## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) set.seed(2022) old_digits <- options(digits=2) ## ----first_example------------------------------------------------------------ library(mlr3) library(mlr3learners) library(cpi) cpi(task = tsk("wine"), learner = lrn("classif.ranger", predict_type = "prob", num.trees = 10), resampling = rsmp("cv", folds = 5)) ## ----glmnet_example----------------------------------------------------------- cpi(task = tsk("wine"), learner = lrn("classif.glmnet", predict_type = "prob", lambda = 0.01), resampling = rsmp("holdout")) ## ----glmnet_example_ce-------------------------------------------------------- cpi(task = tsk("wine"), learner = lrn("classif.glmnet", lambda = 0.01), resampling = rsmp("holdout"), measure = msr("classif.ce")) ## ----first_example_fisher----------------------------------------------------- cpi(task = tsk("wine"), learner = lrn("classif.ranger", predict_type = "prob", num.trees = 10), resampling = rsmp("cv", folds = 5), test = "fisher") ## ----example_seqknockoff, eval=FALSE------------------------------------------ # mytask <- as_task_regr(iris, target = "Petal.Length") # cpi(task = mytask, learner = lrn("regr.ranger", num.trees = 10), # resampling = rsmp("cv", folds = 5), # knockoff_fun = seqknockoff::knockoffs_seq) ## ----example_seqknockoff_xtilde, eval=FALSE----------------------------------- # library(seqknockoff) # x_tilde <- knockoffs_seq(iris[, -3]) # mytask <- as_task_regr(iris, target = "Petal.Length") # cpi(task = mytask, learner = lrn("regr.ranger", num.trees = 10), # resampling = rsmp("cv", folds = 5), # x_tilde = x_tilde) ## ----glmnet_example_group----------------------------------------------------- cpi(task = tsk("iris"), learner = lrn("classif.glmnet", predict_type = "prob", lambda = 0.01), resampling = rsmp("holdout"), groups = list(Sepal = 1:2, Petal = 3:4)) ## ----first_example_parallel, eval=FALSE--------------------------------------- # doParallel::registerDoParallel(4) # cpi(task = tsk("wine"), # learner = lrn("classif.ranger", predict_type = "prob", num.trees = 10), # resampling = rsmp("cv", folds = 5)) ## ----include=FALSE------------------------------------------------------------ options(old_digits)