## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE, fig.align = "center", fig.width = 5, fig.height = 5) ## ----load, echo=TRUE, message=FALSE------------------------------------------- library(cfda) set.seed(42) ## ----genData, echo=TRUE------------------------------------------------------- K <- 4 PJK <- matrix(1 / 3, ncol = K, nrow = K) - diag(rep(1 / 3, K)) lambda_PJK <- c(1, 1, 1, 1) Tmax <- 10 n <- 100 d_JK <- generate_Markov(n = n, K = 4, P = PJK, lambda = lambda_PJK, Tmax = Tmax, labels = as.factor(c("A", "C", "G", "T"))) head(d_JK, 10) ## ----suumary, echo=TRUE------------------------------------------------------- summary_cfd(d_JK) ## ----echo=TRUE---------------------------------------------------------------- duration <- compute_duration(d_JK) head(duration) ## ----cutT, echo=TRUE---------------------------------------------------------- d_JKT <- cut_data(d_JK, Tmax = Tmax) ## ----plot, echo=TRUE, fig.height = 7------------------------------------------ plotData(d_JKT) ## ----echo=TRUE---------------------------------------------------------------- timeSpent <- compute_time_spent(d_JKT) timeSpent[1:10, ] ## ----echo=TRUE---------------------------------------------------------------- boxplot(timeSpent) ## ----echo=TRUE---------------------------------------------------------------- nJump <- compute_number_jumps(d_JK) head(nJump) ## ----echo=TRUE---------------------------------------------------------------- hist(nJump) ## ----echo=TRUE---------------------------------------------------------------- pt_evol <- estimate_pt(d_JKT) pt_evol$pt[1:K, 1:10] head(pt_evol$t) ## ----echo=TRUE---------------------------------------------------------------- plot(pt_evol, ribbon = TRUE) ## ----echo=TRUE---------------------------------------------------------------- statetable(d_JK) ## ----echo=TRUE---------------------------------------------------------------- mark <- estimate_Markov(d_JK) mark ## ----echo=TRUE---------------------------------------------------------------- plot(mark) ## ----echo=TRUE---------------------------------------------------------------- m <- 20 basis <- create.bspline.basis(c(0, Tmax), nbasis = m, norder = 4) ## ----echo=TRUE---------------------------------------------------------------- fmca <- compute_optimal_encoding(d_JKT, basis, verbose = FALSE) summary(fmca) ## ----echo=TRUE---------------------------------------------------------------- plotEigenvalues(fmca, cumulative = TRUE, normalize = TRUE) ## ----echo=TRUE---------------------------------------------------------------- print(fmca$alpha[[1]]) ## ----echo=TRUE---------------------------------------------------------------- plot(fmca) ## ----echo=TRUE---------------------------------------------------------------- encoding <- get_encoding(fmca, fdObject = TRUE) ## ----echo=TRUE---------------------------------------------------------------- plot(fmca, addCI = TRUE, coeff = 2, states = "A") ## ----echo=TRUE---------------------------------------------------------------- plotComponent(fmca, comp = c(1, 2), addNames = TRUE) ## ----echo=TRUE---------------------------------------------------------------- plotData(d_JKT[d_JKT$id %in% c(3, 14, 67, 84), ]) ## ----echo=TRUE---------------------------------------------------------------- indicators <- reconstructIndicators(fmca) head(indicators) ## ----echo=TRUE---------------------------------------------------------------- iInd <- 3 plotData(d_JKT[d_JKT$id == iInd, ]) plotIndicatorsReconstruction(indicators, id = iInd)