/*- * Copyright (c) 2011-2020 The NetBSD Foundation, Inc. * All rights reserved. * * This material is based upon work partially supported by The * NetBSD Foundation under a contract with Mindaugas Rasiukevicius. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * npfctl(8) building of the configuration. */ #include __RCSID("$NetBSD: npf_build.c,v 1.56 2023/08/18 14:26:50 tnn Exp $"); #include #define __FAVOR_BSD #include #include #include #include #include #include #include #include #include #include #include "npfctl.h" #define MAX_RULE_NESTING 16 static nl_config_t * npf_conf = NULL; static bool npf_debug = false; static nl_rule_t * the_rule = NULL; static bool npf_conf_built = false; static nl_rule_t * defgroup = NULL; static nl_rule_t * current_group[MAX_RULE_NESTING]; static unsigned rule_nesting_level = 0; static unsigned npfctl_tid_counter = 0; static void npfctl_dump_bpf(struct bpf_program *); void npfctl_config_init(bool debug) { npf_conf = npf_config_create(); if (npf_conf == NULL) { errx(EXIT_FAILURE, "npf_config_create() failed"); } memset(current_group, 0, sizeof(current_group)); npf_debug = debug; npf_conf_built = false; } nl_config_t * npfctl_config_ref(void) { return npf_conf; } nl_rule_t * npfctl_rule_ref(void) { return the_rule; } void npfctl_config_build(void) { /* Run-once. */ if (npf_conf_built) { return; } /* * The default group is mandatory. Note: npfctl_build_group_end() * skipped the default rule, since it must be the last one. */ if (!defgroup) { errx(EXIT_FAILURE, "default group was not defined"); } assert(rule_nesting_level == 0); npf_rule_insert(npf_conf, NULL, defgroup); npf_config_build(npf_conf); npf_conf_built = true; } int npfctl_config_send(int fd) { npf_error_t errinfo; int error = 0; npfctl_config_build(); error = npf_config_submit(npf_conf, fd, &errinfo); if (error) { npfctl_print_error(&errinfo); } npf_config_destroy(npf_conf); return error; } void npfctl_config_save(nl_config_t *ncf, const char *outfile) { void *blob; size_t len; int fd; blob = npf_config_export(ncf, &len); if (!blob) { err(EXIT_FAILURE, "npf_config_export"); } if ((fd = open(outfile, O_CREAT | O_TRUNC | O_WRONLY, 0644)) == -1) { err(EXIT_FAILURE, "could not open %s", outfile); } if (write(fd, blob, len) != (ssize_t)len) { err(EXIT_FAILURE, "write to %s failed", outfile); } free(blob); close(fd); } bool npfctl_debug_addif(const char *ifname) { const char tname[] = "npftest"; const size_t tnamelen = sizeof(tname) - 1; if (npf_debug) { _npf_debug_addif(npf_conf, ifname); return strncmp(ifname, tname, tnamelen) == 0; } return 0; } nl_table_t * npfctl_table_getbyname(nl_config_t *ncf, const char *name) { nl_iter_t i = NPF_ITER_BEGIN; nl_table_t *tl; /* XXX dynamic ruleset */ if (!ncf) { return NULL; } while ((tl = npf_table_iterate(ncf, &i)) != NULL) { const char *tname = npf_table_getname(tl); if (strcmp(tname, name) == 0) { break; } } return tl; } unsigned npfctl_table_getid(const char *name) { nl_table_t *tl; tl = npfctl_table_getbyname(npf_conf, name); return tl ? npf_table_getid(tl) : (unsigned)-1; } const char * npfctl_table_getname(nl_config_t *ncf, unsigned tid, bool *ifaddr) { const char *name = NULL; nl_iter_t i = NPF_ITER_BEGIN; nl_table_t *tl; while ((tl = npf_table_iterate(ncf, &i)) != NULL) { if (npf_table_getid(tl) == tid) { name = npf_table_getname(tl); break; } } if (!name) { return NULL; } if (!strncmp(name, NPF_IFNET_TABLE_PREF, NPF_IFNET_TABLE_PREFLEN)) { name += NPF_IFNET_TABLE_PREFLEN; *ifaddr = true; } else { *ifaddr = false; } return name; } static in_port_t npfctl_get_singleport(const npfvar_t *vp) { port_range_t *pr; in_port_t *port; if (npfvar_get_count(vp) > 1) { yyerror("multiple ports are not valid"); } pr = npfvar_get_data(vp, NPFVAR_PORT_RANGE, 0); if (pr->pr_start != pr->pr_end) { yyerror("port range is not valid"); } port = &pr->pr_start; return *port; } static fam_addr_mask_t * npfctl_get_singlefam(const npfvar_t *vp) { fam_addr_mask_t *am; if (npfvar_get_type(vp, 0) != NPFVAR_FAM) { yyerror("map segment must be an address or network"); } if (npfvar_get_count(vp) > 1) { yyerror("map segment cannot have multiple static addresses"); } am = npfvar_get_data(vp, NPFVAR_FAM, 0); if (am == NULL) { yyerror("invalid map segment"); } return am; } static unsigned npfctl_get_singletable(const npfvar_t *vp) { unsigned *tid; if (npfvar_get_count(vp) > 1) { yyerror("invalid use of multiple tables"); } tid = npfvar_get_data(vp, NPFVAR_TABLE, 0); assert(tid != NULL); return *tid; } static bool npfctl_build_fam(npf_bpf_t *ctx, sa_family_t family, fam_addr_mask_t *fam, unsigned opts) { /* * If family is specified, address does not match it and the * address is extracted from the interface, then simply ignore. * Otherwise, address of invalid family was passed manually. */ if (family != AF_UNSPEC && family != fam->fam_family) { if (!fam->fam_ifindex) { yyerror("specified address is not of the required " "family %d", family); } return false; } family = fam->fam_family; if (family != AF_INET && family != AF_INET6) { yyerror("family %d is not supported", family); } /* * Optimise 0.0.0.0/0 case to be NOP. Otherwise, address with * zero mask would never match and therefore is not valid. */ if (fam->fam_mask == 0) { if (!npfctl_addr_iszero(&fam->fam_addr)) { yyerror("filter criterion would never match"); } return false; } npfctl_bpf_cidr(ctx, opts, family, &fam->fam_addr, fam->fam_mask); return true; } static void npfctl_build_vars(npf_bpf_t *ctx, sa_family_t family, npfvar_t *vars, int opts) { npfctl_bpf_group_enter(ctx, (opts & MATCH_INVERT) != 0); for (unsigned i = 0; i < npfvar_get_count(vars); i++) { const unsigned type = npfvar_get_type(vars, i); void *data = npfvar_get_data(vars, type, i); assert(data != NULL); switch (type) { case NPFVAR_FAM: { fam_addr_mask_t *fam = data; npfctl_build_fam(ctx, family, fam, opts); break; } case NPFVAR_PORT_RANGE: { port_range_t *pr = data; npfctl_bpf_ports(ctx, opts, pr->pr_start, pr->pr_end); break; } case NPFVAR_TABLE: { unsigned tid; memcpy(&tid, data, sizeof(unsigned)); npfctl_bpf_table(ctx, opts, tid); break; } default: yyerror("unexpected %s", npfvar_type(type)); } } npfctl_bpf_group_exit(ctx); } static void npfctl_build_proto_block(npf_bpf_t *ctx, const opt_proto_t *op, bool multiple) { const unsigned proto = op->op_proto; npfvar_t *popts = op->op_opts; if (multiple && popts) { yyerror("multiple protocol options with protocol filters " "are not yet supported"); } /* Build the protocol filter. */ npfctl_bpf_proto(ctx, proto); switch (proto) { case IPPROTO_TCP: /* Build TCP flags matching (optional). */ if (popts) { uint8_t *tf, *tf_mask; assert(npfvar_get_count(popts) == 2); tf = npfvar_get_data(popts, NPFVAR_TCPFLAG, 0); tf_mask = npfvar_get_data(popts, NPFVAR_TCPFLAG, 1); npfctl_bpf_tcpfl(ctx, *tf, *tf_mask); } break; case IPPROTO_ICMP: case IPPROTO_ICMPV6: /* Build ICMP/ICMPv6 type and/or code matching. */ if (popts) { int *icmp_type, *icmp_code; assert(npfvar_get_count(popts) == 2); icmp_type = npfvar_get_data(popts, NPFVAR_ICMP, 0); icmp_code = npfvar_get_data(popts, NPFVAR_ICMP, 1); npfctl_bpf_icmp(ctx, *icmp_type, *icmp_code); } break; default: /* No options for other protocols. */ break; } } static void npfctl_build_proto(npf_bpf_t *ctx, const npfvar_t *vars) { const unsigned count = npfvar_get_count(vars); /* * XXX: For now, just do not support multiple protocol * blocks with options; this is because npfctl_bpf_tcpfl() * and npfctl_bpf_icmp() will not work correctly in a group. */ if (count == 1) { const opt_proto_t *op = npfvar_get_data(vars, NPFVAR_PROTO, 0); npfctl_build_proto_block(ctx, op, false); return; } npfctl_bpf_group_enter(ctx, false); for (unsigned i = 0; i < count; i++) { const opt_proto_t *op = npfvar_get_data(vars, NPFVAR_PROTO, i); npfctl_build_proto_block(ctx, op, true); } npfctl_bpf_group_exit(ctx); } static bool npfctl_check_proto(const npfvar_t *vars, bool *non_tcpudp, bool *tcp_with_nofl) { unsigned count; *non_tcpudp = false; *tcp_with_nofl = false; if (vars == NULL) { return false; } count = npfvar_get_count(vars); for (unsigned i = 0; i < count; i++) { const opt_proto_t *op = npfvar_get_data(vars, NPFVAR_PROTO, i); switch (op->op_proto) { case IPPROTO_TCP: *tcp_with_nofl = op->op_opts == NULL; break; case IPPROTO_UDP: case -1: break; default: *non_tcpudp = true; break; } } return count != 0; } static bool npfctl_build_code(nl_rule_t *rl, sa_family_t family, const npfvar_t *popts, const filt_opts_t *fopts) { const addr_port_t *apfrom = &fopts->fo_from; const addr_port_t *apto = &fopts->fo_to; bool any_proto, any_addrs, any_ports, stateful; bool any_l4proto, non_tcpudp, tcp_with_nofl; npf_bpf_t *bc; unsigned opts; size_t len; /* * Gather some information about the protocol options, if any. * Check the filter criteria in general -- if none specified, * then no byte-code. */ any_l4proto = npfctl_check_proto(popts, &non_tcpudp, &tcp_with_nofl); any_proto = (family != AF_UNSPEC) || any_l4proto; any_addrs = apfrom->ap_netaddr || apto->ap_netaddr; any_ports = apfrom->ap_portrange || apto->ap_portrange; stateful = (npf_rule_getattr(rl) & NPF_RULE_STATEFUL) != 0; if (!any_proto && !any_addrs && !any_ports && !stateful) { return false; } /* * Sanity check: ports can only be used with TCP or UDP protocol. */ if (any_ports && non_tcpudp) { yyerror("invalid filter options for given the protocol(s)"); } bc = npfctl_bpf_create(); /* Build layer 3 and 4 protocol blocks. */ if (family != AF_UNSPEC) { npfctl_bpf_ipver(bc, family); } if (any_l4proto) { npfctl_build_proto(bc, popts); } /* * If this is a stateful rule and TCP flags are not specified, * then add "flags S/SAFR" filter for TCP protocol case. */ if (stateful && (!any_l4proto || tcp_with_nofl)) { npfctl_bpf_tcpfl(bc, TH_SYN, TH_SYN | TH_ACK | TH_FIN | TH_RST); } /* Build IP address blocks. */ opts = MATCH_SRC | (fopts->fo_finvert ? MATCH_INVERT : 0); npfctl_build_vars(bc, family, apfrom->ap_netaddr, opts); opts = MATCH_DST | (fopts->fo_tinvert ? MATCH_INVERT : 0); npfctl_build_vars(bc, family, apto->ap_netaddr, opts); /* * Build the port-range blocks. If no protocol is specified, * then we implicitly filter for the TCP / UDP protocols. */ if (any_ports && !any_l4proto) { npfctl_bpf_group_enter(bc, false); npfctl_bpf_proto(bc, IPPROTO_TCP); npfctl_bpf_proto(bc, IPPROTO_UDP); npfctl_bpf_group_exit(bc); } npfctl_build_vars(bc, family, apfrom->ap_portrange, MATCH_SRC); npfctl_build_vars(bc, family, apto->ap_portrange, MATCH_DST); /* Set the byte-code marks, if any. */ const void *bmarks = npfctl_bpf_bmarks(bc, &len); if (bmarks && npf_rule_setinfo(rl, bmarks, len) != 0) { errx(EXIT_FAILURE, "npf_rule_setinfo"); } /* Complete BPF byte-code and pass to the rule. */ struct bpf_program *bf = npfctl_bpf_complete(bc); if (bf == NULL) { npfctl_bpf_destroy(bc); return true; } len = bf->bf_len * sizeof(struct bpf_insn); if (npf_rule_setcode(rl, NPF_CODE_BPF, bf->bf_insns, len) != 0) { errx(EXIT_FAILURE, "npf_rule_setcode"); } npfctl_dump_bpf(bf); npfctl_bpf_destroy(bc); return true; } static void npfctl_build_pcap(nl_rule_t *rl, const char *filter) { const size_t maxsnaplen = 64 * 1024; struct bpf_program bf; size_t len; pcap_t *pd; pd = pcap_open_dead(DLT_RAW, maxsnaplen); if (pd == NULL) { err(EXIT_FAILURE, "pcap_open_dead"); } if (pcap_compile(pd, &bf, filter, 1, PCAP_NETMASK_UNKNOWN) == -1) { yyerror("invalid pcap-filter(7) syntax"); } len = bf.bf_len * sizeof(struct bpf_insn); if (npf_rule_setcode(rl, NPF_CODE_BPF, bf.bf_insns, len) != 0) { errx(EXIT_FAILURE, "npf_rule_setcode failed"); } npfctl_dump_bpf(&bf); pcap_freecode(&bf); pcap_close(pd); } static void npfctl_build_rpcall(nl_rproc_t *rp, const char *name, npfvar_t *args) { npf_extmod_t *extmod; nl_ext_t *extcall; int error; extmod = npf_extmod_get(name, &extcall); if (extmod == NULL) { yyerror("unknown rule procedure '%s'", name); } for (size_t i = 0; i < npfvar_get_count(args); i++) { const char *param, *value; proc_param_t *p; p = npfvar_get_data(args, NPFVAR_PROC_PARAM, i); param = p->pp_param; value = p->pp_value; error = npf_extmod_param(extmod, extcall, param, value); switch (error) { case EINVAL: yyerror("invalid parameter '%s'", param); default: break; } } error = npf_rproc_extcall(rp, extcall); if (error) { yyerror(error == EEXIST ? "duplicate procedure call" : "unexpected error"); } } /* * npfctl_build_rproc: create and insert a rule procedure. */ void npfctl_build_rproc(const char *name, npfvar_t *procs) { nl_rproc_t *rp; size_t i; rp = npf_rproc_create(name); if (rp == NULL) { errx(EXIT_FAILURE, "%s failed", __func__); } for (i = 0; i < npfvar_get_count(procs); i++) { proc_call_t *pc = npfvar_get_data(procs, NPFVAR_PROC, i); npfctl_build_rpcall(rp, pc->pc_name, pc->pc_opts); } npf_rproc_insert(npf_conf, rp); } /* * npfctl_build_maprset: create and insert a NAT ruleset. */ void npfctl_build_maprset(const char *name, int attr, const char *ifname) { const int attr_di = (NPF_RULE_IN | NPF_RULE_OUT); nl_rule_t *rl; bool natset; int err; /* Validate the prefix. */ err = npfctl_nat_ruleset_p(name, &natset); if (!natset) { yyerror("NAT ruleset names must be prefixed with `" NPF_RULESET_MAP_PREF "`"); } if (err) { yyerror("NAT ruleset is missing a name (only prefix found)"); } /* If no direction is not specified, then both. */ if ((attr & attr_di) == 0) { attr |= attr_di; } /* Allow only "in/out" attributes. */ attr = NPF_RULE_GROUP | NPF_RULE_DYNAMIC | (attr & attr_di); rl = npf_rule_create(name, attr, ifname); npf_rule_setprio(rl, NPF_PRI_LAST); npf_nat_insert(npf_conf, rl); } /* * npfctl_build_group: create a group, update the current group pointer * and increase the nesting level. */ void npfctl_build_group(const char *name, int attr, const char *ifname, bool def) { const int attr_di = (NPF_RULE_IN | NPF_RULE_OUT); nl_rule_t *rl; if (def || (attr & attr_di) == 0) { attr |= attr_di; } rl = npf_rule_create(name, attr | NPF_RULE_GROUP, ifname); npf_rule_setprio(rl, NPF_PRI_LAST); if (def) { if (defgroup) { yyerror("multiple default groups are not valid"); } if (rule_nesting_level) { yyerror("default group can only be at the top level"); } defgroup = rl; } /* Set the current group and increase the nesting level. */ if (rule_nesting_level >= MAX_RULE_NESTING) { yyerror("rule nesting limit reached"); } current_group[++rule_nesting_level] = rl; } void npfctl_build_group_end(void) { nl_rule_t *parent, *group; assert(rule_nesting_level > 0); parent = current_group[rule_nesting_level - 1]; group = current_group[rule_nesting_level]; current_group[rule_nesting_level--] = NULL; /* * Note: * - If the parent is NULL, then it is a global rule. * - The default rule must be the last, so it is inserted later. */ if (group == defgroup) { assert(parent == NULL); return; } npf_rule_insert(npf_conf, parent, group); } /* * npfctl_build_rule: create a rule, build byte-code from filter options, * if any, and insert into the ruleset of current group, or set the rule. */ void npfctl_build_rule(uint32_t attr, const char *ifname, sa_family_t family, const npfvar_t *popts, const filt_opts_t *fopts, const char *pcap_filter, const char *rproc) { nl_rule_t *rl; attr |= (npf_conf ? 0 : NPF_RULE_DYNAMIC); rl = npf_rule_create(NULL, attr, ifname); if (pcap_filter) { npfctl_build_pcap(rl, pcap_filter); } else { npfctl_build_code(rl, family, popts, fopts); } if (rproc) { npf_rule_setproc(rl, rproc); } if (npf_conf) { nl_rule_t *cg = current_group[rule_nesting_level]; if (rproc && !npf_rproc_exists_p(npf_conf, rproc)) { yyerror("rule procedure '%s' is not defined", rproc); } assert(cg != NULL); npf_rule_setprio(rl, NPF_PRI_LAST); npf_rule_insert(npf_conf, cg, rl); } else { /* We have parsed a single rule - set it. */ the_rule = rl; } } /* * npfctl_build_nat: create a single NAT policy of a specified * type with a given filter options. */ static nl_nat_t * npfctl_build_nat(int type, const char *ifname, const addr_port_t *ap, const npfvar_t *popts, const filt_opts_t *fopts, unsigned flags) { fam_addr_mask_t *am; sa_family_t family; in_port_t port; nl_nat_t *nat; unsigned tid; if (ap->ap_portrange) { /* * The port forwarding case. In such case, there has to * be a single port used for translation; we keep the port * translation on, but disable the port map. */ port = npfctl_get_singleport(ap->ap_portrange); flags = (flags & ~NPF_NAT_PORTMAP) | NPF_NAT_PORTS; } else { port = 0; } nat = npf_nat_create(type, flags, ifname); switch (npfvar_get_type(ap->ap_netaddr, 0)) { case NPFVAR_FAM: /* Translation address. */ am = npfctl_get_singlefam(ap->ap_netaddr); family = am->fam_family; npf_nat_setaddr(nat, family, &am->fam_addr, am->fam_mask); break; case NPFVAR_TABLE: /* Translation table. */ family = AF_UNSPEC; tid = npfctl_get_singletable(ap->ap_netaddr); npf_nat_settable(nat, tid); break; default: yyerror("map must have a valid translation address"); abort(); } npf_nat_setport(nat, port); npfctl_build_code(nat, family, popts, fopts); return nat; } static void npfctl_dnat_check(const addr_port_t *ap, const unsigned algo) { const unsigned type = npfvar_get_type(ap->ap_netaddr, 0); fam_addr_mask_t *am; switch (algo) { case NPF_ALGO_NETMAP: if (type == NPFVAR_FAM) { break; } yyerror("translation address using NETMAP must be " "a network and not a dynamic pool"); break; case NPF_ALGO_IPHASH: case NPF_ALGO_RR: case NPF_ALGO_NONE: if (type != NPFVAR_FAM) { break; } am = npfctl_get_singlefam(ap->ap_netaddr); if (am->fam_mask == NPF_NO_NETMASK) { break; } yyerror("translation address, given the specified algorithm, " "must be a pool or a single address"); break; default: yyerror("invalid algorithm specified for dynamic NAT"); } } /* * npfctl_build_natseg: validate and create NAT policies. */ void npfctl_build_natseg(int sd, int type, unsigned mflags, const char *ifname, const addr_port_t *ap1, const addr_port_t *ap2, const npfvar_t *popts, const filt_opts_t *fopts, unsigned algo) { fam_addr_mask_t *am1 = NULL, *am2 = NULL; nl_nat_t *nt1 = NULL, *nt2 = NULL; filt_opts_t imfopts; uint16_t adj = 0; unsigned flags; bool binat; assert(ifname != NULL); /* * Validate that mapping has the translation address(es) set. */ if ((type & NPF_NATIN) != 0 && ap1->ap_netaddr == NULL) { yyerror("inbound network segment is not specified"); } if ((type & NPF_NATOUT) != 0 && ap2->ap_netaddr == NULL) { yyerror("outbound network segment is not specified"); } /* * Bi-directional NAT is a combination of inbound NAT and outbound * NAT policies with the translation segments inverted respectively. */ binat = (NPF_NATIN | NPF_NATOUT) == type; switch (sd) { case NPFCTL_NAT_DYNAMIC: /* * Dynamic NAT: stateful translation -- traditional NAPT * is expected. Unless it is bi-directional NAT, perform * the port mapping. */ flags = !binat ? (NPF_NAT_PORTS | NPF_NAT_PORTMAP) : 0; if (type & NPF_NATIN) { npfctl_dnat_check(ap1, algo); } if (type & NPF_NATOUT) { npfctl_dnat_check(ap2, algo); } break; case NPFCTL_NAT_STATIC: /* * Static NAT: stateless translation. */ flags = NPF_NAT_STATIC; /* Note: translation address/network cannot be a table. */ if (type & NPF_NATIN) { am1 = npfctl_get_singlefam(ap1->ap_netaddr); } if (type & NPF_NATOUT) { am2 = npfctl_get_singlefam(ap2->ap_netaddr); } /* Validate the algorithm. */ switch (algo) { case NPF_ALGO_NPT66: if (!binat || am1->fam_mask != am2->fam_mask) { yyerror("asymmetric NPTv6 is not supported"); } adj = npfctl_npt66_calcadj(am1->fam_mask, &am1->fam_addr, &am2->fam_addr); break; case NPF_ALGO_NETMAP: if (binat && am1->fam_mask != am2->fam_mask) { yyerror("net-to-net mapping using the " "NETMAP algorithm must be 1:1"); } break; case NPF_ALGO_NONE: if ((am1 && am1->fam_mask != NPF_NO_NETMASK) || (am2 && am2->fam_mask != NPF_NO_NETMASK)) { yyerror("static net-to-net translation " "must have an algorithm specified"); } break; default: yyerror("invalid algorithm specified for static NAT"); } break; default: abort(); } /* * Apply the flag modifications. */ if (mflags & NPF_NAT_PORTS) { flags &= ~(NPF_NAT_PORTS | NPF_NAT_PORTMAP); } /* * If the filter criteria is not specified explicitly, apply implicit * filtering according to the given network segments. * * Note: filled below, depending on the type. */ if (__predict_true(!fopts)) { fopts = &imfopts; } if (type & NPF_NATIN) { memset(&imfopts, 0, sizeof(filt_opts_t)); memcpy(&imfopts.fo_to, ap2, sizeof(addr_port_t)); nt1 = npfctl_build_nat(NPF_NATIN, ifname, ap1, popts, fopts, flags); } if (type & NPF_NATOUT) { memset(&imfopts, 0, sizeof(filt_opts_t)); memcpy(&imfopts.fo_from, ap1, sizeof(addr_port_t)); nt2 = npfctl_build_nat(NPF_NATOUT, ifname, ap2, popts, fopts, flags); } switch (algo) { case NPF_ALGO_NONE: break; case NPF_ALGO_NPT66: /* * NPTv6 is a special case using special adjustment value. * It is always bidirectional NAT. */ assert(nt1 && nt2); npf_nat_setnpt66(nt1, ~adj); npf_nat_setnpt66(nt2, adj); break; default: /* * Set the algorithm. */ if (nt1) { npf_nat_setalgo(nt1, algo); } if (nt2) { npf_nat_setalgo(nt2, algo); } } if (npf_conf) { if (nt1) { npf_rule_setprio(nt1, NPF_PRI_LAST); npf_nat_insert(npf_conf, nt1); } if (nt2) { npf_rule_setprio(nt2, NPF_PRI_LAST); npf_nat_insert(npf_conf, nt2); } } else { // XXX/TODO: need to refactor a bit to enable this.. if (nt1 && nt2) { errx(EXIT_FAILURE, "bidirectional NAT is currently " "not yet supported in the dynamic rules"); } the_rule = nt1 ? nt1 : nt2; } } /* * npfctl_fill_table: fill NPF table with entries from a specified file. */ static void npfctl_fill_table(nl_table_t *tl, unsigned type, const char *fname, FILE *fp) { char *buf = NULL; int l = 0; size_t n; if (fp == NULL && (fp = fopen(fname, "r")) == NULL) { err(EXIT_FAILURE, "open '%s'", fname); } while (l++, getline(&buf, &n, fp) != -1) { fam_addr_mask_t fam; int alen; if (*buf == '\n' || *buf == '#') { continue; } if (!npfctl_parse_cidr(buf, &fam, &alen)) { errx(EXIT_FAILURE, "%s:%d: invalid table entry", fname, l); } if (type != NPF_TABLE_LPM && fam.fam_mask != NPF_NO_NETMASK) { errx(EXIT_FAILURE, "%s:%d: mask used with the " "table type other than \"lpm\"", fname, l); } npf_table_add_entry(tl, fam.fam_family, &fam.fam_addr, fam.fam_mask); } free(buf); } /* * npfctl_load_table: create an NPF table and fill with contents from a file. */ nl_table_t * npfctl_load_table(const char *tname, int tid, unsigned type, const char *fname, FILE *fp) { nl_table_t *tl; tl = npf_table_create(tname, tid, type); if (tl && fname) { npfctl_fill_table(tl, type, fname, fp); } return tl; } /* * npfctl_build_table: create an NPF table, add to the configuration and, * if required, fill with contents from a file. */ void npfctl_build_table(const char *tname, unsigned type, const char *fname) { nl_table_t *tl; if (type == NPF_TABLE_CONST && !fname) { yyerror("table type 'const' must be loaded from a file"); } tl = npfctl_load_table(tname, npfctl_tid_counter++, type, fname, NULL); assert(tl != NULL); if (npf_table_insert(npf_conf, tl)) { yyerror("table '%s' is already defined", tname); } } /* * npfctl_ifnet_table: get a variable with ifaddr-table; auto-create * the table on first reference. */ npfvar_t * npfctl_ifnet_table(const char *ifname) { char tname[NPF_TABLE_MAXNAMELEN]; nl_table_t *tl; unsigned tid; snprintf(tname, sizeof(tname), NPF_IFNET_TABLE_PREF "%s", ifname); if (!npf_conf) { errx(EXIT_FAILURE, "expression `ifaddrs(%s)` is currently " "not yet supported in dynamic rules", ifname); } tid = npfctl_table_getid(tname); if (tid == (unsigned)-1) { tid = npfctl_tid_counter++; tl = npf_table_create(tname, tid, NPF_TABLE_IFADDR); (void)npf_table_insert(npf_conf, tl); } return npfvar_create_element(NPFVAR_TABLE, &tid, sizeof(unsigned)); } /* * npfctl_build_alg: create an NPF application level gateway and add it * to the configuration. */ void npfctl_build_alg(const char *al_name) { if (npf_alg_load(npf_conf, al_name) != 0) { yyerror("ALG '%s' is already loaded", al_name); } } void npfctl_setparam(const char *name, int val) { if (strcmp(name, "bpf.jit") == 0) { npfctl_bpfjit(val != 0); return; } if (npf_param_set(npf_conf, name, val) != 0) { yyerror("invalid parameter `%s` or its value", name); } } static void npfctl_dump_bpf(struct bpf_program *bf) { if (npf_debug) { extern char *yytext; extern int yylineno; int rule_line = yylineno - (int)(*yytext == '\n'); printf("\nRULE AT LINE %d\n", rule_line); bpf_dump(bf, 0); } }