes, voice mail and web pages.

The rise of the web has demonstrated how hypertext technologies can be used to build
massive organized repositories of scattered information. But assembling information for the
web still remains a great challenge and the data formats of the web are too structured to deal
with the great variety of information that people process. Modern web development requires
the use of many languages: HTML, JavaScript, and CSS. This in itself prevents its use as
the prime means of organizing and interlinking the constant flows of daily information.

GNU Hyperbole takes a distinctly different approach. It has its own hypertext technology
that can interface perfectly with web links but which are much easier to create (simply
drag from the source to the destination of a link to create a new hyperlink). Hyperbole
hyperbuttons can link not only to static information but can perform arbitrary actions
(through the use of button types written in a single, highly interactive language, Emacs
Lisp). Hyperbole adds all of this power to your written documents, e-mail, news articles,
contact management, outlines, directory listings, and much more. Hyperbole works well
with the very latest versions of GNU Emacs across every editing and viewing mode in
Emacs.

Unlock the power of GNU Hyperbole to make your information work for you. One
system. One language. One manual. One solution. Learn Hyperbole and start moving
further, faster.

1.3 Hyperbole Overview

GNU Hyperbole (pronounced Ga-new Hi-per-bo-lee), or just Hyperbole, is an efficient,
programmable hypertextual information management system. It is intended for everyday
work on any GNU Emacs platform. Hyperbole allows hypertext buttons to be embedded
within unstructured and structured files, mail messages and news articles. It offers intuitive
mouse-based control of information display within multiple windows. It also provides point-
and-click access to Info manuals, ftp archives, and the World-Wide Web (WWW).

Chapter 1: Introduction 4

Hyperbole consists of five parts:

Buttons and Smart Keys

Hyperbole hyperlink and other kinds of buttons (explicit buttons) may be added
to documents with a simple drag between windows, no markup language needed.
Implicit buttons are patterns automatically recognized within existing text that
perform actions, e.g. bug#24568 displays the bug status information for that
Emacs bug number, without the need for any additional markup. Global but-
tons are buttons that are activated by name from anywhere within Emacs. See
Chapter 3 [Buttons|, page 18.

Buttons are accessed by clicking on them or referenced by name (global but-
tons), so they can be activated regardless of what is on screen. Users create
and activate Hyperbole buttons; Emacs Lisp programmers easily can develop
new button types and actions.

Hyperbole includes two special Smart Keys, the Action Key and the Assist Key,
that perform an extensive array of context-sensitive operations across emacs
usage, including activating and showing help for Hyperbole buttons. In many
popular Emacs modes, they allow you to perform common, sometimes complex
operations without having to use a different key for each operation. Just press
a Smart Key and the right thing happens. See Chapter 2 [Smart Keys|, page 7;

Contact and Text Finder

an interactive, textual information management interface, including fast, flexi-
ble file and text finding commands. A powerful, hierarchical contact manager,
see Chapter 7 [HyRolo], page 59, which anyone can use, is also included. It is
easy to learn since it introduces only a few new mechanisms and has a menu
interface, which may be operated from the keyboard or the mouse; it may also
be used to look up any record-based information and Hyperbole buttons may
be embedded in any records;

Screen Control
the fastest, easiest-to-use window and frame control available for GNU Emacs,
see Chapter 5 [HyControl], page 42. With just a few keystrokes, you can shift
from increasing a window’s height by 5 lines to moving a frame by 220 pixels or
immediately moving it to a screen corner. Text in each window or frame may
be enlarged or shrunk (zoomed) for easy viewing, plus many other features; this
allows Hyperbole to quickly control the way information is presented on-screen;

Hyperteztual Outliner
an advanced outliner, see Chapter 6 [Koutliner|, page 47, with multi-level au-
tonumbering and permanent identifiers attached to each outline node for use
as hypertext link anchors, per node properties and flexible view specifications
that can be included in links or used interactively;

Programming Library
a set of programming libraries, see Chapter 9 [Developing with Hyperbole],
page 68, for system developers who want to integrate Hyperbole with another
user interface or as a back-end to a distinct system. (All of Hyperbole is written
in Emacs Lisp for ease of modification. It has been engineered for real-world
usage and is well structured).

Chapter 1: Introduction 5

Hyperbole may be used simply for browsing through documents pre-configured with
Hyperbole buttons, in which case, you can safely ignore most of the information in this
manual. Jump right into the Hyperbole demonstration by typing {C-h h d 4}, assuming
Hyperbole has been installed at your site. If you need to install Hyperbole, see Appendix B
[Setup], page 81, for Hyperbole installation and configuration information. The demo offers
a much less technical introduction to Hyperbole by supplying good examples of use.

Minibuf-1 = [u] x

File Edit Options Buffers Tools Hyperbole Help

oo]
p 4 oo - @@ LLJ <:l
#/¥ Explicit Button Samples
Hyperbole is pretty forgiving about the format of explicit buttons. For
example, all of the following represent the same buttonm, as long as one
clicks on the *first* line of the button, within the button delimiters: I
<{factorial button)=>
<{ factorial button)=

Pam= <={factorial
Pam= button)=

13 =(factorial

HH button)=
f* = factorial */f
I button)= */

If your <{Info-directory-list)> or <({Info-directory)> variables include the
directory that contains the online GNU Emacs manual, activation of the next
button will tell you about <({keyboard macros)=. Can't remember a Hyperbole
term? Check out the Hyperbole Manual <({glossary)=.

+
-:%%- DEMO 19% of 29k (189.,0) {Help)
Hy5.12= Act Butfile/ Cust/ Doc/ Ebut/ Find/ Gbut/ Hist Ibut/ Keotl/ Msg/ Rolo/ Screen/ Win!l

Image 1.1: Hyperbole Minibuffer Menu and Demonstration Screenshot

You likely will want to do more than browse with Hyperbole, e.g. create your own
buttons. The standard Hyperbole button editing user interface is Emacs-based, so a basic
familiarity with the Emacs editing model is useful. The material covered in the Emacs
tutorial, normally bound to {C-h t}, is more than sufficient as background. See Section
“Glossary” in the GNU Emacs Manual, if some emacs-related terms are unfamiliar to you.

A Hyperbole user works with chunks of information that need to be organized, inter-
linked, and processed. Such chunks can be hyperbuttons, address book contacts, items in an
outline, or even database query results. Hyperbole does not enforce any particular hyper-
text or information management model, but instead allows you to organize your information
in large or small chunks as you see fit. The Hyperbole outliner organizes information into
hierarchies which may also contain links to external information sources. See Chapter 6
[Koutliner|, page 47.

Some of Hyperbole’s most significant features are:

Chapter 1: Introduction 6

e Buttons may link to information or may execute functions, such as starting or commu-
nicating with external programs;

e A simple mouse drag from a button source location to its link destination is often all
that is needed to create a new link. The keyboard can also be used to emulate such
drags;

e Buttons may be embedded within electronic mail messages;

e Outlines allow rapid browsing, editing and movement of chunks of information orga-
nized into trees (hierarchies);

e Other hypertext and information retrieval systems may be encapsulated under a Hy-
perbole user interface (a number of samples are provided).

Typical Hyperbole applications include:

personal information management
Hyperlinks provide a variety of views into an information space. A search
facility locates hyperbuttons in context and permits quick selection.

documentation and code browsing
Cross-references may be embedded within documentation and code. Existing
documentation may be augmented with point-and-click interfaces to link code
with associated design documents, or to permit direct access to the definition
of identifiers by selecting their names within code or other documents.

brainstorming
The Hyperbole outliner (see Chapter 6 [Koutliner|, page 47) is an effective
tool for capturing ideas and then quickly reorganizing them in a meaningful
way. Links to related ideas are easy to create so the need to copy and paste
information is greatly reduced.

help /training systems
Tutorials with buttons can show students how things work while explaining the
concepts, e.g. an introduction to the commands available on a computer system.
This technique can be much more effective than written documentation alone.

archive managers
Programs that manage archives from incoming information streams may be
supplemented by having them add topic-based buttons that link to the archive
holdings. Users can then search and create their own links to archive entries.

1.4 Mail Lists

If you use Hyperbole, you may join the mailing list <hyperbole-users@gnu.org> to discuss
Hyperbole with users and maintainers. There is a separate mail list to report problems
or bugs with Hyperbole, <bug-hyperbole@gnu.org>. For more details, see Appendix F
[Suggestion or Bug Reporting], page 126.

2 Smart Keys

Hyperbole offers two special Smart Keys, the Action Key and the Assist Key, that perform
an extensive array of context-sensitive operations across emacs usage. In many popular
modes, they allow you to perform common, sometimes complex operations without having
to use a different key for each operation. Just press a Smart Key and the right thing
happens. This chapter explains typical uses of the Smart Keys. See Appendix E [Smart
Key Reference], page 102, for complete descriptions of their behavior in all contexts.

2.1 Smart Key Bindings

From the keyboard, {M-RET} is the Action Key and {C-u M-RET} is the Assist Key. These
keys allow context-sensitive operation from any keyboard.

From the mouse, the Action Key is bound to your shift-middle mouse key (or shift-left
on a 2-button mouse). The Assist Key is bound to your shift-right mouse key, assuming
Hyperbole is run under an external window system.

If you set the variable, hmouse-middle-flag, to ‘t’ before loading Hyperbole, then
you may also use the middle mouse key as the Action Key). If you want both the mid-
dle mouse key as the Action Key and the right mouse key as the Assist Key for ease
of use, then within your personal ~/.emacs file, add: (add-hook 'hyperbole-init-hook
'hmouse-add-unshifted-smart-keys) and then restart Emacs.

If you prefer other key assignments, simply bind the commands action-key and
assist-key to keyboard keys. Hyperbole binds {M-RET} to the command hkey-either.
It allows for a single key binding for both commands; a prefix argument, such as {C-u},
then invokes assist-key.

You may also bind action-mouse-key and assist-mouse-key to other mouse keys,
though you won’t be able to execute mouse drag actions with such key bindings.

Mouse configuration of the Smart Keys is automatic for GNU Emacs under Mac OS X,
the X Window System and MS Windows assuming your emacs program has been built with
support for any of these window systems.

If you ever need to temporarily disable the Hyperbole keyboard and mouse
bindings, use the hyperbole-toggle-bindings command. It switches between the
Hyperbole key bindings and those set prior to loading Hyperbole and then back again
if invoked once more. There is no default key binding for this command; use {M-x
hyperbole-toggle-bindings RET}. Alternatively, you may select a key and bind it as
part of any setting of hyperbole-init-hook within your personal ~/.emacs file. For
example, (add-hook 'hyperbole-init-hook (lambda () (global-set-key "\C-ch"
'hyperbole-toggle-bindings))).

2.2 Smart Key Operations

The Action Key generally selects entities, creates links and activates buttons. The As-
sist Key generally provides help, such as reporting on a button’s attributes, or serves a
complementary function to whatever the Action Key does within a context.

The Hyperbole Doc/SmartKeys menu entry, {C-h h d s}, displays a summary of what
the Smart Keys do in all of their different contexts. Alternatively, a click of the Assist

Chapter 2: Smart Keys 8

Mouse Key in the right corner of a window modeline (within the rightmost 3 characters)
toggles between displaying this summary and hiding it. Reference this summary whenever
you need it.

The following table is the same summary. Much of the browsing power of Hyperbole
comes from the use of the Smart Keys, so spend some time practicing how to use them.
Study what modeline clicks and window drag actions do as these will give you a lot of
power without much effort. This table may appear daunting at first, but as you practice
and notice that the Smart Keys do just a few context-sensitive things per editor mode, you
will find it easy to just press or point and click and let Hyperbole do the right thing in each
context.

Smart Keys
Context Action Key Assist Key
Hyperbole
On a minibuffer menu item Activates item Item help
On an explicit button Activates button Button help

Reading argument
1st press at an arg value Value copied to minibuffer <- same

2nd press at an arg value Value used as argument <- same

In minibuffer Accepts minibuffer arg Completion help
On an implicit button/path Activates button Button help
Within a koutline cell Collapses and expands Shows tree props
Left of a koutline cell Creates a klink Moves a tree
HyRolo Match Buffer Edits entries and mails to e-mail addresses

Mouse or Keyboard Display Control
Line end, not end of buffer
smart-scroll-proportional

=t (default) Makes curr line top line Bottom line

= nil Scrolls up a windowful Scrolls down
End of Any Help buffer Restores screen to the previous state
Read-only View Mode Scrolls up a windowful Scrolls wind down

Mouse-only Control
Drag from thing start or end Yanks thing at release Kills thing and yanks
A thing is a delimited at release
expression, such as a
string, list or markup
language tag pair

Drag from bottom Modeline Reposition frame as <- same
in frame with non-nil drag happens

drag-with-mode-line param

Drag from shared window side

or from left of scroll bar Resizes window width <- same

Modeline vertical drag Resizes window height <- same

Other Modeline drag to Replaces dest. buffer Swaps window buffers
another window with source buffer

Drag to a Modeline from:
buffer/file menu item Displays buffer/file in Swaps window buffers
new window by release
buffer/file menu 1st line Moves buffer/file menu to Swaps window buffers

Chapter 2: Smart Keys 9

new window by release
anywhere else Displays buffer in Swaps window buffers
new window by release

Drag between windows from:

buffer/file menu item Displays buffer/file in Swaps window buffers
window of button release

buffer/file menu 1st line Moves buffer/file menu Swaps window buffers

anywhere else Creates/modifies a link Swaps window buffers

Drag outside of Emacs from:

buffer/file menu item Displays buffer/file in Moves window to new frame
a new frame
Modeline or other window Clones window to new frame Moves window to new frame

Modeline Click

Left modeline edge Buries current buffer Unburies bottom buffer
Right modeline edge Info manual browser Smart Key summary
Buffer ID Dired on buffer's dir Next buffer

or on parent when a dir
Other blank area Action Key modeline hook Assist Key modeline hook

Shows/Hides Buffer Menu Popup Jump & Manage Menu

Drag in window, region active Error, not allowed Error, not allowed
Horizontal drag in a window Splits window below Deletes window

Vertical drag in a window Splits window side-by-side Deletes window

Diagonal drag in a window Saves wconfig Restores wconfig from ring
Active region exists, click Yanks region at release Kills and yanks at release

outside of the region

Hyperbole Key Press/Click in Special Modes

Region Active Yanks region at release Kills and yanks at release
Company Mode Completion Displays definition Displays documentation
Treemacs Displays item Display item
Emacs Push Button Activates button Button help
Thing Begin or End Mark thing region Mark & kill thing region
Page Directory Listing Jumps to page <- same
Imenu Programming Identifier Jumps to in-buffer def Prompts for id to jump to
C,C++,0bjective-C,Java Modes Jumps to id/include def Jumps to next def
Assembly Language Mode Jumps to id/include def Jumps to next def
Java Cross-reference Tag Jumps to identifier def Jumps to next def
JavaScript and Python Modes Jumps to identifier def Jumps to next def
Any Known Lisp or Changelog Jumps to identifier def Referent Doc
Fortran Mode Jumps to identifier def Jumps to next def
Emacs Lisp Compiler Error Jumps to def with error <- same
Other Compiler Error Jumps to src error line <- same
Grep or Occur Match Jumps to match source line <- same
Multi-buffer Occur Match Jumps to match source line <- same
Etags "TAGS' file entry Jumps to source line Button help
Ctags file entry Jumps to source line Button help
Texinfo Cross-reference
Before opening brace Jumps to Texinfo referent Button help
Within braces Jumps to Info referent Button help
Menu Item or node hdr Jumps to Texinfo referent Button help
Include file Jumps to Texinfo referent Button help
code/var reference Displays doc for referent Button help

Org Mode Follows links and cycles outline views

Chapter 2: Smart Keys 10

Outline Major/Minor Modes Collapses, expands, and moves outline entries
Man Apropos Displays man page entry <- same

Man Pages Follows cross refs, file refs and C code refs
I/Buffer Menu Saves, deletes and displays buffers

Emacs Info Reader

Menu Entry or Cross Ref To referent <- same
Up, Next or Prev Header To referent To prior node
File entry of Header To top node To (DIR) node
End of current node To next node To previous node
Anywhere else Scrolls up a windowful Scrolls wind down
Subsystems
Calendar Scrolls or shows appts Scrolls/marks date
GNU Debbugs Tracker Displays issue discussion Displays issue status
Dired Mode Views and deletes files from dir listing
GNUS News Reader Toggles group subscriptions, gets new news,
and browses articles
Mail Reader and Summaries Browses, deletes and expunges messages
00-Browser Browses object classes and elements
Tar Mode Views and edits files from tar archive files
Any other context (defaults) Invalid context error Invalid context error

See Appendix E [Smart Key Reference], page 102, for extensive reference documentation
on the Smart Keys.

Note how the last line in the table explains that the default behavior of the Smart Keys
in an unknown context is to report an error. You can change these behaviors by setting two
variables. See the documentation for the variables action-key-default-function and
assist-key-default-function for information on how to customize the behavior of the
Smart Keys within default contexts.

When you use a mouse and you want to find out what either of the Smart Keys does
within a context, depress the one you want to check on and hold it down, then press the
other and release as you please. A help buffer will pop up explaining the actions that will
be performed in that context, if any. A press of either Smart Key at the end of that help
buffer will restore your display to its configuration prior to invoking help.

On the keyboard, {C-h A} displays this same context-sensitive help for the Action Key
while {C-u C-h A} displays the help for the Assist Key. Note that {C-h a} performs a
function unrelated to Hyperbole, so you must press the shift key when you type the A
character.

2.3 Smart Key Argument Selection

A prime design criterion of Hyperbole’s user interface is that you should be able to see what
an operation will do before using it. The Assist Key typically shows you what a button or
minibuffer menu item will do before you activate it. Hyperbole also displays the result of
directly selecting an argument value with the Action Key, to provide feedback as to whether
the correct item has been selected. A second press/click is necessary before an argument is
accepted and processed.

Many Hyperbole commands prompt you for arguments. The standard Hyperbole user
interface has an extensive core of argument types that it recognizes. Whenever Hyperbole

Chapter 2: Smart Keys 11

is prompting you for an argument, it knows the type that it needs and provides some error
checking to help you get it right. More importantly, it allows you to press the Action Key
within an entity that you want to use as an argument and it will grab the appropriate thing
and show it to you at the input prompt within the minibuffer. If you press (click with
a mouse) the Action Key on the same thing again, it accepts the entity as the argument
and moves on. Thus, a double click registers a desired argument. Double-quoted strings,
pathnames, mail messages, Info nodes, dired listings, buffers, numbers, completion items
and so forth are all recognized at appropriate times. All of the argument types mentioned in
the documentation for the Emacs Lisp interactive function are recognized. Experiment
a little and you will quickly get used to this direct selection technique.

Wherever possible, standard Emacs completion is offered, as described in Section “Com-
pletion” in the GNU Emacs Manual. Remember to use {7} to see what your possibilities for
an argument are. Once you have a list of possible completions on screen, press the Action
Key twice on any item to enter it as the argument.

2.4 Smart Key Debugging

Typically, {C-h A} and {C-u C-h A} which show Action and Assist Key help for the current
context, are sufficient for seeing how the Smart Keys behave no matter where they are used.

However, if a Smart Key ever behaves differently than you think it should or if you want
to test how the Smart Keys respond in a new context, then the Smart Key debugging flag
may be of use. You toggle it on and off with {C-h h ¢ d} (minibuffer menu Cust/Debug-
Toggle). Once enabled, this displays a message in the minibuffer each time the Action or
Assist Key is released, showing the context of the press and its associated action, so you
can see exactly what is happening whenever you use a Smart Key. These messages are all
prefaced with “(HyDebug)” and logged to the “*Messages*” buffer for later viewing.

If you do find a problem with the Smart Keys and want to report a bug, use {C-h h m
r} to compose an email message to the bug-hyperbole list. Hyperbole will automatically
include all of the “(HyDebug)” messages from your current emacs session into your email.
Similarly, when you compose an email to the hyperbole-users mailing list with {C-h h m c},
these messages are also included.

2.5 Smart Key Thing Selection

Hyperbole has some radically cool ways to select regions of structured text or source code
and to copy or move them between buffers with a single mouse drag or two key presses.
A great deal of smarts are built-in so that it does the right thing most of the time; many
other attempts at similar behavior such as thing.el fail to deal with many file format
complexities.

We use the term things to refer to structured entities that Hyperbole can select. These
include: delimited pairs of (), {}, <>, [| and quote marks, source code functions, source code
comments and matching tag pairs in HTML and SGML modes. Delimited things are those
things that contain a selectable delimiter such as an opening parenthesis.

The best way to mark a delimited thing is to move your cursor to the starting delimiter
of the thing and then press the Action Key. Typically, you will see the thing highlight. You
can then operate upon it as you would any Emacs region. In many cases, you can do the

Chapter 2: Smart Keys 12

same thing upon the closing delimiter, but this is not as reliable. An Action Key press on
the start of an HTML, XML, or SGML tag pair marks the entire region span of the pair.
If you use the Assist Key instead, it will mark and kill (delete) the thing.

Even better are Smart Mouse Key thing drags which let you copy or move delimited
things in one operation without having to select a region. To copy, simply drag with the
Action Key from a thing’s opening delimiter and release somewhere outside of the thing,
either within the same window or within another window. The thing will be copied to the
point of release. If you want to move a thing, simply perform the same drag but with the
Assist Mouse Key. Ensure that you do not move any explicit buttons from one buffer to
another as that does not work.

Hyperbole also binds two convenience keys for working with things.

The first such key is {C-c RET} hui-select-thing which selects bigger and bigger syn-
tactic regions with each successive use. Double or triple clicks of the Selection Key (left
mouse key) do the same thing. The first press selects a region based upon the character at
point. For example, with point over an opening or closing grouping character, such as { or },
the whole grouping is selected, e.g. a C function. When on an _ or - within a programming
language identifier name, the whole name is selected. The type of selection is displayed
in the minibuffer as feedback. When using a language in which indentation determines
nesting level like Python, a double click on the first alpha character of a line, such as an if
statement, selects the current clause (until the next line at the same or lesser indentation).
Use {C-g} to unmark the region when done. Use, hui-select-thing-with-mouse if you
want to bind this to a different mouse key to use single clicks instead of double clicks.

The second convenience key is bound in HTML/XML/SGML/web modes. {C-c .}
hui-select-goto-matching-tag jumps between the opening and closing tag of a pair. It
moves point to the start of the tag paired with the closest tag that point is within or which
it precedes. A second press moves point to the matching tag of the pair, allowing you to
quickly jump back and forth between opening and closing tags.

2.6 Smart Mouse Key Modeline Clicks

Smart Mouse Key clicks on a window’s modeline offer many powerful browsing features,
including directory editing (dired), user manual browsing, and window, buffer and frame
selection. Generally, only Hyperbole-specific modeline actions are discussed herein.

o Leftmost Character

Action Key clicks on the first (usually blank) character of the modeline bury the current
buffer in the buffer list and display the next buffer in the list. Assist Key clicks do the
reverse and unbury the bottom buffer.

A similar effect can be achieved with the standard Emacs mouse 1 (left) and 3 (right)
buttons on the Buffer ID element of modeline to cycle through previous and next
buffers, respectively. This may be easier to use since you can click anywhere on the
buffer identifier.

e Buffer ID Element

On the left part of the modeline is the buffer identification, generally the name of the
buffer in use. An Action Key click on that switches the window to edit the buffer’s
directory using dired. Then Action Key clicks on directory items in the dired buffer

Chapter 2: Smart Keys 13

display the items selected in other windows. An Action Key drag from an item to
another window displays the item in that window.

An Action Key click on the first line in a dired buffer which contains the current
directory path, specifically on any ancestor part of the path (the part to the left of the
click point), starts another dired session on the ancestor directory. Click at the end of
this line or on the last line to end the dired session (bury its buffer).

If you use the Treemacs file viewer Emacs package, you can configure Hyperbole to use
this instead of Dired when you click on a modeline buffer id.

Since this is a customization option, it may be changed permanently like so. Use {M-x
customize-set-variable RET action-key-modeline-buffer-id-function RET}.
Change the value to smart-treemacs-modeline. Then press RET. To change it back
to Hyperbole’s default, use the value, dired-jump.

e Large Blank Area

An Action Mouse Key click in a blank area of a window modeline (away from left and
right edges) toggles between displaying and hiding a list of all buffers. Once displayed,
an Action Key click on a buffer item will display it in another window. You can drag
items to specific windows for display as well.

Alternatively, you may (1) display the buffer menu, (2) use its {m} command to mark
buffers, and (3) use the Hyperbole {@} command to display the marked buffers in a
grid of popup windows whose number of rows and columns you specify at the prompt
or via a prefix argument. This also works in ibuffer-menu and dired modes. See
Chapter 5 [HyControl|, page 42.

An Assist Key click in the blank area of the modeline displays a quick access menu
of display-oriented commands. You can jump to buffers categorized by major mode,
jump to windows by buffer name, or to frames by name. Manage your windows and
frames quickly with this menu as well. As always with Hyperbole, just try it and you’ll
begin to wonder how you lived without it before.

e Right Corner

A click of the Action Mouse Key in the right corner of a window modeline (within the
rightmost 3 characters) displays or hides the GNU Info Manual Browser, giving you
quick point and click access to an amazing wealth of documentation, since the Action
Key also browses through these manuals and follows their hyperlinked cross-references.
A click of the Assist Key in the same location displays or hides the Smart Key summary,
as noted earlier.

e (Customizable Variables

Hyperbole modeline mouse click actions are controlled by the two functions,
action-key-modeline and assist-key-modeline. If you know a little Emacs Lisp
you can change these to do whatever you like. When a Smart Key press is on a
blank part of a modeline but not at the left or right, the function given by one of
these two variables is executed: action-key-modeline-function or assist-key-
modeline-function. By default, the Action Key toggles between displaying and
hiding the buffer menu. If you like the more advanced features of Ibuffer Mode, you
can change the buffer menu to use that with the following in your Emacs initialization
file: (setq action-key-modeline-function #'hmouse-context-ibuffer-menu).

Chapter 2: Smart Keys 14

To set it back to the default use: (setq action-key-modeline-function
#'hmouse-context-menu).

The default assist-key-modeline-function is to pop up a menu of convenient screen
commands that lets you select buffers grouped by major mode, use HyControl, or jump
to specific windows, window configurations or frames.

Since these are customization options, they may be change permanently like so. Use
{M-x customize-set-variable RET assist-key-modeline-function RET}. Change
the value to your desired command. Then press RET.

2.7 Smart Mouse Key Drags

As mentioned in the section on Thing Selection, Hyperbole Smart Mouse Key drag actions
can be quite useful. This section summarizes other drag contexts and actions; for complete
documentation, see Section E.1 [Smart Mouse Keys], page 102.

2.7.1 Creating and Deleting Windows

Horizontal and vertical drags of the Smart Mouse Keys are used to split and delete Emacs
windows.

An Action Mouse Key horizontal drag of five or more characters in either direction within
a single window creates a new window by splitting the current window into two windows,
one atop the other. An Action Mouse Key vertical drag in either direction splits the current
window into two side-by-side windows. A horizontal or vertical drag of the Assist Mouse
Key within a single window, deletes that window.

If you split windows many times and then delete a number of the windows, you’ll be
left with windows of differing heights. Use {C-x +} to re-balance the sizes of the remaining
windows, so they are fairly even.

2.7.2 Saving and Restoring Window Configurations

A window configuration consists of the set of windows within a single Emacs frame. This
includes their locations, buffers, and the scrolled positions of their buffers.

Hyperbole allows you to save and restore window configurations with simple diagonal
mouse drags within a single window. A diagonal drag in any direction of the Action Key
saves the current window configuration to a ring of window configurations, just like the
Emacs text kill ring. (See Section “Kill Ring” in the Emacs Manual). Each diagonal drag
in any direction of the Assist Key restores a prior saved window configuration from the
ring. Window configurations are restored in reverse order of the way they were saved. Since
a ring is circular, after the oldest element is restored, the newest element will again be
restored and so on.

2.7.3 Resizing Windows

Emacs windows may be resized by dragging their window separators (modelines or vertical
side lines) within a frame. Simply depress either Smart Mouse Key on a non-bottommost
modeline or near a window side, hold it down while you drag to a new location and then
release. The window separator will move to the location of release. Basically, just drag the
window separator to where you want it. Drags from a blank area of a modeline show visible
feedback as the window is resized.

Chapter 2: Smart Keys 15

2.7.4 Moving Frames

Drags of either Smart Key from a bottommost modeline can be configured to drag Emacs
frames to new locations on screen. To configure all existing and future frames for such
dragging, use:

(modify-all-frames-parameters '((drag-with-mode-line . t))).
To configure just the selected frame for such dragging, use:
(set-frame-parameter nil 'drag-with-mode-line t).
on each frame you would like to drag.
Then drag with either Smart Key from a bottommost modeline within a frame to move

the frame on screen with live feedback, as if you were dragging from the titlebar. If you use
a click-to-focus window manager, click on the desired frame first and then depress to drag.

2.7.5 Dragging Buffers, Windows and Items

Smart Mouse Key drags let you display buffers and windows however you want them. Dired
and buffer-menu items may also be displayed in specific locations with drags. Below we
explore these drag actions.

2.7.5.1 Swapping Buffers

Swapping buffer locations is quick and easy with Hyperbole. Simply drag from one window
to another with the Assist Key (not the Action Key). This works across frames as well.

If you have just two windows in an Emacs frame, you can swap their buffers from the
keyboard. Use this Hyperbole minibuffer menu key sequence involving the tilde key to swap
the buffers and quit from the Hyperbole minibuffer menu: {C-h h s w ~ Q}. Similarly, if
you have two single window frames, you can swap buffers between them with {C-hh s £ ~

Q}.
2.7.5.2 Displaying Buffers

What if you want to display the same buffer in another window and not swap buffers?
Depress the Action Mouse Key in the open area of the modeline of the source window
and drag to the text area of the destination window. Voila, the buffer appears in the new
location as well as the old one.

If you want a new window where you release (so the original destination window’s buffer
stays onscreen), just drag to a window’s modeline; that window will be split before the
buffer is displayed.

2.7.5.3 Cloning Windows

To clone a window with its buffer to a new frame, simply drag the Action Mouse Key from
the window to outside of Emacs and release the key. A new frame will be created, selected
and sized according to the original window. Do the same thing with the Assist Mouse Key
and the original window will be deleted as well, unless it is the only window in that frame.

2.7.5.4 Displaying File and Buffer Items

You can also drag items to other windows with the Action Key in Dired, Buffer Menu,
Ibuffer and Treemacs listing buffers, rather than the buffers themselves. Drag with the

Chapter 2: Smart Keys 16

Action Mouse Key and the selected item will be displayed in any Emacs window in which
you release. Drag outside Emacs and it will be displayed in a new frame. To display the last
item you want within the listing window itself, press and release the Action Key on that
item after dragging your other items to their respective windows. Remember that you can
emulate these drags from the keyboard when needed, see Section 2.7.5.5 [Keyboard Drags],
page 16.

So now you can put a bunch of buffers and files on your screen wherever you like.
Typically, a brief visual pulse is shown first at the source item and then in the destination
window, to help you see that the transfer has been made. An Assist Key Drag will move the
the item list buffer to the destination (swapping buffers), just as it does with other buffers.

2.7.5.5 Keyboard Drags

If you run Emacs under a window system and there is no prior key binding on {M-o} when
you load Hyperbole, then many Action Key drags can be emulated from the keyboard. To
do so, press {M-o}, the hkey-operate command, at the button source location, move to the
link destination, e.g. with {C-x o}, and then press {M-o} again. This simulates a depress
and release of the Action Key. {C-u M-o} emulates drags of the Assist Key. This will not
work when Hyperbole is run from a dumb terminal Emacs session since drag actions are
not supported without a window system.

For even faster keyboard-based display of items and drag emulations, use the Emacs
package ace-window (see https://elpa.gnu.org/packages/ace-window.html).

The ace-window package assigns short letter IDs to each Emacs window and lets you
jump to or operate upon a specific window by giving its ID. Hyperbole can add commands
to ace-window that replace the two-step drag emulation key described above with a single
key sequence that does not require moving to the drag target window since it is specified
by ID as part of the command.

To enable this feature, in your Emacs initialization file after Hyperbole is initialized, if
you do not have a key bound for ace-window, then call: (hkey-ace-window-setup \"\M-
o\") to bind it to {M-o}, replacing Hyperbole’s default hkey-operate command there
(because ace-window can emulate the drags performed by hkey-operate). If you already
have a key bound for ace-window, then just ensure it is initialized by calling (hkey-ace-
window-setup) without a key argument.

After setup, the leftmost character or two of each window’s modeline will show the ID
to type to use that window as the drag destination. Then whenever point is on an item
you want displayed in another window, use {M-o i <id-of-window-to-display-item-in>}
and watch the magic happen. If you want to display multiple items in different windows,
instead use the {M-o t <id-of-window-to-display-item-in>} key sequence to throw the
item to the window. To replace the selected window’s buffer with that of another window,
use {M-o r <id-of-window-displaying-desired-buffer>}. To instead swap the selected
window’s buffer with that of another window, use {M-o m <id-of-window-to-swap-with>}.

You can also throw the active (highlighted) region of text to another window. Simply
activate a region and then use {M-o t <window-id>}. If you don’t use region highlighting,
i.e. transient-mark-mode, then use {C-u M-o t <window-id>} for the same effect. The
buffer in the target window must differ from the one in the source window. With no region
active, this command throws the source buffer to the target window.

https://elpa.gnu.org/packages/ace-window.html

17

In summary:

M-o0 i <window>
insert listing item at point into <window>; if not on a listing item, trigger an
error

M-o0 m <window>
swap the buffers in the selected window and <window>

M-o r <window>
replace the selected (current) window’s buffer with that of <window>

M-o t <window>
throw region, listing item at point, or current buffer to <window>

18

3 Buttons

This chapter explains use of Hyperbole buttons. There are several kinds of Hyperbole
buttons: buttons that are created one at a time and stored in files (explicit buttons);
buttons that can be activated by name anytime (global buttons); and buttons defined by
textual patterns where one definition can create an infinite number of buttons (implicit
buttons).

Hyperbole buttons are embedded within textual documents; they may be created, mod-
ified, moved or deleted. Each button performs a specific action, such as linking to a file or
executing a shell command.

There are three categories of Hyperbole buttons:

explicit buttons
created by Hyperbole, accessible from within a single document;

global buttons
created by Hyperbole, specific to each user, and accessible anywhere within a
user’s network of documents;

implicit buttons
created and managed by other programs or embedded within the structure of
a document, accessible from within a single document. Hyperbole recognizes
implicit buttons by contextual patterns given in their type specifications (ex-
plained later).

Explicit Hyperbole buttons may be embedded within any type of text file. Implicit
buttons may appear only within document contexts allowed by their types, which may limit
the kinds of documents or the locations within those documents at which such buttons may
be found. All global buttons for a user are stored in a single location and are activated by
typing their names, rather than by direct selection, the means used to activate explicit and
implicit buttons.

To summarize:

Button Category Active Within Activation Means Managed By
Explicit a single document direct selection Hyperbole
Global any document typing its name Hyperbole
Implicit a matching context direct selection other tools

A click on a Hyperbole button may activate it or describe its actions, depending on
which mouse key is used. Buttons may also be activated from a keyboard. (In fact, many
Hyperbole operations, including menu usage, may be performed from any standard charac-
ter terminal interface, so you need not be anchored to a desktop all day). See Chapter 2
[Smart Keys|, page 7. There is also a key that shows you how a button will behave before
you activate it, see Section 2.2 [Smart Key Operations|, page 7.

Chapter 3: Buttons 19

3.1 Explicit Buttons

Hyperbole creates and manages explicit buttons which perform specific actions when acti-
vated (typically through a button press). They look like this ‘<(fake button)>’. They are
quickly recognizable, yet relatively non-distracting as you scan the text in which they are
embedded. The text between the ‘<’ and ‘)>’ delimiters is called the button label or but-
ton name. Spacing between words within a button label is irrelevant to Hyperbole. Button
labels may wrap across several lines without causing a problem; just be sure to select the
first line of the button to activate it.

Explicit buttons may be added to any editable text file; for source code files, simply
place buttons within comments. Buttons that you use for quick navigation to websites or
other things you do often should be added to your personal button file. See Section 3.4
[Button Files], page 28.

Explicit buttons may be freely moved about within the buffer in which they are created.
(No present support exists for moving buttons between buffers; support the Hyperbole
project if you would like to help make this happen). A single button may also appear
multiple times within the same buffer; simply copy the button label with its delimiters to
a new location if you need another copy of it.

For details on how to create, activate, delete or modify explicit buttons, see Section 3.7
[Utilizing Explicit Buttons], page 33.

Each explicit button is assigned an action type that determines the actions it performs.
Link action types connect buttons to particular types of referents, the targets of their links.
Link action type names all begin with 1ink-. Link action button referents are displayed
when such buttons are activated with a press or a click. See Section 3.5 [Action Types],
page 29, for a list of standard action types including link types.

Hyperbole does not manage referent data; this is left to the applications that generate the
data. This means that Hyperbole provides in-place linking and does not require reformatting
data to integrate it with Hyperbole.

Hyperbole stores the button data that gives an explicit button its behavior, separately
from the button label, in a file named .hypb (_hypb under MS Windows) within the same
directory as the file in which the button is created. Thus, all files in the same directory
share a common button data file. Button data is comprised of individual button attribute
values. A user never sees this data in its raw form but may see a formatted version by
asking for help on a button.

3.2 Global Buttons

Sometimes it is useful to activate buttons without regard to the information with which
you are working. In such instances, you use global buttons, which are buttons that may be
activated or otherwise operated upon by typing their labels/names when they are prompted
for, rather than selecting the buttons within a buffer. In contrast, activation of explicit
buttons depends upon the information on your screen since they are accessible only from
within their particular buffers.

If you want a permanent link to a file section that you can follow at any time, you can
use a global button. Or what about an Emacs keyboard macro that you use frequently?

Chapter 3: Buttons 20

Create a global button with an action type of exec-kbd-macro button and an easy to type
name. Then you can activate it whenever the need arises.

Global buttons are managed with the Hyperbole Gbut/ menu accessed with {C-h h g}.
The Create item, {C-h h g c}, prompts for a global button name, an action type, and the
action’s associated arguments, such as a file to link to. It then creates the button. To
activate the button, use the Act menu item, {C-h h g a}. Type the button’s name and its
action will be executed.

Global buttons are actually explicit buttons stored at the end of your personal button
file, see Section 3.4 [Button Files|, page 28. You can always go into that file and activate,
edit or annotate these buttons with comments.

Emacs has a built-in feature similar to Global Buttons called Bookmarks. Bookmarks
store places in files or link to URLs, so they are more limited than Hyperbole’s global
buttons and cannot utilize all of Hyperbole’s capabilities for performing actions. Hyperbole
has an action type, link-to-bookmark, for using an Emacs bookmark as a Hyperbole
button referent. See Section “Bookmarks” in the Emacs Manual, for details on bookmarks.

3.3 Implicit Buttons

Implicit buttons are virtual buttons recognized within the natural structure of a document.
For example, a web URL button that displays its link or an email address button that starts
a mail message to the associated address. Implicit buttons are identified by contextual
patterns found within documents.

An implicit button type identifies a pattern or state that when matched triggers an action
associated with the implicit button type. The action is specified by either a Hyperbole
action type (see Section 3.5 [Action Types], page 29) or an Emacs Lisp function. Implicit
button types may use the same action types that explicit buttons use. As an example, the
pathname implicit button type matches to any existing local filename or directory name and
its action type, link-to-file, displays the associated file or directory, typically in another
window. An explicit button could do the same thing but has to be created manually, rather
than recognized as part of the buffer text.

Unlike explicit buttons, implicit buttons have no individual button data other than their
text and optional labels. You use implicit button types which include boolean expressions
(predicates) that match to both the label and the context required of any button of the
type. Each time a Smart Key is pressed at a location, Hyperbole evaluates the predicates
from the list of implicit button types and the first one that evaluates true is selected and
its associated action is triggered. Alternatively, you can use the Ibut/Act menu item, {C-h
h i a}, to activate any implicit button found at the current point.

All of this happens transparently and is easy to use once you try it. The Hyperbole
Smart Keys offer additional extensive context-sensitive point-and-click type behavior be-
yond implicit button types. See Section 2.2 [Smart Key Operations|, page 7.

Individual implicit buttons may be labeled /named, allowing activation by name or use
as a link target by other buttons. Here is a pathname button with a label of "My Emacs
Files’:

<[My Emacs Files]>: "7/.emacs.d"

The label is delimited by ‘<[’ and ‘1>’ and can be followed by any number of :, - or =

separator characters, including none. You can activate the button either from its label or

Chapter 3: Buttons 21

its text. With point on the text of an implicit button, {C-h h i 1} will label it. Or you
may simply type the label and delimiters manually.

3.3.1 Implicit Button Types

Below is a list of standard implicit button types in the order in which Hyperbole tries to
match to the types when looking for an implicit button; {C-h h i t RET} provides similar
information. See the Hyperbole file, hibtypes.el, for examples of how to define implicit
button types (they are listed in increasing order of priority).

doc-id Display a document from a local document library given its id. Ids must be
delimited by doc-id-start and doc-id-end and must match the function given
by doc-id-p. (Note that this implicit button type is not installed by default.
You must manually configure it and load it from the file, ${hyperb:dir}/hib-
doc-id.el). See the commentary at the top of that file for more information.

completion
Insert the completion at point (from a completions buffer) into the minibuffer
or the other window.

hyp-source
Turn source location entries following an ‘@loc>’ line in Hyperbole reports into
buttons that jump to the associated location. For example, {C-hhdd C-hh e
h o} summarizes the properties of the explicit buttons in the DEMO file and each
button in that report buffer behaves the same as the corresponding button in
the original DEMO file.

hyp-address
Within a mail or Usenet news composer window, make a Hyperbole
support/discussion e-mail address insert Hyperbole environment and version
information. This is useful when sending mail to a Hyperbole discussion mail
list. See also the documentation for actypes: :hyp-config. For example, an
Action Mouse Key click on <hyperbole-users@gnu.org> in a mail composer
window would activate this implicit button type.

Info-node
Make a "(filename)nodename" button display the associated Info node. Also
make a "(filename)itemname" button display the associated Info index item.
Examples are "(hyperbole)Implicit Buttons" and “(hyperbole)C-c /.

www-url When not in an Emacs web browser buffer, follow any non-ftp URL (link)
at point. The variable, browse-url-browser-function, may be used to cus-
tomize which URL browser is called. Terse URLs which lack a protocol prefix,
like www.gnu.org, are also recognized.

gnus-push-button
Activate GNUS-specific article push-buttons, e.g. for hiding signatures. GNUS
is a news and mail reader.

texinfo-ref
Display Texinfo, Info node or help associated with Texinfo node, menu item,
@xref, Qpxref, Qref, Qcode, @findex, @Qvar or @vindex at point. If point is

Chapter 3: Buttons 22

within the braces of a cross-reference, the associated Info node is shown. If
point is to the left of the braces but after the @ symbol and the reference is to
a node within the current Texinfo file, then the Texinfo node is shown.

For @Qcode, @Qfindex, @Qvar and @Qvindex references, the associated documenta-
tion string is displayed.

mail-address
If on an e-mail address in a specific buffer type, compose mail to that address
in another window. Applies to the rolo match buffer, any buffer attached to
a file in hyrolo-file-1list, or any buffer with mail or rolo (case-insensitive)
within its name.

patch-msg
Jump to the source code associated with output from the ‘patch’ program.
Patch applies diffs to source code.

elisp-compiler-msg
Jump to the source code for a definition associated with an Emacs Lisp byte-
compiler error message. Works when activated anywhere within an error line.

debugger-source
Jump to the source line associated with a debugger stack frame or breakpoint
line. This works with gdb, dbx, and xdb. Such lines are recognized in any
buffer.

ripgrep-msg
Jump to line associated with a ripgrep (rg) line numbered msg. Ripgrep outputs
each pathname once followed by all matching lines in that pathname. Messages
are recognized in any buffer (other than a helm completion buffer).

ipython-stack-frame
Jump to line associated with an ipython stack frame line numbered msg.
ipython outputs each pathname once followed by all matching lines in
that pathname. Messages are recognized in any buffer (other than a helm
completion buffer).

grep-msg Jump to a line associated with a grep or compilation error message. Messages
are recognized in any buffer.

link-to-ibut <ilink>
At point, activate a link to an implicit button within the current buffer. Execute
the implicit button’s action in the context of the current buffer.

Recognizes the format ’<ilink:’ button_label [':* button_file_path] ’>’, where
button_file_path is given only when the link is to another file, e.g. <ilink: my
series of keys: ${hyperb:dir}/HYPB>.

link-to-gbut <glink>
At point, activate a link to a global button. Execulte the global button’s action
in the context of the current buffer.

Recognizes the format '<glink:” button_label >’ e.g. <glink: open todos>.

Chapter 3: Buttons 23

link-to-ebut <elink>

klink

At point, activate a link to an explicit button within the current buffer. Execute
The explicit button’s action in the context of the current buffer.

Recognizes the format ’<elink:” button_label [button_file_path] ’>’, where
: button_file_path is given only when the link is to another file, e.g. <elink:
project-list: ~/projs>."

Follow a link delimited by <> to a koutline cell. See the documentation for
actypes::link-to-kotl for valid link specifiers.

man-apropos

rfc

kbd-key

Make man apropos entries (from ‘man -k’) display associated man pages when
selected.

Retrieve and display an Internet rfc referenced at point. The following for-
mats are recognized: RFC822, rfc-822, and RFC 822. The hpath:rfc variable
specifies the location from which to retrieve RFCs. Requires the Emacs builtin
Tramp library for ftp file retrievals.

Execute a key series (series of key sequences) found around point, delimited by
curly braces, {}, if any. Key series should be in human readable form, e.g. {C-x
C-b}. Formats such as {"x~b} will not be recognized.

Any key sequence must be a string of one of the following:
e a Hyperbole minibuffer menu item key sequence,
e a HyControl key sequence,

e a M-x extended command,

or a valid key sequence together with its interactive arguments.

dir-summary

text-toc

cscope

etags

Detect filename buttons in files named "MANIFEST" or "DIR". Display se-
lected files. Each filename must be at the beginning of the line and must be
followed by one or more spaces and then another non-space, non-parenthesis,
non-brace character.

Jump to the text file section referenced by a table of contents entry at point.
The filename of the current buffer must contain README and there must be a
‘Table of Contents’ or ‘Contents’ label on a line by itself (it may begin with
an asterisk), preceding the table of contents. Each toc entry must begin with
some whitespace followed by one or more asterisk characters. Each line which
begins a new file section must start with one or more asterisk characters at the
very beginning of the line.

Jump to a C/C++ source line associated with a Cscope C analyzer output line.
The cscope.el Lisp library available from the Emacs package manager must be
loaded and the open source cscope program available from http://cscope.sf.net
must be installed for this button type to do anything.

Jump to the source line associated with an etags file entry in a TAGS buffer. If
on a tag entry line, jump to the source line for the tag. If on a pathname line
or line preceding it, jump to the associated file.

Chapter 3:

ctags

id-cflow

rfc-toc

action

Buttons 24

Jump to the source line associated with a ctags file entry in any buffer. Ctags
files are used by old editors like vi to lookup identifiers. Emacs uses the newer,
more flexible Etags format.

Expand or collapse C call trees and jump to code definitions. Requires cross-
reference tables built by the external cxref program.

Summarize contents of an Internet rfc from anywhere within an rfc buffer. Each
line of the summary may be selected to jump to the associated section.

Execute an angle bracket delimited Hyperbole action, Elisp function call or
display of an Elisp variable and its value.

markdown-internal-link

Display any in-file Markdown link referent. Pathnames and urls are handled
elsewhere.

git-reference

Display the git entity associated with REFERENCE and optional PROJECT.
See DEMO#Git (Local) References for examples.

REFERENCE is a string of one of the following forms:
o <ref-item>
e /7<project>/<ref-item>
e /<project>.

<ref-item> is one of these:

one of the words: branches, commits, or tags
the associated items are listed

one of the words: branch, commit, or tag followed by a ’/’ and item id
the item is shown

a commit reference given by a hex number, 55a1f0
the commit diff is displayed

a branch or tag reference given by an alphanumeric name, e.g. hyper20
the files in the branch are listed.

If given, PROJECT overrides any project value in REFERENCE. If no
PROJECT wvalue is provided, it defaults to the value of hibtypes-git-
default-project.

git-commit-reference

Display the diff for a git commit reference, e.g. commit ab5e21, typically pro-
duced by git log.

github-reference

Display the Github entity associated with REFERENCE and optional USER
and PROJECT. See . ./DEM0O#Github (Remote) References for examples.

REFERENCE is a string of one of the following forms:
o <ref-item>

e <user>/<project>/<ref-item>

Chapter 3: Buttons 25

e <project>/<ref-item>
e /<project>.
<ref-item> is one of these:

e one of the words: branches, commits, issues, pulls, or tags
the associated items are listed

e one of the words: branch, commit, issue, pull or tag followed by a ’/’ and
item id
the item is shown

e an issue reference given by a positive integer, e.g. 92 or prefaced with GH-,
like GH-92
the issue is displayed

e a commit reference given by a hex number, 55a1f0
the commit diff is displayed

e a branch or tag reference given by an alphanumeric name, e.g. hyper20
the files in the branch are listed.

USER defaults to the value of hibtypes-github-default-user. If given,
PROJECT overrides any project value in REFERENCE. If no PROJECT value
is provided, it defaults to the value of hibtypes-github-default-project.

gitlab-reference
Display the Gitlab entity associated with REFERENCE and optional USER

and PROJECT. See ../DEM0#Gitlab (Remote) References for examples.
REFERENCE is a string of one of the following forms:

o <ref-item>

e <user>/<project>/<ref-item>

e <project>/<ref-item>

e /<group>/<project>. or

e /<project-or-group> (where a group is a colection of projects)
<ref-item> is one of these:

e one of the words: activity, analytics, boards or kanban, branches, commits,
contributors, groups, issues or list, jobs, labels, merge_requests, milestones,
pages, pipelines, pipeline_charts, members or people or staff, projects, pulls,
schedules, snippets, status or tags

the associated items are listed

e one of the words: branch, commit(s), issue(s), milestone(s), pull(s),
snippet(s) or tag(s) followed by a ’/” or =" and an item-id
the item is shown

e an issue reference given by a positive integer, e.g. 92 or prefaced with GL-,
like GL-92
the issue is displayed

Chapter 3: Buttons 26

e a commit reference given by a hex number, 55a1f0
the commit diff is displayed

e a branch or tag reference given by an alphanumeric name, e.g. hyper20
the files in the branch are listed.

USER defaults to the value of hibtypes-gitlab-default-user. If given,
PROJECT overrides any project value in REFERENCE. If no PROJECT value
is provided, it defaults to the value of hibtypes-gitlab-default-project.

social-reference

Display the web page associated with a social media hashtag or username ref-
erence at point.

Reference format is:

[facebook|instagram|twitter] ? [#0@] <hashtag-or-username> or
[fblin|tw] 7 [#@] <hashtag-or-username>

For example, ‘fb@someuser’ displays the home page for facebook user
‘someuser’ and ‘in#hashtag’ displays photos with the hashtag ‘hashtag’. The
first part of the label for a button of this type is the social media service name.
The service name defaults to the value of hibtypes-social-default-service
(default value of “twitter”) when not given, so #hashtag would be the same
as twitter#hashtag.

debbugs-gnu-mode

Debbugs is a client-server issue tracker used by GNU free software projects, in-
cluding Hyperbole, to manage issues and maintain threads of discussion around
them. You issue queries to a Debbugs server and it returns a listing entry for
each matching issue. When on a GNU Debbugs listing entry in debbugs-gnu-
mode, an Action Key press displays the discussion of the selected issue; an Assist
Key press pretty prints the status of the issue to a window below the listing
window.

debbugs-gnu-query

annot-bib

Debbugs queries may be issued by activating this implicit button type. It
displays the results of a Gnu debbugs query based on the string at point and
works in most kinds of buffers. If the query includes a single id number, it
displays the original message submission for that id and allows browsing of the
followup discussion. The following buffer text formats are accepted (with point
prior to any attribute):
bug#id-number, bug# id-number, bug #id-number or bug id-number
bug?attri=vall&attr2=val2&attr3=val3
bug#id-number?attri=vall&attr2=val2&attr3=val3
Note that issue or debbugs may also be used in place of bug. See the doc-
umentation at the top of the hib-debbugs.el file for detailed query format
information.

Display annotated bibliography entries defined within the same buffer as the
reference. References must be delimited by square brackets, must begin with

Chapter 3: Buttons 27

a word constituent character, and must not be in buffers whose names begin
with a ¢ 7 or “*’ character.

function-in-buffer
Return the function name defined within this buffer that point is within or after,
else ‘nil’. This triggers only when the func-menu library has been loaded and
the current major mode is one handled by func-menu.

pathname-line-and-column
Make a valid pathname:line-num[:column-num] pattern display the path
at line-num and optional column-num. Also works for remote pathnames.
May also contain hash-style link references with the following format:
<path> [#<link-anchor>] :<line-num>[:<column-num>].

pathname Make a valid pathname display the path entry. Also works for delimited and
non-delimited remote pathnames, Texinfo @file{} entries, and hash-style link
references to HTML, XML, SGML, Markdown or Emacs outline headings, shell
script comments, and MSWindows paths (see ${hyperb:dir}/DEMO#POSIX and
MSWindows Paths for details). Emacs Lisp library files (filenames without any
directory component that end in .el and .elc) are located using the load-path
directory list.
The pathname may contain references to Emacs Lisp variables or shell envi-
ronment variables using the syntax, \"${variable-name}\". See Section B.3.4
[Link Variable Substitution|, page 87, for how this handled.
See the function documentation for hpath:at-p for possible delimiters. See the
variable documentation for hpath:suffixes for suffixes that are added to or
removed from the pathname when searching for a valid match. See the function
documentation for hpath:find for special file display options.

org-mode For users of Emacs Org-mode, Hyperbole does quite a few things.
First, the Action Key follows internal links in Org-mode files. When pressed on
a link referent/target, the link definition is displayed, allowing two-way naviga-
tion between definitions and targets.
Second, the Action Key follows Org-mode external links. The Assist Key dis-
plays help when pressed on an Org-mode link.
Third, within a radio target definition, the Action Key jumps to the first oc-
currence of an associated radio target.
Fourth, when point is on an outline heading in Org-mode, the Action Key
cycles the view of the subtree at point and the Assist Key cycles the view of all
headings in the buffer.
Fifth, with point on the first line of a code block definition, the Action Key
executes the code block via the Org-mode standard binding of {C-c C-c},
org-ctrl-c-ctrl-c.
In any other context besides the end of a line, the Action Key invokes the
Org-mode standard binding of {M-RET}, org-meta-return.
To disable ALL Hyperbole support within Org major and minor modes, set the
custom option inhibit-hsys-org to t. Then in Org modes, the Action Key
will simply invoke org-meta-return.

Chapter 3: Buttons 28

3.3.2 Action Buttons

Explicit buttons all use the same syntax and store their action data in a file separate from
the button source file. Implicit buttons have no external data but use a unique syntax per
implicit button type to recognize the action to run.

For times when you need a cross between the two, with a universal button syntax and
all button data stored in the button source file, there are action buttons.

Action Buttons are a form of implicit buttons that can execute any existing action types
or Emacs Lisp functions. Such buttons are delimited by angle brackets, < >, and come in
three types:

action type invocations
These begin with an action type name (from the list displayed by {C-hhd t a
RET}) and are followed by any needed arguments to form the action, e.g.

<link-to-file-line "${hyperb:dir}/hact.el" 40>

function calls
These are similar to action type invocations but begin with an Emacs Lisp
function name rather than an action type name, e.g.

<find-file-other-window "/tmp">
Generally, such functions are invoked for their side-effects and their return value

is silently ignored. But if a function is a boolean predicate whose name ends in
‘—p’, then the result is displayed in the minibuffer.

variable displays
These consist of an Emacs Lisp variable name only. They display messages
with their variable name and value, e.g.

<fill-column>
If there is a function binding with the same name as the variable you wish to

display, to prevent interpretation as a function call action button, precede the
name with a §, e.g.

<$fill-column>

With action buttons you need not remember any special syntax for each type of implicit
button. You can freely embed them in any type of text and use the Action and Assist keys
on them as you do with any other type of implicit button.

An action button is recognized only if the first name within the angle brackets is an
existing action type or Emacs Lisp symbol. Otherwise, other implicit button types will be
tested and may activate instead.

To activate a frequently used action button by name independent of your current buffer,
simply add it to your global button file and precede it with a label {C-h h i 1}. Then
invoke it by label name with: {C-h h g a}.

3.4 Button Files

It is often convenient to create files filled with buttons as a means of navigating distributed
information pools or for other purposes. These files can also serve as useful roadmaps that

Chapter 3: Buttons 29

guide a user through both unfamiliar and highly familiar information spaces. Files that are
created specifically for this purpose are called Hyperbole button files.

The Hyperbole menu system provides quick access to two types of these button files:
personal and directory-specific, through the ButFile menu. (The variable, hbmap:filename,
contains the base name of these button files. Its standard value is HYPB.)

A personal button file may serve as a user’s own roadmap to frequently used resources,
like a personal home page. Selection of the ButFile/PersonalFile menu item, {C-h h b p},
displays this file for editing. The default personal button file is stored within the directory
given by the hbmap:dir-user variable whose standard value is ~/.hyperb. The default
Hyperbole configuration also appends all global buttons to the end of this file, one per line,
as they are created. So you can edit or annotate them within the file.

A directory-specific button file may exist for each file system directory. Such files are
useful for explaining the contents of directories and pointing readers to particular highlights
within the directories. Selection of the ButFile/DirFile menu item, {C-h h b d}, displays
the button file for the current directory; this provides an easy means of updating this file
when working on a file within the same directory. If you want to view some other directory-
specific button file, simply use the normal Emacs file finding commands.

If you want group and site-specific button files, simply place links to such files at the top
of your personal button file and do so for your colleagues. This provides a flexible means
of connecting to such resources.

3.5 Action Types

Action types are special functions that specify Hyperbole button behaviors. Each action
type may be used by any category of button: global, explicit, or implicit. The arguments
needed by an action type are prompted for at button creation time or in the case of an
implicit button, computed when the button is activated. During button activation, the
arguments are fed to the action type’s body to achieve the desired result. This body is
called the button action.

Hyperbole handles all of this processing transparently. As a user, all you need know is
the set of action types that you can work with when creating explicit or global buttons.

The standard action types included with Hyperbole in alphabetical order are:

annot-bib
Follow an internal reference KEY within an annotated bibliography, delimiters

=11

completion
Insert a completion at point into the minibuffer or a buffer. Unless point is at
the end of buffer or if a completion has already been inserted, in which case,
delete the completions window.

display-variable-value
Display a message showing the given variable name and its value.

eval-elisp
Evaluate a Lisp expression LISP-EXPR for its side-effects and return any non-
nil value.

Chapter 3: Buttons 30

exec—kbd-macro
Execute a KBD-MACRO REPEAT-COUNT times. KBD-MACRO may be a
string of editor command characters, a function symbol or nil to use the last
defined keyboard macro. Optional REPEAT-COUNT nil means execute once,
zero means repeat until error.

exec-shell-cmd
Execute a SHELL-CMD string asynchronously. Optional non-nil second argu-
ment INTERNAL-CMD inhibits display of the shell command line executed.
Optional non-nil third argument KILL-PREV means kill the last output to the
shell buffer before executing SHELL-CMD.

exec-window-cmd
Asynchronously execute an external window-based SHELL-CMD string.

function-in-buffer
Display the definition of function NAME found at POS in the current buffer.

hyp-config
Insert Hyperbole configuration and debugging information at the end of the
current buffer or within optional OUT-BUF.

hyp-request
Insert help for composing a Hyperbole support/discussion message into the
current buffer or the optional OUT-BUF.

hyp-source
Display a buffer or file from a line beginning with hbut:source-prefix.

kbd-key Execute the function binding for KEY-SEQUENCE, delimited by {}. Return
‘t’ if a KEY-SEQUENCE has a binding, else ‘nil’.

link-to-bookmark
Display an Emacs BOOKMARK. When creating the button, if in Bookmark
Menu mode, use the bookmark nearest point as the default. Otherwise, uti-
lize the most recently used bookmark in the current file (bookmark-current-
bookmark) as the default, if any.

link-to-buffer-tmp
Display a BUFFER. This type of link is for use in a single editor session. Use
link-to-file instead for a permanent link.

link-to-directory
Display a DIRECTORY in Dired mode.

link-to-doc
Display an online version of a document given by DOC-ID. If the online version
of a document is not found in doc-id-indices, signal an error.

link-to-ebut
Perform an action given by an explicit button, specified by KEY and KEY-
FILE.

link-to-elisp-doc
Display the documentation for FUNC-SYMBOL.

Chapter 3: Buttons 31

link-to-file
Display a file given by PATH scrolled to optional POINT. If POINT is given,
display the buffer with POINT at the top of the window.

link-to-file-line
Display a file given by PATH scrolled to LINE-NUM.

link-to-gbut
Perform an action given by an existing global button, specified by KEY.
link-to-Info-index-item
Display an Info index ITEM cross-reference. ITEM must be a string of the form
(filename)item-name. During button creation, completion for both filename and
item-name is available. Filename may be given without the .info suffix."

link-to-Info-node
Display an Info NODE. NODE must be a string of the form (file-
name)nodename. During button creation, completion for both filename and
nodename is available. Filename may be given without the .info suffix.
link-to-ibut
Perform an action given by an implicit button, specified by KEY, optional
KEY-FILE and POINT.

link-to-kcell
Display a Hyperbole outline cell, given by FILE and CELL-REF, at the top of a
window. See the documentation for (kcell:ref-to-id) for valid CELL-REF
formats.

If FILE is ‘nil’, use the current buffer. If CELL-REF is ‘nil’, show the first
cell in the view.

link-to-kotl
Display at the top of a window the referent pointed to by LINK. LINK may be
of any of the following forms, with or without delimiters:

< pathname [, cell-ref] >
< [-!&] pathname >
< @ cell-ref >

See the documentation for (kcell:ref-to-id) for valid cell-ref formats.
link-to-mail
Display a mail message with MAIL-MSG-ID from optional MAIL-FILE. See

the documentation for the variable hmail:init-function for information on
how to specify the mail reader to use.

link-to-regexp-match
Find REGEXP’s Nth occurrence in SOURCE and display the location at the
top of the selected window. SOURCE is a pathname unless optional BUFFER-
P is non-nil, then SOURCE must be a buffer name or buffer. Return ‘t’ if
found, signal an error if not.

link-to-rfc
Retrieve and display an Internet rfc given by RFC-NUM. RFC-NUM may be a
string or an integer.

Chapter 3: Buttons 32

link-to-string-match
Find STRING’s Nth occurrence in SOURCE and display the location at the top
of the selected window. SOURCE is a pathname unless optional BUFFER-P
is non-nil, then SOURCE must be a buffer name or buffer. Return ‘t’ if found,
‘nil’ if not.

link-to-texinfo-node
Display the Texinfo node with NODENAME (a string) from the current buffer.

link-to-web-search
Search web SERVICE-NAME for SEARCH-TERM. Uses hyperbole-web-
search-alist to match each service to its search url. Uses hyperbole-web-
search-browser-function and the browse-url package to display search
results.

man-show Display a man page on TOPIC, which may be of the form
‘<command> (<section>’). Use hpath:display-where setting to
control where the man page is displayed.

rfc-toc Compute and display a summary of an Internet rfc in BUF-NAME. Assume
point has already been moved to the start of the region to summarize. Optional
OPOINT is the point to return to in BUF-NAME after displaying the summary.

text-toc Jump to the text file SECTION referenced by a table of contents entry at point.

www-url Follow a link given by a URL. The variable, browse-url-browser-function,
customizes the url browser that is used. Valid values of this variable include
browse-url-default-browser and browse-url-generic. See its documenta-
tion string for details.

Action types create a convenient way of specifying button behavior without the need
to know how to program. Expert users who are familiar with Emacs Lisp, however, may
find that they often want to tailor button actions in a variety of ways not easily captured
within a type system. In such cases, hui:ebut-prompt-for-action should be set to ‘t’.
This will cause Hyperbole to prompt for an action to override the button’s action type at
each explicit button creation. For those cases where the action type is sufficient, a ‘nil’
value should be entered for the action. An action may be any Lisp form that Emacs Lisp
can evaluate.

3.6 Button Type Precedence

Explicit buttons always take precedence over implicit buttons. Thus, if a button selection
is made which falls within both an explicit and implicit button, only the explicit button
will be selected. Explicit button labels are not allowed to overlap; Hyperbole’s behavior in
such cases is undefined.

If there is no explicit button at point during a selection request, then each implicit
button type predicate is tested in turn until one returns non-nil or all are exhausted. Since
two implicit button types may have overlapping domains, those contexts in which their
predicates are true, only the first matching type is used. The type predicates are tested in
reverse order of definition, i.e. most recently entered types are tested first, so that personal
types defined after standard system types take precedence. It is important to keep this

Chapter 3: Buttons 33

order in mind when defining new implicit button types. By making match predicates as
specific as possible, one can minimize any overlapping implicit button domains.

Once a type name is defined, its precedence relative to other types remains the same
even if its body is redefined, as long as its name is not changed. This allows incremental
modifications to types without any worry of altering their precedences. See Section 9.2
[Creating Types], page 69, for information on how to develop or modify types.

3.7 Utilizing Explicit Buttons

Explicit buttons are a fundamental building block for creating personal or organizational
hypertext networks with Hyperbole. This section summarizes the user-level operations
available for managing these buttons.

3.7.1 Creation

Creating explicit buttons is fun and easy. You can always try them out immediately after
creating them or can utilize the Assist Key to verify what buttons do. There are two ways
to create them: by dragging between windows with the Action Mouse Key or by using the
Hyperbole menus.

3.7.1.1 Creation Via Action Key Drags

The most efficient way to create an explicit link button interactively is to use the Action
Mouse Key to drag from a non-read-only button source window to a window showing its
desired link referent. More specifically, you should split your current Emacs frame into
two windows: one which contains the point at which you want a button to be inserted and
another which shows the point to which you want to link. Depress the Action Mouse Key at
the source point for the button (anywhere but on a paired delimiter such as double quotes
or parentheses). Then drag to the other window and release the Action Mouse Key at the
start point of the link referent. The process becomes quite simple with a little practice. (See
Section 3.7.1.2 [By Menu|, page 34, for a more detailed explanation of the explicit button
creation process).

If a region was selected prior to the start of the drag, it is used as the button label,
otherwise, you are prompted for the label. Then Hyperbole uses the link referent context
to determine the type of link to make. If there are a few different types of links which are
applicable from the context, you will be prompted with a li