
Rveg User Manual
version 0.1.6

Přemysl Král and Jan Douda

Contents
1 INTRODUCTION 2

1.1 overview . 2

2 START 3
2.1 relevé digitizing . 3

3 FUNCTIONS 7
3.1 addReleve . 7

3.1.1 Creation of the database . 8
3.1.2 Menu options (prompts) . 12
3.1.3 Species wise digitizing . 15
3.1.4 Editing existing database, custom headers, custom checklist 17

3.2 RvegCombine . 20
3.3 RvegMerge . 21
3.4 RvegCheck . 22
3.5 RvegToJuice . 23
3.6 TvToRveg . 24
3.7 RvegToTv . 25
3.8 CreateChecklist . 26
3.9 RvegLoad . 27

4 DEVELOPER NOTES 28

5 FAQ 29

6 REFERENCES 29

1

1 INTRODUCTION
The Rveg package is database software for students and scientists, mainly botanists and ecologists, that
allows transcription of your phytosociological relevés in the R environment. This is a comprehensive guide to
understanding how the Rveg package works and its capabilities.

You are reading the manual for the first reviewed version (0.1.6), which provides a working solution for
digitizing relevés. In future updates, we aim to improve the quality and functionality and explore new features
like utilizing Ellenberg’s indicator values, exporting to standardized exchange formats, or allowing for habitat
classification. There are a few sources regarding Rveg development you might visit:

1. GitHub at https://github.com/sesitcsl2/Rveg - for the latest development version
2. Team website at https://plant-ecology-lab-czu.com/rveg/ - for news and video guides
3. CRAN repository - for the latest stable version

The manual is divided into two parts. If you are using Rveg for the first time, you might be interested in the
first part, which is a step-by-step example of basic digitizing suitable for testing on your first relevé. In the
second part, all of the functions and their arguments are described precisely.

1.1 overview
Rveg is capable of fast transcription, editing, and viewing of your relevés. It creates a database composed
of two CSV files (comma-separated values): one for header data (environmental variables, file ending with
HEAD.csv) and a second for abundance data (file ending with REL.csv). Values in both files can be edited
outside of Rveg in any spreadsheet software while keeping compatibility with Rveg, but don’t edit row names
or column names.

The Header file consists of preset variables in rows and relevés in columns. It is advised not to use commas
in values, as commas are used as separators.

The Relevés file consists of species number codes as row names and relevés in columns. The first column
represents the species shortcut code combined with an underscore and the vegetation layer. It is based on
the external checklist of species (Danihelka et al. 2012), which assigns a shortcut code (e.g., TRIFPRA for
Trifolium pratense) to each species to prevent typos and speed up the process of writing. A REL table might
look like this:

X ShortName X1 X2
1 291 ALNUGLU_3 88 0
2 11787 ALNUGLU_2 10 0
3 29777 POA ANN_1 50 0
4 29789 POA RIP_1 23 0
5 32387 TRIFMON_1 0 40
6 32391 TRIFPRA_1 0 2

The Rveg package is based entirely around working with these two files, which together are referred to as the
Rveg database. This is achieved primarily by the addReleve function, but Rveg also contains some functions
with extra features. Rveg includes the following functions:

1. addReleve()
2. RvegCombine()
3. RvegCheck()
4. RvegToJuice()
5. RvegMerge()
6. tvToRveg()
7. RvegToTv()
8. CreateChecklist()
9. RvegLoad()

To understand each function, view the next chapter or run help("function_name").

2

https://github.com/sesitcsl2/Rveg
https://plant-ecology-lab-czu.com/rveg/

2 START
2.1 relevé digitizing
Install the latest version of the Rveg:

Official CRAN installation
install.packages("Rveg")
require(Rveg)

Alternative GitHub installation
Be aware that devtools package use number of dependencies
install.packages("devtools")
devtools::install_github("sesitcsl2/Rveg")
require(Rveg)

Assuming you have successfully installed Rveg, we can start digitizing right away. We start with the core
function for digitizing, addReleve(). For our first database to be created, we need the argument SAVE, which
specifies where the database will be stored on our disk. Let’s say we want to have our database stored in the
home directory and named “MyFirstDatabase”.

setwd("~")
addReleve(SAVE = "MyFirstDatabase")

By forming the function this way, we will immediately start by filling the first relevé. The process starts by
filling header fields. Enter a value for each field; formats are not mandatory to follow. You can leave the
fields empty as well.

DATE?(YYYY/MM/DD) 2023/1/5
SPRINGDATE?(YYYY/MM/DD)
LOCALITY? Prague-Suchdol
...

Here I show you the first three fields, where I have filled the DATE and LOCALITY but left SPRINGDATE empty,
as we have not sampled spring aspect vegetation. The last field is NOTE for any additional remarks. After
you complete the first header, Rveg starts to ask you if you want to add species. Let’s add our first species,
Trifolium pratense, with a 30% cover.

...
Note?
AddNewLayer? (Y/N) Y
Select Layer (3,2,1,J,0) 1
P - percentage, BB - Braun B. scale, CS - custom scale p
AddSpecies?(GenuSpe/N) trifpra
Abundance?(%) 30

FullName
32391 Trifolium pratense
CorrectName?(Y/F(search for name)) y

ShortName 0
32391 TRIFPRA_1 30
AddSpecies?(GenuSpe/N)

At this moment we are editing first reléve, herb layer in percentage and Rveg awaits our response if we want
to add another specie (our first). Species are inserted by the shortname species codes, that is usually created
by 4 letters of Genus and 3 letters of species, therefore for Trifolium pratense we type TrifPra. After we
type the abundance, we are aske to doublecheck if the species is correct. This is also useful for exceptions of
shortnames, as some codes could be duplicite or for other reasons, the species code might except the 4 genus
3 species letters rule. We confirm Trifolium pratense and Rveg list our relevé, which consist of one species

3

now and already awaits for another species. The id row names are not important for us. Lets add few more
species, Arrhenatherum elatius, Rumex acetosa and Bellis perennis.

In the first option, we confirmed we want to add/edit a new vegetation layer; we selected one which represents
the herb layer and then we selected percentage as cover values. Note that Rveg suggests capital letters as
answers, and while R is case-sensitive, Rveg capitalizes the text in the background, so you can write in
lowercase as well. At this moment, we are editing the first relevé, herb layer in percentage, and Rveg awaits
our response if we want to add another species (our first). Species are inserted by the shortname species
codes, which are usually created by 4 letters of the genus and 3 letters of the species; therefore, for Trifolium
pratense we type trifpra. After we type the abundance, we are asked to double-check if the species is correct.
This is also useful for exceptions of shortnames, as some codes could be duplicates or for other reasons the
species code might not follow the 4 genus and 3 species letters rule. We confirm Trifolium pratense, and Rveg
lists our relevé, which consists of one species now and already awaits another species. The ID row names
are not important for us. Let’s add a few more species: Arrhenatherum elatius, Rumex acetosa, and Bellis
perennis.

AddSpecies?(GenuSpe/N) arrhela
Abundance?(%) 25

FullName
23586 Arrhenatherum elatius
CorrectName?(Y/F(search for name)) y

ShortName 0
23586 ARRHELA_1 25
32391 TRIFPRA_1 30
AddSpecies?(GenuSpe/N) rumeace
Abundance?(%) 5

FullName
30902 Rumex acetosa
CorrectName?(Y/F(search for name)) y

ShortName 0
23586 ARRHELA_1 25
30902 RUMEACE_1 5
32391 TRIFPRA_1 30
AddSpecies?(GenuSpe/N) bellper
Abundance?(%) 4
[1] FullName
<0 rows> (or 0-length row.names)
CorrectName?(Y/F(search for name))

Now we hit a wall: Rveg does not know any species with the shortname bellper. Therefore, we must decline
that the name is correct, which is followed by a question about the first three letters of the species full name.
Rveg then lists all species with corresponding name starts, also with the correct ShortName codes.

<0 rows> (or 0-length row.names)
CorrectName?(Y/F(search for name)) f
SpeciesFirst3letters?(eg.Che) bel

Number ShortName FullName
776 1058 ASTEBEL Bellidiastrum michelii
1005 1332 BELIPER Bellis perennis
1006 1333 BELI-SP Bellis species
1007 1334 BELOHER Belonia herculana
...
SpeciesName?(GenuSpe)

4

Now we see that according to the checklist, the correct shortname is BELIPER.

SpeciesName?(GenuSpe) beliper
FullName

23997 Bellis perennis
CorrectSpecies?(Y/N) y

ShortName 0
23586 ARRHELA_1 25
23997 BELIPER_1 4
30902 RUMEACE_1 5
32391 TRIFPRA_1 30
AddSpecies?(GenuSpe/N)

Now we have successfully added Bellis perennis to the herb layer; however, at our plot, we also found a shrub
of Sambucus nigra. Let’s add it to our relevé, and we can try the Braun-Blanquet scale. We will select layer
two (shrub layer) and abundance +.

AddSpecies?(GenuSpe/N) f
AddNewLayer?(Y/N) y
Select Layer (3,2,1,J,0) 2
P - percentage, BB - Braun B. scale, CS - custom scale bb
AddSpecies?(GenuSpe/N) sambnig
Abundance?(0,R,+,1,2,M,A,B,3,4,5) +

FullName
19520 Sambucus nigra
CorrectName?(Y/F(search for name)) y

ShortName 0
19520 SAMBNIG_2 2
23586 ARRHELA_1 25
23997 BELIPER_1 4
30902 RUMEACE_1 5
32391 TRIFPRA_1 30
AddSpecies?(GenuSpe/N)

You can see Sambucus nigra is now in our list within the second layer, and the cover code was converted
from + to 2%. In case you want to adjust the abundance or remove the species, we can just add the species
again with a different cover; zero to remove. Let’s try it and change the abundance of A. elatius to 35%.
Therefore, we need to edit layer one again.

AddSpecies?(GenuSpe/N) N
AddNewLayer?(Y/N) Y
Select Layer (3,2,1,J,0) 1
P - percentage, BB - Braun B. scale, CS - custom scale P
AddSpecies?(GenuSpe/N) Arrhela
Abundance?(%) 35

FullName
23586 Arrhenatherum elatius
CorrectName?(Y/F(search for name)) Y

ShortName 0
19520 SAMBNIG_2 2
23586 ARRHELA_1 35
23997 BELIPER_1 4
30902 RUMEACE_1 5
32391 TRIFPRA_1 30

Now we assume our first relevé is finished. Congratulations! Therefore, we decline adding new species and
adding new layers.

5

AddSpecies?(GenuSpe/N) n
AddNewLayer?(Y/N) n
Species_richness
[1] 5
number of relevés: 1, number of headers: 1
AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP)

Now we end up in a menu where we can select different prompts. For a detailed explanation, check the
addReleve section in the FUNCTIONS chapter. We will now be satisfied with PRINTREL and PRINTHEAD. If
we want to see our database state, we prompt PRINTREL for relevés and PRINTHEAD for headers. Prompting Y
will start a new relevé with header as before.

AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) PRINTREL
ShortName X1

19520 SAMBNIG_2 2
23586 ARRHELA_1 35
23997 BELIPER_1 4
30902 RUMEACE_1 5
32391 TRIFPRA_1 30
number of relevés: 1, number of headers: 1
AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) PRINTHEAD

ShortName X1
1 ID 1
2 DATE 2023/1/5
3 SpringDATE
4 LOCALITY Prague-Suchdol
5 FieldCODE 1
6 Authors PK
7 PlotSize 4
8 Latitude 50.12981
9 Longitude 14.37081
10 Accuracy 5
11 CRS WGS84
12 Slope
13 Exposure
14 E3 0
15 E2 5
16 E1 75
17 Ejuv 0
18 E0 0
19 Note
number of relevés: 1, number of headers: 1
AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP)

6

3 FUNCTIONS
3.1 addReleve
addReleve(DATABASE = "NEW", SAVE = "default", checklist = "default", extrahead = NULL,start = TRUE)

ARGUMENTS

• DATABASE is set by default to "NEW", which indicates that the user is creating a new database. You
will need to change this value only if you want to edit or add new records to your database created
before. In that case, you will enter the name of the database (without the HEAD.csv, REL.csv suffix).

• SAVE sets the path and name of your database. It is therefore the only required argument when
creating a new database. When you are editing an already existing database, you can select to keep
SAVE the same as DATABASE, which will overwrite the loaded database, or you can choose a
different SAVE value to create a new database as well as keep the old one (e.g., backup or versioning).
If kept on default, the temporary files will be used in the tmp directory.

• checklist is set by default to "default", which makes Rveg use the provided checklist by Danihelka et
al. (2012). At the moment, there are no more checklists, but you are able to edit or create your own
checklists. Insert the full path to the custom checklist. A custom checklist can be structured to the
required format with the function CreateChecklist().

• extrahead is set by default to NULL, meaning there are no extra header characteristics. To add other
fields, insert the character vector of the characteristics.

• start Is logical value if the user wants to start digitizing right away by default method. Works only
when creating a new database.

DESCRIPTION

The most important function, which is the core of the whole package. It allows you to digitize relevés,
therefore creating and editing Rveg databases which consist of two CSV files: one for evironmental (header)
data and another for abundance (relevé). The whole process is based on communication with the user. After
starting the function, the digitizing process begins and runs until closed; until then, the R session cannot be
used in other ways. You can create a database for your project with preset header data, but it also allows you
to add your own characteristics. There are several ways of digitizing using this function, each explained below.
This function includes several mechanisms to make digitizing comfortable, efficient, and error-free. First, the
database is continuously saved during the digitizing process after every step (e.g., after every relevé digitized);
therefore, in an unexpected closure of the software, most of the data are not lost. Be aware that R needs
rights to write the files onto the disk; therefore, ensure the files are not open in other software (e.g., Microsoft
Excel), as it might cause errors. To prevent typographical mistakes and speed up the digitizing process,
the species are inserted using 7-letter codes and require double-checking. Thanks to the species checklist
(Danihelka et al. 2012) for the Czech Republic, provided within the package, Rveg will connect species names
to the 7-letter codes. If you ever find the checklist insufficient, you can use custom checklists. In future
updates, more checklists might be included. The structure of the checklist is a TXT file, a dataframe with 3
columns. The first column, Number, represents the ID of the species. Rveg will recalculate IDs by itself, so
there is no real use for this column; you can use it for your own sorting and orientation. If you don’t want to
think of a number, you can simply enter 99999, or any other number. The second column, ShortName, is the
already mentioned species shortcut. It is written in uppercase and consists of 4 letters of the genus and 3
letters of the species. It is important to keep uppercase letters and ensure every shortname is unique and
present only once. To access the checklist for modifying, you can run:
checklist <- system.file("extdata", "DANIHELKA2012rko.txt", package="Rveg")
checklist <- read.delim(checklist,sep = "\t")
"ABCDEFG" %in% checklist$ShortName # check if the code is available
[1] FALSE # it is available / not used

The last column, FullName, contains full species names. Columns are separated by a tabulator. I recommend
editing the file in a text editor rather than in R, but be careful as some text editors can alter tabulators with
spaces.

7

Default header includes following fields:

1. ID (YYYY/MM/DD) - generated automatically, unique value for each relevé
2. DATE (YYYY/MM/DD) - date of data sampling
3. SpringDATE - date of sampling spring aspect
4. LOCALITY - place where relevé was taken
5. FieldCODE - internal code for distinguishing relevés from the same locality
6. Authors - name of the sampler
7. PlotSize (m2) - size of the sampled area
8. Latitude & Longitude - XY coordinates
9. Accuracy - accuracy of coordinate measurement

10. CRS - used coordinate reference system
11. Slope (degrees) - slope of the plot
12. Exposure - exposure direction
13. E3, E2, E1, Ejuv, E0 (%) - percentage cover of each layer (tree, shrub, herb, juvenile, and moss,

respectively)
14. Note - any extra note you might need to record

Example of a relevé header:

1 ID 1
2 DATE 2023/1/5
3 SpringDATE
4 LOCALITY Prague-Suchdol
5 FieldCODE 1
6 Authors PK
7 PlotSize 4
8 Latitude 50.12981
9 Longitude 14.37081
10 Accuracy 5
11 CRS WGS84
12 Slope
13 Exposure
14 E3 0
15 E2 5
16 E1 75
17 Ejuv 0
18 E0 0
19 Note

Some characteristics have a recommended format; however, it is completely up to you and your preferences
how you fill them. Everything is converted to string (text) format. You can notice that some of the fields
remain empty. Every database contains this set of header fields, but it is up to the user if they want to fill
them.

3.1.1 Creation of the database

Run function

addReleve(SAVE = "First_database")

That will start a dialogue communication with the user. Be careful not to stop the dialogue in the process by
pressing the escape key, for example, as it would stop the digitizing process. When creating a new database
with default settings (start = TRUE), it will start immediately recording your first relevé, starting with the
header:

8

DATE?(YYYY/MM/DD): 2023/01/05
SPRINGDATE?(Y/M/D):
LOCALITY?: Yellowstone
...
E0?(%) 12
Note?
AddNewLayer?(Y/N)

You don’t have to fill in all the characteristics; if you were not recording something or you will not have
any use for it, you can leave the field blank (as we did with SPRINGDATE and Note). All values are
converted to character. After that, the loop dialogue will allow you to start recording species.

AddNewLayer?(Y/N) Y
Select Layer (3,2,1,J,0) 1
P - percentage, BB - Braun B. scale, CS - custom scale bb
AddSpecies?(GenuSpe/N)

We started to write species in the first (herb) layer with covers noted in the modified Braun-Blanquet scale
(BB). The other possible options are using percentage covers or indicating that a custom scale that is not
pre-coded in Rveg will be used. In the case of a custom scale, the values will stay in the scale and will have
to be converted later. That is possible with the function RvegLoad. In the case of used pre-coded scales (e.g.,
Braun-Blanquet), the values are automatically transferred to percentage, as you will see in this example.

r = 1%; + = 2%; 1 = 3%; 2m = 4%; 2a = 8%; 2b = 18% [2 = 15%]; 3 = 38%; 4 = 63%; 5 = 88%

Now we have to start filling species using 7-letter codes, consisting of the first 4 letters of the genus and
the first 3 letters of the species name. There are a few exceptions; for example, genus Poa is written with
3 letters of genus, a space, and 3 letters of the species name. Or you might want to record an aggregate;
that is achieved with a hashtag symbol, e.g., ARTE#VU stands for Artemisia vulgaris agg. For a full list of
exceptions see chapter CreateChecklist. There is no need to remember the codes, as Rveg can show them
to you, but after some time, you might start memorizing them automatically.

AddSpecies?(GenuSpe/N) TrifPra
Abundance?(0,R,+,1,2,M,A,B,3,4,5) b

FullName
32391 Trifolium pratense
CorrectName?(Y/F(search for name)) y

ShortName 0
32391 TRIFPRA_1 18
AddSpecies?(GenuSpe/N)

We added Trifolium pratense with a cover of 2b (18%). This process should be repeated for every species in
the herb layer, and then again for all other layers you have sampled. What might happen is that Rveg, for
some reason, does not recognize the ShortName code correctly; for example, if the code is reserved by any
other species, then the code has to be different from the standard formula. This situation can look like this
while we try to add Galium aparine:

9

AddSpecies?(GenuSpe/N): Galiapa
Abundance?(%): a
[1] FullName
<0 rows> (or 0-length row.names)
CorrectName?(Y/F(search for name)) F
SpeciesFirst3letters?(eg.Che) Gal
...
Galium album ssp. album

3708 4575 GALUPYC Galium album ssp. pycnotrichum
3694 4552 GALUAPA Galium aparine
3693 4551 GALU#AP Galium aparine agg.
3695 4554 GALUAUS Galium austriacum
3696 4555 GALU#BO Galium boreale
...
SpeciesName?(GenuSpe) galuapa

FullName
26686 Galium aparine
CorrectSpecies?(Y/N) y

ShortName 0
26686 GALUAPA_1 8
32391 TRIFPRA_1 18
AddSpecies?(GenuSpe/N)

When Rveg asks if the species name is correct, but the software gives you zero response or the wrong species
name, it is then necessary to not confirm by entering “F”. Write 3 starting letters of the genus to get a full
list of all species starting with those letters, with their corresponding ShortName codes. You just have to
scroll through the alphabetically sorted list to find the desired species. After entering the correct code, Rveg
recognizes the species correctly.

So far, we have inserted two species in the herb layer of our first relevé Let’s add one shrub species and one
tree species. Notice that even though R is case-sensitive, Rveg transforms all responses to uppercase, and
therefore all responses are valid. Tree species will be added with percentage instead of Braun-Blanquet.

AddSpecies?(GenuSpe/N) n
AddNewLayer?(Y/N) y
Select Layer (3,2,1,J,0) 2
P - percentage, BB - Braun B. scale, CS - custom scale bb
AddSpecies?(GenuSpe/N) sambnig
Abundance?(0,R,+,1,2,M,A,B,3,4,5) 3

FullName
19520 Sambucus nigra
CorrectName?(Y/F(search for name)) y

ShortName 0
19520 SAMBNIG_2 38
26686 GALUAPA_1 8
32391 TRIFPRA_1 18
AddSpecies?(GenuSpe/N) n
AddNewLayer?(Y/N) y
Select Layer (3,2,1,J,0) 3
P - percentage, BB - Braun B. scale, CS - custom scale p
AddSpecies?(GenuSpe/N) poputre
Abundance?(%) 45

FullName
6986 Populus tremula
CorrectName?(Y/F(search for name)) y

ShortName 0
6986 POPUTRE_3 45
19520 SAMBNIG_2 38

10

Very nice! Notice how layers are distinguished in one list. Now we realize that we have mistakenly inserted
Populus tremula, but our intention was to insert Pinus sylvestris. How can we correct that mistake? The
species can be removed by assigning it a zero cover. Cover can also be changed by inserting the species again
with the correct cover value. Let’s first remove P. tremula by assigning it a cover of zero, and then add the
intended species, P. sylvestris.

AddSpecies?(GenuSpe/N): n
AddNewLayer?(Y/N) y
Select Layer (3,2,1,J,0) 3
P - percentage, BB - Braun B. scale, CS - custom scale p
AddSpecies?(GenuSpe/N) poputre
Abundance?(%) 0

FullName
6986 Populus tremula
CorrectName?(Y/F(search for name)) y

ShortName 0
19520 SAMBNIG_2 38
26686 GALUAPA_1 8
32391 TRIFPRA_1 18
AddSpecies?(GenuSpe/N) pinusyl
Abundance?(%) 45

FullName
6656 Pinus sylvestris
CorrectName?(Y/F(search for name)) y

ShortName 0
6656 PINUSYL_3 45
19520 SAMBNIG_2 38
26686 GALUAPA_1 8
32391 TRIFPRA_1 18
AddSpecies?(GenuSpe/N)

Now the mistake has been repaired. Let’s assume that our first relevé is completed. We therefore decline
adding more species or more layers.

AddSpecies?(GenuSpe/N) N
AddNewLayer?(Y/N) N
Species_richness
[1] 4
number of relevés: 1, number of headers: 1
AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP)

You receive the number of species recorded in the relevé, which is good for checking if you recorded all the
species. Notice that species present in more layers count as more species! You are now in the main menu,
which offers some more functions. If we would run addReleve(start = FALSE), we would also be in this
menu, with the difference that there would be 0 relevés and headers. Let’s explain each one of them and
provide examples.

11

3.1.2 Menu options (prompts)

If you had started editing an existing database earlier, you would find yourself here. To add more relevés,
enter Y and repeat the same process as before. The commands PRINTHEAD and PRINTREL will show you the
current database header and relevés, respectively.

AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) printrel
ShortName X1

6656 PINUSYL_3 45
19520 SAMBNIG_2 38
26686 GALUAPA_1 8
32391 TRIFPRA_1 18
number of relevés: 1, number of headers: 1
AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) printhead

ShortName X1
1 ID 1
2 DATE 2023/01/05
3 SpringDATE
4 LOCALITY Yellowstone
5 FieldCODE 1
6 Authors PK
7 PlotSize 200
8 Latitude 4980364
9 Longitude -110.5885
10 Accuracy 10
11 CRS WGS84
12 Slope
13 Exposure sw
14 E3 50
15 E2 30
16 E1 70
17 Ejuv
18 E0 12
19 Note
number of relevés: 1, number of headers: 1
AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP)

It is possible to edit relevés with the RREL command:

AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) RREL
ReleveNumber? 1
[1] "1" "2023/01/05" "" "Yellowstone" "1" "PK" "200"

"4980364"
[9] "-110.5885" "10" "WGS84" "" "sw" "50" "30"

"70"
[17] "" "12" ""
CorrectNumber?(Y/N) y

ShortNames Cover
26686 GALUAPA_1 8
6656 PINUSYL_3 45
19520 SAMBNIG_2 38
32391 TRIFPRA_1 18
AddNewLayer?(Y/N)

12

Similarly, RHEAD allows editing of header characteristics. Let’s change shrub cover to 38%:

AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) rhead
ReleveNumber? 1
[1] "1" "2023/01/05" "" "Yellowstone" "1" "PK" "200"

"4980364"
[9] "-110.5885" "10" "WGS84" "" "sw" "50" "30"

"70"
[17] "" "12" ""
CorrectColumn?(Y/F) y
RepairHeader?(Y/N) y
[1] "ID" "DATE" "SpringDATE" "LOCALITY" "FieldCODE" "Authors" "PlotSize"

"Latitude" "Longitude"
[10] "Accuracy" "CRS" "Slope" "Exposure" "E3" "E2" "E1"
"Ejuv" "E0"
[19] "Note"
HeaderCharacteristic? E2
NewValue? 38
RepairHeader?(Y/N) n
number of relevés: 1, number of headers: 1
AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) printhead

ShortName X1
1 ID 1
2 DATE 2023/01/05
3 SpringDATE
4 LOCALITY Yellowstone
5 FieldCODE 1
6 Authors PK
7 PlotSize 200
8 Latitude 4980364
9 Longitude -110.5885
10 Accuracy 10
11 CRS WGS84
12 Slope
13 Exposure sw
14 E3 50
15 E2 38
16 E1 70
17 Ejuv
18 E0 12
19 Note
number of relevés: 1, number of headers: 1
AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP)

A rarely used command is REMOVEREL. It removes the chosen relevé with its header from the database.

When we were digitizing our first relevé, we digitized the header and then species data for each relevé If
we prompt Y, we get the same process; however, there is also an option to digitize headers and relevés
separately. Notice when we are creating the second header, we can speed up the process by prompting RE,
which will result in repeating values from the previous relevé, saving time. Let’s add one relevé and two
headers, resulting in a database with two relevés and three headers.

13

AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) addrel
AddNewLayer?(Y/N) y
Select Layer (3,2,1,J,0) 1
P - percentage, BB - Braun B. scale, CS - custom scale p
AddSpecies?(GenuSpe/N) planmaj
Abundance?(%) 10
[1] FullName
<0 rows> (or 0-length row.names)
CorrectName?(Y/F(search for name)) f
SpeciesFirst3letters?(eg.Che) pla

6739 8150 PLAALAN Plantago lanceolata
6740 8151 PLAAMAJ Plantago major
10827 13792 PLAAMAA Plantago major

SpeciesName?(GenuSpe) plaamaj
FullName

29732 Plantago major
CorrectSpecies?(Y/N) y

ShortName 1
29732 PLAAMAJ_1 10
AddSpecies?(GenuSpe/N) n
AddNewLayer?(Y/N) n
Species_richness
[1] 1
number of relevés: 2, number of headers: 1
AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) addhead
RE <- 2023/01/05
DATE?(YYYY/MM/DD) re
RE <-
SPRINGDATE?(YYYY/MM/DD)
RE <- Yellowstone
LOCALITY? re
RE <- 1
FieldCODE? 2
...

YY <-
Note?
number of relevés: 2, number of headers: 2
AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) addhead
RE <- 2023/01/05
DATE?(YYYY/MM/DD) re
RE <-
SPRINGDATE?(YYYY/MM/DD) re
RE <- Yellowstone
LOCALITY? re
RE <- 2
FieldCODE? 3
...

14

number of relevés: 2, number of headers: 3
AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) printhead

ShortName X1 X2 X3
1 ID 1 2 3
2 DATE 2023/01/05 2023/01/05 2023/01/05
3 SpringDATE
4 LOCALITY Yellowstone Yellowstone Yellowstone
5 FieldCODE 1 2 3
6 Authors PK PK PK
7 PlotSize 200 200 200
8 Latitude 4980364 4980364 4980364
9 Longitude -110.5885 -110.5885 -110.5885
10 Accuracy 10 10 10
11 CRS WGS84 WGS84 WGS84
12 Slope
13 Exposure sw sw sw
14 E3 50 50 50
15 E2 38 38 38
16 E1 70 70 70
17 Ejuv
18 E0 12 12 12
19 Note
number of relevés: 2, number of headers: 3
AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) printrel

ShortName X1 X2
6656 PINUSYL_3 45 0
19520 SAMBNIG_2 38 0
26686 GALUAPA_1 8 0
29732 PLAAMAJ_1 0 10
32391 TRIFPRA_1 18 0

3.1.3 Species wise digitizing

The last option is to digitize relevés by species. However, for that and other prompts and functions, you are
required to have a complete database with an equal number of species and relevés Let’s add a third relevé
and then digitize three more relevés by species.

number of relevés: 2, number of headers: 3
AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) ysp
Number of relevés and headers must match!!!
number of relevés: 2, number of headers: 3
AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) addrel
AddNewLayer?(Y/N) y
Select Layer (3,2,1,J,0) 1
P - percentage, BB - Braun B. scale, CS - custom scale p
..

number of relevés: 3, number of headers: 3

15

AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) ysp
How many relevés? 3
P - percentage, BB - Braun B. scale, CS - custom scale p
Add new species (GenuSpe)/N? trifpra
Select Layer (3,2,1,J,0) 1

FullName
32391 Trifolium pratense
CorrectName?(Y/F(search for name)) y
Relevé 1
Abundance?(%) 20

ShortName r1 r2 r3
32391 TRIFPRA_1 20 0 0
Relevé 2
Abundance?(%) 10

ShortName r1 r2 r3
32391 TRIFPRA_1 20 10 0
Relevé 3
Abundance?(%) 5

ShortName r1 r2 r3
32391 TRIFPRA_1 20 10 5

ShortName 1 2 3 4 5 6
6656 PINUSYL_3 45 0 0 0 0 0
19520 SAMBNIG_2 38 0 0 0 0 0
...
Add new species (GenuSpe)/N? plaamaj
Select Layer (3,2,1,J,0) 1

FullName
29732 Plantago major
CorrectName?(Y/F(search for name)) y
Relevé 1
Abundance?(%) 0
[1] ShortName r1 r2 r3
<0 rows> (or 0-length row.names)
Relevé 2
Abundance?(%) 10

ShortName r1 r2 r3
29732 PLAAMAJ_1 0 10 0
Relevé 3
Abundance?(%) 10

ShortName r1 r2 r3
29732 PLAAMAJ_1 0 10 10

ShortName 1 2 3 4 5 6
6656 PINUSYL_3 45 0 0 0 0 0
19520 SAMBNIG_2 38 0 0 0 0 0
...
Add new species (GenuSpe)/N? pinusyl
Select Layer (3,2,1,J,0) 3

FullName
6656 Pinus sylvestris
CorrectName?(Y/F(search for name)) y
Relevé 1

...

16

Add new species (GenuSpe)/N? n
Add headers? y
Relevé 1
RE <- 2023/01/05
DATE?(YYYY/MM/DD) RE
RE <-
SPRINGDATE?(YYYY/MM/DD)
RE <- Yellowstone
LOCALITY? RE
RE <- 3
FieldCODE? 4
RE <- PK
Authors? RE
RE <- 200
PlotSize?(m2) RE
...

Our database now has six relevés with headers. Let’s assume we are finished and we can close the software
by prompting N or any other method.

AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) n

3.1.4 Editing existing database, custom headers, custom checklist

Now we can try loading the database. We end up in the menu and are able to continue as before. Changing
the SAVE parameter would create another copy of our database under a new name. Let’s remove one relevé

addReleve(DATABASE = "First_database", SAVE = "First_database")
number of relevés: 6, number of headers: 6
AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) REMOVEREL
ReleveNumber? 4
[1] "4" "2023/01/05" "" "Yellowstone" "4" "PK" "200"

"4980364"
[9] "-110.5885" "10" "WGS84" "" "sw" "50" "38"

"70"
[17] "" "12" ""
CorrectNumber?(Y/N) y
number of relevés: 5, number of headers: 5
AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) printhead

ShortName X1 X2 X3 X4 X5
1 ID 1 2 3 5 6
2 DATE 2023/01/05 2023/01/05 2023/01/05 2023/01/05 2023/01/05

Let’s try changing parameters in the function. We will now not start with the default settings, we will add
two more fields into the header and use a custom checklist. Notice we start in the menu with zero relevés;
the name for Plantago major is not PLAAMAJ as it is in the original checklist but PLANMAJ. Lastly, notice the
extra fields in the final PRINTREL prompt.

addReleve(SAVE = "Second_database",checklist = "test.txt",extrahead = c("soil","weather"),
start = FALSE)
number of relevés: 0, number of headers: 0
AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) ysp
How many relevés? 2
P - percentage, BB - Braun B. scale, CS - custom scale p
...

17

Add new species (GenuSpe)/N? plaamaj
Select Layer (3,2,1,J,0) 1
[1] FullName
<0 rows> (or 0-length row.names)
CorrectName?(Y/F(search for name)) f
SpeciesFirst3letters?(eg.Che) pla

Number ShortName FullName
3688 3688 PLANL;S Plantago lanceolata var. sphaerostachya
3689 3689 PLANMAJ Plantago major
3690 3690 PLAN#MA Plantago major agg.
3691 3691 PLANMAO Plantago major subsp. major
3692 3692 PLANMAR Plantago major subsp. winteri
3693 3693 PLANMAI Plantago maritima
...
SpeciesName?(GenuSpe) planmaj

FullName
15191 Plantago major
CorrectSpecies?(Y/N) y
CorrectName?(Y/F(search for name)) y
Relevé 1
Abundance?(%) 20

ShortName r1 r2
15191 PLANMAJ_1 20 0
Relevé 2
Abundance?(%) 10
...

ShortName 1 2
3670 PINUSYL_3 40 70
15191 PLANMAJ_1 20 10
16877 TRIFPRA_1 10 10
Add new species (GenuSpe)/N? n
Add headers? y
Relevé 1
RE <- DATE
DATE?(YYYY/MM/DD) 2023/05/06
RE <- SpringDATE
SPRINGDATE?(YYYY/MM/DD)
RE <- LOCALITY
LOCALITY? Prague
...

RE <- E1
E1?(%) 20
RE <- Ejuv
Ejuv?(%) 0
RE <- E0
E0?(%) 0
RE <- Note
Note?
RE <- soil
soil? sandy
RE <- weather
weather? sunny
Relevé 2
...

18

AddReleve?(Y/N/RREL/RHEAD/REMOVEREL/PRINTREL/PRINTHEAD/ADDREL/ADDHEAD/YSP) printhead
ShortName X1 X2

1 ID 1 2
2 DATE 2023/05/06 2023/05/06
3 SpringDATE
4 LOCALITY Prague Prague
5 FieldCODE 1 2
6 Authors JJ JJ
7 PlotSize 100 100
8 Latitude
9 Longitude
10 Accuracy
11 CRS
12 Slope
13 Exposure
14 E3 40 40
15 E2 0 0
16 E1 20 20
17 Ejuv 0 0
18 E0 0 0
19 Note
20 soil sandy sandy
21 weather sunny sunny

19

3.2 RvegCombine
RvegCombine(database, export = "export", checklist = "default")

This function allows us to combine all species from different layers into one or to merge two different species
in all relevés.

ARGUMENTS

• database: Path to the database we want to edit.
• export: Name of our edited database (save). If kept on default export, the file will be saved in the

tmp directory.
• checklist: Used checklist.

DESCRIPTION

Let’s imagine the following example: we have Alnus glutinosa present in the second relevé, both in the tree
and shrub layers, but we decided to distinguish only the herb layer and tree layer in our database.
Combine?(LAYER/SPEC/PRINTREL/N) PRINTREL

ShortName X1 X2 X3
291 ALNUGLU_3 0 60 0
11787 ALNUGLU_2 0 23 0
26564 FRAGVES_1 23 0 0
29789 POA RIP_1 20 0 0

Combine?(LAYER/SPEC/PRINTREL/N) LAYER
Which layer?(3/2/1/0/J) 2
To which layer?(3/2/1/0/J) 3
Combine?(LAYER/SPEC/PRINTREL/N) printrel

ShortName X1 X2 X3
291 ALNUGLU_3 0 69 0
26564 FRAGVES_1 23 0 0
29789 POA RIP_1 20 0 0

Combine?(LAYER/SPEC/PRINTREL/N) ...

We received a combination of Alnus glutinosa from the shrub layer and tree layer, calculated by the following
formula (taken from Tichý 2011, p. 29):

A + (B ∗ (1 − (A/100)))

Where A and B are covers in percentage. The second possible use of this function is to merge two species
together using the same formula. Let’s combine Fragaria vesca with Poa riphaea.
Combine?(LAYER/SPEC/PRINTREL/N) SPEC
Which specie?(GenuSpe_L) FRAGVES_1
To which layer?(GenuSpe_L) POA RIP_1
Combine?(LAYER/SPEC/PRINTREL/N) PRINTREL

ShortName X1 X2 X3
291 ALNUGLU_3 0 69 0
26686 GALUAPA_1 0 0 45
26768 GERAPUS_1 0 23 0
29789 POA RIP_1 38 0 0
29791 POA TRI_1 40 0 0
31388 SILELAT_1 0 0 3
32391 TRIFPRA_1 0 34 0
Combine?(LAYER/SPEC/PRINTREL/N) ...

Do not confuse this function with RvegMerge().

20

3.3 RvegMerge

RvegMerge(x, y, save = "export_merge", head = TRUE)

ARGUMENTS

• x path to the first joining database
• y path to the second joining database
• save name of the exported database. If kept on default export_merge, the file will be saved in the

tmp directory.
• head logical value, deciding if we want to join headers files as well

DESCRIPTION

This function allows you to join two databases together. It is useful when multiple people are working
on the same project or when you have a large database and want to work with it in parts. When your
database gets significantly bigger (e.g., 100 relevés), you might notice the software slows down a bit. If this
reaches an unacceptable level, you can start a new database and merge them later with this function. It will
automatically create new database files without any additional action needed. This function uses functions
from the dplyr package (Wickham et al. 2022).

21

3.4 RvegCheck

RvegCheck(DATABASE, fullnames = FALSE, export = "export", checklist = "default")

ARGUMENTS

• DATABASE path to the database you want to check
• fullnames logical value if you want to include fullnames of species in the export
• export name of the exported table. If kept on default export, the file will be saved in the tmp directory.
• checklist checklist used to match shortnames with fullnames

DESCRIPTION

This function will be removed in later versions of the package as it will be efficiently replaced by RvegLoad().
It is able to check for duplicates, fix them, and will create and output full names for further analysis and
presentations. As mentioned at the beginning of this manual, it is important to have a unique ShortName
code for every species. However, some species might theoretically have more than one ShortName code in
the checklist. If this happens and you find you used two different ShortName codes for one species, this
function will detect the duplicate species and solve the issue for you by keeping the highest value in each
relevé from both (in case you enter both ShortName codes in one relevé). Also, there is an option to include
full names in the exported table; this might be useful when you want to browse data manually or present
your data. However, be careful, as the table with full names will not be backward compatible with Rveg and
thus uneditable in Rveg.

If it finds any duplicates, you can choose how to solve each one individually. Otherwise, it will just generate
a new table without any additional action needed.

found duplicate codes for Stellaria nemorum
STEL#NE STELNEM

fullName ShortName X1 X2 X3
10569 Stellaria nemorum STEL#NE_1 10 20 0
10570 Stellaria nemorum STELNEM_1 0 0 10
select merging method?(M - merge, N - none) M
This merging method will keep the higher value
select first row (with correct code) 10570
select second row 10569

Resulting in:

10570 Stellaria nemorum STELNEM_1 10 20 10

22

3.5 RvegToJuice

RvegToJuice(Data, checklist = "default", export = "export")

ARGUMENTS

• Data path to the database you want to convert
• checklist checklist used to match ShortNames with FullNames
• export name of the exported table. If kept on default export, the file will be saved in the tmp directory.

DESCRIPTION

This function will convert the Rveg database format to the Juice-compatible format. Juice (Tichý 2002) is
software for editing, classification, and analysis of large phytosociological tables and databases. After running
the function, the table will be converted without any additional action needed. However, importing it might
not be that intuitive. Let’s go through a step-by-step guide on how to load the output of the function into
Juice.

1. File -> Import -> Table -> from Spreadsheet File
2. Select the file
3. Press Next and select Comma as separator and use second column as layer information
4. Check if table size is correct; next, you will see a preview of the table
5. Select Percentage as Cover values
6. Finish

This way, the relevés will be imported into Juice; however, we might want to add headers to the relevés.

1. File -> Import -> Header Data -> From Comma Delimited File
2. Select the header file

23

3.6 TvToRveg

tvToRveg(tv, export = "export", checklist = "default",)

ARGUMENTS

• tv Path to the Turboveg csv export
• checklist Checklist used to match ShortNames with FullNames
• export Name of the exported table. If kept on default export, the files will be saved in the tmp

directory.

DESCRIPTION

This function will convert CSV exports from Turboveg software into the Rveg-compatible format. Turboveg
(Hennekens and Schaminée 2001) is software for the processing of phytosociological data. Since many members
of our team used Turboveg, it influenced and inspired the creation of Rveg; you could say that Rveg is a
simpler alternative to Turboveg. This function lets you edit or continue your work from Turboveg in Rveg. It
will automatically create new database files without any additional action needed. The Turboveg CSV export
has to include a header and relevés but should not include the Ellenberg indicator values. The possible cause
of error might be wrong formating of CSV file, if you are having trouble check the example file at:

tvexport <- system.file("extdata", "tvexport.csv", package="Rveg")
read.csv(tvexport)

Guide for Turboveg export:

1. Select relevés
2. Export
3. Spreadsheet table
4. Select Format - Comma delimited
5. Select header data; don’t select ecological data
6. Export

Then insert the path to the tv parameter of the function. The abundance can be either in percentage or
Braun-Blanquet scale. Then you have to manually connect the species that were not recognized in the Rveg
checklist; for example, Salix fragilis was not recognized in our data because the checklist uses the synonym
Salix euxina. You can use a custom checklist as well. Also, you can check for each species what code is given
to them according to the checklist, or you can skip this quickly by holding the enter button. When you know
the correct ShortName code you can fill it right away.

Data in Bran blanquet or percentage? (B/%) B
[1] "Galium palustre"
[1] "GALUPAL_1"
correct name?(blank/N/GenuSpe)
[1] "Salix fragilis"
[1] NA
correct name?(blank/N/GenuSpe) N
AddSpeciesFirst3letters(eg.Che)? sal
Correct 3 letters? Y/N y
7983 9633 SALXELE Salix elaeagnos
7984 9636 SALXFRA Salix euxina
7985 9639 SALXHAS Salix hastata
SpeciesName?(7lettersGenuSpe) salxfra

FullName
30976 Salix euxina
Correct 7lettersGenuSpe Y/N Y

24

3.7 RvegToTv

RvegToTv(database, export = "export", ver = 3, checklist = "default")

ARGUMENTS

• database Path to the Rveg database to export
• export Name of the exported table / files. If kept on default export, the file will be saved in the tmp

directory.
• ver Version of turvobeg to upload to, turboveg 3 can import one single file but turboveg 2 needs import

of headers and relevés separately
• checklist Checklist used to match ShortNames with FullNames

DESCRIPTION

This function creates files importable to Turboveg 2 or Turboveg 3. The files will be created without any user
input; however, uploading them to Turboveg might be challenging. Let’s take a look at how to import such
files into Turboveg 2. Two files with suffix R.csv (relevé) and H.csv (header) will be created.

1. In Turboveg, open or start a new database
2. Select Import
3. Select Free format species data table
4. Select the Relevé data
5. Now select Species column #1, Layer column #2, click Next
6. Species have been matched; now select percentage (%) as cover scale
7. Select all relevés, click Next, then Complete

This way, we have inserted the relevés into the Turboveg software; now we have to match header data.

1. Select Import
2. Select Free format header table
3. Select the header
4. Click Next; the header table should now appear visible
5. Select field names, field alias names in row 1; check ‘Add new fields automatically’ box
6. Press Next; ignore the warning messages. Most of the fields Turboveg cannot recognize and will be

created as new fields
7. Select the first row ‘ID’ and change it to ‘releve_nr’ and mark it as key field (other fields are optional

to match with Turboveg known fields)
8. Press Complete; headers should be matched

25

3.8 CreateChecklist

CreateChecklist(specieslist, export = "export")

ARGUMENTS

• specieslist Path to the list of species, which will be used to create checklist
• export Name and path to the export of the checklist. If kept on default export, the file will be saved

in the tmp directory.

DESCRIPTION

This function allows you to form a checklist in Rveg-readable format from a character vector of species names.
There are certain rules in the process, so we recommend editing full names according to these, which are in
the original checklist. Therefore:

1. Hybrids name with ‘x’ (e.g., Galium x pomeranicum = GALU*PO); the shortname will contain ‘*’ sign
2. Unrecognized species with suffix ‘species’ (e.g., Corylus species = CORL-SP)
3. Subspecies have a dash in their species name (e.g., Primula veris ssp. veris = PRIMV-V)
4. Aggregates of species have a hashtag in their species name (e.g., Carex flava agg. = CARE#FL)
5. Complicated genera might have sections starting with ‘SE’ (e.g., Taraxacum sect. Taraxacum =

TARASEO)

We can show how the species list will be created from a few species.

Species <- c("Galium aparine","Galium x pomeranicum", "Galium species", "Primula veris",
"Primula veris ssp. veris", "Carex flava agg.", "Taraxacum sect. Taraxacum")
write(Species,"species.txt")
CreateChecklist(specieslist = "species", export = "species_checklist")
read.table("species_checklist.txt")

V1 V2 V3
1 Number ShortName FullName
2 1 GALIAPA Galium aparine
3 2 GALI*PO Galium x pomeranicum
4 3 GALI-SP Galium species
5 4 PRIMVER Primula veris
6 5 PRIMV-V Primula veris ssp. veris
7 6 CARE#FL Carex flava agg.
8 7 TARASET Taraxacum sect. Taraxacum

The checklist then will be usable in addReleve().

26

3.9 RvegLoad

RvegLoad(DATABASE = "default",CustomScale = FALSE,checklist = "default")

ARGUMENTS

• DATABASE Path to your database. Default option default will load example database.
• CustomScale Boolean if custom not precoded scale was used during the digitizing
• checklist TXT checklist used during creation of the database

DESCRIPTION

This function loads the Rveg database into the R environment and is ready for analysis. Also, when custom
scales were used during the digitizing, here it will allow you to transfer to percentage values. Let’s use our
previously created database, where we used percentages, but we will pretend it was a cover scale from 0-60.
The output is a data.frame in R.

RvegLoad(CustomScale = TRUE)
Percentage value for (45) 90
Percentage value for (38) 76
Percentage value for (8) 16
Percentage value for (0) 0
Percentage value for (18) 36
Percentage value for (10) 20
Percentage value for (2) 4
Percentage value for (4) 8
Percentage value for (60) 100
Percentage value for (5) 10

ShortName fullName layer X1 X2 X3 X4
1 ID 1 2 3 5
2 DATE 2023/01/05 2023/01/05 2023/01/05 2023/01/05
3 SpringDATE
4 LOCALITY Yellowstone Yellowstone Yellowstone Yellowstone
5 FieldCODE 1 2 3 4
6 Authors PK PK PK PK
7 PlotSize 200 200 200 200
8 Latitude 4980364 4980364 4980364 4980364
9 Longitude -110.5885 -110.5885 -110.5885 -110.5885
10 Accuracy 10 10 10 10
11 CRS WGS84 WGS84 WGS84 WGS84
12 Slope
13 Exposure sw sw sw sw
14 E3 50 50 50 50
15 E2 38 38 38 38
16 E1 70 70 70 70
17 Ejuv
18 E0 12 12 12 12
19 Note
6656 PINUSYL Pinus sylvestris 3 90 0 0 0
19520 SAMBNIG Sambucus nigra 2 76 0 0 0
26686 GALUAPA Galium aparine 1 16 0 0 0
29732 PLAAMAJ Plantago major 1 0 20 4 20
32391 TRIFPRA Trifolium pratense 1 36 0 8 20

27

4 DEVELOPER NOTES
Our goal is to create a tool for quick processing of phytosociological relevés without the need for additional
software, especially when most of the statistical analysis and generation of plots happens in R anyway. The
package is still in the first reviewed version, yet still in continuous development. We use it on a regular basis
without problems and we want to share it with the public, but it can be expected that as the user base grows,
so will the number of flaws and reported bugs. We will be more than happy for any improvement suggestions
or bug reports. Contact us at:

• kralp@fzp.czu.cz
• or via GitHub system at https://github.com/sesitcsl2/Rveg

28

mailto:kralp@fzp.czu.cz
https://github.com/sesitcsl2/Rveg

5 FAQ

6 REFERENCES
DANIHELKA J., J. CHRTEK a Z. KAPLAN, 2012. Checklist of vascular plants of the czech republic. Preslia.
84(3), 647–811. ISSN 00327786.

HENNEKENS S.M. a J.H.J. SCHAMINÉE, 2001. TURBOVEG, a comprehensive data base management
system for vegetation data. Journal of Vegetation Science. 12(4), 589–591. ISSN 1100-9233. Available at:
doi: 10.2307/3237010

TICHÝ L., 2002. JUICE, software for vegetation classification. Journal of Vegetation Science. 13(3), 451.
ISSN 1100-9233. Available at: doi: 10.1658/1100-9233(2002)013[0451:jsfvc]2.0.co;2

TICHÝ L., J. HOLT a M. NEJEZCHLEBOVÁ, 2011. Juice Program Manual, 2nd edition. p. 29 Available at:
https://www.sci.muni.cz/botany/juice/?idm=9

WICKHAM H., R. FRANCOIS, L HENRY, K MULLER, 2022. dplyr: A Grammar of Data Manipulation. R
package version 1.0.10. Available at: https://CRAN.R-project.org/package=dplyr

29

https://www.sci.muni.cz/botany/juice/?idm=9
https://CRAN.R-project.org/package=dplyr

	INTRODUCTION
	overview

	START
	relevé digitizing

	FUNCTIONS
	addReleve
	Creation of the database
	Menu options (prompts)
	Species wise digitizing
	Editing existing database, custom headers, custom checklist

	RvegCombine
	RvegMerge
	RvegCheck
	RvegToJuice
	TvToRveg
	RvegToTv
	CreateChecklist
	RvegLoad

	DEVELOPER NOTES
	FAQ
	REFERENCES

