
Package ‘distr’
August 29, 2024

Version 2.9.5

Date 2024-08-29

Title Object Oriented Implementation of Distributions

Description S4-classes and methods for distributions.

Depends R(>= 3.4), methods, graphics, startupmsg, sfsmisc

Suggests distrEx, svUnit (>= 0.7-11), knitr, distrMod, ROptEst

Imports stats, grDevices, utils, MASS

Enhances RobAStBase

VignetteBuilder knitr

ByteCompile yes

Encoding UTF-8

License LGPL-3

URL http://distr.r-forge.r-project.org/

LastChangedDate {$LastChangedDate: 2024-08-27 19:16:18 +0200 (Di, 27
Aug 2024) $}

LastChangedRevision {$LastChangedRevision: 1448 $}

VCS/SVNRevision 1448

NeedsCompilation yes

Author Florian Camphausen [ctb] (contributed as student in the initial phase
--2005),

Matthias Kohl [aut, cph],
Peter Ruckdeschel [cre, cph],
Thomas Stabla [ctb] (contributed as student in the initial phase

--2005),
R Core Team [ctb, cph] (for source file ks.c/ routines 'pKS2' and

'pKolmogorov2x')

Maintainer Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

Repository CRAN

Date/Publication 2024-08-29 13:30:02 UTC

1

http://distr.r-forge.r-project.org/

2 Contents

Contents
distr-package . 5
AbscontDistribution . 11
AbscontDistribution-class . 14
Arcsine-class . 17
Beta-class . 18
BetaParameter-class . 20
Binom-class . 21
BinomParameter-class . 23
Cauchy-class . 24
CauchyParameter-class . 26
Chisq-class . 27
ChisqParameter-class . 29
CompoundDistribution . 30
CompoundDistribution-class . 31
convpow-methods . 33
d-methods . 35
decomposePM-methods . 35
DExp-class . 36
df-methods . 38
df1-methods . 38
df2-methods . 39
dim-methods . 39
dimension-methods . 39
Dirac-class . 40
DiracParameter-class . 41
DiscreteDistribution . 43
DiscreteDistribution-class . 45
distr-defunct . 48
distrARITH . 49
Distribution-class . 50
DistributionSymmetry-class . 51
DistrList . 52
DistrList-class . 53
distrMASK . 54
distroptions . 55
DistrSymmList . 57
DistrSymmList-class . 58
EllipticalSymmetry . 58
EllipticalSymmetry-class . 59
EmpiricalDistribution . 60
EuclideanSpace-class . 61
Exp-class . 63
ExpParameter-class . 64
Fd-class . 66
flat.LCD . 68
flat.mix . 69

Contents 3

FParameter-class . 70
Gammad-class . 71
GammaParameter-class . 73
gaps-methods . 74
Geom-class . 75
getLabel . 77
getLow,getUp . 78
Huberize-methods . 79
Hyper-class . 80
HyperParameter-class . 81
igamma . 83
img-methods . 83
k-methods . 84
lambda-methods . 84
Lattice-class . 85
LatticeDistribution . 86
LatticeDistribution-class . 88
Length-methods . 91
liesIn-methods . 92
liesInSupport . 92
Lnorm-class . 94
LnormParameter-class . 96
location-methods . 97
Logis-class . 98
LogisParameter-class . 100
m-methods . 101
makeAbscontDistribution . 101
Math-methods . 102
Max-methods . 103
mean-methods . 104
meanlog-methods . 104
Min-methods . 105
Minimum-methods . 105
n-methods . 107
name-methods . 107
Naturals-class . 108
Nbinom-class . 109
NbinomParameter-class . 111
ncp-methods . 112
Norm-class . 113
NormParameter-class . 115
NoSymmetry . 116
NoSymmetry-class . 117
operators-methods . 117
OptionalParameter-class . 122
options . 123
p-methods . 124
p.l-methods . 124

4 Contents

param-methods . 125
Parameter-class . 125
pivot-methods . 126
plot-methods . 126
Pois-class . 132
PoisParameter-class . 134
PosDefSymmMatrix . 135
PosDefSymmMatrix-class . 136
print-methods . 137
prob-methods . 137
q-methods . 138
q.r-methods . 139
qqbounds . 139
qqplot . 141
r-methods . 145
rate-methods . 145
Reals-class . 146
rSpace-class . 147
RtoDPQ . 148
RtoDPQ.d . 149
RtoDPQ.LC . 151
scale-methods . 152
sd-methods . 153
sdlog-methods . 154
shape-methods . 154
shape1-methods . 155
shape2-methods . 155
simplifyD-methods . 156
simplifyr-methods . 157
size-methods . 158
solve-methods . 158
SphericalSymmetry . 159
SphericalSymmetry-class . 160
sqrt-methods . 161
standardMethods . 162
support-methods . 162
Symmetry-class . 163
Td-class . 163
TParameter-class . 165
Truncate-methods . 166
Unif-class . 168
UnifParameter-class . 169
UniNormParameter-class . 171
UnivarDistrList . 172
UnivarDistrList-class . 173
UnivariateDistribution-class . 174
UnivarLebDecDistribution . 176
UnivarLebDecDistribution-class . 177

distr-package 5

UnivarMixingDistribution . 181
UnivarMixingDistribution-class . 182
Version Management . 184
Weibull-class . 185
WeibullParameter-class . 187
width-methods . 188

Index 189

distr-package distr – Object Oriented Implementation of Distributions

Description

distr provides a conceptual treatment of distributions by means of S4 classes. A mother class
Distribution is introduced with slots for a parameter and —most important— for the four consti-
tutive methods r, d, p, and q for simulation respectively for evaluation of density / c.d.f.\ and quantile
function of the corresponding distribution. Most distributions of package stats (like normal, Pois-
son, etc.) are implemented as subclasses of either AbscontDistribution or DiscreteDistribution,
which themselves are again subclasses of Distribution. Up to arguments referring to a param-
eter of the distribution (like mean for the normal distribution), these function slots have the same
arguments as those of package stats, i.e.; for a distribution object X we may call these functions as

• r(X)(n)

• d(X)(x, log = FALSE)

• p(X)(q, lower.tail = TRUE, log.p = FALSE)

• q(X)(p, lower.tail = TRUE, log.p = FALSE)

For the arguments of these function slots see e.g. rnorm. Note that, as usual, slots d, p, and q
are vectorized in their first argument, but are not on the subsequent ones. In the environments
of RStudio, see https://posit.co and Jupyter IRKernel, see https://github.com/IRkernel/
IRkernel, calls to q are caught away from standard R evaluation and are treated in a non-standard
way. This non-standard evaluation in particular throws errors at calls to our accessor methods q
to slot q of the respective distribution object. To amend this, we provide function q.l as alias to
our accessors q, so that our packages also become available in these environments. Arithmetics
and unary mathematical transformations for distributions are available: For Distribution objects
X and Y expressions like 3*X+sin(exp(-Y/4+3)) have their natural interpretation as corresponding
image distributions.

Details

Package: distr
Version: 2.9.5
Date: 2024-08-29
Depends: R(>= 3.4), methods, graphics, startupmsg, sfsmisc
Suggests: distrEx, svUnit (>= 0.7-11), knitr, distrMod, ROptEst
Imports: stats, grDevices, utils, MASS

https://posit.co
https://github.com/IRkernel/IRkernel
https://github.com/IRkernel/IRkernel

6 distr-package

LazyLoad: yes
License: LGPL-3
URL: https://distr.r-forge.r-project.org/
VCS/SVNRevision: 1448

Classes

Distribution classes have a slot param the class of which is is specialized for the particualar distri-
butions. The parameter classes for the particular distributions have slots with names according to the
corresponding [rdpq]<name> functions of package base. From version 1.9 on, AbscontDistribution
and descendants have a slot gaps for gaps in the support. DiscreteDistribution and descendants
have an additional slot support, which is again specialized to be a lattice for class LatticeDistribution.
For saved objects from earlier versions, we provide the methods isOldVersion, and conv2NewVersion
to check whether the object was generated by an older version of this package and to convert such an
object to the new format, respectively. This applies to objects of subclasses of AbscontDistribution
lacking a gap-slot as well as to to objects of subclasses of LatticeDistribution lacking a lattice-
slot.
To enhance accuracy, from version 1.9 on, we also provide subclasses AffLinAbscontDistribution,
AffLinDiscreteDistribution, and AffLinLatticeDistribution, as well as the class union
AffLinDistribution, so that in particular functionals like E from package distrEx can recur to
exact formula more frequently: These classes have additional slots a, b, and X0 to reflect the fact,
that a distribution object of theses classes has the same distribution as a*X0+b.
For all particular distributions, as well as for classes AbscontDistribution, DiscreteDistribution,
LatticeDistribution, UnivarDistrList and DistrList generating functions are provided, e.g.
X <- Norm(mean = 3, sd = 2). The same goes for the space classes. All slots should be inspected /
modified by means of corresponding accessor- /replacement functions; e.g. mean(X) <- 3 Again to
enhance accuracy, from version 2.0 on, we also provide subclasses UnivarMixingDistribution
to support mixing distributions, UnivarLebDecDistribution, to support Lebesgue decomposed
distributions (with a discrete and an a.c. part) as well as AffLinUnivarLebDecDistribution, for
corresponding affine linear transformations. Class UnivarLebDecDistribution is closed under
arithmetical operations + /, *, ^ for pairs of independent variables + +, - for pairs of independent
variables + affine linear transformations + truncation, huberization, min/max which are all now
available analytically.
(see Parameter classes).

[*]: there is a generating function with the same name
##########################
Distribution classes
##########################
slots: [<name>(<class>)]
img(rSpace), param(OptionalParameter),
r(function), d(OptionalFunction), p(OptionalFunction), q(OptionalFunction),
.withSim(logical), .withArith(logical), .logExact(logical), .lowerExact(logical),
Symmetry(DistributionSymmetry)
"Distribution"

distr-package 7

|>"UnivariateDistribution"
|>|>"UnivarMixingDistribution" [*]
|>|>|>"UnivarLebDecDistribution" [*]
|>|>|>|>"AffLinUnivarLebDecDistribution"
|>|>|>"CompoundDistribution" [*]
|>|>"AbscontDistribution" [*]
|>|>|>"AffLinAbscontDistribution"
|>|>|>"Arcsine" [*]
|>|>|>"Beta" [*]
|>|>|>"Cauchy" [*]
|>|>|>"ExpOrGammaOrChisq" (VIRTUAL)
|>|>|>|>"Exp" [*]
|>|>|>|>"Gammad" [*]
|>|>|>|>"Chisq" [*]
|>|>|>"Fd" [*]
|>|>|>"Lnorm" [*]
|>|>|>"Logis" [*]
|>|>|>"Norm" [*]
|>|>|>"Td" [*]
|>|>|>"Unif" [*]
|>|>|>"Weibull" [*]
|>|>|"DiscreteDistribution" [*]
|>|>|>"AffLinDiscreteDistribution"
|>|>|>"LatticeDistribution" [*]
|>|>|>|>"AffLinLatticeDistribution"
|>|>|>|>"Binom" [*]
|>|>|>|>"Dirac" [*]
|>|>|>|>"Hyper" [*]
|>|>|>|>"NBinom" [*]
|>|>|>|>|>"Geom" [*]
|>|>|>|>"Pois" [*]
"AffLinDistribution" = union ("AffLinAbscontDistribution",

"AffLinDiscreteDistribution",
"AffLinUnivarLebDecDistribution")

"DistrList"
|>"UnivarDistrList" [*]
"AcDcLc" = union ("AbscontDistribution",

"DiscreteDistribution",
"UnivarLebDecDistribution")

##########################
Parameter classes
##########################
"OptionalParameter"
|>"Parameter"
|>|>"BetaParameter"
|>|>"BinomParameter"
|>|>"CauchyParameter"
|>|>"ChisqParameter"

8 distr-package

|>|>"DiracParameter"
|>|>"ExpParameter"
|>|>"FParameter"
|>|>"GammaParameter"
|>|>"GeomParameter"
|>|>"HyperParameter"
|>|>"LnormParameter"
|>|>"LogisParameter"
|>|>"NbinomParameter"
|>|>"NormParameter"
|>|>"UniNormParameter"
|>|>|>"PoisParameter"
|>|>"TParameter"
|>|>"UnifParameter"
|>|>"WeibullParameter"
##########################
Space classes
##########################
"rSpace"
|>"EuclideanSpace"
|>|>"Reals"
|>"Lattice"
|>"Naturals"
##########################
Symmetry classes
##########################
slots:
type(character), SymmCenter(ANY)
"Symmetry"
|>"NoSymmetry" [*]
|>"EllipticalSymmetry" [*]
|>|>"SphericalSymmetry" [*]
|>"DistributionSymmetry"
|>"FunctionSymmetry"
|>|>"NonSymmetric" [*]
|>|>"EvenSymmetric" [*]
|>|>"OddSymmetric" [*]
list thereof
"DistrSymmList" [*]
"FunSymmList" [*]
##########################
Matrix classes
##########################
slots:
none
"PosSemDefSymmMatrix" [*] is subclass of class "matrix" of package "base".
|>"PosDefSymmMatrix" [*]
##########################

distr-package 9

Class unions
##########################
"OptionalNumeric" = union("numeric", "NULL")
"OptionalMatrix" = union("matrix","NULL")

Methods

The group Math of unary (see Math) as well as convolution are made available for distributions,
see operators-methods ;in particular for convolution powers, we have method convpow. Besides,
there are plot and print-methods for distributions. For the space classes, we have liesIn, for
the DicreteDistribution class, we have liesInSupport, as well as a generating function. The
"history" of distributions obtained by chaining operations may be shortened using simplifyr.

Functions

RtoDPQ Default procedure to fill slots d,p,q given r
for a.c. distributions

RtoDPQ.d Default procedure to fill slots d,p,q given r
for discrete distributions

RtoDPQ.LC Default procedure to fill slots d,p,q given r
for Lebesgue decomposed distributions

decomposePM decomposes a distribution into positive and negative
part and, if discrete, into part '0'

simplifyD tries to reduce/simplify mixing distribution using
that certain weights are 0

flat.LCD makes a single UnivarLebDecDistribution out of
a list of UnivarLebDecDistribution with corresp. weights

flat.mix makes a single UnivarLebDecDistribution out of
a list of a UnivarMixingDistribution

distroptions Functions to change the global variables of the
package 'distr'

standardMethods Utility to automatically generate accessor and
replacement functions

Extension Packages in distrXXX family

Please note that there are extension packages of this packages available on CRAN,

distrDoc a documentation package providing joint documentation for all packages of the distrXXX
family of packages in the form of vignette ’distr’; try require(distrDoc); vignette("distr").

distrEx provides functionals (like E, sd, mad) operating on distributions, as well as distances be-
tween distributions and basic support for multivariate and conditional distributions.

distrSim for the standardized treatment of simulations, also under contaminations.
distrTEst with classes and methods for evaluations of statistical procedures on simulations gener-

ated by distrSim.
distrTeach embodies illustrations for basic stats courses using our distribution classes.
distrMod provides classes for parametric models and hence covers, in an object orientated way,

estimation in statistical models.
distrEllipse provides classes for elliptically symmetric distributions.

10 distr-package

Package versions

Note: The first two numbers of package versions do not necessarily reflect package-individual
development, but rather are chosen for the distrXXX family as a whole in order to ease updating
"depends" information.

Acknowledgement

We thank Martin Maechler, Josef Leydold, John Chambers, Duncan Murdoch, Gregory Warnes,
Paul Gilbert, Kurt Hornik, Uwe Ligges, Torsten Hothorn, and Seth Falcon for their help in preparing
this package.

Start-up-Banner

You may suppress the start-up banner/message completely by setting options("StartupBanner"="off")
somewhere before loading this package by library or require in your R-code / R-session. If
option "StartupBanner" is not defined (default) or setting options("StartupBanner"=NULL)
or options("StartupBanner"="complete") the complete start-up banner is displayed. For any
other value of option "StartupBanner" (i.e., not in c(NULL,"off","complete")) only the version
information is displayed. The same can be achieved by wrapping the library or require call into
either suppressStartupMessages() or onlytypeStartupMessages(.,atypes="version"). As
for general packageStartupMessage’s, you may also suppress all the start-up banner by wrap-
ping the library or require call into suppressPackageStartupMessages() from startupmsg-
version 0.5 on.

Demos

Demos are available — see demo(package="distr")

Note

Arithmetics on distribution objects are understood as operations on corresponding (independent)
r.v.’s and not on distribution functions or densities.
See also distrARITH().
Some functions of package stats have intentionally been masked, but completely retain their func-
tionality — see distrMASK().
Accuracy of these arithmetics is controlled by global options which may be inspected / set by
distroptions() and getdistrOption(), confer distroptions .

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>
Maintainer: Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

AbscontDistribution 11

References

P. Ruckdeschel, M. Kohl, T. Stabla, F. Camphausen (2006): S4 Classes for Distributions, R News,
6(2), 2-6. https://CRAN.R-project.org/doc/Rnews/Rnews_2006-2.pdf P. Ruckdeschel and
M. Kohl (2014): General purpose convolution algorithm for distributions in S4-Classes by means of
FFT. J. Statist. Softw. 59(4): 1-25. a vignette for packages distr, distrSim, distrTEst, and distrEx
is included into the mere documentation package distrDoc and may be called by require("distrDoc");vignette("distr")
a homepage to this package is available under
https://distr.r-forge.r-project.org/

Examples

X <- Unif(2,3)
Y <- Pois(lambda = 3)
Z <- X+Y # generates Law of corresponding independent variables
p(Z)(0.2)
r(Z)(1000)
plot(Z+sin(Norm()))

AbscontDistribution Generating function "AbscontDistribution"

Description

Generates an object of class "AbscontDistribution"

Usage

AbscontDistribution(r = NULL, d = NULL, p = NULL, q = NULL,
gaps = NULL, param = NULL, img = new("Reals"),
.withSim = FALSE, .withArith = FALSE,
.lowerExact = FALSE, .logExact = FALSE,

withgaps = getdistrOption("withgaps"),
low1 = NULL, up1 = NULL, low = -Inf, up =Inf,
withStand = FALSE,
ngrid = getdistrOption("DefaultNrGridPoints"),
ep = getdistrOption("TruncQuantile"),
e = getdistrOption("RtoDPQ.e"),
Symmetry = NoSymmetry())

Arguments

r slot r to be filled

d slot d to be filled

p slot p to be filled

q slot q to be filled

https://CRAN.R-project.org/doc/Rnews/Rnews_2006-2.pdf
https://distr.r-forge.r-project.org/

12 AbscontDistribution

gaps slot gaps (of class "matrix" with two columns) to be filled (i.e. t(gaps) must
be ordered if read as vector)

param parameter (of class "OptionalParameter")

img image range of the distribution (of class "rSpace")

low1 lower bound (to be the lower TruncQuantile-quantile of the distribution)

up1 upper bound (to be the upper TruncQuantile-quantile of the distribution)

low lower bound (to be the 100-percent-quantile of the distribution)

up upper bound (to be the 100-percent-quantile of the distribution)

withStand logical: shall we standardize argument function d to integrate to 1 — default is
no resp. FALSE

ngrid number of gridpoints

ep tolerance epsilon

e exponent to base 10 to be used for simulations

withgaps logical; shall gaps be reconstructed empirically?

.withArith normally not set by the user, but if determining the entries supp, prob distribu-
tional arithmetics was involved, you may set this to TRUE.

.withSim normally not set by the user, but if determining the entries supp, prob simula-
tions were involved, you may set this to TRUE.

.lowerExact normally not set by the user: whether the lower.tail=FALSE part is calculated
exactly, avoing a “1-.”.

.logExact normally not set by the user: whether in determining slots d,p,q, we make
particular use of a logarithmic representation to enhance accuracy.

Symmetry you may help R in calculations if you tell it whether the distribution is non-
symmetric (default) or symmetric with respect to a center; in this case use
Symmetry=SphericalSymmetry(center).

Details

Typical usages are

AbscontDistribution(r)
AbscontDistribution(r = NULL, d)
AbscontDistribution(r = NULL, d = NULL, p)
AbscontDistribution(r = NULL, d = NULL, p = NULL, d)
AbscontDistribution(r, d, p, q)

Minimally, only one of the slots r, d, p or q needs to be given as argument. The other non-given
slots are then reconstructed according to the following scheme:

r d p q proceding
- - - - excluded
- + - - p by .D2P, q by .P2Q, r by q(runif(n))

AbscontDistribution 13

- - + - d by .P2D, q by .P2Q, r by q(runif(n))
- + + - q by .P2Q, r by q(runif(n))
- - - + p by .Q2P, d by .P2D, r by q(runif(n))
- + - + p by .Q2P, r by q(runif(n))
- - + + d by .P2D, r by q(runif(n))
- + + + r by q(runif(n))
+ - - - call to RtoDPQ
+ + - - p by .D2P, q by .P2Q
+ - + - d by .P2D, q by .P2Q
+ + + - q by .P2Q
+ - - + p by .Q2P, d by .P2D
+ + - + p by .Q2P
+ - + + d by .P2D
+ + + + nothing

For this purpose, one may alternatively give arguments low1 and up1 (NULL each by default, and
determined through slot q, resp. p, resp. d, resp. r in this order according to availability), for the
(finite) range of values in the support of this distribution, as well as the possibly infinite theoretical
range given by arguments low and up with default values -Inf, Inf, respectively. Of course all
other slots may be specified as arguments.

Value

Object of class "AbscontDistribution"

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

AbscontDistribution-class, DiscreteDistribution-class, RtoDPQ

Examples

plot(Norm())
plot(AbscontDistribution(r = rnorm))
plot(AbscontDistribution(d = dnorm))
plot(AbscontDistribution(p = pnorm))
plot(AbscontDistribution(q = qnorm))
plot(Ac <- AbscontDistribution(d = function(x, log = FALSE){

d <- exp(-abs(x^3))
unstandardized!!
if(log) d <- log(d)
return(d)},

withStand = TRUE))

14 AbscontDistribution-class

AbscontDistribution-class

Class "AbscontDistribution"

Description

The AbscontDistribution-class is the mother-class of the classes Beta, Cauchy, Chisq, Exp, F,
Gammad, Lnorm, Logis, Norm, T, Unif and Weibull. Further absolutely continuous distributions can
be defined either by declaration of own random number generator, density, cumulative distribution
and quantile functions, or as result of a convolution of two absolutely continuous distributions or
by application of a mathematical operator to an absolutely continuous distribution.

Objects from the Class

Objects can be created by calls of the form new("AbscontDistribution", r, d, p, q). More
comfortably, you may use the generating function AbscontDistribution. The result of these calls
is an absolutely continuous distribution.

Slots

img Object of class "Reals": the space of the image of this distribution which has dimension 1 and
the name "Real Space"

param Object of class "Parameter": the parameter of this distribution, having only the slot name
"Parameter of an absolutely continuous distribution"

r Object of class "function": generates random numbers

d Object of class "function": density function

p Object of class "function": cumulative distribution function

q Object of class "function": quantile function

gaps [from version 1.9 on] Object of class "OptionalMatrix", i.e.; an object which may either
be NULL ora matrix. This slot, if non-NULL, contains left and right endpoints of intervals
where the density of the object is 0. This slot may be inspected by the accessor gaps()
and modified by a corresponding replacement method. It may also be filled automatically by
setgaps(). For saved objects from earlier versions, we provide functions isOldVersion and
conv2NewVersion.

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

AbscontDistribution-class 15

Extends

Class "UnivariateDistribution", directly.
Class "Distribution", by class "UnivariateDistribution".

Methods

initialize signature(.Object = "AbscontDistribution"): initialize method

Math signature(x = "AbscontDistribution"): application of a mathematical function, e.g.
sin or exp (does not work with log, sign!), to this absolutely continouos distribution

• abs: signature(x = "AbscontDistribution"): exact image distribution of abs(x).
• exp: signature(x = "AbscontDistribution"): exact image distribution of exp(x).
• sign: signature(x = "AbscontDistribution"): exact image distribution of sign(x).
• sqrt: signature(x = "AbscontDistribution"): exact image distribution of sqrt(x).
• log: signature(x = "AbscontDistribution"): (with optional further argument base,

defaulting to exp(1)) exact image distribution of log(x).
• log10: signature(x = "AbscontDistribution"): exact image distribution of log10(x).
• gamma: signature(x = "AbscontDistribution"): exact image distribution of gamma(x).
• lgamma: signature(x = "AbscontDistribution"): exact image distribution of lgamma(x).
• digamma: signature(x = "AbscontDistribution"): exact image distribution of digamma(x).
• sqrt: signature(x = "AbscontDistribution"): exact image distribution of sqrt(x).

- signature(e1 = "AbscontDistribution"): application of ‘-’ to this absolutely continuous dis-
tribution.

* signature(e1 = "AbscontDistribution", e2 = "numeric"): multiplication of this absolutely
continuous distribution by an object of class "numeric"

/ signature(e1 = "AbscontDistribution", e2 = "numeric"): division of this absolutely con-
tinuous distribution by an object of class "numeric"

+ signature(e1 = "AbscontDistribution", e2 = "numeric"): addition of this absolutely con-
tinuous distribution to an object of class "numeric".

- signature(e1 = "AbscontDistribution", e2 = "numeric"): subtraction of an object of class
"numeric" from this absolutely continuous distribution.

* signature(e1 = "numeric", e2 = "AbscontDistribution"): multiplication of this absolutely
continuous distribution by an object of class "numeric".

+ signature(e1 = "numeric", e2 = "AbscontDistribution"): addition of this absolutely con-
tinuous distribution to an object of class "numeric".

- signature(e1 = "numeric", e2 = "AbscontDistribution"): subtraction of this absolutely con-
tinuous distribution from an object of class "numeric".

+ signature(e1 = "AbscontDistribution", e2 = "AbscontDistribution"): Convolution of two
absolutely continuous distributions. The slots p, d and q are approximated by grids.

- signature(e1 = "AbscontDistribution", e2 = "AbscontDistribution"): Convolution of two
absolutely continuous distributions. The slots p, d and q are approximated by grids.

plot signature(object = "AbscontDistribution"): plots density, cumulative distribution and
quantile function.

16 AbscontDistribution-class

Internal subclass "AffLinAbscontDistribution"

To enhance accuracy of several functionals on distributions, mainly from package distrEx, from
version 1.9 of this package on, there is an internally used (but exported) subclass "AffLinAbscontDistribution"
which has extra slots a, b (both of class "numeric"), and X0 (of class "AbscontDistribution"),
to capture the fact that the object has the same distribution as a * X0 + b. This is the class of the
return value of methods

- signature(e1 = "AbscontDistribution")

* signature(e1 = "AbscontDistribution", e2 = "numeric")

/ signature(e1 = "AbscontDistribution", e2 = "numeric")

+ signature(e1 = "AbscontDistribution", e2 = "numeric")

- signature(e1 = "AbscontDistribution", e2 = "numeric")

* signature(e1 = "numeric", e2 = "AbscontDistribution")

+ signature(e1 = "numeric", e2 = "AbscontDistribution")

- signature(e1 = "numeric", e2 = "AbscontDistribution")

- signature(e1 = "AffLinAbscontDistribution")

* signature(e1 = "AffLinAbscontDistribution", e2 = "numeric")

/ signature(e1 = "AffLinAbscontDistribution", e2 = "numeric")

+ signature(e1 = "AffLinAbscontDistribution", e2 = "numeric")

- signature(e1 = "AffLinAbscontDistribution", e2 = "numeric")

* signature(e1 = "numeric", e2 = "AffLinAbscontDistribution")

+ signature(e1 = "numeric", e2 = "AffLinAbscontDistribution")

- signature(e1 = "numeric", e2 = "AffLinAbscontDistribution")

There also is a class union of "AffLinAbscontDistribution", "AffLinDiscreteDistribution",
"AffLinUnivarLebDecDistribution" and called "AffLinDistribution" which is used for func-
tionals.

Internal virtual superclass "AcDcLcDistribution"

As many operations should be valid no matter whether the operands are of class "AbscontDistribution",
"DiscreteDistribution", or "UnivarLebDecDistribution", there is a class union of these
classes called "AcDcLcDistribution"; in partiucalar methods for "*", "/", "^" (see operators-
methods) and methods Minimum, Maximum, Truncate, and Huberize, and convpow are defined for
this class union.

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

Arcsine-class 17

See Also

AbscontDistribution Parameter-class UnivariateDistribution-class Beta-class Cauchy-class
Chisq-class Exp-class Fd-class Gammad-class Lnorm-class Logis-class Norm-class Td-class
Unif-class Weibull-class DiscreteDistribution-class Reals-class RtoDPQ

Examples

N <- Norm() # N is a normal distribution with mean=0 and sd=1.
E <- Exp() # E is an exponential distribution with rate=1.
A1 <- E+1 # a new absolutely continuous distributions with exact slots d, p, q
A2 <- A1*3 # a new absolutely continuous distributions with exact slots d, p, q
A3 <- N*0.9 + E*0.1 # a new absolutely continuous distribution with approximated slots d, p, q
r(A3)(1) # one random number generated from this distribution, e.g. -0.7150937
d(A3)(0) # The (approximated) density for x=0 is 0.43799.
p(A3)(0) # The (approximated) probability that x <= 0 is 0.45620.
q(A3)(.1) # The (approximated) 10 percent quantile is -1.06015.
in RStudio or Jupytier IRKernel, use q.l(.)(.) instead of q(.)(.)

Arcsine-class Class "Arcsine"

Description

The Arcsine distribution has density

f(x) =
1

π
√
1− x2

for −1 < x < 1.

Objects from the Class

Objects can be created by calls of the form Arcsine(). This object is an Arcsine distribution.

Slots

img Object of class "Reals": The space of the image of this distribution has got dimension 1 and
the name "Real Space".

r Object of class "function": generates random numbers (calls function rArcsine)

d Object of class "function": density function (calls function dArcsine)

p Object of class "function": cumulative function (calls function pArcsine)

q Object of class "function": inverse of the cumulative function (calls function qArcsine)

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

18 Beta-class

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "AbscontDistribution", directly.
Class "UnivariateDistribution", by class "AbscontDistribution".
Class "Distribution", by class "AbscontDistribution".

Methods

initialize signature(.Object = "Arcsine"): initialize method

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

AbscontDistribution-class Reals-class

Examples

A <- Arcsine()
A is a Arcsine distribution with shape1 = 1 and shape2 = 1.
r(A)(3) # three random number generated from this distribution, e.g. 0.6979795
d(A)(c(-2,-1,-0.2,0,0.2,1,2)) # Density at x=c(-1,-0.2,0,0.2,1).
p(A)(c(-2,-1,-0.2,0,0.2,1,2)) # cdf at q=c(-1,-0.2,0,0.2,1).
q(A)(c(0,0.2,1,2)) # quantile function at at x=c(0,0.2,1).
in RStudio or Jupyter IRKernel, use q.l(A)(c(0,0.2,1,2)) instead

Beta-class Class "Beta"

Description

The Beta distribution with parameters shape1 = a and shape2 = b has density

f(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)

b−1

for a > 0, b > 0 and 0 ≤ x ≤ 1 where the boundary values at x = 0 or x = 1 are defined as by
continuity (as limits).

Ad hoc methods

For R Version <2.3.0 ad hoc methods are provided for slots q, r if ncp!=0; for R Version >=2.3.0
the methods from package stats are used.

Beta-class 19

Objects from the Class

Objects can be created by calls of the form Beta(shape1, shape2). This object is a beta distribu-
tion.

Slots

img Object of class "Reals": The space of the image of this distribution has got dimension 1 and
the name "Real Space".

param Object of class "BetaParameter": the parameter of this distribution (shape1 and shape2),
declared at its instantiation

r Object of class "function": generates random numbers (calls function rbeta)

d Object of class "function": density function (calls function dbeta)

p Object of class "function": cumulative function (calls function pbeta)

q Object of class "function": inverse of the cumulative function (calls function qbeta)

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "AbscontDistribution", directly.
Class "UnivariateDistribution", by class "AbscontDistribution".
Class "Distribution", by class "AbscontDistribution".

Methods

initialize signature(.Object = "Beta"): initialize method

shape1 signature(object = "Beta"): returns the slot shape1 of the parameter of the distribution

shape1<- signature(object = "Beta"): modifies the slot shape1 of the parameter of the distri-
bution

shape2 signature(object = "Beta"): returns the slot shape2 of the parameter of the distribution

shape2<- signature(object = "Beta"): modifies the slot shape2 of the parameter of the distri-
bution

- signature(e1 = "numeric", e2 = "Beta") if ncp(e2)==0 and e1 == 1, an exact (central) Beta(shape1
= shape2(e2), shape2 = shape1(e2)) is returned, else the default method is used; exact

Note

The non-central Beta distribution is defined (Johnson et al, 1995, pp. 502) as the distribution of
X/(X + Y) where X ∼ χ2

2a(λ) and Y ∼ χ2
2b. C.f. rbeta

20 BetaParameter-class

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

BetaParameter-class AbscontDistribution-class Reals-class rbeta

Examples

B <- Beta(shape1 = 1, shape2 = 1)
B is a beta distribution with shape1 = 1 and shape2 = 1.
r(B)(1) # one random number generated from this distribution, e.g. 0.6979795
d(B)(1) # Density of this distribution is 1 for x=1.
p(B)(1) # Probability that x < 1 is 1.
q(B)(.1) # Probability that x < 0.1 is 0.1.
shape1(B) # shape1 of this distribution is 1.
shape1(B) <- 2 # shape1 of this distribution is now 2.
Bn <- Beta(shape1 = 1, shape2 = 3, ncp = 5)
Bn is a beta distribution with shape1 = 1 and shape2 = 3 and ncp = 5.
B0 <- Bn; ncp(B0) <- 0;
B0 is just the same beta distribution as Bn but with ncp = 0
q(B0)(0.1) ##
q(Bn)(0.1) ## => from R 2.3.0 on ncp no longer ignored...
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)

BetaParameter-class Class "BetaParameter"

Description

The parameter of a beta distribution, used by Beta-class

Objects from the Class

Objects can be created by calls of the form new("BetaParameter", shape1, shape2, ncp). Usu-
ally an object of this class is not needed on its own, it is generated automatically when an object of
the class Beta is instantiated.

Slots

shape1 Object of class "numeric": the shape1 of a beta distribution

shape2 Object of class "numeric": the shape2 of a beta distribution

ncp Object of class "numeric": the noncentrality parameter of a beta distribution

name Object of class "character": a name / comment for the parameters

Binom-class 21

Extends

Class "Parameter", directly.

Methods

initialize signature(.Object = "BetaParameter"): initialize method
shape1 signature(object = "BetaParameter"): returns the slot shape1 of the parameter of the

distribution
shape1<- signature(object = "BetaParameter"): modifies the slot shape1 of the parameter of

the distribution
shape2 signature(object = "BetaParameter"): returns the slot shape2 of the parameter of the

distribution
shape2<- signature(object = "BetaParameter"): modifies the slot shape2 of the parameter of

the distribution
ncp signature(object = "BetaParameter"): returns the slot ncp of the parameter of the distri-

bution
ncp<- signature(object = "BetaParameter"): modifies the slot ncp of the parameter of the

distribution

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Beta-class Parameter-class

Examples

W <- new("BetaParameter", shape1 = 1, shape2 = 1, ncp = 0)
shape2(W) # shape2 of this distribution is 1.
shape2(W) <- 2 # shape2 of this distribution is now 2.

Binom-class Class "Binom"

Description

The binomial distribution with size = n, by default = 1, and prob = p, by default = 0.5, has
density

p(x) =

(
n

x

)
px(1− p)

n−x

for x = 0, . . . , n.

C.f.rbinom

22 Binom-class

Objects from the Class

Objects can be created by calls of the form Binom(prob, size). This object is a binomial distribu-
tion.

Slots

img Object of class "Naturals": The space of the image of this distribution has got dimension 1
and the name "Natural Space".

param Object of class "BinomParameter": the parameter of this distribution (prob, size), de-
clared at its instantiation

r Object of class "function": generates random numbers (calls function rbinom)

d Object of class "function": density function (calls function dbinom)

p Object of class "function": cumulative function (calls function pbinom)

q Object of class "function": inverse of the cumulative function (calls function qbinom). The
quantile is defined as the smallest value x such that F(x) >= p, where F is the cumulative
function.

support Object of class "numeric": a (sorted) vector containing the support of the discrete density
function

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "DiscreteDistribution", directly.
Class "UnivariateDistribution", by class "DiscreteDistribution".
Class "Distribution", by class "DiscreteDistribution".

Methods

+ signature(e1 = "Binom", e2 = "Binom"): For two binomial distributions with equal probabil-
ities the exact convolution formula is implemented thereby improving the general numerical
accuracy.

initialize signature(.Object = "Binom"): initialize method

prob signature(object = "Binom"): returns the slot prob of the parameter of the distribution

prob<- signature(object = "Binom"): modifies the slot prob of the parameter of the distribution

size signature(object = "Binom"): returns the slot size of the parameter of the distribution

size<- signature(object = "Binom"): modifies the slot size of the parameter of the distribution

BinomParameter-class 23

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

BinomParameter-class DiscreteDistribution-class Naturals-class rbinom

Examples

B <- Binom(prob=0.5,size=1) # B is a binomial distribution with prob=0.5 and size=1.
r(B)(1) # # one random number generated from this distribution, e.g. 1
d(B)(1) # Density of this distribution is 0.5 for x=1.
p(B)(0.4) # Probability that x<0.4 is 0.5.
q(B)(.1) # x=0 is the smallest value x such that p(B)(x)>=0.1.
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
size(B) # size of this distribution is 1.
size(B) <- 2 # size of this distribution is now 2.
C <- Binom(prob = 0.5, size = 1) # C is a binomial distribution with prob=0.5 and size=1.
D <- Binom(prob = 0.6, size = 1) # D is a binomial distribution with prob=0.6 and size=1.
E <- B + C # E is a binomial distribution with prob=0.5 and size=3.
F <- B + D # F is an object of class LatticeDistribution.
G <- B + as(D,"DiscreteDistribution") ## DiscreteDistribution

BinomParameter-class Class "BinomParameter"

Description

The parameter of a binomial distribution, used by Binom-class

Objects from the Class

Objects can be created by calls of the form new("BinomParameter", prob, size). Usually an
object of this class is not needed on its own, it is generated automatically when an object of the
class Binom is instantiated.

Slots

prob Object of class "numeric": the probability of a binomial distribution

size Object of class "numeric": the size of a binomial distribution

name Object of class "character": a name / comment for the parameters

Extends

Class "Parameter", directly.

24 Cauchy-class

Methods

initialize signature(.Object = "BinomParameter"): initialize method

prob signature(object = "BinomParameter"): returns the slot prob of the parameter of the
distribution

prob<- signature(object = "BinomParameter"): modifies the slot prob of the parameter of the
distribution

size signature(object = "BinomParameter"): returns the slot size of the parameter of the dis-
tribution

size<- signature(object = "BinomParameter"): modifies the slot size of the parameter of the
distribution

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Binom-class Parameter-class

Examples

W <- new("BinomParameter",prob=0.5,size=1)
size(W) # size of this distribution is 1.
size(W) <- 2 # size of this distribution is now 2.

Cauchy-class Class "Cauchy"

Description

The Cauchy distribution with location l, by default = 0, and scale s , by default = 1,has density

f(x) =
1

πs

(
1 +

(
x− l

s

)2
)−1

for all x. C.f. rcauchy

Objects from the Class

Objects can be created by calls of the form Cauchy(location, scale). This object is a Cauchy
distribution.

Cauchy-class 25

Slots

img Object of class "Reals": The domain of this distribution has got dimension 1 and the name
"Real Space".

param Object of class "CauchyParameter": the parameter of this distribution (location and scale),
declared at its instantiation

r Object of class "function": generates random numbers (calls function rcauchy)
d Object of class "function": density function (calls function dcauchy)
p Object of class "function": cumulative function (calls function pcauchy)
q Object of class "function": inverse of the cumulative function (calls function qcauchy)
.withArith logical: used internally to issue warnings as to interpretation of arithmetics
.withSim logical: used internally to issue warnings as to accuracy
.logExact logical: used internally to flag the case where there are explicit formulae for the log

version of density, cdf, and quantile function
.lowerExact logical: used internally to flag the case where there are explicit formulae for the

lower tail version of cdf and quantile function
Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-

lations.

Extends

Class "AbscontDistribution", directly.
Class "UnivariateDistribution", by class "AbscontDistribution".
Class "Distribution", by class "AbscontDistribution".

Is-Relations

By means of setIs, R “knows” that a distribution object obj of class "Cauchy" with location 0 and
scale 1 also is a T distribution with parameters df = 1, ncp = 0.

Methods

initialize signature(.Object = "Cauchy"): initialize method
location signature(object = "Cauchy"): returns the slot location of the parameter of the dis-

tribution
location<- signature(object = "Cauchy"): modifies the slot location of the parameter of the

distribution
scale signature(object = "Cauchy"): returns the slot scale of the parameter of the distribution
scale<- signature(object = "Cauchy"): modifies the slot scale of the parameter of the distri-

bution
+ signature(e1 = "Cauchy", e2 = "Cauchy"): For the Cauchy distribution the exact convolution

formula is implemented thereby improving the general numerical approximation.
* signature(e1 = "Cauchy", e2 = "numeric")

+ signature(e1 = "Cauchy", e2 = "numeric"): For the Cauchy location scale family we use its
closedness under affine linear transformations.

further arithmetic methods see operators-methods

26 CauchyParameter-class

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

CauchyParameter-class AbscontDistribution-class Reals-class rcauchy

Examples

C <- Cauchy(location = 1, scale = 1) # C is a Cauchy distribution with location=1 and scale=1.
r(C)(1) # one random number generated from this distribution, e.g. 4.104603
d(C)(1) # Density of this distribution is 0.3183099 for x=1.
p(C)(1) # Probability that x<1 is 0.5.
q(C)(.1) # Probability that x<-2.077684 is 0.1.
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
location(C) # location of this distribution is 1.
location(C) <- 2 # location of this distribution is now 2.
is(C,"Td") # no
C0 <- Cauchy() # standard, i.e. location = 0, scale = 1
is(C0,"Td") # yes
as(C0,"Td")

CauchyParameter-class Class "CauchyParameter"

Description

The parameter of a Cauchy distribution, used by Cauchy-class

Objects from the Class

Objects can be created by calls of the form new("CauchyParameter", location, scale). Usually
an object of this class is not needed on its own, it is generated automatically when an object of the
class Cauchy is instantiated.

Slots

location: Object of class "numeric": the location of a Cauchy distribution

scale Object of class "numeric": the scale of a Cauchy distribution

name Object of class "character": a name / comment for the parameters

Extends

Class "Parameter", directly.

Chisq-class 27

Methods

initialize signature(.Object = "CauchyParameter"): initialize method

scale signature(object = "CauchyParameter"): returns the slot scale of the parameter of the
distribution

scale<- signature(object = "CauchyParameter"): modifies the slot scale of the parameter of
the distribution

location signature(object = "CauchyParameter"): returns the slot location of the parameter
of the distribution

location<- signature(object = "CauchyParameter"): modifies the slot location of the param-
eter of the distribution

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Cauchy-class Parameter-class

Examples

W <- new("CauchyParameter",location=1,scale=1)
location(W) # location of this distribution is 1.
location(W) <- 2 # location of this distribution is now 2.

Chisq-class Class "Chisq"

Description

The chi-squared distribution with df= n degrees of freedom has density

fn(x) =
1

2n/2Γ(n/2)
xn/2−1e−x/2

for x > 0. The mean and variance are n and 2n.

The non-central chi-squared distribution with df= n degrees of freedom and non-centrality param-
eter ncp = λ has density

f(x) = e−λ/2
∞∑
r=0

(λ/2)r

r!
fn+2r(x)

for x ≥ 0. For integer n, this is the distribution of the sum of squares of n normals each with
variance one, λ being the sum of squares of the normal means.

C.f. rchisq

28 Chisq-class

Objects from the Class

Objects can be created by calls of the form Chisq(df, ncp). This object is a chi-squared distribu-
tion.

Slots

img Object of class "Reals": The space of the image of this distribution has got dimension 1 and
the name "Real Space".

param Object of class "ChisqParameter": the parameter of this distribution (df and ncp), declared
at its instantiation

r Object of class "function": generates random numbers (calls function rchisq)

d Object of class "function": density function (calls function dchisq)

p Object of class "function": cumulative function (calls function pchisq)

q Object of class "function": inverse of the cumulative function (calls function qchisq)

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "ExpOrGammaOrChisq", directly.
Class "AbscontDistribution", by class "ExpOrGammaOrChisq".
Class "UnivariateDistribution", by class "AbscontDistribution".
Class "Distribution", by class "UnivariateDistribution".

Is-Relations

By means of setIs, R “knows” that a distribution object obj of class "Chisq" with non-centrality
0 also is a Gamma distribution with parameters shape = df(obj)/2, scale = 2.

Methods

initialize signature(.Object = "Chisq"): initialize method

df signature(object = "Chisq"): returns the slot df of the parameter of the distribution

df<- signature(object = "Chisq"): modifies the slot df of the parameter of the distribution

ncp signature(object = "Chisq"): returns the slot ncp of the parameter of the distribution

ncp<- signature(object = "Chisq"): modifies the slot ncp of the parameter of the distribution

+ signature(e1 = "Chisq", e2 = "Chisq"): For the chi-squared distribution we use its closed-
ness under convolutions.

ChisqParameter-class 29

Note

Warning: The code for pchisq and qchisq is unreliable for values of ncp above approximately 290.

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

ChisqParameter-class AbscontDistribution-class Reals-class rchisq

Examples

C <- Chisq(df = 1, ncp = 1) # C is a chi-squared distribution with df=1 and ncp=1.
r(C)(1) # one random number generated from this distribution, e.g. 0.2557184
d(C)(1) # Density of this distribution is 0.2264666 for x = 1.
p(C)(1) # Probability that x < 1 is 0.4772499.
q(C)(.1) # Probability that x < 0.04270125 is 0.1.
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
df(C) # df of this distribution is 1.
df(C) <- 2 # df of this distribution is now 2.
is(C, "Gammad") # no
C0 <- Chisq() # default: Chisq(df=1,ncp=0)
is(C0, "Gammad") # yes
as(C0,"Gammad")

ChisqParameter-class Class "ChisqParameter"

Description

The parameter of a chi-squared distribution, used by Chisq-class

Objects from the Class

Objects can be created by calls of the form new("ChisqParameter", ncp, df). Usually an object
of this class is not needed on its own, it is generated automatically when an object of the class Chisq
is instantiated.

Slots

ncp Object of class "numeric": the ncp of a chi-squared distribution

df Object of class "numeric": the df of a chi-squared distribution

name Object of class "character": a name / comment for the parameters

30 CompoundDistribution

Extends

Class "Parameter", directly.

Methods

initialize signature(.Object = "ChisqParameter"): initialize method

df signature(object = "ChisqParameter"): returns the slot df of the parameter of the distribu-
tion

df<- signature(object = "ChisqParameter"): modifies the slot df of the parameter of the dis-
tribution

ncp signature(object = "ChisqParameter"): returns the slot ncp of the parameter of the dis-
tribution

ncp<- signature(object = "ChisqParameter"): modifies the slot ncp of the parameter of the
distribution

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Chisq-class Parameter-class

Examples

W <- new("ChisqParameter",df=1,ncp=1)
ncp(W) # ncp of this distribution is 1.
ncp(W) <- 2 # ncp of this distribution is now 2.

CompoundDistribution Generating function for Class "CompoundDistribution"

Description

Generates an object of class "CompoundDistribution".

Usage

CompoundDistribution(NumbOfSummandsDistr, SummandsDistr, .withSim = FALSE,
withSimplify = FALSE)

CompoundDistribution-class 31

Arguments

NumbOfSummandsDistr

Object of class "DiscreteDistribution", the frequency distribution; it is checked
that support is contained in 0,1,2,. . .

SummandsDistr Object of class "UnivDistrListOrDistribution", that is, either of class "UnivarDistrList"
(non i.i.d. case) or of class "UnivariateDistribution" (i.i.d. case); the sum-
mand distribution(s).

.withSim logical; value of the corresponding slot.

withSimplify "logical": shall the return value be piped through a call to simplifyD?

Value

Object of class "CompoundDistribution", or if argument withSimplify is TRUE the result of
simplifyD applied to the compound distribution, i.e. an object of class "UnivarLebDecDistribution",
or if degenerate, of class "AbscontDistribution" or "DiscreteDistribution".

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

CompoundDistribution-class, simplifyD

Examples

CP0 <- CompoundDistribution(Pois(), Norm())
CP0
CP1 <- CompoundDistribution(DiscreteDistribution(supp = c(1,5,9,11),

prob = dbinom(0:3, size = 3,prob = 0.3)),Norm())
CP1
UL <- UnivarDistrList(Norm(), Binom(10,0.3), Chisq(df=4), Norm(),

Binom(10,0.3), Chisq(df=4), Norm(), Binom(10,0.3),
Chisq(df=4), Td(5), Td(10))

CP2 <- CompoundDistribution(DiscreteDistribution(supp = c(1,5,9,11),
prob = dbinom(0:3, size = 3, prob = 0.3)),UL)

plot(CP2)

CompoundDistribution-class

Class "CompoundDistribution"

Description

CompoundDistribution-class is a class to formalize compound distributions; it is a subclass to
class UnivarMixingDistribution.

32 CompoundDistribution-class

Objects from the Class

Objects can be created by calls of the form new("CompoundDistribution", ...). More fre-
quently they are created via the generating function CompoundDistribution.

Slots

NumbOfSummandsDistr Object of class "DiscreteDistribution", the frequency distribution.

SummandsDistr Object of class "UnivDistrListOrDistribution", that is, either of class "UnivarDistrList"
(non i.i.d. case) or of class "UnivariateDistribution" (i.i.d. case); the summand distribu-
tion(s).

mixCoeff Object of class "numeric": a vector of probabilities for the mixing components.

mixDistr Object of class "UnivarDistrList": a list of univariate distributions containing the
mixing components; must be of same length as mixCoeff.

img Object of class "Reals": the space of the image of this distribution which has dimension 1 and
the name "Real Space"

param Object of class "Parameter": the parameter of this distribution, having only the slot name
"Parameter of a discrete distribution"

r Object of class "function": generates random numbers

d fixed to NULL

p Object of class "function": cumulative distribution function

q Object of class "function": quantile function

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "UnivarMixingDistribution" class "UnivarDistribution" by class "UnivarMixingDistribution",
class "Distribution" by class "UnivariateDistribution".

Methods

show signature(object = "CompoundDistribution") prints the object

SummandsDistr signature(object = "CompoundDistribution") returns the corresponding slot

NumbOfSummandsDistr signature(object = "CompoundDistribution") returns the correspond-
ing slot

convpow-methods 33

setAs relations

There is a coerce method to coerce objects of class "CompoundDistribution" to class UnivarLebDecDistribution;
this is done by a simple call to simplifyD.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

Parameter-class, UnivariateDistribution-class, LatticeDistribution-class, AbscontDistribution-class,
simplifyD, flat.mix

Examples

CP <- CompoundDistribution(Pois(),Norm())
CP
p(CP)(0.3)
plot(CP)

convpow-methods Distribution of the sum of univariate i.i.d r.v’s

Description

Method convpow determines the distribution of the sum of N univariate i.i.d r.v’s by means of DFT

Usage

convpow(D1,...)
S4 method for signature 'AbscontDistribution'

convpow(D1,N)
S4 method for signature 'LatticeDistribution'

convpow(D1,N,
ep = getdistrOption("TruncQuantile"))

S4 method for signature 'DiscreteDistribution'
convpow(D1,N)
S4 method for signature 'AcDcLcDistribution'

convpow(D1,N,
ep = getdistrOption("TruncQuantile"))

Arguments

D1 an object of (a sub)class (of) "AbscontDistribution" or "LatticeDistribution"
or of "UnivarLebDecDistribution"

... not yet used; meanwhile takes up N

N an integer or 0 (for 0 returns Dirac(0), for 1 D1)

34 convpow-methods

ep numeric of length 1 in (0,1) — for "LatticeDistribution": support points
will be cancelled if their probability is less than ep; for "UnivarLebDecDistribution":
if (acWeight(object)<ep) we work with the discrete parts only, and, sim-
ilarly, if (discreteWeight(object)<ep) we with the absolutely continuous
parts only.

Details

in the methods implemented a second argument N is obligatory; the general methods use a general
purpose convolution algorithm for distributions by means of D/FFT. In case of an argument of class
"UnivarLebDecDistribution", the result will in generally be again of class "UnivarLebDecDistribution".
However, if acWeight(D1) is positive, discreteWeight(convpow(D1,N)) will decay exponen-
tially in N, hence from some (small) N0 on, the result will be of class "AbscontDistribution".
This is used algorithmically, too, as then only the a.c. part needs to be convolved. In case of an
argument D1 of class "DiscreteDistribution", for N equal to 0,1 we return the obvious solutions,
and for N==2 the return value is D1+D1. For N>2, we split up N into N=N1+N2, N1=floor(N/2) and
recursively return convpow(D1,N1)+convpow(D1,N2).

Value

Object of class "AbscontDistribution", "DiscreteDistribution", "LatticeDistribution"
resp. "AcDcLcDistribution"

further S4-Methods

There are particular methods for the following classes, using explicit convolution formulae:

signature(D1="Norm") returns class "Norm"

signature(D1="Nbinom") returns class "Nbinom"

signature(D1="Binom") returns class "Binom"

signature(D1="Cauchy") returns class "Cauchy"

signature(D1="ExpOrGammaOrChisq") returns class "Gammad" —if D1 may be coerced to Gammad

signature(D1="Pois") returns class "Pois"

signature(D1="Dirac") returns class "Dirac"

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>
Matthias Kohl <matthias.kohl@stamats.de> Thomas Stabla <statho3@web.de>

References

Kohl, M., Ruckdeschel, P., (2014): General purpose convolution algorithm for distributions in S4-
Classes by means of FFT. J. Statist. Softw. 59(4): 1-25.

See Also

operators, distrARITH()

d-methods 35

Examples

convpow(Exp()+Pois(),4)

d-methods Methods for Function d in Package ‘distr’

Description

d-methods

Methods

d signature(object = "Distribution"): returns the density function

See Also

Distribution-class

decomposePM-methods Methods for function decomposePM in Package ‘distr’

Description

decomposePM-methods

Usage

decomposePM(object)

Arguments

object Abscont-/Discrete-/UnivarLebDec-Distribution object

Details

There are particular return types for the following classes

"AbscontDistribution" a list with components "neg" and "pos" for the respective negative and
positive part; each of these parts in its turn is a list with components D for the distribution (in
this case of class "AbscontDistribution" again) and w for the weight of the respective part;
if the weight of the negative part is 0, the corresponding distribution is set to -abs(Norm()),
and respectively, if the weight of the positive part is 0, the corresponding distribution is set to
abs(Norm()).

36 DExp-class

"DiscreteDistribution" a list with components "neg", "pos" and "0" for the respective negative,
positive and zero part; each of these parts in its turn is a list with components D for the dis-
tribution (in this case of class "DiscreteDistribution" again) and w for the weight of the
respective part; while the distribution of the zero part is always Dirac(0), if the weight of the
negative part is 0, the corresponding distribution is set to Dirac(-1), and respectively, if the
weight of the positive part is 0, the corresponding distribution is set to Dirac(1).

"UnivarLebDecDistribution" a list with components "neg", "pos" and "0" for the respective
negative, positive and zero part; each of these parts in its turn is a list with components D for
the distribution (in case of components "neg", "pos" of class "UnivarLebDecDistribution"
again, while the distribution of the zero part is always Dirac(0)) and w for the weight of the re-
spective part; it is build up by calling decomposePM for acPart(object) and discretePart(object)
separately, hence if weights of some parts are zero the corresponding procedure mentionned
for these methods applies.

Method decomposePM is used by our multiplication, division and exponentiation ("*", "/" "^") -
methods.

Value

the positive and negative part of the distribution together with corresponding weights as a list.

See Also

AbscontDistribution-class, DiscreteDistribution-class, UnivarLebDecDistribution-class,
operators-methods

Examples

decomposePM(Norm())
decomposePM(Binom(2,0.3)-Binom(5,.4))
decomposePM(UnivarLebDecDistribution(Norm(),Binom(2,0.3)-Binom(5,.4),

acWeight = 0.3))

DExp-class Class "DExp"

Description

The double exponential or Laplace distribution with rate λ has density

f(x) =
1

2
λe−λ|x|

C.f. Exp-class, rexp

Objects from the Class

Objects can be created by calls of the form DExp(rate). This object is a double exponential (or
Laplace) distribution.

DExp-class 37

Slots

img Object of class "Reals": The space of the image of this distribution has got dimension 1 and
the name "Real Space".

param Object of class "ExpParameter": the parameter of this distribution (rate), declared at its
instantiation

r Object of class "function": generates random numbers (calls function rexp)

d Object of class "function": density function (calls function dexp)

p Object of class "function": cumulative function (calls function pexp)

q Object of class "function": inverse of the cumulative function (calls function qexp)

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "AbscontDistribution", directly.
Class "UnivariateDistribution", by class "AbscontDistribution". Class "Distribution",
by class "AbscontDistribution".

Methods

initialize signature(.Object = "DExp"): initialize method

rate signature(object = "DExp"): returns the slot rate of the parameter of the distribution

rate<- signature(object = "DExp"): modifies the slot rate of the parameter of the distribution

* signature(e1 = "DExp", e2 = "numeric"): For the Laplace distribution we use its closedness
under scaling transformations.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

Exp-class ExpParameter-class AbscontDistribution-class Reals-class rexp

38 df1-methods

Examples

D <- DExp(rate = 1) # D is a Laplace distribution with rate = 1.
r(D)(1) # one random number generated from this distribution, e.g. 0.4190765
d(D)(1) # Density of this distribution is 0.1839397 for x = 1.
p(D)(1) # Probability that x < 1 is 0.8160603.
q(D)(.1) # Probability that x < -1.609438 is 0.1.
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
rate(D) # rate of this distribution is 1.
rate(D) <- 2 # rate of this distribution is now 2.
3*D ### still a DExp -distribution

df-methods Methods for Function df in Package ‘distr’

Description

df-methods

Methods

df signature(object = "TParameter"): returns the slot df of the parameter of the distribution
df<- signature(object = "TParameter"): modifies the slot df of the parameter of the distribu-

tion
df signature(object = "Td"): returns the slot df of the parameter of the distribution
df<- signature(object = "Td"): modifies the slot df of the parameter of the distribution
df signature(object = "ChisqParameter"): returns the slot df of the parameter of the distribu-

tion
df<- signature(object = "ChisqParameter"): modifies the slot df of the parameter of the dis-

tribution
df signature(object = "Chisq"): returns the slot df of the parameter of the distribution
df<- signature(object = "Chisq"): modifies the slot df of the parameter of the distribution

df1-methods Methods for Function df1 in Package ‘distr’

Description

df-methods

Methods

df1 signature(object = "FParameter"): returns the slot df1 of the parameter of an F-distribution
df1<- signature(object = "FParameter"): modifies the slot df1 of the parameter of an F-

distribution
df1 signature(object = "Fd"): returns the slot df1 of the slot param of the distribution
df1<- signature(object = "Fd"): modifies the slot df1 of the slot param of the distribution

df2-methods 39

df2-methods Methods for Function df2 in Package ‘distr’

Description

df-methods

Methods

df2 signature(object = "FParameter"): returns the slot df2 of the parameter of an F-distribution

df2<- signature(object = "FParameter"): modifies the slot df2 of the parameter of an F-
distribution

df2 signature(object = "Fd"): returns the slot df2 of the slot param of the distribution

df2<- signature(object = "Fd"): modifies the slot df2 of the slot param of the distribution

dim-methods Methods for Function dim in Package ‘distr’

Description

dim-methods

Methods

dim signature(object = "UnivariateDistribution"): returns the dimension of the distribu-
tion

See Also

UnivariateDistribution-class

dimension-methods Methods for Function dimension in Package ‘distr’

Description

dimension-methods

Methods

dimension signature(object = "EuclideanSpace"): returns the dimension of the space

dimension<- signature(object = "EuclideanSpace"): modifies the dimension of the space

40 Dirac-class

Dirac-class Class "Dirac"

Description

The Dirac distribution with location l, by default = 0, has density d(x) = 1 for x = l, 0 else.

Objects from the Class

Objects can be created by calls of the form Dirac(location). This object is a Dirac distribution.

Slots

img Object of class "Naturals": The space of the image of this distribution has got dimension 1
and the name "Real Space".

param Object of class "DiracParameter": the parameter of this distribution (location), declared
at its instantiation

r Object of class "function": generates random numbers

d Object of class "function": density function

p Object of class "function": cumulative function

q Object of class "function": inverse of the cumulative function

support Object of class "numeric": a (sorted) vector containing the support of the discrete density
function

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "DiscreteDistribution", directly.
Class "UnivariateDistribution", by class "DiscreteDistribution".
Class "Distribution", by class "DiscreteDistribution".

Methods

- signature(e1 = "Dirac", e2 = "Dirac")

+ signature(e1 = "Dirac", e2 = "Dirac")

* signature(e1 = "Dirac", e2 = "Dirac")

DiracParameter-class 41

/ signature(e1 = "Dirac", e2 = "Dirac"): For the Dirac distribution these operations are trivial.

initialize signature(.Object = "Dirac"): initialize method

location signature(object = "Dirac"): returns the slot location of the parameter of the distri-
bution

location<- signature(object = "Dirac"): modifies the slot location of the parameter of the
distribution

log signature(object = "Dirac"): returns an object of class "Dirac" distribution with log-
transformed location parameter.

Math signature(object = "Dirac"): given a "Math" group generic fun an object of class "Dirac"
distribution with fun-transformed location parameter is returned.

further arithmetic methods see operators-methods

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

DiracParameter-class DiscreteDistribution-class Naturals-class

Examples

D <- Dirac(location = 0) # D is a Dirac distribution with location=0.
r(D)(1)
r(D)(1) generates a pseudo-random-number according to a Dirac
distribution with location = 0,
which of course will take 0 as value almost surely.
d(D)(0) # Density of this distribution is 1 for x = 0.
p(D)(1) # Probability that x < 1 is 1.
q(D)(.1) # q(D)(x) is always 0 (= location).
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
location(D) # location of this distribution is 0.
location(D) <- 2 # location of this distribution is now 2.

DiracParameter-class Class "DiracParameter"

Description

The parameter of a Dirac distribution, used by Dirac-class

42 DiracParameter-class

Objects from the Class

Objects can be created by calls of the form new("DiracParameter", location). Usually an object
of this class is not needed on its own, it is generated automatically when an object of the class Dirac
is instantiated.

Slots

location Object of class "numeric": the location of a Dirac distribution

name Object of class "character": a name / comment for the parameters

Extends

Class "Parameter", directly.

Methods

initialize signature(.Object = "DiracParameter"): initialize method

location signature(object = "DiracParameter"): returns the slot location of the parameter of
the distribution

location<- signature(object = "DiracParameter"): modifies the slot location of the parameter
of the distribution

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Dirac-class Parameter-class

Examples

W <- new("DiracParameter",location=1)
location(W) # location of this distribution is 1.
location(W) <- 2 # location of this distribution is now 2.

DiscreteDistribution 43

DiscreteDistribution Generating function "DiscreteDistribution"

Description

Generates an object of class "DiscreteDistribution"

Usage

DiscreteDistribution(supp, prob, .withArith=FALSE, .withSim=FALSE,
.lowerExact = TRUE, .logExact = FALSE,

.DistrCollapse = getdistrOption("DistrCollapse"),

.DistrCollapse.Unique.Warn =
getdistrOption("DistrCollapse.Unique.Warn"),

.DistrResolution = getdistrOption("DistrResolution"),
Symmetry = NoSymmetry())

Arguments

supp numeric vector which forms the support of the discrete distribution.

prob vector of probability weights for the elements of supp.

.withArith normally not set by the user, but if determining the entries supp, prob distribu-
tional arithmetics was involved, you may set this to TRUE.

.withSim normally not set by the user, but if determining the entries supp, prob simula-
tions were involved, you may set this to TRUE.

.lowerExact normally not set by the user: whether the lower.tail=FALSE part is calculated
exactly, avoing a “1-.”.

.logExact normally not set by the user: whether in determining slots d,p,q, we make
particular use of a logarithmic representation to enhance accuracy.

.DistrCollapse controls whether in generating a new discrete distribution, support points closer
together than .DistrResolution are collapsed.

.DistrCollapse.Unique.Warn

controls whether there is a warning whenever collapsing occurs or when two
points are collapsed by a call to unique() (default behaviour if .DistrCollapse
is FALSE)

.DistrResolution

minimal spacing between two mass points in a discrete distribution

Symmetry you may help R in calculations if you tell it whether the distribution is non-
symmetric (default) or symmetric with respect to a center; in this case use
Symmetry=SphericalSymmetry(center).

44 DiscreteDistribution

Details

If prob is missing, all elements in supp are equally weighted.

Typical usages are

DiscreteDistribution(supp, prob)
DiscreteDistribution(supp)

Value

Object of class "DiscreteDistribution"

Note

Working with a computer, we use a finite interval as support which carries at least mass 1-getdistrOption("TruncQuantile").

Also, we require that support points have distance at least .DistrResoltion, if this condition fails,
upon a suggestion by Jacob van Etten, <jacobvanetten@yahoo.com>, we use the global option
.DistrCollapse to decide whether we use collapsing or not. If we do so, we collapse support
points if they are too close to each other, taking the (left most) median among them as new support
point which accumulates all the mass of the collapsed points. With .DistrCollapse==FALSE, we
at least collapse points according to the result of unique(), and if after this collapsing, the minimal
distance is less than .DistrResoltion, we throw an error. By .DistrCollapse.Unique.Warn, we
control, whether we throw a warning upon collapsing or not.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

DiscreteDistribution-class AbscontDistribution-class RtoDPQ.d

Examples

Dirac-measure at 0
D1 <- DiscreteDistribution(supp = 0)
D1
simple discrete distribution
D2 <- DiscreteDistribution(supp = c(1:5), prob = c(0.1, 0.2, 0.3, 0.2, 0.2))
D2

plot(D2)

DiscreteDistribution-class 45

DiscreteDistribution-class

Class "DiscreteDistribution"

Description

The DiscreteDistribution-class is the mother-class of the class LatticeDistribution.

Objects from the Class

Objects can be created by calls to new("DiscreteDistribution", ...), but more easily is the
use of the generating function "DiscreteDistribution". This generating function, from version
1.9 on, has been moved to this package from package distrEx.

Slots

img Object of class "Reals": the space of the image of this distribution which has dimension 1 and
the name "Real Space"

param Object of class "Parameter": the parameter of this distribution, having only the slot name
"Parameter of a discrete distribution"

r Object of class "function": generates random numbers

d Object of class "function": density/probability function

p Object of class "function": cumulative distribution function

q Object of class "function": quantile function

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

.finSupport logical: used internally to check whether the true support is finite; in case img is
one-dimensional, it is of length 2 (left and right end).

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "UnivariateDistribution", directly.
Class "Distribution", by class "UnivariateDistribution".

46 DiscreteDistribution-class

Methods

initialize signature(.Object = "DiscreteDistribution"): initialize method

coerce signature(from = "DiscreteDistribution", to = "LatticeDistribution"): coerce
method to class "LatticeDistribution" (checks if support is a lattice)

Math signature(x = "DiscreteDistribution"): application of a mathematical function, e.g.
sin or tan to this discrete distribution

• abs: signature(x = "DiscreteDistribution"): exact image distribution of abs(x).
• exp: signature(x = "DiscreteDistribution"): exact image distribution of exp(x).
• sign: signature(x = "DiscreteDistribution"): exact image distribution of sign(x).
• sqrt: signature(x = "DiscreteDistribution"): exact image distribution of sqrt(x).
• log: signature(x = "DiscreteDistribution"): (with optional further argument base,

defaulting to exp(1)) exact image distribution of log(x).
• log10: signature(x = "DiscreteDistribution"): exact image distribution of log10(x).
• gamma: signature(x = "DiscreteDistribution"): exact image distribution of gamma(x).
• lgamma: signature(x = "DiscreteDistribution"): exact image distribution of lgamma(x).
• digamma: signature(x = "DiscreteDistribution"): exact image distribution of digamma(x).

- signature(e1 = "DiscreteDistribution"): application of ‘-’ to this discrete distribution

* signature(e1 = "DiscreteDistribution", e2 = "numeric"): multiplication of this discrete
distribution by an object of class ‘numeric’

/ signature(e1 = "DiscreteDistribution", e2 = "numeric"): division of this discrete distri-
bution by an object of class ‘numeric’

+ signature(e1 = "DiscreteDistribution", e2 = "numeric"): addition of this discrete distri-
bution to an object of class ‘numeric’

- signature(e1 = "DiscreteDistribution", e2 = "numeric"): subtraction of an object of class
‘numeric’ from this discrete distribution

* signature(e1 = "numeric", e2 = "DiscreteDistribution"): multiplication of this discrete
distribution by an object of class ‘numeric’

+ signature(e1 = "numeric", e2 = "DiscreteDistribution"): addition of this discrete distri-
bution to an object of class ‘numeric’

- signature(e1 = "numeric", e2 = "DiscreteDistribution"): subtraction of this discrete dis-
tribution from an object of class ‘numeric’

+ signature(e1 = "DiscreteDistribution", e2 = "DiscreteDistribution"): Convolution of
two discrete distributions. The slots p, d and q are approximated on a common grid.

- signature(e1 = "DiscreteDistribution", e2 = "DiscreteDistribution"): Convolution of
two discrete distributions. The slots p, d and q are approximated on a common grid.

support signature(object = "DiscreteDistribution"): returns the support

p.l signature(object = "DiscreteDistribution"): returns the left continuous cumulative dis-
tribution function, i.e.; p.l(t) = P (object < t)

q.r signature(object = "DiscreteDistribution"): returns the right-continuous quantile func-
tion, i.e.; q.r(s) = sup{t

∣∣P (object ≥ t) ≤ s}
plot signature(object = "DiscreteDistribution"): plots density, cumulative distribution and

quantile function

DiscreteDistribution-class 47

Internal subclass "AffLinDiscreteDistribution"

To enhance accuracy of several functionals on distributions, mainly from package distrEx, from
version 1.9 of this package on, there is an internally used (but exported) subclass "AffLinDiscreteDistribution"
which has extra slots a, b (both of class "numeric"), and X0 (of class "DiscreteDistribution"),
to capture the fact that the object has the same distribution as a * X0 + b. This is the class of the
return value of methods

- signature(e1 = "DiscreteDistribution")

* signature(e1 = "DiscreteDistribution", e2 = "numeric")

/ signature(e1 = "DiscreteDistribution", e2 = "numeric")

+ signature(e1 = "DiscreteDistribution", e2 = "numeric")

- signature(e1 = "DiscreteDistribution", e2 = "numeric")

* signature(e1 = "numeric", e2 = "DiscreteDistribution")

+ signature(e1 = "numeric", e2 = "DiscreteDistribution")

- signature(e1 = "numeric", e2 = "DiscreteDistribution")

- signature(e1 = "AffLinDiscreteDistribution")

* signature(e1 = "AffLinDiscreteDistribution", e2 = "numeric")

/ signature(e1 = "AffLinDiscreteDistribution", e2 = "numeric")

+ signature(e1 = "AffLinDiscreteDistribution", e2 = "numeric")

- signature(e1 = "AffLinDiscreteDistribution", e2 = "numeric")

* signature(e1 = "numeric", e2 = "AffLinDiscreteDistribution")

+ signature(e1 = "numeric", e2 = "AffLinDiscreteDistribution")

- signature(e1 = "numeric", e2 = "AffLinDiscreteDistribution")

There also is a class union of "AffLinAbscontDistribution", "AffLinDiscreteDistribution",
"AffLinUnivarLebDecDistribution" and called "AffLinDistribution" which is used for func-
tionals.

Internal virtual superclass "AcDcLcDistribution"

As many operations should be valid no matter whether the operands are of class "AbscontDistribution",
"DiscreteDistribution", or "UnivarLebDecDistribution", there is a class union of these
classes called "AcDcLcDistribution"; in partiucalar methods for "*", "/", "^" (see operators-
methods) and methods Minimum, Maximum, Truncate, and Huberize, and convpow are defined for
this class union.

Note

Working with a computer, we use a finite interval as support which carries at least mass 1-getdistrOption("TruncQuantile").

Also, we require that support points have distance at least getdistrOption("DistrResoltion"),
if this condition fails, upon a suggestion by Jacob van Etten, <jacobvanetten@yahoo.com>, we
use the global option getdistrOption("DistrCollapse") to decide whether we use collaps-
ing or not. If we do so, we collapse support points if they are too close to each other, taking

48 distr-defunct

the (left most) median among them as new support point which accumulates all the mass of the
collapsed points. With getdistrOption("DistrCollapse")==FALSE, we at least collapse points
according to the result of unique(), and if after this collapsing, the minimal distance is less than
getdistrOption("DistrResoltion"), we throw an error. By getdistrOption("DistrCollapse.Unique.Warn"),
we control, whether we throw a warning upon collapsing or not.

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Parameter-class UnivariateDistribution-class LatticeDistribution-class AbscontDistribution-class
Reals-class RtoDPQ.d

Examples

Dirac-measure at 0
D1 <- DiscreteDistribution(supp = 0)
support(D1)

simple discrete distribution
D2 <- DiscreteDistribution(supp = c(1:5), prob = c(0.1, 0.2, 0.3, 0.2, 0.2))
plot(D2)
(pp <- p(D2)(support(D2)))
p(D2)(support(D2)-1e-5)
p(D2)(support(D2)+1e-5)
p.l(D2)(support(D2))
p.l(D2)(support(D2)-1e-5)
p.l(D2)(support(D2)+1e-5)
q(D2)(pp)
q(D2)(pp-1e-5)
q(D2)(pp+1e-5)
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
q.r(D2)(pp)
q.r(D2)(pp-1e-5)
q.r(D2)(pp+1e-5)

distr-defunct Class "GeomParameter"

Description

The parameter of a geometric distribution, used by Geom-class

distrARITH 49

Objects from the Class

Objects were created by calls of the form new("GeomParameter", prob). Usually an object of this
class was not needed on its own, it was generated automatically when an object of the class Geom
is instantiated.

Slots

prob Object of class "numeric": the probability of a geometric distribution

name Object of class "character": a name / comment for the parameters

Extends

Class "Parameter", directly.

Methods

initialize signature(.Object = "GeomParameter"): initialize method

prob signature(object = "GeomParameter"): returns the slot prob of the parameter of the dis-
tribution

prob<- signature(object = "GeomParameter"): modifies the slot prob of the parameter of the
distribution

Defunct

The use of class GeomParameter is defunct as of version 2.8.0; it is to be replaced by a cor-
responding use of class NbinomParameter with slot size = 1 which may be generated, e.g. by
new("NbinomParameter", prob, size = 1, name = "Parameter of a Geometric distribution")

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

Defunct

distrARITH Arithmetics on Distributions

Description

Provides information on the interpretation of arithmetics operating on Distributions in package distr

Usage

distrARITH(library = NULL)

50 Distribution-class

Arguments

library a character vector with path names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries

Value

no value is returned

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

Examples

IGNORE_RDIFF_BEGIN
distrARITH()
IGNORE_RDIFF_END

Distribution-class Class "Distribution"

Description

The Distribution-class is the mother-class of class UnivariateDistribution.

Objects from the Class

Objects can be created by calls of the form new("Distribution").

Slots

img Object of class "rSpace": the space of the image

param Object of class "OptionalParameter": the parameter

r Object of class "function": generates random numbers

d Object of class "OptionalFunction": density function

p Object of class "OptionalFunction": cumulative distribution function

q Object of class "OptionalFunction": quantile function

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

DistributionSymmetry-class 51

Methods

img signature(object = "Distribution"): returns the space of the image

param signature(object = "Distribution"): returns the parameter

r signature(object = "Distribution"): returns the random number generator

d signature(object = "Distribution"): returns the density function

p signature(object = "Distribution"): returns the cumulative distribution function

q signature(object = "Distribution"): returns the quantile function

.logExact signature(object = "Distribution"): returns slot .logExact if existing; else tries
to convert the object to a newer version of its class by conv2NewVersion and returns the
corresponding slot of the converted object.

.lowerExact signature(object = "Distribution"): returns slot .lowerExact if existing; else
tries to convert the object to a newer version of its class by conv2NewVersion and returns the
corresponding slot of the converted object.

Symmetry: returns slot Symmetry if existing; else tries to convert the object to a newer version of
its class by conv2NewVersion and returns the corresponding slot of the converted object.

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

UnivariateDistribution-class Parameter-class

DistributionSymmetry-class

Class of Symmetries for Distributions

Description

Class of symmetries for distributions.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

type Object of class "character": discribes type of symmetry.

SymmCenter Object of class "OptionalNumeric": center of symmetry.

52 DistrList

Extends

Class "Symmetry", directly.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Symmetry-class, Distribution-class, OptionalNumeric-class

DistrList Generating function for DistrList-class

Description

Generates an object of class "DistrList".

Usage

DistrList(..., Dlist)

Arguments

... Objects of class "Distribution" (or subclasses)

Dlist an optional list or object of class "DistrList"; if not missing it is appended to
argument ...; this way DistrList may also be called with a list (or "DistrList"-
object) as argument as suggested in an e-mail by Krunoslav Sever (thank you!)

Value

Object of class "DistrList"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

DistrList-class, UnivarDistrList-class, UnivarDistrList

DistrList-class 53

Examples

(DL <- DistrList(Norm(), Exp(), Pois()))
plot(DL)
as(Norm(), "DistrList")

The function is currently defined as
function(...){

new("DistrList", list(...))
}

DistrList-class List of distributions

Description

Create a list of distributions

Objects from the Class

Objects can be created by calls of the form new("DistrList", ...). More frequently they are
created via the generating function DistrList.

Slots

.Data Object of class "list". A list of distributions.

Extends

Class "list", from data part.
Class "vector", by class "list".

Methods

show signature(object = "DistrList")

plot signature(object = "DistrList")

coerce signature(from = "Distribution", to = "DistrList"): create a "DistrList" object
from a "Distribution" object

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

DistrList, Distribution-class

54 distrMASK

Examples

(DL <- new("DistrList", list(Norm(), Exp())))
plot(DL)
as(Norm(), "DistrList")

distrMASK Masking of/by other functions in package "distr"

Description

Provides information on the (intended) masking of and (non-intended) masking by other other func-
tions in package distr

Usage

distrMASK(library = NULL)

Arguments

library a character vector with path names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries

Value

no value is returned

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

Examples

IGNORE_RDIFF_BEGIN
distrMASK()
IGNORE_RDIFF_END

distroptions 55

distroptions functions to change the global variables of the package ‘distr’

Description

With distroptions and getdistrOption you may inspect and change the global variables used
by package distr.

Usage

distroptions(...)
getdistrOption(x)

Arguments

... any options can be defined, using name = value or by passing a list of such
tagged values.

x a character string holding an option name.

Details

Invoking distroptions() with no arguments returns a list with the current values of the options.
To access the value of a single option, one should use getdistrOption("WarningSim"), e.g.,
rather than distroptions("WarningSim") which is a list of length one.

Value

distroptions() returns a list of the global options of distr.
distroptions("RtoDPQ.e") returns the global option RtoDPQ.e as a list of length 1.
distroptions("RtoDPQ.e" = 3) sets the value of the global option RtoDPQ.e to 3. getdistrOption("RtoDPQ.e")
the current value set for option RtoDPQ.e.

Currently available options

DefaultNrGridPoints default number of grid points in integration, default value: 2^12

DistrResolution minimal spacing between two mass points in a discrete distribution, default
value: 1e-6

DistrCollapse logical; in discrete distributions, shall support points with distance smaller than
DistrResolution be collapsed; default value: TRUE

TruncQuantile argument for q-slot at which to truncate; also, for discrete distributions, support is
restricted to [q(TruncQuantile),q(1-TruncQuantile)], default value: 1e-5

DefaultNrFFTGridPointsExponent by default, for e = DefaultNrFFTGridPointsExponent, FFT
uses 2e gridpoints; default value: 12

RtoDPQ.e by default, for reconstructing the d-,p-,q-slots out of simulations by slot r, RtoDPQ resp.
RtoDPQ.d use 10e simulations, where e = RtoDPQ.e, default value: 5

56 distroptions

WarningSim if WarningSim==TRUE, print/show issue a warning as to the precision of d-,p-,q-slots
when these are obtained by RtoDPQ resp. RtoDPQ.d, default value: TRUE

WarningArith if WarningArith==TRUE, print/show issue a warning as to the interpretation of
arithmetics operating on distributions, when the corresponding distribution to be plotted/shown
is obtained by such an operation; keep in mind that arithmetics in fact operate on random
variables distributed according to the given distributions and not on corresponding cdf’s or
densities; default value: TRUE

withSweave is code run in Sweave (then no new graphic devices are opened), default value: FALSE
withgaps controls whether in the return value of arithmetic operations the slot gaps of an the

AbscontDistribution part is filled automatically based on empirical evaluations via setgaps
—default TRUE

simplifyD controls whether in the return value of arithmetic operations there is a call to simplifyD
or not —default TRUE

use.generalized.inverse.by.default logical; decides whether by default (i.e., if argument generalized
of solve is not explicitely set), solve is to use generalized inverses if the original solve-
method from package base fails; if the option is FALSE, in case of failure, and unless argument
generalized is not explicitely set to TRUE, solve will throw an error as is the base-method
behavior. The default value is TRUE.

DistrCollapse.Unique.Warn controls whether there is a warning whenever collapsing occurs or
when two points are collapsed by a call to unique() (default behaviour if DistrCollapse is
FALSE); —default FALSE

warn.makeDNew controls whether a warning is issued once in internal utility .makeDNew standard
integration with integrate throws an error—default TRUE

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

options, getOption

Examples

distroptions("RtoDPQ.e") # returns the value of RtoDPQ.e, by default = 5
currentDistrOptions <- distroptions()
distroptions(RtoDPQ.e = 6)
distroptions("RtoDPQ.e")
getdistrOption("RtoDPQ.e")
distroptions(c("WarningSim","WarningArith"))
getdistrOption("WarningSim")
distroptions("WarningSim" = FALSE)

switches off warnings as to (In)accuracy due to simulations
distroptions("WarningArith" = FALSE)

switches off warnings as to arithmetics
distroptions(currentDistrOptions)

DistrSymmList 57

DistrSymmList Generating function for DistrSymmList-class

Description

Generates an object of class "DistrSymmList".

Usage

DistrSymmList(...)

Arguments

... Objects of class "DistributionSymmetry" which shall form the list of symme-
try types.

Value

Object of class "DistrSymmList"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

DistrSymmList-class

Examples

DistrSymmList(NoSymmetry(), SphericalSymmetry(SymmCenter = 1),
EllipticalSymmetry(SymmCenter = 2))

The function is currently defined as
function (...){

new("DistrSymmList", list(...))
}

58 EllipticalSymmetry

DistrSymmList-class List of Symmetries for a List of Distributions

Description

Create a list of symmetries for a list of distributions

Objects from the Class

Objects can be created by calls of the form new("DistrSymmList", ...). More frequently they
are created via the generating function DistrSymmList.

Slots

.Data Object of class "list". A list of objects of class "DistributionSymmetry".

Extends

Class "list", from data part.
Class "vector", by class "list".

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

DistributionSymmetry-class

Examples

new("DistrSymmList", list(NoSymmetry(), SphericalSymmetry(SymmCenter = 1),
EllipticalSymmetry(SymmCenter = 2)))

EllipticalSymmetry Generating function for EllipticalSymmetry-class

Description

Generates an object of class "EllipticalSymmetry".

Usage

EllipticalSymmetry(SymmCenter = 0)

EllipticalSymmetry-class 59

Arguments

SymmCenter numeric: center of symmetry

Value

Object of class "EllipticalSymmetry"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

EllipticalSymmetry-class, DistributionSymmetry-class

Examples

EllipticalSymmetry()

The function is currently defined as
function(SymmCenter = 0){

new("EllipticalSymmetry", SymmCenter = SymmCenter)
}

EllipticalSymmetry-class

Class for Elliptically Symmetric Distributions

Description

Class for elliptically symmetric distributions.

Objects from the Class

Objects can be created by calls of the form new("EllipticalSymmetry"). More frequently they
are created via the generating function EllipticalSymmetry. Elliptical symmetry for instance
leads to a simplification for the computation of optimally robust influence curves.

Slots

type Object of class "character": contains “elliptical symmetric distribution”

SymmCenter Object of class "numeric": center of symmetry

Extends

Class "DistributionSymmetry", directly.
Class "Symmetry", by class "DistributionSymmetry".

60 EmpiricalDistribution

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

EllipticalSymmetry, DistributionSymmetry-class

Examples

new("EllipticalSymmetry")

EmpiricalDistribution Generating function "EmpiricalDistribution"

Description

Generates an object of class "DiscreteDistribution"

Usage

EmpiricalDistribution(data, .withArith=FALSE, .withSim=FALSE,
.lowerExact = TRUE, .logExact = FALSE,
.DistrCollapse = getdistrOption("DistrCollapse"),
.DistrCollapse.Unique.Warn =

getdistrOption("DistrCollapse.Unique.Warn"),
.DistrResolution = getdistrOption("DistrResolution"),
Symmetry = NoSymmetry())

Arguments

data numeric vector with data.

.withArith normally not set by the user, but if determining the entries supp, prob distribu-
tional arithmetics was involved, you may set this to TRUE.

.withSim normally not set by the user, but if determining the entries supp, prob simula-
tions were involved, you may set this to TRUE.

.lowerExact normally not set by the user: whether the lower.tail=FALSE part is calculated
exactly, avoing a “1-.”.

.logExact normally not set by the user: whether in determining slots d,p,q, we make
particular use of a logarithmic representation to enhance accuracy.

.DistrCollapse controls whether in generating a new discrete distribution, support points closer
together than .DistrResolution are collapsed.

.DistrCollapse.Unique.Warn

controls whether there is a warning whenever collapsing occurs or when two
points are collapsed by a call to unique() (default behaviour if .DistrCollapse
is FALSE)

EuclideanSpace-class 61

.DistrResolution

minimal spacing between two mass points in a discrete distribution

Symmetry you may help R in calculations if you tell it whether the distribution is non-
symmetric (default) or symmetric with respect to a center; in this case use
Symmetry=SphericalSymmetry(center).

Details

The function is a simple utility function providing a wrapper to the generating function DiscreteDistribution.

Typical usage is

EmpiricalDistribution(data)

Value

Object of class "DiscreteDistribution"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

DiscreteDistribution DiscreteDistribution-class

Examples

x <- rnorm(20)
D1 <- EmpiricalDistribution(data = x)
D1

plot(D1)

EuclideanSpace-class Class "EuclideanSpace"

Description

The distribution-classes contain a slot where the sample space is stored. One typical sample space
is the Euclidean Space in dimension k.

Usage

EuclideanSpace(dimension = 1)

Arguments

dimension positive integer: dimension of the Euclidean space (default =1)

62 EuclideanSpace-class

Objects from the Class

Objects could theoretically be created by calls of the form new("EuclideanSpace", dimension,
name). Usually an object of this class is not needed on its own. EuclideanSpace is the mother-
class of the class Reals, which is generated automatically when a univariate absolutly continuous
distribution is instantiated.

Slots

dimension Object of class "numeric": the dimension of the space, by default = 1

name Object of class "character": the name of the space, by default = "Euclidean Space"

Extends

Class "rSpace", directly.

Methods

initialize signature(.Object = "EuclideanSpace"): initialize method

liesIn signature(object = "EuclideanSpace", x = "numeric"): Does a particular vector lie in
this space or not?

dimension signature(object = "EuclideanSpace"): returns the dimension of the space

dimension<- signature(object = "EuclideanSpace"): modifies the dimension of the space

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

rSpace-class Reals-class Distribution-class liesIn-methods

Examples

E <- EuclideanSpace(dimension = 2)
dimension(E) # The dimension of this space is 2.
dimension(E) <- 3 # The dimension of this space is now 3.
liesIn(E,c(0,0,0)) # TRUE
liesIn(E,c(0,0)) # FALSE

Exp-class 63

Exp-class Class "Exp"

Description

The exponential distribution with rate λ has density

f(x) = λe−λx

for x ≥ 0.

C.f. rexp

Objects from the Class

Objects can be created by calls of the form Exp(rate). This object is an exponential distribution.

Slots

img Object of class "Reals": The space of the image of this distribution has got dimension 1 and
the name "Real Space".

param Object of class "ExpParameter": the parameter of this distribution (rate), declared at its
instantiation

r Object of class "function": generates random numbers (calls function rexp)

d Object of class "function": density function (calls function dexp)

p Object of class "function": cumulative function (calls function pexp)

q Object of class "function": inverse of the cumulative function (calls function qexp)

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "ExpOrGammaOrChisq", directly.
Class "AbscontDistribution", by class "ExpOrGammaOrChisq".
Class "UnivariateDistribution", by class "AbscontDistribution". Class "Distribution",
by class "AbscontDistribution".

64 ExpParameter-class

Is-Relations

By means of setIs, R “knows” that a distribution object obj of class "Exp" also is a Gamma
distribution with parameters shape = 1, scale = 1/rate(obj) and a Weibull distribution with pa-
rameters shape = 1, scale = 1/rate(obj)

Methods

initialize signature(.Object = "Exp"): initialize method

rate signature(object = "Exp"): returns the slot rate of the parameter of the distribution

rate<- signature(object = "Exp"): modifies the slot rate of the parameter of the distribution

* signature(e1 = "Exp", e2 = "numeric"): For the exponential distribution we use its closed-
ness under positive scaling transformations.

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

ExpParameter-class AbscontDistribution-class Reals-class rexp

Examples

E <- Exp(rate = 1) # E is a exp distribution with rate = 1.
r(E)(1) # one random number generated from this distribution, e.g. 0.4190765
d(E)(1) # Density of this distribution is 0.3678794 for x = 1.
p(E)(1) # Probability that x < 1 is 0.6321206.
q(E)(.1) # Probability that x < 0.1053605 is 0.1.
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
rate(E) # rate of this distribution is 1.
rate(E) <- 2 # rate of this distribution is now 2.
is(E, "Gammad") # yes
as(E,"Gammad")
is(E, "Weibull")
E+E+E ### a Gammad -distribution
2*E+Gammad(scale=1)

ExpParameter-class Class "ExpParameter"

Description

The parameter of an exponential distribution, used by Exp-class and DExp-class

ExpParameter-class 65

Objects from the Class

Objects can be created by calls of the form new("ExpParameter", rate). Usually an object of
this class is not needed on its own, it is generated automatically when an object of the class Exp is
instantiated.

Slots

rate Object of class "numeric": the rate of an exponential distribution

name Object of class "character": a name / comment for the parameters

Extends

Class "Parameter", directly.

Methods

initialize signature(.Object = "ExpParameter"): initialize method

rate signature(object = "ExpParameter"): returns the slot rate of the parameter of the distri-
bution

rate<- signature(object = "ExpParameter"): modifies the slot rate of the parameter of the
distribution

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Exp-class DExp-class Parameter-class

Examples

W <- new("ExpParameter", rate = 1)
rate(W) # rate of this distribution is 1.
rate(W) <- 2 # rate of this distribution is now 2.

66 Fd-class

Fd-class Class "Fd"

Description

The F distribution with df1 = n1, by default = 1, and df2 = n2, by default = 1, degrees of freedom
has density

d(x) =
Γ(n1/2 + n2/2)

Γ(n1/2)Γ(n2/2)

(
n1

n2

)n1/2

xn1/2−1

(
1 +

n1x

n2

)−(n1+n2)/2

for x > 0.

C.f. rf

Objects from the Class

Objects can be created by calls of the form Fd(df1, df2). This object is a F distribution.

Slots

img Object of class "Reals": The space of the image of this distribution has got dimension 1 and
the name "Real Space".

param Object of class "FParameter": the parameter of this distribution (df1 and df2), declared at
its instantiation

r Object of class "function": generates random numbers (calls function rf)

d Object of class "function": density function (calls function df)

p Object of class "function": cumulative function (calls function pf)

q Object of class "function": inverse of the cumulative function (calls function qf)

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "AbscontDistribution", directly.
Class "UnivariateDistribution", by class "AbscontDistribution".
Class "Distribution", by class "AbscontDistribution".

Fd-class 67

Methods

initialize signature(.Object = "Fd"): initialize method

df1 signature(object = "Fd"): returns the slot df1 of the parameter of the distribution

df1<- signature(object = "Fd"): modifies the slot df1 of the parameter of the distribution

df2 signature(object = "Fd"): returns the slot df2 of the parameter of the distribution

df2<- signature(object = "Fd"): modifies the slot df2 of the parameter of the distribution

Ad hoc methods

• An ad hoc method is provided for slot d if ncp!=0.

• For R Version <2.3.0 ad hoc methods are provided for slots q, r if ncp!=0; for R Version
>=2.3.0 the methods from package stats are used.

Note

It is the distribution of the ratio of the mean squares of n1 and n2 independent standard normals, and
hence of the ratio of two independent chi-squared variates each divided by its degrees of freedom.
Since the ratio of a normal and the root mean-square of m independent normals has a Student’s tm
distribution, the square of a tm variate has a F distribution on 1 and m degrees of freedom.

The non-central F distribution is again the ratio of mean squares of independent normals of unit
variance, but those in the numerator are allowed to have non-zero means and ncp is the sum of
squares of the means.

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

FParameter-class AbscontDistribution-class Reals-class rf

Examples

F <- Fd(df1 = 1, df2 = 1) # F is a F distribution with df=1 and df2=1.
r(F)(1) # one random number generated from this distribution, e.g. 29.37863
d(F)(1) # Density of this distribution is 0.1591549 for x=1 .
p(F)(1) # Probability that x<1 is 0.5.
q(F)(.1) # Probability that x<0.02508563 is 0.1.
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
df1(F) # df1 of this distribution is 1.
df1(F) <- 2 # df1 of this distribution is now 2.
Fn <- Fd(df1 = 1, df2 = 1, ncp = 0.5)

Fn is a F distribution with df=1, df2=1 and ncp =0.5.
d(Fn)(1) ## from R 2.3.0 on ncp no longer ignored...

68 flat.LCD

flat.LCD Flattening a list of Lebesgue decomposed distributions

Description

flattens a list of Lebesgue decomposed distributions endowed with weights to give one Lebesgue
decomposed distribution

Usage

flat.LCD(..., mixCoeff = NULL, withgaps = getdistrOption("withgaps"))

Arguments

... list of Lebesgue decomposed distributions

mixCoeff Object of class "numeric" of the same length as . . . : a vector of probabilities
for the mixing components.

withgaps logical; shall gaps be detected empirically?

Details

flat.LCD flattens a list of Lebesgue decomposed distributions given through ..., i.e., it takes
all list elements and mixing coefficients and builds up the mixed distribution (forgetting about the
components); the result will be one distribution of class UnivarLebDecDistribution. If mixCoeff
is missing, all list elements are equally weighted. It is used internally in our methods for "*", "/",
"^" (see operators-methods), Minimum, and convpow, as well in method flat.mix.

Value

flat.LCD returns an object of class UnivarLebDecDistribution.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

UnivarLebDecDistribution-class, operators-methods

Examples

D1 <- as(Norm(),"UnivarLebDecDistribution")
D2 <- as(Pois(1),"UnivarLebDecDistribution")
D3 <- as(Binom(1,.4),"UnivarLebDecDistribution")
flat.LCD(D1,D2,D3, mixCoeff = c(0.4,0.5,0.1))

flat.mix 69

flat.mix Default procedure to fill slots d,p,q given r for Lebesgue decomposed
distributions

Description

function to do get empirical density, cumulative distribution and quantile function from random
numbers

Usage

flat.mix(object)

Arguments

object object of class UnivariateMixingDistribution

Details

flat.mix generates 10e random numbers, by default

e = RtoDPQ.e

. Replicates are assumed to be part of the discrete part, unique values to be part of the a.c.
part of the distribution. For the replicated ones, we generate a discrete distribution by a call to
DiscreteDistribution. The a.c. density is formed on the basis of n points using approxfun and
density (applied to the unique values), by default

n = DefaultNrGridPoints

. The cumulative distribution function is based on all random variables, and, as well as the quantile
function, is also created on the basis of n points using approxfun and ecdf. Of course, the results
are usually not exact as they rely on random numbers.

Value

flat.mix returns an object of class UnivarLebDecDistribution.

Note

Use RtoDPQ for absolutely continuous and RtoDPQ.d for discrete distributions.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

UnivariateDistribution-class, density, approxfun, ecdf

70 FParameter-class

Examples

D1 <- Norm()
D2 <- Pois(1)
D3 <- Binom(1,.4)
D4 <- UnivarMixingDistribution(D1,D2,D3, mixCoeff = c(0.4,0.5,0.1),

withSimplify = FALSE)
D <- UnivarMixingDistribution(D1,D4,D1,D2, mixCoeff = c(0.4,0.3,0.1,0.2),

withSimplify = FALSE)
D
D0<-flat.mix(D)
D0
plot(D0)

FParameter-class Class "FParameter"

Description

The parameter of a F distribution, used by Fd-class

Objects from the Class

Objects can be created by calls of the form new("FParameter", df1, df2, ncp). Usually an object
of this class is not needed on its own, it is generated automatically when an object of the class Fd is
instantiated.

Slots

df1 Object of class "numeric": the degrees of freedom of the nominator of an F distribution

df2 Object of class "numeric": the degrees of freedom of the denominator of an F distribution

ncp Object of class "numeric": the noncentrality parameter of an F distribution

name Object of class "character": a name / comment for the parameters

Extends

Class "Parameter", directly.

Methods

initialize signature(.Object = "FParameter"): initialize method

df1 signature(object = "FParameter"): returns the slot df1 of the parameter of the distribution

df1<- signature(object = "FParameter"): modifies the slot df1 of the parameter of the distri-
bution

df2 signature(object = "FParameter"): returns the slot df2 of the parameter of the distribution

df2<- signature(object = "FParameter"): modifies the slot df2 of the parameter of the distri-
bution

Gammad-class 71

ncp signature(object = "FParameter"): returns the slot ncp of the parameter of the distribution

ncp<- signature(object = "FParameter"): modifies the slot ncp of the parameter of the distri-
bution

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Fd-class Parameter-class

Examples

W <- new("FParameter", df1 = 1, df2 = 1, ncp = 0)
df2(W) # df2 of this distribution is 1.
df2(W) <- 2 # df2 of this distribution is now 2.

Gammad-class Class "Gammad"

Description

The Gammad distribution with parameters shape = α, by default = 1, and scale = σ, by default =
1, has density

d(x) =
1

σαΓ(α)
xα−1e−x/σ

for x > 0, α > 0 and σ > 0. The mean and variance are E(X) = ασ and V ar(X) = ασ2. C.f.
rgamma

Objects from the Class

Objects can be created by calls of the form Gammad(scale, shape). This object is a gamma distri-
bution.

Slots

img Object of class "Reals": The space of the image of this distribution has got dimension 1 and
the name "Real Space".

param Object of class "GammaParameter": the parameter of this distribution (scale and shape),
declared at its instantiation

r Object of class "function": generates random numbers (calls function rgamma)

d Object of class "function": density function (calls function dgamma)

72 Gammad-class

p Object of class "function": cumulative function (calls function pgamma)

q Object of class "function": inverse of the cumulative function (calls function qgamma)

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "ExpOrGammaOrChisq", directly.
Class "AbscontDistribution", by class "ExpOrGammaOrChisq".
Class "UnivariateDistribution", by class "AbscontDistribution".
Class "Distribution", by class "UnivariateDistribution".

Methods

initialize signature(.Object = "Gammad"): initialize method

scale signature(object = "Gammad"): returns the slot scale of the parameter of the distribution

scale<- signature(object = "Gammad"): modifies the slot scale of the parameter of the distri-
bution

shape signature(object = "Gammad"): returns the slot shape of the parameter of the distribution

shape<- signature(object = "Gammad"): modifies the slot shape of the parameter of the distri-
bution

+ signature(e1 = "Gammad", e2 = "Gammad"): For the Gamma distribution we use its closedness
under convolutions.

* signature(e1 = "Gammad", e2 = "numeric"): For the Gamma distribution we use its closed-
ness under positive scaling transformations.

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

GammaParameter-class AbscontDistribution-class Reals-class rgamma

GammaParameter-class 73

Examples

G <- Gammad(scale=1,shape=1) # G is a gamma distribution with scale=1 and shape=1.
r(G)(1) # one random number generated from this distribution, e.g. 0.1304441
d(G)(1) # Density of this distribution is 0.3678794 for x=1.
p(G)(1) # Probability that x<1 is 0.6321206.
q(G)(.1) # Probability that x<0.1053605 is 0.1.
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
scale(G) # scale of this distribution is 1.
scale(G) <- 2 # scale of this distribution is now 2.

GammaParameter-class Class "GammaParameter"

Description

The parameter of a gamma distribution, used by Gammad-class

Objects from the Class

Objects can be created by calls of the form new("GammaParameter", shape, scale). Usually an
object of this class is not needed on its own, it is generated automatically when an object of the
class Gammad is instantiated.

Slots

shape Object of class "numeric": the shape of a Gamma distribution

scale Object of class "numeric": the scale of a Gamma distribution

name Object of class "character": a name / comment for the parameters

Extends

Class "Parameter", directly.

Methods

initialize signature(.Object = "GammaParameter"): initialize method

scale signature(object = "GammaParameter"): returns the slot scale of a parameter of a Gamma
distribution

scale<- signature(object = "GammaParameter"): modifies the slot scale of a parameter of a
Gamma distribution

shape signature(object = "GammaParameter"): returns the slot shape of a parameter of a Gamma
distribution

shape<- signature(object = "GammaParameter"): modifies the slot shape of a parameter of a
Gamma distribution

74 gaps-methods

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Gammad-class Parameter-class

Examples

W <- new("GammaParameter",scale=1,shape=1)
shape(W) # shape of this distribution is 1.
shape(W) <- 2 # shape of this distribution is now 2.

gaps-methods Methods for Functions gaps and setgaps in Package ‘distr’

Description

[set]gaps-methods

Usage

gaps(object)
gaps(object)
gaps(object) <- value
setgaps(object, ...)
S4 method for signature 'AbscontDistribution'
gaps(object)
S4 method for signature 'AbscontDistribution'
setgaps(object, exactq = 6,

ngrid = 50000, ...)

Arguments

object object of class "AbscontDistribution" (or subclasses)

... further arguments to be passed to setgaps; not yet used.

value n × 2 matrix m of numerics where c(t(m)) is an ordered vector; value to be
assigned to slot gaps

exactq density values smaller than 10−exactq are considered as 0.

ngrid number of gridpoints at which the density is evaluated.

Geom-class 75

Methods

gaps signature(object = "AbscontDistribution"): returns slot gaps of an absolutely contin-
uous distribution

setgaps signature(object = "AbscontDistribution"): tries to find out the gaps (where d(object)
is approximately 0) and fills slot gaps of object correspondingly

setgaps signature(object = "UnivarMixingDistribution"): for each mixing component, if it
has a slot gaps, tries to find out the gaps and fills slot gaps of the component correspondingly,
and, subsequently merges all found gap-slots of the components to a gap-slot for the object,
using internal function .mergegaps2.

gaps<- signature(object = "AbscontDistribution"): modifies slot gaps of an absolutely con-
tinuous distribution

Geom-class Class "Geom"

Description

The geometric distribution with prob = p has density

p(x) = p(1− p)
x

for x = 0, 1, 2, . . .

C.f. rgeom

Objects from the Class

Objects can be created by calls of the form Geom(prob). This object is a geometric distribution.

Slots

img Object of class "Naturals": The space of the image of this distribution has got dimension 1
and the name "Natural Space".

param Object of class "NbinomParameter": the parameter of this distribution (prob), declared at
its instantiation (size=1)

r Object of class "function": generates random numbers (calls function rgeom)

d Object of class "function": density function (calls function dgeom)

p Object of class "function": cumulative function (calls function pgeom)

q Object of class "function": inverse of the cumulative function (calls function qgeom). The
quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distribution
function.

support Object of class "numeric": a (sorted) vector containing the support of the discrete density
function

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

76 Geom-class

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "DiscreteDistribution", directly.
Class "Nbinom", directly.
Class "UnivariateDistribution", by class "DiscreteDistribution".
Class "Distribution", by class "DiscreteDistribution".

Contains-Relations

By means of a contains argument in the class declaration, R “knows” that a distribution object
obj of class "Geom" also is a negative Binomial distribution with parameters size = 1, prob =
prob(obj)

Methods

initialize signature(.Object = "Geom"): initialize method

prob signature(object = "Geom"): returns the slot prob of the parameter of the distribution

prob<- signature(object = "Geom"): modifies the slot prob of the parameter of the distribution

Note

Working with a computer, we use a finite interval as support which carries at least mass 1-getdistrOption("TruncQuantile").

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Nbinom-class GeomParameter-class DiscreteDistribution-class Naturals-class rgeom

Examples

G <- Geom(prob = 0.5) # G is a geometric distribution with prob = 0.5.
r(G)(1) # one random number generated from this distribution, e.g. 0
d(G)(1) # Density of this distribution is 0.25 for x = 1.
p(G)(1) # Probability that x<1 is 0.75.
q(G)(.1) # x = 0 is the smallest value x such that p(G)(x) >= 0.1.

getLabel 77

in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
prob(G) # prob of this distribution is 0.5.
prob(G) <- 0.6 # prob of this distribution is now 0.6.
as(G,"Nbinom")
G+G+G

getLabel Labels for distribution objects

Description

a help function to get reasonable labels for distribution objects

Usage

getLabel(x, withnames = TRUE)

Arguments

x a distribution object

withnames logical: are the parameters (if any) of x to be displayed with names?

Remark

The need for this helper function (external to our plot methods) was brought to our attention in a
mail by Kouros Owzar <owzar001@mc.duke.edu>.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

plot-methods

Examples

example due to Kouros Owzar:
foo<- function(law,n, withnames = TRUE)

{
data.frame(muhat=mean(r(law)(n)),n=n,law= getLabel(law,withnames))

}
a function that groups certain informations on
created with distribution objects
do.call("rbind",lapply(list(Exp(1),Norm(0,1),Weibull(1,1)),foo,n=100))
do.call("rbind",lapply(list(Exp(1),Norm(0,1),Weibull(1,1)),foo,n=100,FALSE))

78 getLow,getUp

getLow,getUp getLow, getUp functions of package distr

Description

getLow, getUp return lower and upper endpoint of a distribution — truncated to lower/upper TruncQuantile
if infinite; in case of an object of class "LatticeDistribution" with infinite lattice length, we
search for the smallest/largest point in the lattice which is returned by succesive halving of x=0.5
in q(object)(x, lower.tail) for lower.tail TRUE resp. false.

Usage

S4 method for signature 'AbscontDistribution'
getUp(object,

eps = getdistrOption("TruncQuantile"))
S4 method for signature 'DiscreteDistribution'
getUp(object, ...)
S4 method for signature 'LatticeDistribution'
getUp(object, ...)
S4 method for signature 'UnivarLebDecDistribution'
getUp(object,

eps = getdistrOption("TruncQuantile"))
S4 method for signature 'UnivarMixingDistribution'
getUp(object,

eps = getdistrOption("TruncQuantile"))
S4 method for signature 'AbscontDistribution'
getLow(object,

eps = getdistrOption("TruncQuantile"))
S4 method for signature 'DiscreteDistribution'
getLow(object, ...)
S4 method for signature 'LatticeDistribution'
getLow(object, ...)
S4 method for signature 'UnivarLebDecDistribution'
getLow(object,

eps = getdistrOption("TruncQuantile"))
S4 method for signature 'UnivarMixingDistribution'
getLow(object,

eps = getdistrOption("TruncQuantile"))

Arguments

object a distribution object

eps truncation point (numeric)

... for convenience only; makes it possible to call getLow, getUp with argument
eps no matter of the class of object; is ignored in these functions.

Huberize-methods 79

Value

getLow, getUp a numeric of length 1

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

Huberize-methods Methods for function Huberize in Package ‘distr’

Description

Huberize-methods

Usage

Huberize(object, ...)
S4 method for signature 'AcDcLcDistribution'
Huberize(object,lower,upper,

withSimplify = getdistrOption("simplifyD"))

Arguments

object distribution object
... further arguments for Huberize; takes up lower, upper, withSimplify.
lower numeric; lower truncation point
upper numeric; upper truncation point
withSimplify logical; is result to be piped through a call to simplifyD?

Value

the corresponding distribution of the truncated random variable

Methods

Huberize signature(object = "AcDcLcDistribution"): returns the unconditioned distribution
of min(upper,max(X,lower)), if X is distributed according to object; the result is of class
"UnivarLebDecDistribution" in general.

See Also

Truncate

Examples

Hub <- Huberize(Norm(),lower=-1,upper=2)
Hub
plot(Hub)

80 Hyper-class

Hyper-class Class "Hyper"

Description

The hypergeometric distribution is used for sampling without replacement. The density of this
distribution with parameters m, n and k (named Np, N − Np, and n, respectively in the reference
below) is given by

p(x) =

(
m

x

)(
n

k − x

)/(
m+ n

k

)
for x = 0, . . . , k. C.f. rhyper

Objects from the Class

Objects can be created by calls of the form Hyper(m, n, k). This object is a hypergeometric distri-
bution.

Slots

img Object of class "Naturals": The space of the image of this distribution has got dimension 1
and the name "Natural Space".

param Object of class "HyperParameter": the parameter of this distribution (m, n, k), declared at
its instantiation

r Object of class "function": generates random numbers (calls function rhyper)
d Object of class "function": density function (calls function dhyper)
p Object of class "function": cumulative function (calls function phyper)
q Object of class "function": inverse of the cumulative function (calls function qhyper). The

α-quantile is defined as the smallest value x such that p(x) ≥ α], where p is the cumulative
function.

support: Object of class "numeric": a (sorted) vector containing the support of the discrete den-
sity function

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "DiscreteDistribution", directly.
Class "UnivariateDistribution", by class "DiscreteDistribution".
Class "Distribution", by class "DiscreteDistribution".

HyperParameter-class 81

Methods

initialize signature(.Object = "Hyper"): initialize method

m signature(object = "Hyper"): returns the slot m of the parameter of the distribution

m<- signature(object = "Hyper"): modifies the slot m of the parameter of the distribution

n signature(object = "Hyper"): returns the slot n of the parameter of the distribution

n<- signature(object = "Hyper"): modifies the slot n of the parameter of the distribution

k signature(object = "Hyper"): returns the slot k of the parameter of the distribution

k<- signature(object = "Hyper"): modifies the slot k of the parameter of the distribution

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

HyperParameter-class DiscreteDistribution-class Naturals-class rhyper

Examples

H <- Hyper(m=3,n=3,k=3) # H is a hypergeometric distribution with m=3,n=3,k=3.
r(H)(1) # one random number generated from this distribution, e.g. 2
d(H)(1) # Density of this distribution is 0.45 for x=1.
p(H)(1) # Probability that x<1 is 0.5.
q(H)(.1) # x=1 is the smallest value x such that p(H)(x)>=0.1.
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
m(H) # m of this distribution is 3.
m(H) <- 2 # m of this distribution is now 2.

HyperParameter-class Class "HyperParameter"

Description

The parameter of a hypergeometric distribution, used by Hyper-class

Objects from the Class

Objects can be created by calls of the form new("HyperParameter", k, m, n). Usually an object
of this class is not needed on its own, it is generated automatically when an object of the class Hyper
is instantiated.

82 HyperParameter-class

Slots

k Object of class "numeric": k of a hypergeometric distribution

m Object of class "numeric": m of a hypergeometric distribution

n Object of class "numeric": n of a hypergeometric distribution

name Object of class "character": a name / comment for the parameters

Extends

Class "Parameter", directly.

Methods

initialize signature(.Object = "HyperParameter"): initialize method

k signature(object = "HyperParameter"): returns the slot k of the parameter of the distribution

k<- signature(object = "HyperParameter"): modifies the slot k of the parameter of the distri-
bution

m signature(object = "HyperParameter"): returns the slot m of the parameter of the distribu-
tion

m<- signature(object = "HyperParameter"): modifies the slot m of the parameter of the distri-
bution

n signature(object = "HyperParameter"): returns the slot n of the parameter of the distribution

n<- signature(object = "HyperParameter"): modifies the slot n of the parameter of the distri-
bution

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Hyper-class Parameter-class

Examples

W <- new("HyperParameter",k=3, m=3, n=3)
m(W) # m of this distribution is 3.
m(W) <- 2 # m of this distribution is now 2.

igamma 83

igamma Inverse of the digamma function

Description

Function igamma is a numerical inverse of digamma.

Usage

igamma(v)

Arguments

v a numeric in the range [-100000,18]

Details

igamma is vectorized; it is won by spline inversion of a grid; it works well for range [digamma(1e-
5);digamma(1e8)] or [-100000,18].

Value

igamma(x) is a value u such that digamma(u is approximately x.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

digamma

Examples

igamma(digamma(c(1e-4,1,20,1e8)))

img-methods Methods for Function img in Package ‘distr’

Description

img-methods

Methods

img signature(object = "Distribution"): returns the image space / domain of the distribution

84 lambda-methods

k-methods Methods for Function k in Package ‘distr’

Description

k-methods

Methods

k signature(object = "HyperParameter"): returns the slot k of the parameter of the distribution

k<- signature(object = "HyperParameter"): modifies the slot k of the parameter of the distri-
bution

k signature(object = "Hyper"): returns the slot k of the parameter of the distribution

k<- signature(object = "Hyper"): modifies the slot k of the parameter of the distribution

lambda-methods Methods for Function lambda in Package ‘distr’

Description

lambda-methods

Methods

lambda signature(object = "PoisParameter"): returns the slot lambda of the parameter of the
distribution

lambda<- signature(object = "PoisParameter"): modifies the slot lambda of the parameter
of the distribution

lambda signature(object = "Pois"): returns the slot lambda of the parameter of the distribu-
tion

lambda<- signature(object = "Pois"): modifies the slot lambda of the parameter of the distri-
bution

Lattice-class 85

Lattice-class Class "Lattice"

Description

Class Lattice formalizes an affine linearly generated grid of (support) points pivot + (0:(Length-1))
* width; this is used for subclass LatticeDistribution of class DiscreteDistribution which
in addition to the latter contains a slot lattice of class Lattice.

Usage

Lattice(pivot = 0, width = 1, Length = 2, name = "a lattice")

Arguments

pivot the (finite) utmost left or right value of the lattice
width the (finite) grid-width; if negative the lattice is expanded to the left, else to the

right
Length the (possibly infinite) length of the lattice
name the (possibly empty) name of the lattice (inherited from class rSpace)

Objects from the Class

Objects may be generated by calling the generating function Lattice.

Slots

pivot Object of class "numeric": — the pivot of the lattice; must be of length 1
width Object of class "numeric": — the width of the lattice; must be of length 1 and must not be

0
Length Object of class "numeric": — the width of the lattice; must be an integer > 0 of length 1
name Object of class "character": the name of the space, by default = "a lattice"

Extends

Class "rSpace", directly.

Methods

pivot signature(.Object = "Lattice"): returns the 'pivot' slot
pivot<- signature(.Object = "Lattice"): modifies the 'pivot' slot
width signature(.Object = "Lattice"): returns the 'width' slot
width<- signature(.Object = "Lattice"): modifies the 'width' slot
Length signature(.Object = "Lattice"): returns the 'Length' slot
Length<- signature(.Object = "Lattice"): modifies the 'Length' slot

86 LatticeDistribution

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

rSpace-class LatticeDistribution-class

Examples

L <- Lattice(pivot = 0, width = 1, Length = Inf, name = "the Naturals")
name(L)
pivot(L) <- 1 ### now starting from 1

LatticeDistribution Class "LatticeDistribution"

Description

The LatticeDistribution-class is the mother-class of the classes Binom, Dirac, Geom, Hyper,
Nbinom and Poisson. It formalizes a distribution on a regular affine linear lattice.

Usage

LatticeDistribution(lattice = NULL, supp = NULL, prob = NULL,
.withArith = FALSE, .withSim = FALSE,
DiscreteDistribution = NULL, check = TRUE,
Symmetry = NoSymmetry())

Arguments

DiscreteDistribution

an object of class DiscreteDistribution or AffLinDiscreteDistribution
to be coerced to LatticeDistribution or AffLinLatticeDistribution, re-
spectively

lattice lattice (of class Lattice) which determines the support of the discrete distribu-
tion.

supp numeric vector which forms the support of the discrete distribution.

prob vector of probability weights for the elements of supp.

.withArith normally not set by the user, but if determining the entries supp, prob distribu-
tional arithmetics was involved, you may set this to TRUE.

.withSim normally not set by the user, but if determining the entries supp, prob simula-
tions were involved, you may set this to TRUE.

check logical: if TRUE, LatticeDistribution() throws an error if argument lattice
and other arguments are inconsistent or if there is no way to automatically gener-
ate a lattice argument. If check == FALSE, LatticeDistribution() returns
an object of DiscreteDistribution, ignoring argument lattice

LatticeDistribution 87

Symmetry you may help R in calculations if you tell it whether the distribution is non-
symmetric (default) or symmetric with respect to a center; in this case use
Symmetry=SphericalSymmetry(center).

Details

Typical usages are

LatticeDistribution(DiscreteDistribution)
LatticeDistribution(lattice, DiscreteDistribution)
LatticeDistribution(lattice, supp, prob, .withArith, .withSim, check = FALSE)
LatticeDistribution(lattice, supp, prob)
LatticeDistribution(supp)

For the generating function LatticeDistribution(), the arguments are processed in the follow-
ing order:
Arguments .withSim and .withArith are used in any case.
If there is an argument DiscreteDistribution (of the respective class), all its slots (except for
.withSim and .withArith) will be used for filling the slots of the object of class LatticeDistribution()/AffLinLatticeDistribution().
If in addition, there is an argument lattice of class Lattice, it will be checked for consistency
with argument DiscreteDistribution and if oK will be used for slot lattice of the object of class
LatticeDistribution()/AffLinLatticeDistribution(). In case there is no lattice argu-
ment, slot lattice will be constructed from slot support from argument DiscreteDistribution.
If there is no argument DiscreteDistribution, but there are arguments supp and lattice (the
latter of class Lattice) then these are checked for consistency and if oK, generating function
DiscreteDistribution() is called with arguments supp, prob, .withArith, and .withSim to
produce an object of class DiscreteDistribution the slots of which will be used for the filling
the slots of the object of class LatticeDistribution()/AffLinLatticeDistribution(). If in
this case, argument prob is not given explicitely, all elements in supp are equally weighted.
If there is no argument DiscreteDistribution, but there is an argument lattice of class Lattice
(but no argument slot) then if Length(lattice) is finite, a corresponding support vector supp
is generated from argument lattice and generating function DiscreteDistribution() is called
with arguments supp, prob, .withArith, and .withSim to produce an object of class DiscreteDistribution
the slots of which will be used for the filling the slots of the object of class LatticeDistribution().
If in the same situation Length(lattice) is not finite, a finite length for the support vector is ex-
tracted from argument prob and after generating supp one procedes as in the finite Length(lattice)
case.
If there is no argument DiscreteDistribution and no argument lattice of class Lattice but an
argument supp then it will be checked if supp makes for a lattice, and if so, DiscreteDistribution()
is called with arguments supp, prob, .withArith, and .withSim to produce an object of class
DiscreteDistribution the slots of which will be used for the filling the slots of the object of class
LatticeDistribution(). The corresponding lattice-slot will be filled with information from
argument supp.
The price for this flexibility of arguments, LatticeDistribution() may be called with, is that you
should call LatticeDistribution() with named arguments only.
Note that internally we suppress lattice points from the support where the probability is 0.

88 LatticeDistribution-class

Objects from the Class

The usual way to generate objects of class LatticeDistribution is to call the generating function
LatticeDistribution() (see details).
Somewhat more flexible, but also proner to inconsistencies is a call to new("LatticeDistribution"),
where you may explicitly specify random number generator, (counting) density, cumulative distri-
bution and quantile functions. For conveniance, in this call to new("LatticeDistribution"), an
additional possibility is to only specify the random number generator. The function RtoDPQ.d then
approximates the three remaining slots d, p and q by random sampling.

Note

Working with a computer, we use a finite interval as support which carries at least mass 1-getdistrOption("TruncQuantile").

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

Parameter-class Lattice-class LatticeDistribution-class Reals-class RtoDPQ.d

Examples

LatticeDistribution(DiscreteDistribution = DiscreteDistribution(supp =
c(4,3,2), prob=c(0.3,0.1,0.6)))

LatticeDistribution(supp = c(4,3,2))

LatticeDistribution-class

Class "LatticeDistribution"

Description

The LatticeDistribution-class is the mother-class of the classes Binom, Dirac, Geom, Hyper,
Nbinom and Poisson. It formalizes a distribution on a regular affine linear lattice.

Objects from the Class

The usual way to generate objects of class LatticeDistribution is to call the generating function
LatticeDistribution.
Somewhat more flexible, but also proner to inconsistencies is a call to new("LatticeDistribution"),
where you may explicitly specify random number generator, (counting) density, cumulative distri-
bution and quantile functions. For conveniance, in this call to new("LatticeDistribution"), an
additional possibility is to only specify the random number generator. The function RtoDPQ.d then
approximates the three remaining slots d, p and q by random sampling.

LatticeDistribution-class 89

Slots

img Object of class "Reals": the space of the image of this distribution which has dimension 1 and
the name "Real Space"

param Object of class "Parameter": the parameter of this distribution, having only the slot name
"Parameter of a discrete distribution"

r Object of class "function": generates random numbers

d Object of class "function": (counting) density/probability function

p Object of class "function": cumulative distribution function

q Object of class "function": quantile function

support Object of class "numeric": a (sorted) vector containing the support of the discrete density
function

lattice Object of class "Lattice": the lattice generating the support.

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "UnivariateDistribution", directly.
Class "Distribution", by class "UnivariateDistribution".

Methods

initialize signature(.Object = "LatticeDistribution"): initialize method

- signature(e1 = "LatticeDistribution"): application of ‘-’ to this lattice distribution

* signature(e1 = "LatticeDistribution", e2 = "numeric"): multiplication of this lattice dis-
tribution by an object of class ‘numeric’

/ signature(e1 = "LatticeDistribution", e2 = "numeric"): division of this lattice distribu-
tion by an object of class ‘numeric’

+ signature(e1 = "LatticeDistribution", e2 = "numeric"): addition of this lattice distribu-
tion to an object of class ‘numeric’

- signature(e1 = "LatticeDistribution", e2 = "numeric"): subtraction of an object of class
‘numeric’ from this lattice distribution

* signature(e1 = "numeric", e2 = "LatticeDistribution"): multiplication of this lattice dis-
tribution by an object of class ‘numeric’

+ signature(e1 = "numeric", e2 = "LatticeDistribution"): addition of this lattice distribu-
tion to an object of class ‘numeric’

90 LatticeDistribution-class

- signature(e1 = "numeric", e2 = "LatticeDistribution"): subtraction of this lattice distri-
bution from an object of class ‘numeric’

+ signature(e1 = "LatticeDistribution", e2 = "LatticeDistribution"): Convolution of two
lattice distributions. Slots p, d and q are approximated by grids.

- signature(e1 = "LatticeDistribution", e2 = "LatticeDistribution"): Convolution of two
lattice distributions. The slots p, d and q are approximated by grids.

sqrt signature(x = "LatticeDistribution"): exact image distribution of sqrt(x).

lattice accessor method to the corresponding slot.

coerce signature(from = "LatticeDistribution", to = "DiscreteDistribution"): coerces
an object from "LatticeDistribution" to "DiscreteDistribution" thereby cancelling
out support points with probability 0.

Internal subclass "AffLinLatticeDistribution"

To enhance accuracy of several functionals on distributions, mainly from package distrEx, there is
an internally used (but exported) subclass "AffLinLatticeDistribution" which has extra slots
a, b (both of class "numeric"), and X0 (of class "LatticeDistribution"), to capture the fact that
the object has the same distribution as a * X0 + b. This is the class of the return value of methods

- signature(e1 = "LatticeDistribution")

* signature(e1 = "LatticeDistribution", e2 = "numeric")

/ signature(e1 = "LatticeDistribution", e2 = "numeric")

+ signature(e1 = "LatticeDistribution", e2 = "numeric")

- signature(e1 = "LatticeDistribution", e2 = "numeric")

* signature(e1 = "numeric", e2 = "LatticeDistribution")

+ signature(e1 = "numeric", e2 = "LatticeDistribution")

- signature(e1 = "numeric", e2 = "LatticeDistribution")

- signature(e1 = "AffLinLatticeDistribution")

* signature(e1 = "AffLinLatticeDistribution", e2 = "numeric")

/ signature(e1 = "AffLinLatticeDistribution", e2 = "numeric")

+ signature(e1 = "AffLinLatticeDistribution", e2 = "numeric")

- signature(e1 = "AffLinLatticeDistribution", e2 = "numeric")

* signature(e1 = "numeric", e2 = "AffLinLatticeDistribution")

+ signature(e1 = "numeric", e2 = "AffLinLatticeDistribution")

- signature(e1 = "numeric", e2 = "AffLinLatticeDistribution")

There is also an explicit coerce-method from class "AffLinLatticeDistribution" to class "AffLinDiscreteDistribution"
which cancels out support points with probability 0.

Note

Working with a computer, we use a finite interval as support which carries at least mass 1-getdistrOption("TruncQuantile").

Length-methods 91

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

LatticeDistribution Parameter-class Lattice-class UnivariateDistribution-class DiscreteDistribution-class
Binom-class Dirac-class Geom-class Hyper-class Nbinom-class Pois-class AbscontDistribution-class
Reals-class RtoDPQ.d

Examples

B <- Binom(prob = 0.1,size = 10) # B is a Binomial distribution w/ prob=0.1 and size=10.
P <- Pois(lambda = 1) # P is a Poisson distribution with lambda = 1.
D1 <- B+1 # a new Lattice distributions with exact slots d, p, q
D2 <- D1*3 # a new Lattice distributions with exact slots d, p, q
D3 <- B+P # a new Lattice distributions with approximated slots d, p, q
D4 <- D1+P # a new Lattice distributions with approximated slots d, p, q
support(D4) # the (approximated) support of this distribution is 1, 2, ..., 21
r(D4)(1) # one random number generated from this distribution, e.g. 4
d(D4)(1) # The (approximated) density for x=1 is 0.1282716.
p(D4)(1) # The (approximated) probability that x<=1 is 0.1282716.
q(D4)(.5) # The (approximated) 50 percent quantile is 3.
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)

Length-methods Methods for Function Length in Package ‘distr’

Description

Length-methods

Methods

Length signature(object = "Lattice"): returns the slot Length of the lattice

Length<- signature(object = "Lattice"): modifies the slot Length of the lattice

Length signature(object = "LatticeDistribution"): returns the slot Length of the lattice
slot of the distribution

Length<- signature(object = "LatticeDistribution"): modifies the slot Length of the lat-
tice slot of the distribution

92 liesInSupport

liesIn-methods Methods for Function liesIn in Package ‘distr’

Description

liesIn-methods

Methods

liesIn signature(object = "EuclideanSpace", x = "numeric"):
Does a particular vector lie in this space or not?

liesIn signature(object = "Naturals", x = "numeric"):
Does a particular vector only contain naturals?

liesInSupport Generic Function for Testing the Support of a Distribution

Description

The function tests if x lies in the support of the distribution object.

Usage

liesInSupport(object, x, ...)
S4 method for signature 'UnivarLebDecDistribution,numeric'
liesInSupport(object,x, checkFin = FALSE)
S4 method for signature 'UnivarMixingDistribution,numeric'
liesInSupport(object,x, checkFin = FALSE)
S4 method for signature 'LatticeDistribution,numeric'
liesInSupport(object,x, checkFin = FALSE)
S4 method for signature 'DiscreteDistribution,numeric'
liesInSupport(object,x, checkFin = FALSE)
S4 method for signature 'AbscontDistribution,numeric'
liesInSupport(object,x, checkFin = FALSE)
S4 method for signature 'Distribution,matrix'
liesInSupport(object,x, checkFin = FALSE)
S4 method for signature 'ExpOrGammaOrChisq,numeric'
liesInSupport(object,x, checkFin = TRUE)
S4 method for signature 'Lnorm,numeric'
liesInSupport(object,x, checkFin = TRUE)
S4 method for signature 'Fd,numeric'
liesInSupport(object,x, checkFin = TRUE)
S4 method for signature 'Norm,numeric'
liesInSupport(object,x, checkFin = TRUE)

liesInSupport 93

S4 method for signature 'DExp,numeric'
liesInSupport(object,x, checkFin = TRUE)
S4 method for signature 'Cauchy,numeric'
liesInSupport(object,x, checkFin = TRUE)
S4 method for signature 'Td,numeric'
liesInSupport(object,x, checkFin = TRUE)
S4 method for signature 'Logis,numeric'
liesInSupport(object,x, checkFin = TRUE)
S4 method for signature 'Weibull,numeric'
liesInSupport(object,x, checkFin = TRUE)
S4 method for signature 'Unif,numeric'
liesInSupport(object,x, checkFin = TRUE)
S4 method for signature 'Beta,numeric'
liesInSupport(object,x, checkFin = TRUE)

Arguments

object object of class "Distribution"

x numeric vector or matrix

checkFin logical: in case FALSE, we simply check whether x lies in the numerical (i.e.,
possibly cut to relevant quantile range) support; in case TRUE we try to check
this by more exact techniques (e.g. in case of lattice distributions) and by using
slot .finSupport / the return values of q.l(object) in 0 and 1. This is only
used on discrete (parts of) distributions).

... used for specific arguments to particular methods.

Value

logical vector

Methods

object = "DiscreteDistribution", x = "numeric": We return a logical vector of the same length
as x with TRUE when x lies in the support of object. As support we use the value of
support(object), so this is possibly cut to relevant quantile ranges. In case checkFin is
TRUE, in addition, we flag those coordinates to TRUE where x < min(support(object)) if
is.na(object@.finSupport[1]) or object@.finSupport[1]==FALSE or q.l(object)(0)==-Inf,
and similarly, where x > max(support(object)) if is.na(object@.finSupport[2]) or object@.finSupport[2]==FALSE
or q.l(object)(1)==Inf. In addition we flag those coordinates to TRUE where q.l(object)(0)<=x<min(support(object))
if object@.finSupport[1]==TRUE and, similarly, where q.l(object)(1)>=x>max(support(object))
if object@.finSupport[2]==TRUE.

object = "Distribution", x = "matrix": Argument x is cast to vector and then the respective liesInSupport
method for vectors is called. The method throws an arror when the dispatch mechanism does
not find a suitable, applicable respective vector-method.

object = "AbscontDistribution", x = "numeric": We return a logical vector of the same length
as x with TRUE where q.l(object)(0)<=x<=q.l(object)(1) (and replace the boundary val-
ues by q.l(object)(10*.Machine$double.eps) resp. q.l(object)(1-10*.Machine$double.eps)
once the return values for 0 or 1 return are NaN.

94 Lnorm-class

object = "LatticeDistribution", x = "numeric": We return a logical vector of the same length
as x with TRUE when x lies in the support of object. As support we use the value of
support(object), so this is possibly cut to relevant quantile ranges. In case checkFin is
TRUE, we instead use the lattice information: We check whether all values (x-pivot(lattice(object))/width(lattice(object))
are non-negative integers and are non larger than Length(lattice(object))-1. In addition,
we flag those coordinates to TRUE where x < min(support(object)) if is.na(object@.finSupport[1])
or object@.finSupport[1]==FALSE, and similarly, where x > max(support(object)) if
is.na(object@.finSupport[2]) or object@.finSupport[2]==FALSE.

object = "UnivarLebDecDistribution", x = "numeric": We split up object into discrete and
absolutely continuous part and for each of them apply liesInSupport separately; the two
return values are combined by a coponentwise logical |.

object = "UnivarMixingDistribution", x = "numeric": We first cast object to UnivarLebDecDistribution
by flat.mix and then apply the respective method.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de> and Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

Distribution-class

Examples

liesInSupport(Exp(1), rnorm(10))

note
x <- rpois(10, lambda = 10)
liesInSupport(Pois(1), x)
better
liesInSupport(Pois(1), x, checkFin = TRUE)
liesInSupport(Pois(1), 1000*x, checkFin = TRUE)
liesInSupport(-10*Pois(1), -10*x+1, checkFin = TRUE)

xs = c(1000*x,runif(10))
D <- UnivarMixingDistribution(Pois(1),Unif())
liesInSupport(D, xs)

Lnorm-class Class "Lnorm"

Description

The log normal distribution has density

d(x) =
1√
2πσx

e−(log(x)−µ)2/2σ2

where µ, by default = 0, and σ, by default = 1, are the mean and standard deviation of the loga-
rithm. C.f. rlnorm

Lnorm-class 95

Objects from the Class

Objects can be created by calls of the form Lnorm(meanlog, sdlog). This object is a log normal
distribution.

Slots

img Object of class "Reals": The space of the image of this distribution has got dimension 1 and
the name "Real Space".

param Object of class "LnormParameter": the parameter of this distribution (meanlog and sdlog),
declared at its instantiation

r Object of class "function": generates random numbers (calls function rlnorm)

d Object of class "function": density function (calls function dlnorm)

p Object of class "function": cumulative function (calls function plnorm)

q Object of class "function": inverse of the cumulative function (calls function qlnorm)

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "AbscontDistribution", directly.
Class "UnivariateDistribution", by class "AbscontDistribution".
Class "Distribution", by class "AbscontDistribution".

Methods

initialize signature(.Object = "Lnorm"): initialize method

meanlog signature(object = "Lnorm"): returns the slot meanlog of the parameter of the distri-
bution

meanlog<- signature(object = "Lnorm"): modifies the slot meanlog of the parameter of the
distribution

sdlog signature(object = "Lnorm"): returns the slot sdlog of the parameter of the distribution

sdlog<- signature(object = "Lnorm"): modifies the slot sdlog of the parameter of the distribu-
tion

* signature(e1 = "Lnorm", e2 = "numeric"): For the Lognormal distribution we use its closed-
ness under positive scaling transformations.

96 LnormParameter-class

Note

The mean is E(X) = exp(µ+ 1/2σ2), and the variance V ar(X) = exp(2µ+ σ2)(exp(σ2)− 1)
and hence the coefficient of variation is

√
exp(σ2)− 1 which is approximately σ when that is small

(e.g., σ < 1/2).

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

LnormParameter-class AbscontDistribution-class Reals-class rlnorm

Examples

L <- Lnorm(meanlog=1,sdlog=1) # L is a lnorm distribution with mean=1 and sd=1.
r(L)(1) # one random number generated from this distribution, e.g. 3.608011
d(L)(1) # Density of this distribution is 0.2419707 for x=1.
p(L)(1) # Probability that x<1 is 0.1586553.
q(L)(.1) # Probability that x<0.754612 is 0.1.
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
meanlog(L) # meanlog of this distribution is 1.
meanlog(L) <- 2 # meanlog of this distribution is now 2.

LnormParameter-class Class "LnormParameter"

Description

The parameter of a log normal distribution, used by Lnorm-class

Objects from the Class

Objects can be created by calls of the form new("LnormParameter", meanlog, sdlog). Usually
an object of this class is not needed on its own, it is generated automatically when an object of the
class Lnorm is instantiated.

Slots

meanlog Object of class "numeric": the mean of a log normal distribution

sdlog Object of class "numeric": the sd of a log normal distribution

name Object of class "character": a name / comment for the parameters

location-methods 97

Extends

Class "Parameter", directly.

Methods

initialize signature(.Object = "LnormParameter"): initialize method

sdlog signature(object = "LnormParameter"): returns the slot sdlog of the parameter of the
distribution

sdlog<- signature(object = "LnormParameter"): modifies the slot sdlog of the parameter of
the distribution

meanlog signature(object = "LnormParameter"): returns the slot meanlog of the parameter of
the distribution

meanlog<- signature(object = "LnormParameter"): modifies the slot meanlog of the parame-
ter of the distribution

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Lnorm-class Parameter-class

Examples

W <- new("LnormParameter",sdlog=1,meanlog=0)
meanlog(W) # meanlog of this distribution is 0.
meanlog(W) <- 2 # meanlog of this distribution is now 2.

location-methods Methods for Function location in Package ‘distr’

Description

location-methods

Methods

location signature(object = "LogisParameter"): returns the slot location of the parameter
of the distribution

location<- signature(object = "LogisParameter"): modifies the slot location of the param-
eter of the distribution

98 Logis-class

location signature(object = "Logis"): returns the slot location of the parameter of the distri-
bution

location<- signature(object = "Logis"): modifies the slot location of the parameter of the
distribution

location signature(object = "CauchyParameter"): returns the slot location of the parameter
of the distribution

location<- signature(object = "CauchyParameter"): modifies the slot location of the param-
eter of the distribution

location signature(object = "Cauchy"): returns the slot location of the parameter of the dis-
tribution

location<- signature(object = "Cauchy"): modifies the slot location of the parameter of the
distribution

location signature(object = "DiracParameter"): returns the slot location of the parameter
of the distribution

location<- signature(object = "DiracParameter"): modifies the slot location of the param-
eter of the distribution

location signature(object = "Dirac"): returns the slot location of the parameter of the distri-
bution

location<- signature(object = "Dirac"): modifies the slot location of the parameter of the
distribution

Logis-class Class "Logis"

Description

The Logistic distribution with location = µ, by default = 0, and scale = σ, by default = 1, has
distribution function

p(x) =
1

1 + e−(x−µ)/σ

and density

d(x) =
1

σ

e(x−µ)/σ

(1 + e(x−µ)/σ)2

It is a long-tailed distribution with mean µ and variance π2/3σ2. C.f. rlogis

Objects from the Class

Objects can be created by calls of the form Logis(location, scale). This object is a logistic
distribution.

Logis-class 99

Slots

img Object of class "Reals": The space of the image of this distribution has got dimension 1 and
the name "Real Space".

param Object of class "LogisParameter": the parameter of this distribution (location and scale),
declared at its instantiation

r Object of class "function": generates random numbers (calls function rlogis)

d Object of class "function": density function (calls function dlogis)

p Object of class "function": cumulative function (calls function plogis)

q Object of class "function": inverse of the cumulative function (calls function qlogis)

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "AbscontDistribution", directly.
Class "UnivariateDistribution", by class "AbscontDistribution".
Class "Distribution", by class "AbscontDistribution".

Methods

initialize signature(.Object = "Logis"): initialize method

location signature(object = "Logis"): returns the slot location of the parameter of the distri-
bution

location<- signature(object = "Logis"): modifies the slot location of the parameter of the
distribution

scale signature(object = "Logis"): returns the slot scale of the parameter of the distribution

scale<- signature(object = "Logis"): modifies the slot scale of the parameter of the distribu-
tion

* signature(e1 = "Logis", e2 = "numeric")

+ signature(e1 = "Logis", e2 = "numeric"): For the logistic location scale family we use its
closedness under affine linear transformations.

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

100 LogisParameter-class

See Also

LogisParameter-class AbscontDistribution-class Reals-class rlogis

Examples

L <- Logis(location = 1,scale = 1)
L is a logistic distribution with location = 1 and scale = 1.
r(L)(1) # one random number generated from this distribution, e.g. 5.87557
d(L)(1) # Density of this distribution is 0.25 for x = 1.
p(L)(1) # Probability that x < 1 is 0.5.
q(L)(.1) # Probability that x < -1.197225 is 0.1.
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
location(L) # location of this distribution is 1.
location(L) <- 2 # location of this distribution is now 2.

LogisParameter-class Class "LogisParameter"

Description

The parameter of a logistic distribution, used by Logis-class

Objects from the Class

Objects can be created by calls of the form new("LogisParameter", scale, location). Usually
an object of this class is not needed on its own, it is generated automatically when an object of the
class Logis is instantiated.

Slots

scale Object of class "numeric": the scale of a logistic distribution
location Object of class "numeric": the location of a logistic distribution
name Object of class "character": a name / comment for the parameters

Extends

Class "Parameter", directly.

Methods

initialize signature(.Object = "LogisParameter"): initialize method
location signature(object = "LogisParameter"): returns the slot location of the parameter

of the distribution
location<- signature(object = "LogisParameter"): modifies the slot location of the param-

eter of the distribution
scale signature(object = "LogisParameter"): returns the slot scale of the parameter of the

distribution
scale<- signature(object = "LogisParameter"): modifies the slot scale of the parameter of

the distribution

m-methods 101

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Logis-class Parameter-class

Examples

W <- new("LogisParameter",location=0,scale=1)
scale(W) # scale of this distribution is 1.
scale(W) <- 2 # scale of this distribution is now 2.

m-methods Methods for Function m in Package ‘distr’

Description

m-methods

Methods

m signature(object = "HyperParameter"): returns the slot m of the parameter of the distribu-
tion

m<- signature(object = "HyperParameter"): modifies the slot m of the parameter of the dis-
tribution

m signature(object = "Hyper"): returns the slot m of the parameter of the distribution
m<- signature(object = "Hyper"): modifies the slot m of the parameter of the distribution

makeAbscontDistribution

"makeAbscontDistribution"

Description

Transforms an object of "UnivariateDistribution" to an object of class "makeAbscontDistribution".

Usage

makeAbscontDistribution(object, gaps = NULL,
param = NULL, img = NULL,

withgaps = getdistrOption("withgaps"),
ngrid = getdistrOption("DefaultNrGridPoints"),
ep = getdistrOption("TruncQuantile"))

102 Math-methods

Arguments

object Objects of class "UnivariateDistribution" (or subclasses)

gaps slot gaps (of class "matrix" with two columns) to be filled (i.e. t(gaps) must
be ordered if read as vector)

param parameter (of class "OptionalParameter")

img image range of the distribution (of class "rSpace")

withgaps logical; shall gaps be reconstructed empirically?

ngrid number of gridpoints

ep tolerance epsilon

Details

takes slot p of object and then generates an "AbscontDistribution" object using generating
function AbscontDistribution.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

Examples

Hu <- Huberize(Norm(), -2,1)
Hu
plot(Hu)
Hu0 <- makeAbscontDistribution(Hu)
Hu0
plot(Hu0)

Math-methods Methods for Functions from group ‘Math’ in Package ‘distr’

Description

Math-methods provide automatical generation of image distributions for random variables trans-
formed by functions from group Math

Methods

Math signature(x = "AbscontDistribution"): application of a mathematical function from
group Math, e.g. sin or exp (including log, log10, gamma, lgamma, digamma), to this abso-
lutely continouos distribution

Math signature(x = "DiscreteDistribution"): application of a mathematical function, e.g.
sin or exp (including log, log10, gamma, lgamma, digamma), to this discrete distribution

Math signature(x = "UnivarLebDecDistribution"): application of a mathematical function
from group Math, e.g. sin or exp (including log, log10, gamma, lgamma), to this Lebesgue
decomposed distribution

Max-methods 103

Math signature(x = "UnivarLebDecDistribution"): application of a mathematical function
from group Math, e.g. sin or exp (including log, log10, gamma, lgamma), to this distribution
of class "AcDcLcDistribution"

abs signature(x = "AbscontDistribution"): application of function abs to this absolutely con-
tinouos distribution; (exactly)

abs signature(x = "DiscreteDistribution"): application of function abs to this discrete dis-
tribution; (exactly)

sign signature(x = "AbscontDistribution"): application of function abs to this absolutely
continouos distribution; (exactly)

sign signature(x = "DiscreteDistribution"): application of function abs to this discrete con-
tinouos distribution; (exactly)

exp signature(x = "AbscontDistribution"): application of function exp to this absolutely
continouos distribution; (exactly)

exp signature(x = "DiscreteDistribution"): application of function exp to this discrete dis-
tribution; (exactly)

log signature(x = "AbscontDistribution"): application of function log to this absolutely con-
tinouos distribution; (exactly for R-version >2.5.1)

log signature(x = "DiscreteDistribution"): application of function log to this discrete dis-
tribution; (exactly for R-version >2.5.1)

Max-methods Methods for Function Max in Package ‘distr’

Description

Max-methods

Methods

Max signature(object = "UnifParameter"): returns the slot Max of the parameter of the distri-
bution

Max<- signature(object = "UnifParameter"): modifies the slot Max of the parameter of the
distribution

Max signature(object = "Unif"): returns the slot Max of the parameter of the distribution

Max<- signature(object = "Unif"): modifies the slot Max of the parameter of the distribution

104 meanlog-methods

mean-methods Methods for Function mean in Package ‘distr’

Description

mean-methods

Methods

mean signature(object = "NormParameter"): returns the slot mean of the parameter of the
distribution

mean<- signature(object = "NormParameter"): modifies the slot mean of the parameter of the
distribution

mean signature(object = "Norm"): returns the slot mean of the parameter of the distribution

mean<- signature(object = "Norm"): modifies the slot mean of the parameter of the distribution

meanlog-methods Methods for Function meanlog in Package ‘distr’

Description

meanlog-methods

Methods

meanlog signature(object = "LnormParameter"): returns the slot meanlog of the parameter of
the distribution

meanlog<- signature(object = "LnormParameter"): modifies the slot meanlog of the parame-
ter of the distribution

meanlog signature(object = "Lnorm"): returns the slot meanlog of the parameter of the distri-
bution

meanlog<- signature(object = "Lnorm"): modifies the slot meanlog of the parameter of the
distribution

Min-methods 105

Min-methods Methods for Function Min in Package ‘distr’

Description

Min-methods

Methods

Min signature(object = "UnifParameter"): returns the slot Min of the parameter of the distri-
bution

Min<- signature(object = "UnifParameter"): modifies the slot Min of the parameter of the
distribution

Min signature(object = "Unif"): returns the slot Min of the parameter of the distribution

Min<- signature(object = "Unif"): modifies the slot Min of the parameter of the distribution

Minimum-methods Methods for functions Minimum and Maximum in Package ‘distr’

Description

Minimum and Maximum-methods

Usage

Minimum(e1, e2, ...)
Maximum(e1, e2, ...)
S4 method for signature 'AbscontDistribution,AbscontDistribution'
Minimum(e1,e2, ...)
S4 method for signature 'DiscreteDistribution,DiscreteDistribution'
Minimum(e1,e2, ...)
S4 method for signature 'AbscontDistribution,Dirac'
Minimum(e1,e2,

withSimplify = getdistrOption("simplifyD"))
S4 method for signature 'AcDcLcDistribution,AcDcLcDistribution'
Minimum(e1,e2,

withSimplify = getdistrOption("simplifyD"))
S4 method for signature 'AcDcLcDistribution,AcDcLcDistribution'
Maximum(e1,e2,

withSimplify = getdistrOption("simplifyD"))
S4 method for signature 'AbscontDistribution,numeric'
Minimum(e1,e2, ...)
S4 method for signature 'DiscreteDistribution,numeric'
Minimum(e1,e2, ...)

106 Minimum-methods

S4 method for signature 'AcDcLcDistribution,numeric'
Minimum(e1,e2,

withSimplify = getdistrOption("simplifyD"))
S4 method for signature 'AcDcLcDistribution,numeric'
Maximum(e1,e2,

withSimplify = getdistrOption("simplifyD"))

Arguments

e1 distribution object

e2 distribution object or numeric

... further arguments (to be able to call various methods with the same arguments

withSimplify logical; is result to be piped through a call to simplifyD?

Value

the corresponding distribution of the minimum / maximum

Methods

Minimum signature(e1 = "AbscontDistribution", e2 = "AbscontDistribution"): returns
the distribution of min(X1,X2), if X1,X2 are independent and distributed according to e1 and
e2 respectively; the result is again of class "AbscontDistribution"

Minimum signature(e1 = "DiscreteDistribution", e2 = "DiscreteDistribution"): returns
the distribution of min(X1,X2), if X1,X2 are independent and distributed according to e1 and
e2 respectively; the result is again of class "DiscreteDistribution"

Minimum signature(e1 = "AbscontDistribution", e2 = "Dirac"): returns the distribution of
min(X1,X2), if X1,X2 are distributed according to e1 and e2 respectively; the result is of class
"UnivarLebDecDistribution"

Minimum signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution"): returns the
distribution of min(X1,X2), if X1,X2 are distributed according to e1 and e2 respectively; the
result is of class "UnivarLebDecDistribution"

Minimum signature(e1 = "AcDcLcDistribution", e2 = "numeric"): if e2 = n, returns the
distribution of min(X1,X2,...,Xn), if X1,X2, ..., Xn are i.i.d. according to e1; the result is
of class "UnivarLebDecDistribution"

Maximum signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution"): returns the
distribution of max(X1,X2), if X1,X2 are distributed according to e1 and e2 respectively; trans-
lates into -Minimum(-e1,-e2); the result is of class "UnivarLebDecDistribution"

Maximum signature(e1 = "AcDcLcDistribution", e2 = "numeric"): if e2 = n, returns the
distribution of max(X1,X2,...,Xn), if X1,X2, ..., Xn are i.i.d. according to e1; translates into
-Minimum(-e1,e2); the result is of class "UnivarLebDecDistribution"

See Also

Huberize, Truncate

n-methods 107

Examples

IGNORE_RDIFF_BEGIN
plot(Maximum(Unif(0,1), Minimum(Unif(0,1), Unif(0,1))))
plot(Minimum(Exp(4),4))
IGNORE_RDIFF_END

a sometimes lengthy example...
plot(Minimum(Norm(),Pois()))

n-methods Methods for Function n in Package ‘distr’

Description

n-methods

Methods

n signature(object = "HyperParameter"): returns the slot n of the parameter of the distribution

n<- signature(object = "HyperParameter"): modifies the slot n of the parameter of the distri-
bution

n signature(object = "Hyper"): returns the slot n of the parameter of the distribution

n<- signature(object = "Hyper"): modifies the slot n of the parameter of the distribution

name-methods Methods for Function name in Package ‘distr’

Description

name-methods

Methods

name signature(object = "Parameter"): returns the slot name of the parameter

name<- signature(object = "Parameter"): modifies the slot name of the parameter

name signature(object = "rSpace"): returns the slot name of the space

name<- signature(object = "rSpace"): modifies the slot name of the space

108 Naturals-class

Naturals-class Class "Naturals"

Description

The distribution-classes contain a slot where the sample space is stored. Typically, discrete random
variables take naturals as values.

Usage

Naturals()

Objects from the Class

Objects could theoretically be created by calls of the form new("Naturals", dimension, name).
Usually an object of this class is not needed on its own. It is generated automatically when a
univariate discrete distribution is instantiated.

Slots

dimension Object of class "character": the dimension of the space, by default = 1

name Object of class "character": the name of the space, by default = "Natural Space"

Extends

Class "Reals", directly.
Class "EuclideanSpace", by class "Reals".
Class "rSpace", by class "Reals".

Methods

initialize signature(.Object = "Naturals"): initialize method

liesIn signature(object = "Naturals", x = "numeric"): Does a particular vector only contain
naturals?

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Reals-class DiscreteDistribution-class

Nbinom-class 109

Examples

N <- Naturals()
liesIn(N,1) # TRUE
liesIn(N,c(0,1)) # FALSE
liesIn(N,0.1) # FALSE

Nbinom-class Class "Nbinom"

Description

The negative binomial distribution with size = n, by default = 1, and prob = p, by default = 0.5,
has density

d(x) =
Γ(x+ n)

Γ(n)x!
pn(1− p)x

for x = 0, 1, 2, . . .

This represents the number of failures which occur in a sequence of Bernoulli trials before a target
number of successes is reached. C.f. rnbinom

Objects from the Class

Objects can be created by calls of the form Nbinom(prob, size). This object is a negative binomial
distribution.

Slots

img Object of class "Naturals": The space of the image of this distribution has got dimension 1
and the name "Natural Space".

param Object of class "NbinomParameter": the parameter of this distribution (prob, size), declared
at its instantiation

r Object of class "function": generates random numbers (calls function rnbinom)
d Object of class "function": density function (calls function dnbinom)
p Object of class "function": cumulative function (calls function pnbinom)
q Object of class "function": inverse of the cumulative function (calls function qnbinom). The

quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distribution
function.

support Object of class "numeric": a (sorted) vector containing the support of the discrete density
function

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

110 Nbinom-class

Extends

Class "DiscreteDistribution", directly.
Class "UnivariateDistribution", by class "DiscreteDistribution".
Class "Distribution", by class "DiscreteDistribution".

Methods

initialize signature(.Object = "Nbinom"): initialize method

prob signature(object = "Nbinom"): returns the slot prob of the parameter of the distribution

prob<- signature(object = "Nbinom"): modifies the slot prob of the parameter of the distribu-
tion

size signature(object = "Nbinom"): returns the slot size of the parameter of the distribution

size<- signature(object = "Nbinom"): modifies the slot size of the parameter of the distribu-
tion

+ signature(e1 = "Nbinom", e2 = "Nbinom"): For the negative binomial distribution we use its
closedness under convolutions.

Note

Working with a computer, we use a finite interval as support which carries at least mass 1-getdistrOption("TruncQuantile").

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

NbinomParameter-class Geom-class DiscreteDistribution-class Naturals-class rnbinom

Examples

N <- Nbinom(prob = 0.5, size = 1) # N is a binomial distribution with prob=0.5 and size=1.
r(N)(1) # one random number generated from this distribution, e.g. 3
d(N)(1) # Density of this distribution is 0.25 for x=1.
p(N)(0.4) # Probability that x<0.4 is 0.5.
q(N)(.1) # x=0 is the smallest value x such that p(B)(x)>=0.1.
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
size(N) # size of this distribution is 1.
size(N) <- 2 # size of this distribution is now 2.

NbinomParameter-class 111

NbinomParameter-class Class "NbinomParameter"

Description

The parameter of a negative binomial distribution, used by Nbinom-class

Objects from the Class

Objects can be created by calls of the form new("NbinomParameter", prob, size). Usually an
object of this class is not needed on its own, it is generated automatically when an object of the
class Nbinom is prepared.

Slots

prob Object of class "numeric": the probability of a negative binomial distribution

size Object of class "numeric": the size of a negative binomial distribution

name Object of class "character": a name / comment for the parameters

Extends

Class "Parameter", directly.

Methods

initialize signature(.Object = "NbinomParameter"): initialize method

prob signature(object = "NbinomParameter"): returns the slot prob of the parameter of the
distribution

prob<- signature(object = "NbinomParameter"): modifies the slot prob of the parameter of
the distribution

size signature(object = "NbinomParameter"): returns the slot size of the parameter of the
distribution

size<- signature(object = "NbinomParameter"): modifies the slot size of the parameter of the
distribution

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Nbinom-class Parameter-class

112 ncp-methods

Examples

W <- new("NbinomParameter",prob=0.5,size=1)
size(W) # size of this distribution is 1.
size(W) <- 2 # size of this distribution is now 2.

ncp-methods Methods for Function ncp in Package ‘distr’

Description

ncp-methods

Methods

ncp signature(object = "BetaParameter"): returns the slot ncp of the parameter of the distri-
bution

ncp<- signature(object = "BetaParameter"): modifies the slot ncp of the parameter of the
distribution

ncp signature(object = "Beta"): returns the slot ncp of the parameter of the distribution

ncp<- signature(object = "Beta"): modifies the slot ncp of the parameter of the distribution

ncp signature(object = "ChisqParameter"): returns the slot ncp of the parameter of the dis-
tribution

ncp<- signature(object = "ChisqParameter"): modifies the slot ncp of the parameter of the
distribution

ncp signature(object = "Chisq"): returns the slot ncp of the parameter of the distribution

ncp<- signature(object = "Chisq"): modifies the slot ncp of the parameter of the distribution

ncp signature(object = "FParameter"): returns the slot ncp of the parameter of the distribution

ncp<- signature(object = "FParameter"): modifies the slot ncp of the parameter of the distri-
bution

ncp signature(object = "Fd"): returns the slot ncp of the parameter of the distribution

ncp<- signature(object = "Fd"): modifies the slot ncp of the parameter of the distribution

ncp signature(object = "TParameter"): returns the slot ncp of the parameter of the distribution

ncp<- signature(object = "TParameter"): modifies the slot ncp of the parameter of the distri-
bution

ncp signature(object = "Td"): returns the slot ncp of the parameter of the distribution

ncp<- signature(object = "Td"): modifies the slot ncp of the parameter of the distribution

Norm-class 113

Norm-class Class "Norm"

Description

The normal distribution has density

f(x) =
1√
2πσ

e−(x−µ)2/2σ2

where µ is the mean of the distribution and σ the standard deviation. C.f. rnorm

Objects from the Class

Objects can be created by calls of the form Norm(mean, sd). This object is a normal distribution.

Slots

img Object of class "Reals": The domain of this distribution has got dimension 1 and the name
"Real Space".

param Object of class "UniNormParameter": the parameter of this distribution (mean and sd),
declared at its instantiation

r Object of class "function": generates random numbers (calls function rnorm)

d Object of class "function": density function (calls function dnorm)

p Object of class "function": cumulative function (calls function pnorm)

q Object of class "function": inverse of the cumulative function (calls function qnorm)

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "AbscontDistribution", directly.
Class "UnivariateDistribution", by class "AbscontDistribution".
Class "Distribution", by class "AbscontDistribution".

114 Norm-class

Methods

- signature(e1 = "Norm", e2 = "Norm")

+ signature(e1 = "Norm", e2 = "Norm"): For the normal distribution the exact convolution for-
mulas are implemented thereby improving the general numerical approximation.

* signature(e1 = "Norm", e2 = "numeric")

+ signature(e1 = "Norm", e2 = "numeric"): For the normal distribution we use its closedness
under affine linear transformations.

initialize signature(.Object = "Norm"): initialize method

mean signature(object = "Norm"): returns the slot mean of the parameter of the distribution

mean<- signature(object = "Norm"): modifies the slot mean of the parameter of the distribution

sd signature(object = "Norm"): returns the slot sd of the parameter of the distribution

sd<- signature(object = "Norm"): modifies the slot sd of the parameter of the distribution

further arithmetic methods see operators-methods

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

UniNormParameter-class AbscontDistribution-class Reals-class rnorm

Examples

N <- Norm(mean=1,sd=1) # N is a normal distribution with mean=1 and sd=1.
r(N)(1) # one random number generated from this distribution, e.g. 2.257783
d(N)(1) # Density of this distribution is 0.3989423 for x=1.
p(N)(1) # Probability that x<1 is 0.5.
q(N)(.1) # Probability that x<-0.2815516 is 0.1.
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
mean(N) # mean of this distribution is 1.
sd(N) <- 2 # sd of this distribution is now 2.
M <- Norm() # M is a normal distribution with mean=0 and sd=1.
O <- M+N # O is a normal distribution with mean=1 (=1+0) and sd=sqrt(5) (=sqrt(2^2+1^2)).

NormParameter-class 115

NormParameter-class Class "NormParameter"

Description

The parameter of a normal distribution, used by Norm-class

Objects from the Class

Objects can be created by calls of the form new("NormParameter", sd, mean). Usually an object
of this class is not needed on its own. It is the mother-class of the class UniNormParameter, which
is generated automatically when such a distribution is instantiated.

Slots

sd Object of class "numeric": the sd of a normal distribution

mean Object of class "numeric": the mean of a normal distribution

name Object of class "character": a name / comment for the parameters

Extends

Class "Parameter", directly.

Methods

initialize signature(.Object = "NormParameter"): initialize method

mean signature(object = "NormParameter"): returns the slot mean of the parameter of the
distribution

mean<- signature(object = "NormParameter"): modifies the slot mean of the parameter of the
distribution

sd signature(object = "NormParameter"): returns the slot sd of the parameter of the distribu-
tion

sd<- signature(object = "NormParameter"): modifies the slot sd of the parameter of the distri-
bution

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Norm-class Parameter-class

116 NoSymmetry

Examples

W <- new("NormParameter", mean = 0, sd = 1)
sd(W) # sd of this distribution is 1.
sd(W) <- 2 # sd of this distribution is now 2.

NoSymmetry Generating function for NoSymmetry-class

Description

Generates an object of class "NoSymmetry".

Usage

NoSymmetry()

Value

Object of class "NoSymmetry"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

NoSymmetry-class, DistributionSymmetry-class

Examples

NoSymmetry()

The function is currently defined as
function(){ new("NoSymmetry") }

NoSymmetry-class 117

NoSymmetry-class Class for Non-symmetric Distributions

Description

Class for non-symmetric distributions.

Objects from the Class

Objects can be created by calls of the form new("NoSymmetry"). More frequently they are created
via the generating function NoSymmetry.

Slots

type Object of class "character": contains “non-symmetric distribution”

SymmCenter Object of class "NULL"

Extends

Class "DistributionSymmetry", directly.
Class "Symmetry", by class "DistributionSymmetry".

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

NoSymmetry, Distribution-class

Examples

new("NoSymmetry")

operators-methods Methods for operators +,-,*,/,... in Package distr

Description

Arithmetics and unary mathematical transformations for distributions

Arguments

e1, e2 objects of class "UnivariateDistribution" (or subclasses) or "numeric"

118 operators-methods

Details

Arithmetics as well as all functions from group Math, see Math are provided for distributions; wher-
ever possible exact expressions are used; else random variables are generated according to this
transformation and subsequently the remaining slots filled by RtoDPQ, RtoDPQ.d

Methods

- signature(e1 = "UnivariateDistribution", e2 = "missing") unary operator; result again
of class "UnivariateDistribution"; exact

- signature(e1 = "Norm", e2 = "missing") unary operator; result again of "Norm"; exact

+ signature(e1 = "UnivariateDistribution", e2 = "numeric") result again of class "UnivariateDistribution";
exact

+ signature(e1 = "AbscontDistribution", e2 = "numeric") result of class "AffLinAbscontDistribution";
exact

+ signature(e1 = "DiscreteDistribution", e2 = "numeric") result of class "AffLinDiscreteDistribution";
exact

+ signature(e1 = "LatticeDistribution", e2 = "numeric") result of class "AffLinLatticeDistribution";
exact

+ signature(e1 = "UnivarLebDecDistribution", e2 = "numeric") result of class "AffLinUnivarLebDecDistribution";
exact

+ signature(e1 = "CompoundDistribution", e2 = "numeric") result of class "AffLinUnivarLebDecDistribution";
exact

+ signature(e1 = "AffLinAbscontDistribution", e2 = "numeric") result again of class "AffLinAbscontDistribution";
exact

+ signature(e1 = "AffLinDiscreteDistribution", e2 = "numeric") result again of class "AffLinDiscreteDistribution";
exact

+ signature(e1 = "AffLinLatticeDistribution", e2 = "numeric") result again of class "AffLinLatticeDistribution";
exact

+ signature(e1 = "AffLinUnivarLebDecDistribution", e2 = "numeric") result of class "AffLinUnivarLebDecDistribution";
exact

+ signature(e1 = "Cauchy", e2 = "numeric") result again of class "Cauchy"; exact

+ signature(e1 = "Dirac", e2 = "numeric") result again of class "Dirac"; exact

+ signature(e1 = "Norm", e2 = "numeric") result again of class "Norm"; exact

+ signature(e1 = "Unif", e2 = "numeric") result again of class "Unif"; exact

+ signature(e1 = "Logis", e2 = "numeric") result again of class "Logis"; exact

+ signature(e1 = "numeric", e2 = "UnivariateDistribution") is translated to signature(e1
= "UnivariateDistribution", e2 = "numeric"); exact

- signature(e1 = "UnivariateDistribution", e2= "ANY");exact

- signature(e1 = "UnivariateDistribution", e2 = "numeric") is translated to e1 + (-e2);
exact

- signature(e1 = "numeric", e2 = "UnivariateDistribution") is translated to (-e1) + e2;
exact

operators-methods 119

- signature(e1 = "numeric", e2 = "Beta") if ncp(e2)==0 and e1 == 1, an exact (central) Beta(shape1
= shape2(e2), shape2 = shape1(e2)) is returned, else the default method is used; exact

* signature(e1 = "UnivariateDistribution", e2 = "numeric") result again of class "UnivariateDistribution";
exact

* signature(e1 = "AbscontDistribution", e2 = "numeric") result of class "AffLinAbscontDistribution";
exact

* signature(e1 = "DiscreteDistribution", e2 = "numeric") result of class "AffLinDiscreteDistribution";
exact

* signature(e1 = "LatticeDistribution", e2 = "numeric") result of class "AffLinLatticeDistribution";
exact

* signature(e1 = "UnivarLebDecDistribution", e2 = "numeric") result of class "AffLinUnivarLebDecDistribution";
exact

* signature(e1 = "CompoundDistribution", e2 = "numeric") result of class "AffLinUnivarLebDecDistribution";
exact

* signature(e1 = "AffLinAbscontDistribution", e2 = "numeric") result again of class "AffLinAbscontDistribution";
exact

* signature(e1 = "AffLinDiscreteDistribution", e2 = "numeric") result again of class "AffLinDiscreteDistribution";
exact

* signature(e1 = "AffLinLatticeDistribution", e2 = "numeric") result again of class "AffLinLatticeDistribution";
exact

* signature(e1 = "AffLinUnivarLebDecDistribution", e2 = "numeric") result of class "AffLinUnivarLebDecDistribution";
exact

* signature(e1 = "DExp", e2 = "numeric") if abs(e2)>0 result again of class "DExp"; exact

* signature(e1 = "Exp", e2 = "numeric") if e2>0 result again of class "Exp"; exact

* signature(e1 = "ExpOrGammaOrChisq", e2 = "numeric") if e1 is a Gamma distribution and
e2>0 result of class "Gammad"; exact

* signature(e1 = "Weibull", e2 = "numeric") if e2>0 result of class "Weibull"; exact

* signature(e1 = "Cauchy", e2 = "numeric") if abs(e2)>0 result again of class "Cauchy"; ex-
act

* signature(e1 = "Dirac", e2 = "numeric") result again of class "Dirac"; exact

* signature(e1 = "Norm", e2 = "numeric") if abs(e2)>0 result again of class "Norm"; exact

* signature(e1 = "Unif", e2 = "numeric") if abs(e2)>0 result again of class "Unif"; exact

* signature(e1 = "Logis", e2 = "numeric") if e2>0 result again of class "Logis"; exact

* signature(e1 = "Lnorm", e2 = "numeric") if e2>0 result again of class "Lnorm"; exact

* signature(e1 = "numeric", e2 = "UnivariateDistribution") is translated to signature(e1
= "UnivariateDistribution", e2 = "numeric"); exact

/ signature(e1 = "UnivariateDistribution", e2 = "numeric") is translated to e1 * (1/e2);
exact

+ signature(e1 = "UnivariateDistribution", e2 = "UnivariateDistribution") result again
of class "UnivariateDistribution"; is generated by simulations

120 operators-methods

- signature(e1 = "UnivariateDistribution", e2 = "UnivariateDistribution") is translated
to (-e1) + (-e2); result again of class "UnivariateDistribution"; is generated by simu-
lations

- signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution"): both operands are
coerced to class "UnivarLebDecDistribution" and the corresponding method is used.

+ signature(e1 = "AbscontDistribution", e2 = "AbscontDistribution") assumes e1, e2 in-
dependent; result again of class "AbscontDistribution"; is generated by FFT

+ signature(e1 = "AbscontDistribution", e2 = "DiscreteDistribution") assumes e1, e2
independent; result again of class "AbscontDistribution"; is generated by FFT

+ signature(e1 = "DiscreteDistribution", e2 = "AbscontDistribution") assumes e1, e2
independent; result again of class "AbscontDistribution"; is generated by FFT

+ signature(e1 = "LatticeDistribution", e2 = "LatticeDistribution") assumes e1, e2 in-
dependent; if the larger lattice-width is an integer multiple of the smaller(in abs. value) one:
result again of class "LatticeDistribution"; is generated by D/FFT

+ signature(e1 = "DiscreteDistribution", e2 = "DiscreteDistribution") assumes e1, e2
independent; result again of class "DiscreteDistribution"; is generated by explicite con-
volution

+ signature(e1 = "LatticeDistribution", e2 = "DiscreteDistribution") assumes e1, e2
independent; result again of class "DiscreteDistribution"; is generated by explicite con-
volution

+ signature(e1 = "UnivarLebDecDistribution", e2 = "UnivarLebDecDistribution") assumes
e1, e2 independent; result again of class "UnivarLebDecDistribution"; is generated by sep-
arate explicite convolution of a.c. and discrete parts of e1 and e2 and subsequent flattening
with flat.LCD; if getdistrOption("withSimplify") is TRUE, result is piped through a call
to simplifyD

+ signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution"): both operands are
coerced to class "UnivarLebDecDistribution" and the corresponding method is used.

+ signature(e1 = "Binom", e2 = "Binom") assumes e1, e2 independent; if prob(e1)==prob(e2),
result again of class "Binom"; uses the convolution formula for binomial distributions; exact

+ signature(e1 = "Cauchy", e2 = "Cauchy") assumes e1, e2 independent; result again of class
"Cauchy"; uses the convolution formula for Cauchy distributions; exact

+ signature(e1 = "Chisq", e2 = "Chisq") assumes e1, e2 independent; result again of class
"Chisq"; uses the convolution formula for Chisq distributions; exact

+ signature(e1 = "Dirac", e2 = "Dirac") result again of class "Dirac"; exact

+ signature(e1 = "ExpOrGammaOrChisq", e2 = "ExpOrGammaOrChisq") assumes e1, e2 inde-
pendent; if e1, e2 are Gamma distributions, result is of class "Gammad"; uses the convolution
formula for Gamma distributions; exact

+ signature(e1 = "Pois", e2 = "Pois") assumes e1, e2 independent; result again of class "Pois";
uses the convolution formula for Poisson distributions; exact

+ signature(e1 = "Nbinom", e2 = "Nbinom") assumes e1, e2 independent; if prob(e1)==prob(e2),
result again of class "Nbinom"; uses the convolution formula for negative binomial distribu-
tions; exact

+ signature(e1 = "Norm", e2 = "Norm") assumes e1, e2 independent; result again of class "Norm";
uses the convolution formula for normal distributions; exact

operators-methods 121

+ signature(e1 = "UnivariateDistribution", e2 = "Dirac") translated to e1 + location(e2);
result again of class "Dirac"; exact

+ signature(e1 = "Dirac", e2 = "UnivariateDistribution") translated to e2 + location(e1);
result again of class "Dirac"; exact

+ signature(e1 = "Dirac", e2 = "DiscreteDistribution") translated to e2 + location(e1);
result again of class "Dirac"; exact

- signature(e1 = "Dirac", e2 = "Dirac") result again of class "Dirac"; exact

* signature(e1 = "Dirac", e2 = "Dirac") result again of class "Dirac"; exact

* signature(e1 = "UnivariateDistribution", e2 = "Dirac") translated to e1 * location(e2);
result again of class "Dirac"; exact

* signature(e1 = "Dirac", e2 = "UnivariateDistribution") translated to e2 * location(e1);
result again of class "Dirac"; exact

* signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution"): by means of decomposePM
e1 and e2 are decomposed into positive and negative parts; of these, convolutions of the cor-
responding logarithms are computed separately and finally exp is applied to them, again sepa-
rately; the resulting mixing components are then “flattened” to one object of class UnivarLebDecDistribution
by flat.LCD which according to getdistrOption(withSimplify) gets piped through a call
to simplifyD.

/ signature(e1 = "Dirac", e2 = "Dirac") result again of class "Dirac"; exact

/ signature(e1 = "numeric", e2 = "Dirac") result again of class "Dirac"; exact

/ signature(e1 = "numeric", e2 = "AcDcLcDistribution"): if d.discrete(e2)(0)*discreteWeight(e2)>0
throws an error (would give division by 0 with positive probability); else by means of decomposePM
e2 is decomposed into positive and negative parts; then, similarly the result obtains as for
"*"(signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution")) by the exp-
log trick and is “flattened” to one object of class UnivarLebDecDistribution by flat.LCD
and according to getdistrOption(withSimplify) is piped through a call to simplifyD;
exact..

/ signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution"): translated to e1 * (1/e2).

^ signature(e1 = "AcDcLcDistribution", e2 = "Integer"): if e2=0 returns Dirac(1); if e2=1
returns e1; if e2<0 translated to (1/e1)^(-e2); exact.

^ signature(e1 = "AcDcLcDistribution", e2 = "numeric"): if e2 is integer uses preceding
item; else if e1< 0 with positive probability, throughs an error; else the result obtains simi-
larly to "*"(signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution")) by
the exp-log trick and is “flattened” to one object of class UnivarLebDecDistribution by
flat.LCD and according to getdistrOption(withSimplify) is piped through a call to simplifyD;
exact.

^ signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution"): if e1 is negative with
positive probability, throws an error if e2 is non-integer with positive probability; if e1 is
0 with positive probability throws an error if e2 is non-integer with positive probability.
if e2 is integer with probability 1 uses DiscreteDistribution(supp=e1^(Dirac(x)) for
each x in support(e2), builds up a corresponding mixing distribution; the latter is “flat-
tened” to one object of class UnivarLebDecDistribution by flat.LCD and according to
getdistrOption(withSimplify) is piped through a call to simplifyD. Else the result ob-
tains similarly to "*"(signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution"))

122 OptionalParameter-class

by the exp-log trick and is “flattened” to one object of class UnivarLebDecDistribution
by flat.LCD and according to getdistrOption(withSimplify) is piped through a call to
simplifyD; exact.

^ signature(e1 = "numeric", e2 = "AcDcLcDistribution"): if e1 is negative, throws an error
if e2 is non-integer with positive probability; if e1 is 0 throws an error if e2 is non-integer with
positive probability. if e2 is integer with probability 1 uses DiscreteDistribution(supp=e1^support(e2),
prob=discrete.d(supp)) else the result obtains similarly to "*"(signature(e1 = "AcDcLcDistribution",
e2 = "AcDcLcDistribution")) by the exp-log trick and is “flattened” to one object of class
UnivarLebDecDistribution by flat.LCD and according to getdistrOption(withSimplify)
is piped through a call to simplifyD; exact.

References

Ruckdeschel, P., Kohl, M.(2014): General purpose convolution algorithm for distributions in S4-
Classes by means of FFT. J. Statist. Softw. 59(4): 1-25.

See Also

UnivariateDistribution-class AbscontDistribution-class
DiscreteDistribution-class LatticeDistribution-class
Norm-class Binom-class Pois-class Dirac-class
Cauchy-class Gammad-class Logis-class Lnorm-class
Exp-class Weibull-class Nbinom-class

Examples

N <- Norm(0,3)
P <- Pois(4)
a <- 3
N + a
N + P
N - a
a * N
a * P
N / a + sin(a * P - N)
N * P
N / N

takes a little time
N ^ P

1.2 ^ N
abs(N) ^ 1.3

OptionalParameter-class

Classes "OptionalParameter", "OptionalMatrix"

options 123

Description

auxiliary classes; may contain either a Parameter or NULL, resp. a matrix or NULL cf. J. Chambers,
"green book".

Objects from the Class

"OptionalParameter" is a virtual Class: No objects may be created from it; "OptionalMatrix" is a
class generated by setClassUnion() so may contain NULL or any matrix

Methods

No methods defined with class "OptionalParameter" in the signature.

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Parameter-class, AbscontDistribution-class

options additional options in package ‘distr’

Description

In package distr, we add an extra option "newDevice"; it is inspected and manipulated as usual.

Details

We do not change the behaviour of options or getOption; for the general documentation to these
two functions, confer options, getOption. Here we only document added options.

Additionally available options in package ’distr’

"newDevice" logical; controls behaviour when generating several plots within one function; if
TRUE, before each call to call to plot.new, a call to devNew is inserted; if FALSE, we reproduce
the usual behaviour in graphics, i.e.; we do not call devNew. Defaults to FALSE.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

124 p.l-methods

See Also

options, getOption

Examples

getOption("newDevice")
options("newDevice"=TRUE)

p-methods Methods for Function p in Package ‘distr’

Description

p-methods

Methods

p signature(object = "Distribution"): returns the cumulative distribution function (c.d.f.),
i.e.; p(t) = P (object ≤ t)

p.r signature(object = "Distribution"): from distr-2.6 onwards, we provide this as a syn-
onym for method p; this synonym more explicitely states that we are dealing with the right-
continuous variant of a c.d.f.

See Also

Distribution-class, p.l

Examples

require(distr)
N <- Norm()
p(N)(0.3)
p.r(N)(0.3)

p.l-methods Methods for Function p.l in Package ‘distr’

Description

p-methods

param-methods 125

Methods

return the left continuous cumulative distribution function, i.e.; p.l(t) = P (object < t)

p.l signature(object = "AbscontDistribution")

p.l signature(object = "DiscreteDistribution")

p.l signature(object = "UnivarLebDecDistribution")

p.l signature(object = "UnivarMixingDistribution")

See Also

DiscreteDistribution-class UnivarLebDecDistribution-class

param-methods Methods for Function param in Package ‘distr’

Description

param-methods

Methods

param signature(object = "Distribution"): returns the parameter

Parameter-class Class "Parameter"

Description

Parameter is the mother-class of all Parameter classes.

Objects from the Class

Objects can be created by calls of the form new("Parameter").

Slots

name Object of class "character": a name / comment for the parameters

Methods

name signature(object = "Parameter"): returns the name of the parameter

name<- signature(object = "Parameter"): modifies the name of the parameter

126 plot-methods

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Distribution-class

pivot-methods Methods for Function pivot in Package ‘distr’

Description

pivot-methods

Methods

pivot signature(object = "Lattice"): returns the slot pivot of the lattice

pivot<- signature(object = "Lattice"): modifies the slot pivot of the lattice

pivot signature(object = "LatticeDistribution"): returns the slot pivot of the lattice slot of
the distribution

pivot<- signature(object = "LatticeDistribution"): modifies the slot pivot of the lattice slot
of the distribution

plot-methods Methods for Function plot in Package ‘distr’

Description

plot-methods

Usage

plot(x, y, ...)
S4 method for signature 'AbscontDistribution,missing'
plot(x, width = 10, height = 5.5,

withSweave = getdistrOption("withSweave"), xlim = NULL, ylim = NULL,
ngrid = 1000, verticals = TRUE, do.points = TRUE, main = FALSE,
inner = TRUE, sub = FALSE, bmar = par("mar")[1], tmar = par("mar")[3], ...,
cex.main = par("cex.main"), cex.inner = 1.2, cex.sub = par("cex.sub"),
col.points = par("col"), col.vert = par("col"), col.main = par("col.main"),
col.inner = par("col.main"), col.sub = par("col.sub"), cex.points = 2.0,

plot-methods 127

pch.u = 21, pch.a = 16, mfColRow = TRUE,
to.draw.arg = NULL, withSubst = TRUE)

S4 method for signature 'DiscreteDistribution,missing'
plot(x, width = 10, height = 5.5,

withSweave = getdistrOption("withSweave"), xlim = NULL, ylim = NULL,
verticals = TRUE, do.points = TRUE, main = FALSE, inner = TRUE, sub = FALSE,
bmar = par("mar")[1], tmar = par("mar")[3], ...,
cex.main = par("cex.main"), cex.inner = 1.2, cex.sub = par("cex.sub"),
col.points = par("col"), col.hor = par("col"), col.vert = par("col"),
col.main = par("col.main"), col.inner = par("col.main"),
col.sub = par("col.sub"), cex.points = 2.0, pch.u = 21, pch.a = 16,
mfColRow = TRUE, to.draw.arg = NULL, withSubst = TRUE)

S4 method for signature 'AffLinUnivarLebDecDistribution,missing'
plot(x, width = 10,

height = 5.5, withSweave = getdistrOption("withSweave"), xlim = NULL,
ylim = NULL, ngrid = 1000, verticals = TRUE, do.points = TRUE, main = FALSE,
inner = TRUE, sub = FALSE, bmar = par("mar")[1], tmar = par("mar")[3], ...,
cex.main = par("cex.main"), cex.inner = 1.2, cex.sub = par("cex.sub"),
col.points = par("col"), col.hor = par("col"), col.vert = par("col"),
col.main = par("col.main"), col.inner = par("col.main"),
col.sub = par("col.sub"), cex.points = 2.0, pch.u = 21, pch.a = 16,
mfColRow = TRUE, to.draw.arg = NULL, withSubst = TRUE)

S4 method for signature 'UnivarLebDecDistribution,missing'
plot(x, width = 10,

height = 14.5, withSweave = getdistrOption("withSweave"), xlim = NULL,
ylim = NULL, ngrid = 1000, verticals = TRUE, do.points = TRUE, main = FALSE,
inner = TRUE, sub = FALSE, bmar = par("mar")[1], tmar = par("mar")[3], ...,
cex.main = par("cex.main"), cex.inner = 0.9, cex.sub = par("cex.sub"),
col.points = par("col"), col.hor = par("col"), col.vert = par("col"),
col.main = par("col.main"), col.inner = par("col.main"),
col.sub = par("col.sub"), cex.points = 2.0, pch.u = 21, pch.a = 16,
mfColRow = TRUE, to.draw.arg = NULL, withSubst = TRUE)

S4 method for signature 'DistrList,missing'
plot(x, y, ...)
S4 method for signature 'CompoundDistribution,missing'
plot(x, y, ...)

Arguments

x object of class "AffLinUnivarLebDecDistribution" or class "UnivarLebDecDistribution"
or class "AbscontDistribution" or class "DiscreteDistribution" or class
"DistrList": (list of) distribution(s) to be plotted

y missing

xlim the x limits (x1, x2) of the plot. Note that x1 > x2 is allowed and leads to a
"reversed axis". As in plot.default.

ylim the y limits of the plot. Either as in plot.default (i.e. a vector of length 2) or a
vector of length 4, where the first two elements are the values for ylim in panel

128 plot-methods

"d", and the last two elements are the values for ylim resp. xlim in panels "p",
and "q".

width width (in inches) of the graphics device opened

height height (in inches) of the graphics device opened

withSweave logical: if TRUE (for working with Sweave) no extra device is opened and height/width
are not set

ngrid integer: number of grid points used for plots of absolutely continuous distribu-
tions

main logical: is a main title to be used? or
just as argument main in plot.default.

inner logical: do panels for density/probability function - cdf - quantile function have
their own titles? or
list which is filled to length 3 (resp. 8 for class UnivarLebDecDistribution) if
necessary (possibly using recycling rules): titles for density/probability function
- cdf - quantile function (each of the same form as argument main in plot.default)

sub logical: is a sub-title to be used? or
just as argument sub in plot.default.

tmar top margin – useful for non-standard main title sizes

bmar bottom margin – useful for non-standard sub title sizes

verticals logical: if TRUE, draw vertical lines at steps; as in plot.stepfun

do.points logical: if TRUE, draw also draw points at the (xlim restricted) knot locations; as
in plot.stepfun

cex.points numeric; character expansion factor; as in plot.stepfun

col.points character or integer code; color of points; as in plot.stepfun

col.hor character or integer code; color of horizontal lines; as in plot.stepfun

col.vert character or integer code; color of vertical lines; as in plot.stepfun

cex.main magnification to be used for main titles relative to the current setting of cex; as
in par

cex.inner magnification to be used for inner titles relative to the current setting of cex; as
in par

cex.sub magnification to be used for sub titles relative to the current setting of cex; as in
par

col.main character or integer code; color for the main title

col.inner character or integer code; color for the inner title

col.sub character or integer code; color for the sub title

pch.u character or integer code; plotting characters or symbols for unattained value;
see points

pch.a character or integer code; plotting characters or symbols for attained value; see
points

mfColRow shall default partition in panels be used — defaults to TRUE

plot-methods 129

to.draw.arg Either NULL (default; everything is plotted) or a vector of either integers (the
indices of the subplots to be drawn) or characters — the names of the sub-
plots to be drawn: in case of an object x of class "DiscreteDistribution"
or "AbscontDistribution" c("d","p","q") for density, c.d.f. and quan-
tile function; in case of x a proper "UnivarLebDecDistribution" (with pos.
weights for both discrete and abs. continuous part) names are c("p","q","d.c","p.c","q.c","d.d","p.d","q.d"))
for c.d.f. and quantile function of the composed distribution and the respective
three panels for the absolutely continuous and the discrete part, respectively;

withSubst logical; if TRUE (default) pattern substitution for titles and lables is used; other-
wise no substitution is used.

... addtional arguments for plot — see plot, plot.default, plot.stepfun

Details

plot signature(x = "AffLinUnivarLebDecDistribution", y = "missing"): plots cumulative
distribution function and the quantile function

plot signature(x = "UnivarLebDecDistribution", y = "missing"): plots a set of eight plots:
in the first row, it plots the cumulative distribution function and the quantile function; in the
second row the absolutely continuous part (with density, cdf and quantile fct.), and in the last
row the discrete part (with prob.fct., cdf and quantile fct.).

plot signature(x = "CompoundDistribution", y = "missing"): coerces x to "UnivarLebDecDistribution"
and uses the corresponding method.

plot signature(x = "AbscontDistribution", y = "missing"): plots density, cumulative distri-
bution function and the quantile function

plot signature(x = "DiscreteDistribution", y = "missing"): plots probability function, cu-
mulative distribution function and the quantile function

plot signature(x = "DistrList", y = "missing"): plots a list of distributions

Any parameters of plot.default may be passed on to this particular plot method.

For main-, inner, and subtitles given as arguments main, inner, and sub, top and bottom margins
are enlarged to 5 resp. 6 by default but may also be specified by tmar / bmar arguments. If main /
inner / sub are logical then if the respective argument is FALSE nothing is done/plotted, but if it is
TRUE, we use a default main title taking up the calling argument x in case of main, default inner titles
taking up the class and (named) parameter slots of argument x in case of inner, and a "generated
on <data>"-tag in case of sub. Of course, if main / inner / sub are character, this is used for the
title; in case of inner it is then checked whether it has length 3. In all title and axis label arguments,
if withSubst is TRUE, the following patterns are substituted:

"%C" class of argument x

"%P" parameters of x in form of a comma-separated list of <value>’s coerced to character

"%Q" parameters of x in form of a comma-separated list of <value>’s coerced to character and in
parenthesis — unless empty; then ""

"%N" parameters of x in form of a comma-separated list <name> = <value> coerced to character

"%A" deparsed argument x

"%D" time/date-string when the plot was generated

130 plot-methods

If not explicitly set, col.points, col.vert, col.hor, col.main, col.inner, col.sub are set to
col if this arg is given and else to par("col") resp. for the titles par("col.main"), par("col.main"),
par("col.sub").

If not explicitly set, pch.a, pch.u are set to pch if this arg is given and else to 16, 21, respectively.

If not explicitly set, cex is set to 1. If not explicitly set, cex.points is set to $2.0 cex$ (if cex is
given) and to 2.0 else.

If general plot arguments xlab, ylab are not specified, they are set to "x", "q", "p" for xlab and to
"d(x)", "p(q)", "q(p)" for ylab for density, cdf and quantile function respectively. Otherwise, ac-
cording to the respective content of to.draw.arg, it is supposed to be a list with one entry for each
selected panel, i.e., in case x is an object of class DiscreteDistribution or AbscontDistribution
a list of maximal length maximally 3, respectively, in case x is an object of class UnivarLebDecDistribution
In these label arguments, the same pattern substitutions are made as for titles. If no character sub-
stitutions and mathematical expressions are needed, character vectors of respective length instead
of lists are also allowed for arguments xlab, ylab.

In addition, argument ... may contain arguments panel.first, panel.last, i.e., hook expres-
sions to be evaluated at the very beginning and at the very end of each panel (within the then valid
coordinates). To be able to use these hooks for each panel individually, they may also be lists of
expressions (of the same length as the number of panels and run through in the same order as the
panels).

Value

An S3 object of class c("plotInfo","DiagnInfo"), i.e., a list containing the information needed
to produce the respective plot, which at a later stage could be used by different graphic engines
(like, e.g. ggplot) to produce the plot in a different framework. A more detailed description will
follow in a subsequent version.

See Also

plot,plot.default, plot.stepfun, par

Examples

plot(Binom(size = 4, prob = 0.3))
plot(Binom(size = 4, prob = 0.3), do.points = FALSE)
plot(Binom(size = 4, prob = 0.3), verticals = FALSE)
plot(Binom(size = 4, prob = 0.3), main = TRUE)
plot(Binom(size = 4, prob = 0.3), main = FALSE)
plot(Binom(size = 4, prob = 0.3), cex.points = 1.2, pch = 20)
plot(Binom(size = 4, prob = 0.3), xlab = list("a1","a2", "a3"),

ylab=list("p"="U","q"="V","d"="W"))
B <- Binom(size = 4, prob = 0.3)
plot(B, col = "red", col.points = "green", main = TRUE, col.main = "blue",

col.sub = "orange", sub = TRUE, cex.sub = 0.6, col.inner = "brown")
plot(Nbinom(size = 4,prob = 0.3), cex.points = 1.2, col = "red",

col.points = "green")
plot(Nbinom(size = 4,prob = 0.3), cex.points = 1.2, pch.u = 20, pch.a = 10)
plot(Norm(), main = TRUE, cex.main = 3, tmar = 6)
plot(Norm(), inner = FALSE, main = TRUE, cex.main = 3, tmar = 6)

plot-methods 131

plot(Norm(), lwd = 3, col = "red", ngrid = 200, lty = 3, las = 2)
plot(Norm(), main = "my Distribution: %A",

inner = list(expression(paste(lambda,"-density of %C(%P)")), "CDF",
"Pseudo-inverse with param's %N"),

sub = "this plot was correctly generated on %D",
cex.inner = 0.9, cex.sub = 0.8)

plot(Norm(),panel.first=grid(4,4))
does not (yet) work as desired:
plot(Norm(),panel.first=list(grid(5,5),grid(3,3),grid(4,4)))
li <- list(substitute(grid(5,5)),substitute(grid(3,3)),substitute(grid(4,4)))
plot(Norm(),panel.first=li)

plot(Cauchy())
plot(Cauchy(), xlim = c(-4,4))
plot(Chisq())
the next ylab argument is just for illustration purposes
plot(Chisq(),mfColRow = FALSE,to.draw.arg="d",

xlab="x",ylab=list(expression(paste(lambda,"-density of %C(%P)"))))
substitution can be switched off
plot(Chisq(),mfColRow = FALSE,to.draw.arg="d",

xlab="x",ylab=list(expression(paste(lambda,"-density of %C(%P)"))), withSubst=FALSE)
plot(Chisq(), log = "xy", ngrid = 100)
Ch <- Chisq(); setgaps(Ch); plot(Ch, do.points = FALSE)
setgaps(Ch, exactq = 3); plot(Ch, verticals = FALSE)
plot(Ch, cex = 1.2, pch.u = 20, pch.a = 10, col.points = "green",

col.vert = "red")

Not run: # to save time
some distribution with gaps
wg <- flat.mix(UnivarMixingDistribution(Unif(0,1),Unif(4,5),

withSimplify=FALSE))
some Lebesgue decomposed distribution
mymix <- UnivarLebDecDistribution(acPart = wg, discretePart = Binom(4,.4),

acWeight = 0.4)
plot(mymix)
#
selection of subpanels for plotting
N <- Norm()
par(mfrow=c(1,2))
plot(N, mfColRow = FALSE, to.draw.arg=c("d","q"))
plot(N, mfColRow = FALSE, to.draw.arg=c(2,3))
par(mfrow=c(1,1))

wg <- flat.mix(UnivarMixingDistribution(Unif(0,1),Unif(4,5),
withSimplify=FALSE))

myLC <- UnivarLebDecDistribution(discretePart=Binom(3,.3), acPart = wg,
discreteWeight=.2)

layout(matrix(c(rep(1,6),2,2,3,3,4,4,5,5,5,6,6,6),
nrow=3, byrow=TRUE))

plot(myLC,mfColRow = FALSE,
to.draw.arg=c("p","d.c","p.c","q.c", "p.d","q.d"))

132 Pois-class

P <- Pois(2)
plot(as(P,"UnivarLebDecDistribution"),mfColRow = FALSE,to.draw.arg=c("d.d"))
the next ylab argument is just for illustration purposes
plot(as(P,"UnivarLebDecDistribution"),mfColRow = FALSE,to.draw.arg=c("d.d"),

xlab="x",ylab=list(expression(paste(lambda,"-density of %C(%P)"))))

End(Not run)

Pois-class Class "Pois"

Description

The Poisson distribution has density

p(x) =
λxe−λ

x!

for x = 0, 1, 2, The mean and variance are E(X) = V ar(X) = λ.

C.f. rpois

Objects from the Class

Objects can be created by calls of the form Pois(lambda). This object is a Poisson distribution.

Slots

img Object of class "Naturals": The space of the image of this distribution has got dimension 1
and the name "Natural Space".

param Object of class "PoisParameter": the parameter of this distribution (lambda), declared at
its instantiation

r Object of class "function": generates random numbers (calls function rpois)

d Object of class "function": density function (calls function dpois)

p Object of class "function": cumulative function (calls function ppois)

q Object of class "function": inverse of the cumulative function (calls function qpois). The
quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distribution
function.

support Object of class "numeric": a (sorted) vector containing the support of the discrete density
function

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Pois-class 133

Extends

Class "DiscreteDistribution", directly. Class "UnivariateDistribution", by class "DiscreteDistribution".
Class "Distribution", by class "DiscreteDistribution".

Methods

+ signature(e1 = "Pois", e2 = "Pois"): For the Poisson distribution the exact convolution for-
mula is implemented thereby improving the general numerical approximation.

initialize signature(.Object = "Pois"): initialize method

lambda signature(object = "Pois"): returns the slot lambda of the parameter of the distribu-
tion

lambda<- signature(object = "Pois"): modifies the slot lambda of the parameter of the distri-
bution

Note

Working with a computer, we use a finite interval as support which carries at least mass 1-getdistrOption("TruncQuantile").

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

PoisParameter-class DiscreteDistribution-class Naturals-class rpois

Examples

P <- Pois(lambda = 1) # P is a Poisson distribution with lambda = 1.
r(P)(1) # one random number generated from this distribution, e.g. 1
d(P)(1) # Density of this distribution is 0.3678794 for x = 1.
p(P)(0.4) # Probability that x < 0.4 is 0.3678794.
q(P)(.1) # x = 0 is the smallest value x such that p(B)(x) >= 0.1.
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
lambda(P) # lambda of this distribution is 1.
lambda(P) <- 2 # lambda of this distribution is now 2.
R <- Pois(lambda = 3) # R is a Poisson distribution with lambda = 2.
S <- P + R # R is a Poisson distribution with lambda = 5(=2+3).

134 PoisParameter-class

PoisParameter-class Class "PoisParameter"

Description

The parameter of a Poisson distribution, used by Pois-class

Objects from the Class

Objects can be created by calls of the form new("PoisParameter", lambda). Usually an object of
this class is not needed on its own, it is generated automatically when an object of the class Pois is
prepared.

Slots

lambda Object of class "numeric": the lambda of a Poisson distribution

name Object of class "character": a name / comment for the parameters

Extends

Class "Parameter", directly.

Methods

initialize signature(.Object = "PoisParameter"): initialize method

lambda signature(object = "PoisParameter"): returns the slot lambda of the parameter of the
distribution

lambda<- signature(object = "PoisParameter"): modifies the slot lambda of the parameter
of the distribution

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Pois-class Parameter-class

Examples

W <- new("PoisParameter",lambda = 1)
lambda(W) # lambda of this distribution is 1.
lambda(W) <- 2 # lambda of this distribution is now 2.

PosDefSymmMatrix 135

PosDefSymmMatrix Generating functions for PosSemDefSymmMatrix-class resp.
PosDefSymmMatrix-class

Description

Generates an object of class "PosSemDefSymmMatrix" resp. of class "PosDefSymmMatrix".

Usage

PosSemDefSymmMatrix(mat)
PosDefSymmMatrix(mat)

Arguments

mat A numeric positive-[semi-]definite, symmetric matrix with finite entries.

Details

If mat is no matrix, as.matrix is applied.

Value

Object of class "PosSemDefSymmMatrix" resp. of class "PosDefSymmMatrix"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>, Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

PosDefSymmMatrix-class

Examples

PosSemDefSymmMatrix(1)
PosSemDefSymmMatrix(diag(2))
PosDefSymmMatrix(1)
PosDefSymmMatrix(diag(2))

136 PosDefSymmMatrix-class

PosDefSymmMatrix-class

Positive-[Semi-]definite, symmetric matrices

Description

The class of positive-[semi-]definite, symmetric matrices.

Objects from the Class

Objects can be created by calls of the form new("PosSemDefSymmMatrix", ...) resp. new("PosDefSymmMatrix",
...). More frequently they are created via the generating functions PosSemDefSymmMatrix resp.
PosDefSymmMatrix.

Slots

.Data Object of class "matrix". A numeric matrix with finite entries.

Extends

[Class "PosSemDefSymmMatrix", directly] Class "matrix", from data part.
Class "structure", by class "matrix".
Class "array", by class "matrix".
Class "vector", by class "matrix", with explicit coerce.
Class "vector", by class "matrix", with explicit coerce.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>, Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

PosDefSymmMatrix, matrix-class

Examples

new("PosDefSymmMatrix", diag(2))

print-methods 137

print-methods Methods for Functions print/show in Package ‘distr’

Description

print/show-methods

Methods

print signature(x = "UnivariateDistribution"): returns the class of the object and its param-
eters

show signature(x = "UnivariateDistribution"): returns the class of the object and its param-
eters

prob-methods Methods for Function prob in Package ‘distr’

Description

prob-methods

Methods

prob signature(object = "BinomParameter"): returns the slot prop of the parameter of the
distribution

prob<- signature(object = "BinomParameter"): modifies the slot prob of the parameter of the
distribution

prob signature(object = "Binom"): returns the slot prop of the parameter of the distribution

prob<- signature(object = "Binom"): modifies the slot prob of the parameter of the distribution

prob signature(object = "NbinomParameter"): returns the slot prop of the parameter of the
distribution

prob<- signature(object = "NbinomParameter"): modifies the slot prob of the parameter of
the distribution

prob signature(object = "Nbinom"): returns the slot prop of the parameter of the distribution

prob<- signature(object = "Nbinom"): modifies the slot prob of the parameter of the distribu-
tion

prob signature(object = "GeomParameter"): returns the slot prop of the parameter of the dis-
tribution (deprecated from 1.9 on)

prob<- signature(object = "GeomParameter"): modifies the slot prob of the parameter of the
distribution (deprecated from 1.9 on)

prob signature(object = "Geom"): returns the slot prop of the parameter of the distribution

138 q-methods

prob<- signature(object = "Geom"): modifies the slot prob of the parameter of the distribution

prob signature(object = "DiscreteDistribution"): returns the (named) vector of probabili-
ties for the support points of the distribution.

prob<- signature(object = "DiscreteDistribution"): generates a new object of class "DiscreteDistribution"
with the same support as object as well as the same .withSim, .withArith, .lowerExact,
.logExact slots.

prob signature(object = "UnivarLebDecDistribution"): returns a 2 × n matrix where n is
the length of the support of the discrete part of the distribution; the first row named "cond"
gives the vector of probabilities for the support points of the discrete part of the distribution
(i.e.; conditional on being in the discrete part), the second row named "abs" is like the first one
but multiplied with discreteWeight of the distribution, hence gives the absolute probabilities
of the support points; the columns are named by the support values.

q-methods Methods for Function q in Package ‘distr’

Description

q-methods

Methods

q signature(save = "Distribution"): returns the (left-continuous) quantile function, i.e.; q(s) =
inf{t

∣∣P (object ≤ t) ≥ s}
q.l signature(object = "Distribution"): from distr-2.6 onwards, we provide this as a syn-

onym for method q; this synonym more explicitely states that we are dealing with the left-
continuous variant of a quantile function. It is useful in particular when used from the console
in RStudio, as RStudio catches calls to q() and treats them separately from usual R evaluation.
The developers of RStudio have been asked to fix this and comply with standard R evaluation
which explicitely allows overloading q() as we do it in this package, but so far have refused
to do so, as they claim overloading q() was insane.

See Also

Distribution-class, q.r

Examples

require(distr)
N <- Norm()
q(N)(0.3)
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
q.l(N)(0.3)

q.r-methods 139

q.r-methods Methods for Function q.r in Package ‘distr’

Description

q.r-methods

Methods

return the right-continuous quantile function, i.e.; q.r(s) = sup{t
∣∣P (object ≤ t) ≤ s}

q.r signature(object = "DiscreteDistribution")

q.r signature(object = "AbscontDistribution")

q.r signature(object = "UnivarLebDecDistribution")

q.r signature(object = "UnivarMixingDistribution")

See Also

DiscreteDistribution-class UnivarLebDecDistribution-class

qqbounds Computation of confidence intervals for qqplot

Description

We compute confidence intervals for QQ plots. These can be simultaneous (to check whether the
whole data set is compatible) or pointwise (to check whether each (single) data point is compatible);

Usage

qqbounds(x,D,alpha,n,withConf.pw, withConf.sim,
exact.sCI=(n<100),exact.pCI=(n<100),
nosym.pCI = FALSE, debug = FALSE)

Arguments

x data to be checked for compatibility with distribution D.

D object of class "UnivariateDistribution", the assumed data distribution.

alpha confidence level

n sample size

withConf.pw logical; shall pointwise confidence lines be computed?

withConf.sim logical; shall simultaneous confidence lines be computed?

140 qqbounds

exact.pCI logical; shall pointwise CIs be determined with exact Binomial distribution?

exact.sCI logical; shall simultaneous CIs be determined with exact kolmogorov distribu-
tion?

nosym.pCI logical; shall we use (shortest) asymmetric CIs?

debug logical; if TRUE additional output to debug confidence bounds.

Details

Both simultaneous and pointwise confidence intervals come in a finite-sample and an asymptotic
version; the finite sample versions will get quite slow for large data sets x, so in these cases the
asymptotic version will be preferrable.
For simultaneous intervals, the finite sample version is based on C function "pkolmogorov2x"
from package stats, while the asymptotic one uses R function pkstwo again from package stats,
both taken from the code to ks.test.

Both finite sample and asymptotic versions use the fact, that the distribution of the supremal distance
between the empirical distribution F̂n and the corresponding theoretical one F (assuming data from
F) does not depend on F for continuous distribution F and leads to the Kolmogorov distribution
(compare, e.g. Durbin(1973)). In case of F with jumps, the corresponding Kolmogorov distribution
is used to produce conservative intervals.
For pointwise intervals, the finite sample version is based on corresponding binomial distributions,
(compare e.g., Fisz(1963)), while the asymptotic one uses a CLT approximation for this binomial
distribution. In fact, this approximation is only valid for distributions with strictly positive density
at the evaluation quantiles.

In the finite sample version, the binomial distributions will in general not be symmetric, so that, by
setting nosym.pCI to TRUE we may produce shortest asymmetric confidence intervals (albeit with a
considerable computational effort).

The symmetric intervals returned by default will be conservative (which also applies to distributions
with jumps in this case).

For distributions with jumps or with density (nearly) equal to 0 at the corresponding quantile, we
use the approximation of (D-E(D))/sd(D) by the standard normal at these points; this latter ap-
proximation is only available if package distrEx is installed; otherwise the corresponding columns
will be filled with NA.

Value

A list with components crit — a matrix with the lower and upper confidence bounds, and err a
logical vector of length 2.

Component crit is a matrix with length(x) rows and four columns c("sim.left","sim.right","pw.left","pw.right").
Entries will be set to NA if the corresponding x component is not in support(D) or if the computa-
tion method returned an error or if the corresponding parts have not been required (if withConf.pw
or withConf.sim is FALSE).

err has components pw —do we have a non-error return value for the computation of pointwise
CI’s (FALSE if withConf.pw is FALSE)— and sim —do we have a non-error return value for the
computation of simultaneous CI’s (FALSE if withConf.sim is FALSE).

qqplot 141

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Durbin, J. (1973) Distribution theory for tests based on the sample distribution function. SIAM.

Fisz, M. (1963). Probability Theory and Mathematical Statistics. 3rd ed. Wiley, New York.

See Also

qqplot from package stats – the standard QQ plot function, ks.test again from package stats for
the implementation of the Kolmogorov distributions; qqplot from package distr for comparisons of
distributions, and qqplot from package distrMod for comparisons of data with models, as well as
RobAStBase::qqplot from package RobAStBase for checking of corresponding robust esimators.

Examples

qqplot(Norm(15,sqrt(30)), Chisq(df=15))
uses:
old.digits <- getOption("digits")
on.exit(options(digits = old.digits))
options(digits = 6)
set.seed(20230508)
IGNORE_RDIFF_BEGIN
qqbounds(x = rnorm(30), Norm(), alpha = 0.95, n = 30,

withConf.pw = TRUE, withConf.sim = TRUE,
exact.sCI = TRUE, exact.pCI = TRUE,
nosym.pCI = FALSE)

other calls:
qqbounds(x = rchisq(30,df=4), Chisq(df=4), alpha = 0.95, n = 30,

withConf.pw = TRUE, withConf.sim = TRUE,
exact.sCI = FALSE, exact.pCI = FALSE,
nosym.pCI = FALSE)

qqbounds(x = rchisq(30,df=4), Chisq(df=4), alpha = 0.95, n = 30,
withConf.pw = TRUE, withConf.sim = TRUE,
exact.sCI = TRUE, exact.pCI= TRUE,
nosym.pCI = TRUE)

IGNORE_RDIFF_END
options(digits = old.digits)

qqplot Methods for Function qqplot in Package ‘distr’

Description

We generalize function qqplot from package stats to be applicable to distribution objects. In this
context, qqplot produces a QQ plot of two distributions, i.e.; argument x is the distribution to be
checked for compatibility, and y is the model (H0-)distribution. Graphical parameters may be given

142 qqplot

as arguments to qqplot. The stats function is just the method for signature x=ANY,y=ANY. In all
title and axis label arguments, if withSubst is TRUE, the following patterns are substituted:

"%C" class of argument x

"%A" deparsed argument x

"%D" time/date-string when the plot was generated

Usage

qqplot(x, y, ...)
S4 method for signature 'UnivariateDistribution,UnivariateDistribution'
qqplot(x, y,

n = 30, withIdLine = TRUE, withConf = TRUE,
withConf.pw = withConf, withConf.sim = withConf,
plot.it = TRUE, xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)), ...,
width = 10, height = 5.5, withSweave = getdistrOption("withSweave"),
mfColRow = TRUE, n.CI = n, col.IdL = "red", lty.IdL = 2, lwd.IdL = 2,
alpha.CI = .95, exact.pCI = (n<100), exact.sCI = (n<100), nosym.pCI = FALSE,
col.pCI = "orange", lty.pCI = 3, lwd.pCI = 2, pch.pCI = par("pch"),
cex.pCI = par("cex"),
col.sCI = "tomato2", lty.sCI = 4, lwd.sCI = 2, pch.sCI = par("pch"),
cex.sCI = par("cex"),
cex.pch = par("cex"), col.pch = par("col"),
jit.fac = 0, check.NotInSupport = TRUE,
col.NotInSupport = "red", with.legend = TRUE, legend.bg = "white",
legend.pos = "topleft", legend.cex = 0.8, legend.pref = "",
legend.postf = "", legend.alpha = alpha.CI, debug = FALSE, withSubst = TRUE)

S4 method for signature 'ANY,ANY'
qqplot(x, y,

plot.it = TRUE, xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)), ...)

Arguments

x object of class "ANY" (stats-method) or of code "UnivariateDistribution";
to be compared to y.

y object of class "ANY" (stats-method) or of class "UnivariateDistribution".

n numeric; number of quantiles at which to do the comparison.

withIdLine logical; shall line y = x be plotted in?

withConf logical; shall confidence lines be plotted?

withConf.pw logical; shall pointwise confidence lines be plotted?

withConf.sim logical; shall simultaneous confidence lines be plotted?

plot.it logical; shall be plotted at all (inherited from qqplot)?

xlab x-label

ylab y-label

qqplot 143

... further parameters for function plot

width width (in inches) of the graphics device opened
height height (in inches) of the graphics device opened
withSweave logical: if TRUE (for working with Sweave) no extra device is opened and height/width

are not set
mfColRow shall default partition in panels be used — defaults to TRUE

n.CI numeric; number of points to be used for confidence interval
col.IdL color for the identity line
lty.IdL line type for the identity line
lwd.IdL line width for the identity line
alpha.CI confidence level
exact.pCI logical; shall pointwise CIs be determined with exact Binomial distribution?
exact.sCI logical; shall simultaneous CIs be determined with exact kolmogorov distribu-

tion?
nosym.pCI logical; shall we use (shortest) asymmetric CIs?
col.pCI color for the pointwise CI
lty.pCI line type for the pointwise CI
lwd.pCI line width for the pointwise CI
pch.pCI symbol for points (for discrete mass points) in pointwise CI
cex.pCI magnification factor for points (for discrete mass points) in pointwise CI
col.sCI color for the simultaneous CI
lty.sCI line type for the simultaneous CI
lwd.sCI line width for the simultaneous CI
pch.sCI symbol for points (for discrete mass points) in simultaneous CI
cex.sCI magnification factor for points (for discrete mass points) in simultaneous CI
cex.pch magnification factor for the plotted symbols
col.pch color for the plotted symbols
jit.fac jittering factor used for discrete distributions
check.NotInSupport

logical; shall we check if all x-quantiles lie in support(y)?
col.NotInSupport

logical; if preceding check TRUE color of x-quantiles if not in support(y)

with.legend logical; shall a legend be plotted?
legend.bg background color for the legend
legend.pos position for the legend
legend.cex magnification factor for the legend
legend.pref character to be prepended to legend text
legend.postf character to be appended to legend text
legend.alpha nominal coverage probability
debug logical; if TRUE additional output to debug confidence bounds.
withSubst logical; if TRUE (default) pattern substitution for titles and lables is used; other-

wise no substitution is used.

144 qqplot

Details

qqplot signature(x = "ANY", y = "ANY"): function qqplot from package stats.

qqplot signature(x = "UnivariateDistribution", y = "UnivariateDistribution"): produces
a QQ plot for two univariate distributions.

Value

A list of elements containing the information needed to compute the respective QQ plot, in particular
it extends the elements of the return value of function qqplot from package stats, i.e., a list with
components x and y for x and y coordinates of the plotted points; more specifically it contains

x The x coordinates of the points that were/would be plotted

y The corresponding quantiles of the second distribution, including NAs.

crit A matrix with the lower and upper confidence bounds (computed by qqbounds).

err logical vector of length 2.

(elements crit and err are taken from the return value(s) of qqbounds). The return value allows
to recover all information used to produce the plot for later use in enhanced graphics (e.g. with
ggplot).

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

qqplot from package stats – the standard QQ plot function and qqbounds, used by qqplot to
produce confidence intervals.

Examples

IGNORE_RDIFF_BEGIN
qqplot(Norm(15,sqrt(30)), Chisq(df=15))
some discrete Distributions:
P <- Pois(5)
B <- Binom(size=2000,prob=5/2000)
qqplot(B,P)
IGNORE_RDIFF_END

takes too much time for R CMD check --as-cran
qqplot(B,P, nosym.pCI=TRUE)

some Lebesgue-Decomposed distributions:
mylist <- UnivarLebDecDistribution(discretePart=Binom(3,.3), acPart=Norm(2,2),

acWeight=11/20)

r-methods 145

mylist2 <- mylist+0.1

IGNORE_RDIFF_BEGIN
qqplot(mylist,mylist2)
qqplot(mylist,mylist2,exact.pCI=FALSE,exact.sCI=FALSE)
IGNORE_RDIFF_END

takes too much time for R CMD check --as-cran
qqplot(mylist,mylist2,nosym.pCI=TRUE)
some ac. distribution with a gap
mylist3 <- UnivarMixingDistribution(Unif(0,0.3),Unif(0.6,1),mixCoeff=c(0.8,0.2))
gaps(mylist3)
mylist4 <- UnivarMixingDistribution(Unif(0,0.3),Unif(0.6,1),mixCoeff=c(0.6,0.4))
qqplot(mylist3,mylist4)
qqplot(mylist3,mylist4,nosym.pCI=TRUE)

r-methods Methods for Function r in Package ‘distr’

Description

r-methods

Methods

r signature(object = "Distribution"): generates random deviates according to the distribu-
tion

See Also

Distribution-class

rate-methods Methods for Function rate in Package ‘distr’

Description

rate-methods

146 Reals-class

Methods

rate signature(object = "ExpParameter"): returns the slot rate of the parameter of the distri-
bution

rate<- signature(object = "ExpParameter"): modifies the slot rate of the parameter of the
distribution

rate signature(object = "Exp"): returns the slot rate of the parameter of the distribution

rate<- signature(object = "Exp"): modifies the slot rate of the parameter of the distribution

rate signature(object = "DExp"): returns the slot rate of the parameter of the distribution

rate<- signature(object = "DExp"): modifies the slot rate of the parameter of the distribution

Reals-class Class "Reals"

Description

Particular case of a one-dimensional Euclidean Space

Usage

Reals()

Objects from the Class

Objects could theoretically be created by calls of the form new("Reals", dimension, name). Usu-
ally an object of this class is not needed on its own. It is generated automatically when a univariate
absolutly continuous distribution is instantiated.

Slots

dimension Object of class "character": the dimension of the space, by default = 1

name Object of class "character": the name of the space, by default = "Real Space"

Extends

Class "EuclideanSpace", directly.
Class "rSpace", by class "EuclideanSpace".

Methods

initialize signature(.Object = "Reals"): initialize method

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

rSpace-class 147

See Also

EuclideanSpace-class Naturals-class AbscontDistribution-class

Examples

R <- Reals()
liesIn(R,c(0,0)) # FALSE

rSpace-class Class "rSpace"

Description

The distribution-classes contain a slot where the sample space is stored. Typically, discrete random
variables take naturals as values. rSpace is the mother-class of the class EuclideanSpace.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

name Object of class "character": the name of the space

Methods

name signature(object = "rSpace"): returns the name of the space

name<- signature(object = "rSpace"): changes the name of the space

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Lattice-class Naturals-class EuclideanSpace-class Distribution-class

148 RtoDPQ

RtoDPQ Default procedure to fill slots d,p,q given r for a.c. distributions

Description

function to do get empirical density, cumulative distribution and quantile function from random
numbers

Usage

RtoDPQ(r, e = getdistrOption("RtoDPQ.e"),
n = getdistrOption("DefaultNrGridPoints"), y = NULL)

Arguments

r the random number generator

e 10e numbers are generated, a higher number leads to a better result.

n The number of grid points used to create the approximated functions, a higher
number leads to a better result.

y a (numeric) vector or NULL

Details

RtoDPQ generates 10e random numbers, by default

e = RtoDPQ.e

. Instead of using simulated grid points, we have an optional parameter y for using N. Horbenko’s
quantile trick: i.e.; on an equally spaced grid x.grid on [0,1], apply f(q(x)(x.grid)) and write
the result to y and produce density and cdf from this value y given to RtoDPQ as argument (instead
of simulating grid points).

The density is formed on the basis of n points using approxfun and density, by default

n = DefaultNrGridPoints

. The cumulative distribution function and the quantile function are also created on the basis of
n points using approxfun and ecdf. Of course, the results are usually not exact as they rely on
random numbers.

Value

RtoDPQ returns a list of functions.

dfun density

pfun cumulative distribution function

qfun quantile function

RtoDPQ.d 149

Note

Use RtoDPQ for absolutely continuous and RtoDPQ.d for discrete distributions.

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

UnivariateDistribution-class, density, approxfun, ecdf

Examples

set.seed(20230508)
rn2 <- function(n){rnorm(n)^2}
x <- RtoDPQ(r = rn2, e = 4, n = 512)
returns density, cumulative distribution and quantile function of
squared standard normal distribution
IGNORE_RDIFF_BEGIN
x$dfun(4)
RtoDPQ(r = rn2, e = 5, n = 1024) # for a better result
IGNORE_RDIFF_END
rp2 <- function(n){rpois(n, lambda = 1)^2}
x <- RtoDPQ.d(r = rp2, e = 5)
returns density, cumulative distribution and quantile function of
squared Poisson distribution with parameter lambda=1

RtoDPQ.d Default procedure to fill slots d,p,q given r for discrete distributions

Description

function to do get empirical density, cumulative distribution and quantile function from random
numbers

Usage

RtoDPQ.d(r, e = getdistrOption("RtoDPQ.e"))

Arguments

r the random number generator

e 10e numbers are generated, a higher number leads to a better result.

150 RtoDPQ.d

Details

RtoDPQ.d generates 10e random numbers, by default e = RtoDPQ.e which are used to produce
a density, cdf and quantile function. Of course, the results are usually not exact as they rely on
random numbers.

Value

RtoDPQ returns a list of functions.

dfun density

pfun cumulative distribution function

qfun quantile function

Note

Use RtoDPQ for absolutely continuous and RtoDPQ.d for discrete distributions.

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

UnivariateDistribution-class, density, approxfun, ecdf

Examples

set.seed(20230508)
rn2 <- function(n){rnorm(n)^2}
x <- RtoDPQ(r = rn2, e = 4, n = 512)
returns density, cumulative distribution and quantile function of
squared standard normal distribution
IGNORE_RDIFF_BEGIN
x$dfun(4)
RtoDPQ(r = rn2, e = 5, n = 1024) # for a better result
IGNORE_RDIFF_END
rp2 <- function(n){rpois(n, lambda = 1)^2}
x <- RtoDPQ.d(r = rp2, e = 5)
returns density, cumulative distribution and quantile function of
squared Poisson distribution with parameter lambda=1

RtoDPQ.LC 151

RtoDPQ.LC Default procedure to fill slots d,p,q given r for Lebesgue decomposed
distributions

Description

function to do get empirical density, cumulative distribution and quantile function from random
numbers

Usage

RtoDPQ.LC(r, e = getdistrOption("RtoDPQ.e"),
n = getdistrOption("DefaultNrGridPoints"), y = NULL)

Arguments

r the random number generator

e 10e numbers are generated, a higher number leads to a better result.

n The number of grid points used to create the approximated functions, a higher
number leads to a better result.

y a (numeric) vector or NULL

Details

RtoDPQ.LC generates 10e random numbers, by default

e = RtoDPQ.e

. Replicates are assumed to be part of the discrete part, unique values to be part of the a.c.
part of the distribution. For the replicated ones, we generate a discrete distribution by a call to
DiscreteDistribution.

For the a.c. part, similarly to RtoDPQ we have an optional parameter y for using N. Horbenko’s
quantile trick: i.e.; on an equally spaced grid x.grid on [0,1], apply f(q(x)(x.grid)), write the
result to y and use these values instead of simulated ones.

The a.c. density is formed on the basis of n points using approxfun and density (applied to the
unique values), by default

n = DefaultNrGridPoints

. The cumulative distribution function is based on all random variables, and, as well as the quantile
function, is also created on the basis of n points using approxfun and ecdf. Of course, the results
are usually not exact as they rely on random numbers.

Value

RtoDPQ.LC returns an object of class UnivarLebDecDistribution.

152 scale-methods

Note

Use RtoDPQ for absolutely continuous and RtoDPQ.d for discrete distributions.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

UnivariateDistribution-class, density, approxfun, ecdf

Examples

set.seed(20230508)
rn2 <- function(n)ifelse(rbinom(n,1,0.3),rnorm(n)^2,rbinom(n,4,.3))
x <- RtoDPQ.LC(r = rn2, e = 4, n = 512)
plot(x)
returns density, cumulative distribution and quantile function of
squared standard normal distribution
IGNORE_RDIFF_BEGIN
d.discrete(x)(4)
IGNORE_RDIFF_END
x2 <- RtoDPQ.LC(r = rn2, e = 5, n = 1024) # for a better result
plot(x2)

scale-methods Methods for Function scale in Package ‘distr’

Description

scale-methods

Methods

scale signature(object = "GammaParameter"): returns the slot scale of the parameter of the
distribution

scale<- signature(object = "GammaParameter"): modifies the slot scale of the parameter of
the distribution

scale signature(object = "Gammad"): returns the slot scale of the parameter of the distribution

scale<- signature(object = "Gammad"): modifies the slot scale of the parameter of the distri-
bution

scale signature(object = "LogisParameter"): returns the slot scale of the parameter of the
distribution

scale<- signature(object = "LogisParameter"): modifies the slot scale of the parameter of
the distribution

scale signature(object = "Logis"): returns the slot scale of the parameter of the distribution

sd-methods 153

scale<- signature(object = "Logis"): modifies the slot scale of the parameter of the distribu-
tion

scale signature(object = "WeibullParameter"): returns the slot scale of the parameter of the
distribution

scale<- signature(object = "WeibullParameter"): modifies the slot scale of the parameter of
the distribution

scale signature(object = "Weibull"): returns the slot scale of the parameter of the distribution

scale<- signature(object = "Weibull"): modifies the slot scale of the parameter of the distri-
bution

scale signature(object = "CauchyParameter"): returns the slot scale of the parameter of the
distribution

scale<- signature(object = "CauchyParameter"): modifies the slot scale of the parameter of
the distribution

scale signature(object = "Cauchy"): returns the slot scale of the parameter of the distribution

scale<- signature(object = "Cauchy"): modifies the slot scale of the parameter of the distri-
bution

scale signature(object = "Chisq"): if ncp(object) is 0, a Chi-squared distribution is also a
Gamma distribution; in this case, scale returns 2 else an error;

sd-methods Methods for Function sd in Package ‘distr’

Description

sd-methods

Methods

sd signature(x = "Any"): see sd

sd signature(x = "NormParameter"): returns the slot sd of the parameter of the distribution

sd<- signature(object = "NormParameter"): modifies the slot sd of the parameter of the distri-
bution

sd signature(x = "Norm"): returns the slot sd of the parameter of the distribution

sd<- signature(object = "Norm"): modifies the slot sd of the parameter of the distribution

See Also

sd

154 shape-methods

sdlog-methods Methods for Function sdlog in Package ‘distr’

Description

sdlog-methods

Methods

sdlog signature(object = "LnormParameter"): returns the slot sdlog of the parameter of the
distribution

sdlog<- signature(object = "LnormParameter"): modifies the slot sdlog of the parameter of
the distribution

sdlog signature(object = "Lnorm"): returns the slot sdlog of the parameter of the distribution

sdlog<- signature(object = "Lnorm"): modifies the slot sdlog of the parameter of the distribu-
tion

shape-methods Methods for Function shape in Package ‘distr’

Description

shape-methods

Methods

shape signature(object = "GammaParameter"): returns the slot shape of a parameter of a Gamma
distribution

shape<- signature(object = "GammaParameter"): modifies the slot shape of a parameter of a
Gamma distribution

shape signature(object = "Gammad"): returns the slot shape of the parameter slot of a Gamma
distribution

shape<- signature(object = "Gammad"): modifies the slot shape of the parameter slot of a Gamma
distribution

shape signature(object = "WeibullParameter"): returns the slot shape of a parameter of a
Weibull distribution

shape<- signature(object = "WeibullParameter"): modifies the slot shape of a parameter of
a Weibull distribution

shape signature(object = "Weibull"): returns the slot shape of the parameter slot of the dis-
tribution

shape<- signature(object = "Weibull"): modifies the slot shape of the parameter slot of the
distribution

shape1-methods 155

shape signature(object = "Chisq"): if ncp(object) is 0, a Chi-squared distribution is also a
Gamma distribution; in this case, shape returns df(object)/2 else an error;

shape signature(object = "Exp"): returns the slot shape of the parameter slot of the Exp dis-
tribution (=1)

shape1-methods Methods for Function shape1 in Package ‘distr’

Description

shape-methods

Methods

shape1 signature(object = "BetaParameter"): returns the slot shape1 of the parameter of the
distribution

shape1<- signature(object = "BetaParameter"): modifies the slot shape1 of the parameter of
the distribution

shape1 signature(object = "Beta"): returns the slot shape1 of the parameter of the distribution

shape1<- signature(object = "Beta"): modifies the slot shape1 of the parameter of the distri-
bution

shape2-methods Methods for Function shape2 in Package ‘distr’

Description

shape-methods

Methods

shape2 signature(object = "BetaParameter"): returns the slot shape2 of the parameter of the
distribution

shape2<- signature(object = "BetaParameter"): modifies the slot shape2 of the parameter of
the distribution

shape2 signature(object = "Beta"): returns the slot shape2 of the parameter of the distribution

shape2<- signature(object = "Beta"): modifies the slot shape2 of the parameter of the distri-
bution

156 simplifyD-methods

simplifyD-methods Methods for function simplifyD in Package ‘distr’

Description

simplifyD-methods

Usage

simplifyD(object)

Arguments

object distribution object

Details

generating functions UnivarMixingDistribution Minimum, Maximum, Truncate, and Huberize
have an argument withSimplify which decides whether the respective result is filtered by/piped
through a call to simplifyD. By default this argument is set to the distr-option getdistrOption("simplifyD"
(for the inspection and modification of such global options see distroptions). Depending on
whether or not this option is TRUE, also arithmetic operations "+", "*", "/", "^" and group Math
give results filtered by/piped through a call to simplifyD.

Value

the corresponding, possibly simplified distribution

Methods

simplifyD signature(object = "AbscontDistribution"): returns object unchanged

simplifyD signature(object = "DiscreteDistribution"): returns object unchanged

simplifyD signature(object = "UnivarLebDecDistribution"): checks whether acWeight or
discreteWeight is approximately (i.e.; up to getdistrOption("TruncQuantile")) zero
and if so, accordingly returns discretePart(object) or acPart(object), respectively.

simplifyD signature(object = "UnivarMixingDistribution"): returns the flattened version
of object (using flat.mix). before doing so, it checks whether any component carries weight
approximately (i.e.; up to getdistrOption("TruncQuantile")) one (in slot mixCoeff) and
if so, returns this component; else, if not all weights are below getdistrOption("TruncQuantile")),
it filters out those components with weight less than getdistrOption("TruncQuantile")).

See Also

Huberize, Minimum

simplifyr-methods 157

Examples

set.seed(123)
Mix1 <- UnivarMixingDistribution(Norm(),Binom(2,.3),

UnivarLebDecDistribution(acPart = Chisq(df = 2), discretePart = Nbinom(3,.09),
acWeight = 0.3),

Norm()-Chisq(df=3), mixCoeff=c(0,0,0.2,0.8), withSimplify = FALSE)
Mix2 <- UnivarMixingDistribution(Norm(),Mix1, DExp(2),

mixCoeff = c(0,0.2,0.8), withSimplify = FALSE)
Mix2
simplifyD(Mix2)

simplifyr-methods Methods for Function simplifyr in Package ‘distr’

Description

simplifyr-methods

Methods

simplifyr signature(.Object = "UnivariateDistribution"): After several transformations of
a given distribution it may take quite a long time to generate random numbers from the result-
ing distribution. simplifyr generates a certain number, by default 105, of random numbers
once. This pool of random numbers forms the basis for further uses of the r-method. That is,
random numbers are generated by sampling with replacement out of this pool.

Note

If you want to generate many random numbers, you should use simplifyr with a big size to be sure,
that your numbers are really random.

See Also

Distribution-class

Examples

F <- (Norm() + Binom() + Pois() + Exp()) * 2 - 10
IGNORE_RDIFF_BEGIN
system.time(r(F)(10^6))
IGNORE_RDIFF_END
simplifyr(F, size = 10^6)
IGNORE_RDIFF_BEGIN
system.time(r(F)(10^6))
IGNORE_RDIFF_END

158 solve-methods

size-methods Methods for Function size in Package ‘distr’

Description

size-methods

Methods

size signature(object = "BinomParameter"): returns the slot size of the parameter of the dis-
tribution

size<- signature(object = "BinomParameter"): modifies the slot size of the parameter of the
distribution

size signature(object = "Binom"): returns the slot size of the parameter of the distribution

size<- signature(object = "Binom"): modifies the slot size of the parameter of the distribution

size signature(object = "NbinomParameter"): returns the slot size of the parameter of the
distribution

size<- signature(object = "NbinomParameter"): modifies the slot size of the parameter of the
distribution

size signature(object = "Nbinom"): returns the slot size of the parameter of the distribution

size<- signature(object = "Nbinom"): modifies the slot size of the parameter of the distribu-
tion

size signature(object = "Geom"): returns the slot size of the parameter of the distribution

solve-methods Methods for Function solve in Package ‘distr’

Description

solve-methods using generalized inverses for various types of matrices

Usage

solve(a,b, ...)
S4 method for signature 'ANY,ANY'
solve(a, b, generalized =
getdistrOption("use.generalized.inverse.by.default"), tol = 1e-10)
S4 method for signature 'PosSemDefSymmMatrix,ANY'
solve(a, b, generalized =
getdistrOption("use.generalized.inverse.by.default"), tol = 1e-10)
S4 method for signature 'PosDefSymmMatrix,ANY'
solve(a, b, tol = 1e-10)

SphericalSymmetry 159

Arguments

a matrix to be inverted / to be solved for RHS.

b a numeric or complex vector or matrix giving the right-hand side(s) of the linear
system. If missing, b is taken to be an identity matrix and solve will return the
inverse of a.

... further arguments to be passed to specific methods (see solve).

generalized logical: should generalized / Moore-Penrose inverses be used? By default uses
the corresponding global option to be set by distroptions.

tol the tolerance for detecting linear dependencies in the columns of a. Default is
.Machine$double.eps.

Details

The method for the Moore-Penrose inverse for signature(a = "PosSemDefSymmMatrix", b = "ANY")
uses eigen to find the eigenvalue decomposition of a and then simply "pseudo-inverts" the cor-
responding diagonal matrix built from eigen(a)$values, while for signature(a = "ANY", b =
"ANY") it uses the svd decomposition of a and then simply "pseudo-inverts" the corresponding
diagonal matrix built from svd(a)$d.

Methods

solve signature(a = "ANY", b = "ANY"): tries to evaluate solve.default method from base in
classical way; if this gives an error, this one is returned if generalized is TRUE, else it will
then return a−b where a− is the pseudo or Moore-Penrose inverse of a.

solve signature(a = "PosSemDefSymmMatrix", b = "ANY"): evaluates a−b where a− is the pseudo
or Moore-Penrose inverse of a.

solve signature(a = "PosDefSymmMatrix", b = "ANY"): evaluates solve method from base in
classical way.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

solve for the default method, eigen and svd for the pseudo inversion

SphericalSymmetry Generating function for SphericalSymmetry-class

Description

Generates an object of class "SphericalSymmetry".

160 SphericalSymmetry-class

Usage

SphericalSymmetry(SymmCenter = 0)

Arguments

SymmCenter numeric: center of symmetry

Value

Object of class "SphericalSymmetry"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

SphericalSymmetry-class, DistributionSymmetry-class

Examples

SphericalSymmetry()

The function is currently defined as
function(SymmCenter = 0){

new("SphericalSymmetry", SymmCenter = SymmCenter)
}

SphericalSymmetry-class

Class for Spherical Symmetric Distributions

Description

Class for spherical symmetric distributions.

Objects from the Class

Objects can be created by calls of the form new("SphericalSymmetry"). More frequently they are
created via the generating function SphericalSymmetry. Spherical symmetry for instance leads to
a simplification for the computation of optimally robust influence curves.

Slots

type Object of class "character": contains “spherical symmetric distribution”

SymmCenter Object of class "numeric": center of symmetry

sqrt-methods 161

Extends

Class "EllipticalSymmetry", directly.
Class "DistributionSymmetry", by class "EllipticalSymmetry".
Class "Symmetry", by class "EllipticalSymmetry".

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

SphericalSymmetry, DistributionSymmetry-class

Examples

new("SphericalSymmetry")

sqrt-methods Methods for Function sqrt in Package ‘distr’

Description

sqrt-methods using generalized inverses for p.s.d. matrices

Usage

S4 method for signature 'PosSemDefSymmMatrix'
sqrt(x)

Arguments

x a p.s.d. matrix (of class PosSemDefSymmMatrix

Methods

sqrt signature(x = "PosSemDefSymmMatrix"): produces a symmetric, p.s.d. matrix y such that
x = y2.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

solve

162 support-methods

standardMethods Utility to automatically generate accessor and replacement functions

Description

Creates definitions for accessor and replacement functions of an given class.

Usage

standardMethods(class, writetofile = FALSE, directory)

Arguments

class the class for which accessor and replacement functions are to be produced, given
as a string

writetofile logical value, indicating wheter output is to be written to a file

directory if writetofile = TRUE, the output is written to a file in the given directory,
the name of the file starting with "classname" and ending with "StandardMeth-
ods.txt"

Value

no value is returned

Author(s)

Thomas Stabla <statho@web.de>

Examples

setClass("testclass", representation(a = "numeric", b = "character"))
standardMethods("testclass")

support-methods Methods for Function support in Package ‘distr’

Description

support-methods

Methods

support signature(object = "DiscreteDistribution"): returns the support

Symmetry-class 163

Symmetry-class Class of Symmetries

Description

Class of symmetries of various objects.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

type Object of class "character": discribes type of symmetry.

SymmCenter Object of class "ANY": center of symmetry.

Methods

type signature(object = "Symmetry"): accessor function for slot type

SymmCenter signature(object = "Symmetry"): accessor function for slot SymmCenter

show signature(object = "Symmetry")

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

DistributionSymmetry-class, OptionalNumeric-class

Td-class Class "Td"

Description

The t distribution with df = ν degrees of freedom has density

f(x) =
Γ((ν + 1)/2)√

πνΓ(ν/2)
(1 + x2/ν)−(ν+1)/2

for all real x. It has mean 0 (for ν > 1) and variance ν
ν−2 (for ν > 2). C.f. rt

Objects from the Class

Objects can be created by calls of the form Td(df). This object is a t distribution.

164 Td-class

Slots

img Object of class "Reals": The domain of this distribution has got dimension 1 and the name
"Real Space".

param Object of class "TParameter": the parameter of this distribution (df), declared at its instan-
tiation

r Object of class "function": generates random numbers (calls function rt)
d Object of class "function": density function (calls function dt)
p Object of class "function": cumulative function (calls function pt)
q Object of class "function": inverse of the cumulative function (calls function qt)
.withArith logical: used internally to issue warnings as to interpretation of arithmetics
.withSim logical: used internally to issue warnings as to accuracy
.logExact logical: used internally to flag the case where there are explicit formulae for the log

version of density, cdf, and quantile function
.lowerExact logical: used internally to flag the case where there are explicit formulae for the

lower tail version of cdf and quantile function
Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-

lations.

Extends

Class "AbscontDistribution", directly.
Class "UnivariateDistribution", by class "AbscontDistribution".
Class "Distribution", by class "AbscontDistribution".

Methods

initialize signature(.Object = "Td"): initialize method
df signature(object = "Td"): returns the slot df of the parameter of the distribution
df<- signature(object = "Td"): modifies the slot df of the parameter of the distribution
ncp signature(object = "Td"): returns the slot ncp of the parameter of the distribution
ncp<- signature(object = "Td"): modifies the slot ncp of the parameter of the distribution

Ad hoc methods

For R Version <2.3.0 ad hoc methods are provided for slots q, r if ncp!=0; for R Version >=2.3.0
the methods from package stats are used.

Note

The general non-central t with parameters (ν, δ) = (df, ncp) is defined as a the distribution of
Tν(δ) := U+δ

χν/
√
ν

where U and χν are independent random variables, U ∼ N (0, 1), and χ2
ν is

chi-squared, see rchisq.

The most used applications are power calculations for t-tests:
Let T = X̄−µ0

S/
√
n

where X̄ is the mean and S the sample standard deviation (sd) of X1, X2, . . . , Xn

which are i.i.d. N(µ, σ2). Then T is distributed as non-centrally t with df= n − 1 degrees of
freedom and non-centrality parameter ncp= (µ− µ0)

√
n/σ.

TParameter-class 165

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

TParameter-class, AbscontDistribution-class, Reals-class, rt

Examples

T <- Td(df = 1) # T is a t distribution with df = 1.
r(T)(1) # one random number generated from this distribution, e.g. -0.09697573
d(T)(1) # Density of this distribution is 0.1591549 for x = 1.
p(T)(1) # Probability that x < 1 is 0.75.
q(T)(.1) # Probability that x < -3.077684 is 0.1.
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
df(T) # df of this distribution is 1.
df(T) <- 2 # df of this distribution is now 2.
Tn <- Td(df = 1, ncp = 5)

T is a noncentral t distribution with df = 1 and ncp = 5.
d(Tn)(1) ## from R 2.3.0 on ncp no longer ignored...

TParameter-class Class "TParameter"

Description

The parameter of a t distribution, used by Td-class

Objects from the Class

Objects can be created by calls of the form new("TParameter", df, ncp). Usually an object of
this class is not needed on its own, it is generated automatically when an object of the class Td is
instantiated.

Slots

df Object of class "numeric": the degrees of freedom of a T distribution

ncp Object of class "numeric": the noncentrality parameter of a T distribution

name Object of class "character": a name / comment for the parameters

Extends

Class "Parameter", directly.

166 Truncate-methods

Methods

initialize signature(.Object = "TParameter"): initialize method

df signature(object = "TParameter"): returns the slot df of the parameter of the distribution

df<- signature(object = "TParameter"): modifies the slot df of the parameter of the distribu-
tion

ncp signature(object = "TParameter"): returns the slot ncp of the parameter of the distribution

ncp<- signature(object = "TParameter"): modifies the slot ncp of the parameter of the distri-
bution

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Td-class Parameter-class

Examples

W <- new("TParameter",df=1, ncp = 0)
df(W) # df of this distribution is 1.
df(W) <- 2 # df of this distribution is now 2.

Truncate-methods Methods for function Truncate in Package ‘distr’

Description

Truncate-methods

Usage

Truncate(object, ...)
S4 method for signature 'AbscontDistribution'
Truncate(object, lower = -Inf, upper = Inf)
S4 method for signature 'DiscreteDistribution'
Truncate(object, lower= -Inf, upper = Inf)
S4 method for signature 'LatticeDistribution'
Truncate(object, lower= -Inf, upper = Inf)
S4 method for signature 'UnivarLebDecDistribution'
Truncate(object, lower = -Inf, upper = Inf,

withSimplify = getdistrOption("simplifyD"))

Truncate-methods 167

Arguments

object distribution object
... not yet used; takes up lower, upper, withSimplify.
lower numeric; lower truncation point
upper numeric; upper truncation point
withSimplify logical; is result to be piped through a call to simplifyD?

Value

the corresponding distribution of the truncated random variable

Methods

Truncate signature(object = "AbscontDistribution"): returns the distribution of min(upper,max(X,lower))
conditioned to lower<=X<=upper, if X is distributed according to object; if slot .logExact
of argument object is TRUE and if either there is only one-sided truncation or both truncation
points lie on the same side of the median, we use this representation to enhance the range
of applicability, in particular, for slot r, we profit from Peter Dalgaard’s clever log-tricks as
indicated in https://stat.ethz.ch/pipermail/r-help/2008-September/174321.html.
To this end we use the internal functions (i.e.; non exported to namespace) .trunc.up and
.trunc.low which provide functional slots r,d,p,q for one-sided truncation. In case of two
sided truncation, we simply use one-sided truncation successively — first left and then right
in case we are right of the median, and the other way round else; the result is again of class
"AbscontDistribution";

Truncate signature(object = "DiscreteDistribution"): returns the distribution of min(upper,max(X,lower))
conditioned to lower<=X<=upper, if X is distributed according to object; the result is again
of class "DiscreteDistribution"

Truncate signature(object = "LatticeDistribution"): if length of the corresp. lattice is
infinite and slot .logExact of argument object is TRUE, we proceed similarly as in case
of AbscontDistribution, also using internal functions .trunc.up and .trunc.low; else
we use the corresponding "DiscreteDistribution" method; the result is again of class
"LatticeDistribution"

Truncate signature(object = "UnivarLebDecDistribution"): returns the distribution of min(upper,max(X,lower))
conditioned to lower<=X<=upper, if X is distributed according to object; the result is again
of class "UnivarLebDecDistribution"

See Also

Huberize, Minimum

Examples

plot(Truncate(Norm(),lower=-1,upper=2))
TN <- Truncate(Norm(),lower=15,upper=15.7) ### remarkably right!
plot(TN)
r(TN)(30)
TNG <- Truncate(Geom(prob=0.05),lower=325,upper=329) ### remarkably right!
plot(TNG)

https://stat.ethz.ch/pipermail/r-help/2008-September/174321.html

168 Unif-class

Unif-class Class "Unif"

Description

The uniform distribution has density

d(x) =
1

max−min

for min, by default = 0, ≤ x ≤ max, by default = 1. C.f. runif

Objects from the Class

Objects can be created by calls of the form Unif(Min, Max). This object is a uniform distribution.

Slots

img Object of class "Reals": The space of the image of this distribution has got dimension 1 and
the name "Real Space".

param Object of class "UnifParameter": the parameter of this distribution (Min and Max), de-
clared at its instantiation

r Object of class "function": generates random numbers (calls function runif)

d Object of class "function": density function (calls function dunif)

p Object of class "function": cumulative function (calls function punif)

q Object of class "function": inverse of the cumulative function (calls function qunif)

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "AbscontDistribution", directly.
Class "UnivariateDistribution", by class "AbscontDistribution".
Class "Distribution", by class "AbscontDistribution".

Is-Relations

By means of setIs, R “knows” that a distribution object obj of class "Unif" with Min 0 and Max
1 also is a Beta distribution with parameters shape1 = 1, shape2 = 1, ncp = 0.

UnifParameter-class 169

Methods

initialize signature(.Object = "Unif"): initialize method

Min signature(object = "Unif"): returns the slot Min of the parameter of the distribution

Min<- signature(object = "Unif"): modifies the slot Min of the parameter of the distribution

Max signature(object = "Unif"): returns the slot Max of the parameter of the distribution

Max<- signature(object = "Unif"): modifies the slot Max of the parameter of the distribution

* signature(e1 = "Unif", e2 = "numeric"): multiplication of this uniform distribution by an
object of class ‘numeric’

+ signature(e1 = "Unif", e2 = "numeric"): addition of this uniform distribution to an object of
class ‘numeric’

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

UnifParameter-class AbscontDistribution-class Reals-class runif

Examples

U <- Unif(Min=0,Max=2) # U is a uniform distribution with Min=0 and Max=2.
r(U)(1) # one random number generated from this distribution, e.g. 1.984357
d(U)(1) # Density of this distribution is 0.5 for x=1.
p(U)(1) # Probability that x<1 is 0.5.
q(U)(.1) # Probability that x<0.2 is 0.1.
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
Min(U) # Min of this distribution is 0.
Min(U) <- 1 # Min of this distribution is now 1.
Min(U) # Min of this distribution is 1.
Min(U) <- 0
is(U/2,"Beta") # yes
V <- U/2; as(V,"Beta")

UnifParameter-class Class "UnifParameter"

Description

The parameter of a uniform distribution, used by Unif-class

170 UnifParameter-class

Objects from the Class

Objects can be created by calls of the form new("UnifParameter", Max, Min). Usually an object
of this class is not needed on its own, it is generated automatically when an object of the class Unif
is instantiated.

Slots

Max Object of class "numeric": the Max of a uniform distribution

Min Object of class "numeric": the Min of a uniform distribution

name Object of class "character": a name / comment for the parameters

Extends

Class "Parameter", directly.

Methods

initialize signature(.Object = "UnifParameter"): initialize method

Min signature(object = "UnifParameter"): returns the slot Min of the parameter of the distri-
bution

Min<- signature(object = "UnifParameter"): modifies the slot Min of the parameter of the
distribution

Max signature(object = "UnifParameter"): returns the slot Max of the parameter of the distri-
bution

Max<- signature(object = "UnifParameter"): modifies the slot Max of the parameter of the
distribution

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Unif-class Parameter-class

Examples

W <- new("UnifParameter",Min=0,Max=1)
Max(W) # Max of this distribution is 1.
Max(W) <- 2 # Max of this distribution is now 2.

UniNormParameter-class 171

UniNormParameter-class

Class "UniNormParameter"

Description

The parameter of a univariate normal distribution, used by Norm-class

Objects from the Class

Objects can be created by calls of the form new("NormParameter", sd, mean). Usually an object
of this class is not needed on its own, it is generated automatically when an object of the class Norm
is instantiated.

Slots

sd Object of class "numeric": the sd of a univariate normal distribution

mean Object of class "numeric": the mean of a univariate normal distribution

name Object of class "character": a name / comment for the parameters

Extends

Class "NormParameter", directly. Class "Parameter", by class "NormParameter".

Methods

initialize signature(.Object = "UniNormParameter"): initialize method

mean signature(object = "UniNormParameter"): returns the slot mean of the parameter of the
distribution

mean<- signature(object = "UniNormParameter"): modifies the slot mean of the parameter of
the distribution

sd signature(object = "UniNormParameter"): returns the slot sd of the parameter of the distri-
bution

sd<- signature(object = "UniNormParameter"): modifies the slot sd of the parameter of the
distribution

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Norm-class NormParameter-class Parameter-class

172 UnivarDistrList

Examples

W <- new("UniNormParameter", mean = 0, sd = 1)
sd(W) # sd of this distribution is 1
sd(W) <- 2 # sd of this distribution is now 2

UnivarDistrList Generating function for UnivarDistrList-class

Description

Generates an object of class "UnivarDistrList".

Usage

UnivarDistrList(..., Dlist)

Arguments

... Objects of class "UnivariateDistribution" (or subclasses)

Dlist an optional list or object of class "UnivarDistrList"; if not missing it is ap-
pended to argument ...; this way UnivarMixingDistribution may also be
called with a list (or "UnivarDistrList"-object) as argument as suggested in
an e-mail by Krunoslav Sever (thank you!)

Value

Object of class "UnivarDistrList"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

DistrList-class, UnivarDistrList-class, UnivarDistrList

Examples

(DL <- UnivarDistrList(Norm(), Exp(), Pois()))
plot(DL)
as(Norm(), "UnivarDistrList")

The function is currently defined as
function(...){

new("UnivarDistrList", list(...))
}

UnivarDistrList-class 173

UnivarDistrList-class List of univariate distributions

Description

Create a list of univariate distributions

Objects from the Class

Objects can be created by calls of the form new("UnivarDistrList", ...). More frequently they
are created via the generating function DistrList.

Slots

.Data Object of class "list". A list of univariate distributions.

Extends

Class "DistrList", directly.
Class "list", by class "DistrList".
Class "vector", by class "DistrList".

Methods

coerce signature(from = "UnivariateDistribution", to = "UnivarDistrList"): create a UnivarDistrList
object from a univariate distribution

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

UnivarDistrList, DistrList-class, UnivariateDistribution-class

Examples

(DL <- new("UnivarDistrList", list(Norm(), Exp())))
plot(DL)
as(Norm(), "UnivarDistrList")

174 UnivariateDistribution-class

UnivariateDistribution-class

Class "UnivariateDistribution"

Description

The UnivariateDistribution-class is the mother-class of the classes AbscontDistribution and Dis-
creteDistribution.

Objects from the Class

Objects can be created by calls of the form new("UnivariateDistribution").

Slots

img Object of class "Reals": the space of the image of this distribution which has dimension 1 and
the name "Real Space"

param Object of class "Parameter": the parameter of this distribution

r Object of class "function": generates random numbers

d Object of class "function": density function

p Object of class "function": cumulative distribution function

q Object of class "function": quantile function

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "Distribution", directly.

Methods

initialize signature(.Object = "UnivariateDistribution"):
initialize method

dim signature(x = "UnivariateDistribution"):
returns the dimension of the support of the distribution

- signature(e1 = "UnivariateDistribution"):
application of ‘-’ to this univariate distribution

UnivariateDistribution-class 175

* signature(e1 = "UnivariateDistribution", e2 = "numeric"):

multiplication of this univariate distribution by an object of class ‘numeric’

/ signature(e1 = "UnivariateDistribution", e2 = "numeric"):

division of this univariate distribution by an object of class ‘numeric’

+ signature(e1 = "UnivariateDistribution", e2 = "numeric"):

addition of this univariate distribution to an object of class ‘numeric’

- signature(e1 = "UnivariateDistribution", e2 = "numeric"):

subtraction of an object of class ‘numeric’ from this univariate distribution

* signature(e1 = "numeric", e2 = "UnivariateDistribution"):

multiplication of this univariate distribution by an object of class ‘numeric’

+ signature(e1 = "numeric", e2 = "UnivariateDistribution"):

addition of this univariate distribution to an object of class ‘numeric’

- signature(e1 = "numeric", e2 = "UnivariateDistribution"):

subtraction of this univariate distribution from an object of class ‘numeric’

+ signature(e1 = "UnivariateDistribution", e2 = "UnivariateDistribution"):

Convolution of two univariate distributions. The slots p, d and q are approximated by grids.

- signature(e1 = "UnivariateDistribution", e2 = "UnivariateDistribution"):

Convolution of two univariate distributions. The slots p, d and q are approximated by grids.

simplifyr signature(object = "UnivariateDistribution"):

simplifies the r-method of a distribution, see there for further information

print signature(object = "UnivariateDistribution"):

returns the class of the object and its parameters

show signature(object = "UnivariateDistribution"): as print

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Parameter-class Distribution-class AbscontDistribution-class
DiscreteDistribution-class Reals-class RtoDPQ simplifyr-methods

176 UnivarLebDecDistribution

UnivarLebDecDistribution

Generating function for Class "UnivarLebDecDistribution"

Description

Generates an object of class "UnivarLebDecDistribution".

Usage

UnivarLebDecDistribution(acPart, discretePart, acWeight, discreteWeight,
r = NULL, e = NULL, n = NULL, y = NULL)

Arguments

acPart Object of class "AbscontDistribution" (or subclasses); a.c. part of the distri-
bution

discretePart Object of class "AbscontDistribution" (or subclasses); discrete part of the
distribution

acWeight Object of class "numeric"; weight of the a.c. part of the distribution
discreteWeight Object of class "numeric"; weight of the discrete part of the distribution
r optional argument; if given, this is a random number generator as function r <-

function(n){....} to produce r.v.’s distributed according to the distribution;
used in a call to RtoDPQ.LC if acPart and discretePart are missing.

e optional argument; if argument r is given, this is the number of r.v.’s drawn to fill
the empty slots of this object; if missing filled with getdistrOption("RtoDPQ.e").

n optional argument; if argument r is given, this is the number gridpoints used in
filling the empty p,d,q slots of this object; if missing filled with getdistrOption("DefaultNrGridPoints").

y a (numeric) vector or NULL

Details

At least one of arguments discretePart, acPart, or r must be given; if the first two are missing,
slots are filled by a call to RtoDPQ.LC. For this purpose argument r is used together with argu-
ments e and n. If the latter are missing they are filled with getdistrOption("RtoDPQ.e") and
getdistrOption("DefaultNrGridPoints"), respectively. For the a.c. part, similarly to RtoDPQ
we have an optional parameter y for using N. Horbenko’s quantile trick: i.e.; on an equally spaced
grid x.grid on [0,1], apply f(q(x)(x.grid)), write the result to y and use these values instead of
simulated ones.

If argument discretePart is missing but acPart is not, discreteWeight is set to 0 and discretePart
is set to Dirac(0). If argument acPart is missing but discretePart is not, acWeight is set to 0
and discretePart is set to Norm(). If both arguments acPart and discretePart are given, at
least one of arguments discreteWeight and acWeight must be given and lie in [0,1], else an error
is thrown. If only one argument acWeight or discreteWeight is given the other one is gotten as
1-[ac/discrete]Weight. Else if both are given, they must sum up to 1. If a weight is smaller than
getdistrOption("TruncQuantile"), it is set to 0.

UnivarLebDecDistribution-class 177

Value

Object of class "UnivarLebDecDistribution".

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

UnivarLebDecDistribution-class, simplifyD

Examples

mylist <- UnivarLebDecDistribution(discretePart=Binom(3,.3), acPart=Norm(2,2),
acWeight=11/20)

mylist

UnivarLebDecDistribution-class

Class "UnivarLebDecDistribution"

Description

UnivarLebDecDistribution-class is a class to formalize a Lebesgue decomposed distribution with
a discrete and an absolutely continuous part; it is a subclass to class UnivarMixingDistribution.

Objects from the Class

Objects can be created by calls of the form new("UnivarLebDecDistribution", ...). More
frequently they are created via the generating function UnivarLebDecDistribution.

Slots

mixCoeff Object of class "numeric": a vector of length 2 of probabilities for the respective a.c.
and discrete part of the object

mixDistr Object of class "UnivarDistrList": a list of univariate distributions containing the
a.c. and discrete components; must be of length 2; the first component must be of class
"AbscontDistribution", the second of class "DiscreteDistribution".

img Object of class "Reals": the space of the image of this distribution which has dimension 1 and
the name "Real Space"

param Object of class "Parameter": the parameter of this distribution, having only the slot name
"Parameter of a discrete distribution"

r Object of class "function": generates random numbers

d fixed to NULL

p Object of class "function": cumulative distribution function

178 UnivarLebDecDistribution-class

q Object of class "function": quantile function

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

support numeric vector — the support slot of the discrete part

gaps (numeric) matrix or NULL; — the gaps slot of the absolutely continuous part

Extends

Class "UnivarMixingDistribution", directly; class "UnivariateDistribution" by class "UnivarMixingDistribution"
class "Distribution" by class "UnivariateDistribution".

Methods

show signature(object = "UnivarLebDecDistribution")

plot signature(object = "UnivarLebDecDistribution")

acPart signature(object = "UnivarLebDecDistribution")

acPart<- signature(object = "UnivarLebDecDistribution")

discretePart signature(object = "UnivarLebDecDistribution")

discretePart<- signature(object = "UnivarLebDecDistribution")

acWeight signature(object = "UnivarLebDecDistribution")

acWeight<- signature(object = "UnivarLebDecDistribution")

discreteWeight signature(object = "UnivarLebDecDistribution")

discreteWeight<- signature(object = "UnivarLebDecDistribution")

p.ac signature(object = "UnivarLebDecDistribution") accessor to slot p of acPart(object),
possibly weighted by acWeight(object); it has an extra argument CondOrAbs with default
value "cond" which if it does not partially match (by pmatch) "abs", returns exactly slot p of
acPart(object) else weighted by acWeight(object).

d.ac signature(object = "UnivarLebDecDistribution")accessor to slot d of the absolutely
continuous part of the distribution, possibly weighted by acWeight(object); it has an ex-
tra argument CondOrAbs which acts as the one in p.ac.

q.ac signature(object = "UnivarLebDecDistribution") accessor to slot q of acPart(object).

r.ac signature(object = "UnivarLebDecDistribution") accessor to slot q of acPart(object).

p.discrete signature(object = "UnivarLebDecDistribution") accessor to slot p of discretePart(object),
possibly weighted by discreteWeight(object); it has an extra argument CondOrAbs which
acts as the one in p.ac.

UnivarLebDecDistribution-class 179

d.discrete signature(object = "UnivarLebDecDistribution") accessor to slot d of discretePart(object),
possibly weighted by discreteWeight(object); it has an extra argument CondOrAbs which
acts as the one in p.ac.

q.discrete signature(object = "UnivarLebDecDistribution") accessor to slot q of discretePart(object).
r.discrete signature(object = "UnivarLebDecDistribution") accessor to slot r of discretePart(object).
coerce signature(from = "AffLinUnivarLebDecDistribution", to = "UnivarLebDecDistribution"):

create a "UnivarLebDecDistribution" object from a "AffLinUnivarLebDecDistribution"
object

coerce signature(from = "AbscontDistribution", to = "UnivarLebDecDistribution"): cre-
ate a "UnivarLebDecDistribution" object from a "AbscontDistribution" object

coerce signature(from = "DiscreteDistribution", to = "UnivarLebDecDistribution"): cre-
ate a "UnivarLebDecDistribution" object from a "DiscreteDistribution" object

Math signature(x = "UnivarLebDecDistribution"): application of a mathematical function,
e.g. sin or tan to this discrete distribution

• abs: signature(x = "UnivarLebDecDistribution"): exact image distribution of abs(x).
• exp: signature(x = "UnivarLebDecDistribution"): exact image distribution of exp(x).
• sign: signature(x = "UnivarLebDecDistribution"): exact image distribution of sign(x).
• sign: signature(x = "AcDcLcDistribution"): exact image distribution of sign(x).
• sqrt: signature(x = "AcDcLcDistribution"): exact image distribution of sqrt(x).
• log: signature(x = "UnivarLebDecDistribution"): (with optional further argument
base, defaulting to exp(1)) exact image distribution of log(x).

• log10: signature(x = "UnivarLebDecDistribution"): exact image distribution of
log10(x).

• sqrt: signature(x = "UnivarLebDecDistribution"): exact image distribution of sqrt(x).
• sqrt: signature(x = "AcDcLcDistribution"): exact image distribution of sqrt(x).

- signature(e1 = "UnivarLebDecDistribution"): application of ‘-’ to this distribution
* signature(e1 = "UnivarLebDecDistribution", e2 = "numeric"): multiplication of this dis-

tribution by an object of class ‘numeric’
/ signature(e1 = "UnivarLebDecDistribution", e2 = "numeric"): division of this distribu-

tion by an object of class ‘numeric’
+ signature(e1 = "UnivarLebDecDistribution", e2 = "numeric"): addition of this distribu-

tion to an object of class ‘numeric’
- signature(e1 = "UnivarLebDecDistribution", e2 = "numeric"): subtraction of an object of

class ‘numeric’ from this distribution
* signature(e1 = "numeric", e2 = "UnivarLebDecDistribution"): multiplication of this dis-

tribution by an object of class ‘numeric’
+ signature(e1 = "numeric", e2 = "UnivarLebDecDistribution"): addition of this distribu-

tion to an object of class ‘numeric’
- signature(e1 = "numeric", e2 = "UnivarLebDecDistribution"): subtraction of this distri-

bution from an object of class ‘numeric’
+ signature(e1 = "UnivarLebDecDistribution", e2 = "UnivarLebDecDistribution"): Con-

volution of two Lebesgue decomposed distributions. Result is again of class "UnivarLebDecDistribution",
but if option getdistrOption("withSimplify") is TRUE it is piped through a call to simplifyD,
hence may also be of class AbscontDistribution or DiscreteDistribution.

180 UnivarLebDecDistribution-class

- signature(e1 = "UnivarLebDecDistribution", e2 = "UnivarLebDecDistribution"): Con-
volution of two Lebesgue decomposed distributions. The same applies as for the preceding
item.

Internal subclass "AffLinUnivarLebDecDistribution"

To enhance accuracy of several functionals on distributions, mainly from package distrEx, there is
an internally used (but exported) subclass "AffLinUnivarLebDecDistribution" which has extra
slots a, b (both of class "numeric"), and X0 (of class "UnivarLebDecDistribution"), to capture
the fact that the object has the same distribution as a * X0 + b. This is the class of the return value
of methods

- signature(e1 = "UnivarLebDecDistribution")

* signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")

/ signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")

+ signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")

- signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")

* signature(e1 = "numeric", e2 = "UnivarLebDecDistribution")

+ signature(e1 = "numeric", e2 = "UnivarLebDecDistribution")

- signature(e1 = "numeric", e2 = "UnivarLebDecDistribution")

- signature(e1 = "AffLinUnivarLebDecDistribution")

* signature(e1 = "AffLinUnivarLebDecDistribution", e2 = "numeric")

/ signature(e1 = "AffLinUnivarLebDecDistribution", e2 = "numeric")

+ signature(e1 = "AffLinUnivarLebDecDistribution", e2 = "numeric")

- signature(e1 = "AffLinUnivarLebDecDistribution", e2 = "numeric")

* signature(e1 = "numeric", e2 = "AffLinUnivarLebDecDistribution")

+ signature(e1 = "numeric", e2 = "AffLinUnivarLebDecDistribution")

- signature(e1 = "numeric", e2 = "AffLinUnivarLebDecDistribution")

There also is a class union of "AffLinAbscontDistribution", "AffLinDiscreteDistribution",
"AffLinUnivarLebDecDistribution" and called "AffLinDistribution" which is used for func-
tionals.

Internal virtual superclass "AcDcLcDistribution"

As many operations should be valid no matter whether the operands are of class "AbscontDistribution",
"DiscreteDistribution", or "UnivarLebDecDistribution", there is a class union of these
classes called "AcDcLcDistribution"; in particular methods for "*", "/", "^" (see operators-
methods) and methods Minimum, Maximum, Truncate, and Huberize, and convpow are defined for
this class union.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

UnivarMixingDistribution 181

See Also

Parameter-class UnivarMixingDistribution-class DiscreteDistribution-class AbscontDistribution-class
simplifyD flat.LCD

Examples

wg <- flat.mix(UnivarMixingDistribution(Unif(0,1),Unif(4,5),
withSimplify=FALSE))

myLC <- UnivarLebDecDistribution(discretePart=Binom(3,.3), acPart = wg,
discreteWeight=.2)

myLC
p(myLC)(0.3)
r(myLC)(30)
q(myLC)(0.9)
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
acPart(myLC)
plot(myLC)
d.discrete(myLC)(2)
p.ac(myLC)(0)
acWeight(myLC)
plot(acPart(myLC))
plot(discretePart(myLC))
gaps(myLC)
support(myLC)
plot(as(Norm(),"UnivarLebDecDistribution"))

UnivarMixingDistribution

Generating function for Class "UnivarMixingDistribution"

Description

Generates an object of class "UnivarMixingDistribution".

Usage

UnivarMixingDistribution(..., Dlist, mixCoeff,
withSimplify = getdistrOption("simplifyD"))

Arguments

... Objects of class "UnivariateDistribution" (or subclasses)
Dlist an optional list or object of class "UnivarDistrList"; if not missing it is ap-

pended to argument ...; this way UnivarMixingDistribution may also be
called with a list (or "UnivarDistrList"-object) as argument as suggested in
an e-mail by Krunoslav Sever (thank you!)

mixCoeff Objects of class "numeric" : a vector of probabilities for the mixing compo-
nents (must be of same length as arguments in . . .).

withSimplify "logical": shall the return value be piped through a call to simplifyD?

182 UnivarMixingDistribution-class

Details

If mixCoeff is missing, all elements in ... are equally weighted.

Value

Object of class "UnivarMixingDistribution", or if argument withSimplify is TRUE and the re-
sulting object would have one mixing component with probability (almost) 1, UnivarMixingDistribution
will return this component.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

UnivarMixingDistribution-class, simplifyD

Examples

mylist <- UnivarMixingDistribution(Binom(3,.3), Dirac(2), Norm(),
mixCoeff=c(1/4,1/5,11/20))

UnivarMixingDistribution-class

Class "UnivarMixingDistribution"

Description

UnivarMixingDistribution-class is a class to formalize univariate mixing distributions; it is a
subclass to class UnivariateDistribution.

Objects from the Class

Objects can be created by calls of the form new("UnivarMixingDistribution", ...). More
frequently they are created via the generating function UnivarMixingDistribution.

Slots

mixCoeff Object of class "numeric": a vector of probabilities for the mixing components.

mixDistr Object of class "UnivarDistrList": a list of univariate distributions containing the
mixing components; must be of same length as mixCoeff.

img Object of class "Reals": the space of the image of this distribution which has dimension 1 and
the name "Real Space"

param Object of class "Parameter": the parameter of this distribution, having only the slot name
"Parameter of a discrete distribution"

r Object of class "function": generates random numbers

UnivarMixingDistribution-class 183

d fixed to NULL

p Object of class "function": cumulative distribution function

q Object of class "function": quantile function

support numeric vector — the union of all support slots of components, if existing

gaps (numeric) matrix or NULL; the merged gaps slots of all components, if existing (else NULL)

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

Extends

Class "UnivariateDistribution" class "Distribution" by class "UnivariateDistribution".

Methods

show signature(object = "UnivarMixingDistribution") prints the object

mixCoeff<- signature(object = "UnivarMixingDistribution") replaces the corresponding slot

mixCoeff signature(object = "UnivarMixingDistribution") returns the corresponding slot

mixDistr<- signature(object = "UnivarMixingDistribution") replaces the corresponding slot

mixDistr signature(object = "UnivarMixingDistribution") returns the corresponding slot

support signature(object = "UnivarMixingDistribution") returns the corresponding slot

gaps signature(object = "UnivarMixingDistribution") returns the corresponding slot

.logExact signature(object = "Distribution"): returns slot .logExact if existing; else tries
to convert the object to a newer version of its class by conv2NewVersion and returns the
corresponding slot of the converted object.

.lowerExact signature(object = "Distribution"): returns slot .lowerExact if existing; else
tries to convert the object to a newer version of its class by conv2NewVersion and returns the
corresponding slot of the converted object.

Symmetry returns slot Symmetry if existing; else tries to convert the object to a newer version of
its class by conv2NewVersion and returns the corresponding slot of the converted object.

Author(s)

Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>

See Also

Parameter-class, UnivariateDistribution-class, LatticeDistribution-class, AbscontDistribution-class,
simplifyD, flat.mix

184 Version Management

Examples

mylist <- UnivarMixingDistribution(Binom(3,.3), Dirac(2), Norm(),
mixCoeff=c(1/4,1/5,11/20))

mylist2 <- UnivarMixingDistribution(Binom(3,.3), mylist,
mixCoeff=c(.3,.7))

mylist2
p(mylist)(0.3)
mixDistr(mylist2)

Version Management Methods for Version Management in Package ‘distr’

Description

Version-Management-methods

Usage

isOldVersion(object)
conv2NewVersion(object)
S4 method for signature 'ANY'
isOldVersion(object)
S4 method for signature 'ANY'
conv2NewVersion(object)
S4 method for signature 'LatticeDistribution'
conv2NewVersion(object)

Arguments

object object of class "ANY" (or subclasses)

Details

From version 1.9 of this package on, class "AbscontDistribution" has an extra slot gaps. As
the addition of new slots will probably happen again in the future development of our packages, we
provide the following two help functions isOldVersion and conv2NewVersion to check whether
the object was generated by an older version of this package and to convert such an object to the
new format, respectively. Also, the intermediate class "LatticeDistribution" is introduced at
version 1.9 so that all subclasses of "DiscreteDistribution" like "Binom", "Nbinom" etc, now
have an extra slot lattice. conv2NewVersion takes this up and provides a particular method for
signature "LatticeDistribution" which fills slot lattice accordingly.

isOldVersion signature(object = "ANY"): throws an error if isClass(class(object)) is FALSE,
i.e.; if the class of object is no formal (S4) class. Else it checks whether all slots of the actual
class definition may be accessed and if so returns FALSE and else TRUE and issues a warning.

Weibull-class 185

conv2NewVersion signature(object = "ANY"): Generates a valid copy of object (according to
the actual class definition), using the slots of object where possible and for the slots which are
not yet present in object (because it was generated by an older version of the class definition),
it generates a prototype object of the class of object with new(class(object)) and uses the
slot values of this prototype to fill the missing slots.

conv2NewVersion signature(object = "LatticeDistribution"): Generates a valid copy of
object (according to the actual class definition, i.e.; with a corresponding lattice-slot), by
generating a new instance of this object by new(class(object), <list-of-parameters>.

Weibull-class Class "Weibull"

Description

The Weibull distribution with shape parameter a, by default = 1, and scale parameter σ has
density given by, by default = 1,

d(x) = (a/σ)(x/σ)
a−1

exp(−(x/σ)
a
)

for x > 0.

C.f. rweibull

Objects from the Class

Objects can be created by calls of the form Weibull(shape, scale). This object is a Weibull
distribution.

Slots

img Object of class "Reals": The space of the image of this distribution has got dimension 1 and
the name "Real Space".

param Object of class "WeibullParameter": the parameter of this distribution (shape and scale),
declared at its instantiation

r Object of class "function": generates random numbers (calls function rweibull)

d Object of class "function": density function (calls function dweibull)

p Object of class "function": cumulative function (calls function pweibull)

q Object of class "function": inverse of the cumulative function (calls function qweibull)

.withArith logical: used internally to issue warnings as to interpretation of arithmetics

.withSim logical: used internally to issue warnings as to accuracy

.logExact logical: used internally to flag the case where there are explicit formulae for the log
version of density, cdf, and quantile function

.lowerExact logical: used internally to flag the case where there are explicit formulae for the
lower tail version of cdf and quantile function

Symmetry object of class "DistributionSymmetry"; used internally to avoid unnecessary calcu-
lations.

186 Weibull-class

Extends

Class "AbscontDistribution", directly.
Class "UnivariateDistribution", by class "AbscontDistribution".
Class "Distribution", by class "AbscontDistribution".

Methods

initialize signature(.Object = "Weibull"): initialize method

scale signature(object = "Weibull"): returns the slot scale of the parameter of the distribution

scale<- signature(object = "Weibull"): modifies the slot scale of the parameter of the distri-
bution

shape signature(object = "Weibull"): returns the slot shape of the parameter of the distribu-
tion

shape<- signature(object = "Weibull"): modifies the slot shape of the parameter of the dis-
tribution

* signature(e1 = "Weibull", e2 = "numeric"): For the Weibull distribution we use its closed-
ness under positive scaling transformations.

Note

The density is d(x) = 0 for x < 0.
The cumulative is p(x) = 1− exp(−(x/σ)

a
),

the mean is E(X) = σΓ(1 + 1/a),
and the V ar(X) = σ2(Γ(1 + 2/a)− (Γ(1 + 1/a))2).

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

WeibullParameter-class AbscontDistribution-class Reals-class rweibull

Examples

W <- Weibull(shape=1,scale=1) # W is a Weibull distribution with shape=1 and scale=1.
r(W)(1) # one random number generated from this distribution, e.g. 0.5204105
d(W)(1) # Density of this distribution is 0.3678794 for x=1.
p(W)(1) # Probability that x<1 is 0.6321206.
q(W)(.1) # Probability that x<0.1053605 is 0.1.
in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
shape(W) # shape of this distribution is 1.
shape(W) <- 2 # shape of this distribution is now 2.

WeibullParameter-class 187

WeibullParameter-class

Class "WeibullParameter"

Description

The parameter of a Weibull distribution, used by Weibull-class

Objects from the Class

Objects can be created by calls of the form new("WeibullParameter", shape, scale). Usually
an object of this class is not needed on its own, it is generated automatically when an object of the
class Weibull is instantiated.

Slots

shape Object of class "numeric": the shape of a Weibull distribution

scale Object of class "numeric": the scale of a Weibull distribution

name Object of class "character": a name / comment for the parameters

Extends

Class "Parameter", directly.

Methods

initialize signature(.Object = "WeibullParameter"): initialize method

scale signature(object = "WeibullParameter"): returns the slot scale of a parameter of a
Weibull distribution

scale<- signature(object = "WeibullParameter"): modifies the slot scale of a parameter of a
Weibull distribution

shape signature(object = "WeibullParameter"): returns the slot shape of a parameter of a
Weibull distribution

shape<- signature(object = "WeibullParameter"): modifies the slot shape of a parameter of
a Weibull distribution

Author(s)

Thomas Stabla <statho3@web.de>,
Florian Camphausen <fcampi@gmx.de>,
Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de>,
Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

Weibull-class Parameter-class

188 width-methods

Examples

W <- new("WeibullParameter",shape=1,scale=1)
shape(W) # shape of this distribution is 1.
shape(W) <- 2 # shape of this distribution is now 2.

width-methods Methods for Function width in Package ‘distr’

Description

width-methods

Methods

width signature(object = "Lattice"): returns the slot width of the lattice

width<- signature(object = "Lattice"): modifies the slot width of the lattice

width signature(object = "LatticeDistribution"): returns the slot width of the lattice slot
of the distribution

width<- signature(object = "LatticeDistribution"): modifies the slot width of the lattice
slot of the distribution

Index

∗ Arcsine distribution
Arcsine-class, 17

∗ Beta distribution
Beta-class, 18
BetaParameter-class, 20
shape1-methods, 155
shape2-methods, 155

∗ Binomial distribution
Binom-class, 21
BinomParameter-class, 23
prob-methods, 137
size-methods, 158

∗ Binomial family
Binom-class, 21

∗ CDF
p-methods, 124
p.l-methods, 124

∗ Cauchy distribution
Cauchy-class, 24
CauchyParameter-class, 26
location-methods, 97
scale-methods, 152

∗ Chi Square distribution
scale-methods, 152

∗ Chi square distribution
Chisq-class, 27
ChisqParameter-class, 29
df-methods, 38
ncp-methods, 112
shape-methods, 154

∗ DFT
convpow-methods, 33

∗ Dirac distribution
Dirac-class, 40
DiracParameter-class, 41
location-methods, 97

∗ Double Exponential distribution
rate-methods, 145

∗ Double exponential distribution

DExp-class, 36
∗ Exp distribution

ExpParameter-class, 64
shape-methods, 154

∗ Exponential distribution
Exp-class, 63
rate-methods, 145

∗ F distribution
df1-methods, 38
df2-methods, 39
Fd-class, 66
FParameter-class, 70
ncp-methods, 112

∗ FFT
convpow-methods, 33
operators-methods, 117

∗ Gamma distribution
Gammad-class, 71
GammaParameter-class, 73
scale-methods, 152
shape-methods, 154

∗ Gaussian distribution
mean-methods, 104
Norm-class, 113
NormParameter-class, 115
sd-methods, 153

∗ Geometric distribution
Geom-class, 75
prob-methods, 137
size-methods, 158

∗ Hypergeometric distribution
Hyper-class, 80
HyperParameter-class, 81
k-methods, 84
m-methods, 101
n-methods, 107

∗ Laplace distribution
DExp-class, 36
rate-methods, 145

189

190 INDEX

∗ Lebesgue decomposed distribution
flat.LCD, 68
UnivarLebDecDistribution-class,

177
∗ Log-Normal distribution

Lnorm-class, 94
LnormParameter-class, 96
meanlog-methods, 104
sdlog-methods, 154

∗ Logistic distribution
Logis-class, 98
LogisParameter-class, 100
scale-methods, 152

∗ Negative Binomial distribution
Geom-class, 75
Nbinom-class, 109
NbinomParameter-class, 111
prob-methods, 137
size-methods, 158

∗ Normal distribution
mean-methods, 104
Norm-class, 113
NormParameter-class, 115
sd-methods, 153

∗ Poisson distribution
lambda-methods, 84
Pois-class, 132
PoisParameter-class, 134

∗ RNG
r-methods, 145

∗ S4 classes
distr-package, 5

∗ S4 distribtution class
Norm-class, 113

∗ S4 distribution class
AbscontDistribution-class, 14
Arcsine-class, 17
Beta-class, 18
Binom-class, 21
Cauchy-class, 24
Chisq-class, 27
CompoundDistribution, 30
CompoundDistribution-class, 31
DExp-class, 36
DiscreteDistribution-class, 45
distr-package, 5
Distribution-class, 50
DistrList, 52

DistrList-class, 53
Exp-class, 63
Fd-class, 66
Gammad-class, 71
LatticeDistribution, 86
LatticeDistribution-class, 88
Lnorm-class, 94
Logis-class, 98
makeAbscontDistribution, 101
support-methods, 162
Td-class, 163
Unif-class, 168
UnivarDistrList, 172
UnivarDistrList-class, 173
UnivariateDistribution-class, 174
UnivarLebDecDistribution, 176
UnivarLebDecDistribution-class,

177
UnivarMixingDistribution, 181
UnivarMixingDistribution-class,

182
Weibull-class, 185

∗ S4 parameter class
BetaParameter-class, 20
BinomParameter-class, 23
CauchyParameter-class, 26
ChisqParameter-class, 29
Dirac-class, 40
DiracParameter-class, 41
distr-package, 5
ExpParameter-class, 64
FParameter-class, 70
GammaParameter-class, 73
Geom-class, 75
Hyper-class, 80
HyperParameter-class, 81
k-methods, 84
lambda-methods, 84
LnormParameter-class, 96
location-methods, 97
LogisParameter-class, 100
m-methods, 101
Max-methods, 103
mean-methods, 104
meanlog-methods, 104
Min-methods, 105
n-methods, 107
name-methods, 107

INDEX 191

Nbinom-class, 109
NbinomParameter-class, 111
ncp-methods, 112
NormParameter-class, 115
OptionalParameter-class, 122
param-methods, 125
Parameter-class, 125
Pois-class, 132
PoisParameter-class, 134
prob-methods, 137
rate-methods, 145
scale-methods, 152
sd-methods, 153
sdlog-methods, 154
size-methods, 158
TParameter-class, 165
UnifParameter-class, 169
UniNormParameter-class, 171
WeibullParameter-class, 187

∗ S4 space class
dimension-methods, 39
distr-package, 5
EuclideanSpace-class, 61
Lattice-class, 85
Length-methods, 91
liesIn-methods, 92
liesInSupport, 92
name-methods, 107
Naturals-class, 108
pivot-methods, 126
Reals-class, 146
rSpace-class, 147
width-methods, 188

∗ T distribution
df-methods, 38
ncp-methods, 112
Td-class, 163
TParameter-class, 165

∗ T(1) distribution
Cauchy-class, 24

∗ Uniform distribution
Max-methods, 103
Min-methods, 105
Unif-class, 168
UnifParameter-class, 169

∗ Univariate normal / Gaussian distribution
UniNormParameter-class, 171

∗ Weibull distribution

scale-methods, 152
shape-methods, 154
Weibull-class, 185
WeibullParameter-class, 187

∗ absolutely continuous distribution
AbscontDistribution, 11
AbscontDistribution-class, 14
Arcsine-class, 17
Beta-class, 18
Cauchy-class, 24
Chisq-class, 27
DExp-class, 36
distr-package, 5
Distribution-class, 50
Exp-class, 63
Fd-class, 66
flat.mix, 69
Gammad-class, 71
gaps-methods, 74
Lnorm-class, 94
Logis-class, 98
Norm-class, 113
RtoDPQ, 148
RtoDPQ.LC, 151
Td-class, 163
Unif-class, 168
UnivarLebDecDistribution-class,

177
Weibull-class, 185

∗ accessor function
d-methods, 35
df-methods, 38
df1-methods, 38
df2-methods, 39
dim-methods, 39
dimension-methods, 39
gaps-methods, 74
img-methods, 83
k-methods, 84
lambda-methods, 84
Length-methods, 91
location-methods, 97
m-methods, 101
Max-methods, 103
mean-methods, 104
meanlog-methods, 104
Min-methods, 105
n-methods, 107

192 INDEX

name-methods, 107
ncp-methods, 112
p-methods, 124
param-methods, 125
pivot-methods, 126
prob-methods, 137
q-methods, 138
r-methods, 145
rate-methods, 145
scale-methods, 152
sd-methods, 153
sdlog-methods, 154
shape-methods, 154
shape1-methods, 155
shape2-methods, 155
size-methods, 158
support-methods, 162
width-methods, 188

∗ affine linear lattice
Length-methods, 91
pivot-methods, 126
width-methods, 188

∗ affine linear
operators-methods, 117

∗ algebra
solve-methods, 158
sqrt-methods, 161

∗ anamorphosis
r-methods, 145

∗ arithmetics for distributions
convpow-methods, 33
distr-package, 5
distrARITH, 49

∗ arith
distrARITH, 49
flat.LCD, 68
flat.mix, 69
Math-methods, 102
operators-methods, 117
RtoDPQ, 148
RtoDPQ.d, 149
RtoDPQ.LC, 151
simplifyr-methods, 157

∗ array
PosDefSymmMatrix, 135
PosDefSymmMatrix-class, 136
solve-methods, 158
sqrt-methods, 161

∗ beta distribution
ncp-methods, 112

∗ class union
OptionalParameter-class, 122

∗ classes
DistributionSymmetry-class, 51
DistrSymmList-class, 58
EllipticalSymmetry-class, 59
NoSymmetry-class, 117
PosDefSymmMatrix-class, 136
SphericalSymmetry-class, 160
Symmetry-class, 163

∗ compound distribution
CompoundDistribution, 30
CompoundDistribution-class, 31

∗ conditional distribution
Distribution-class, 50

∗ convolution for distributions
convpow-methods, 33

∗ convolution
operators-methods, 117

∗ cumulative distribution function
p-methods, 124
p.l-methods, 124

∗ degree of freedom
df-methods, 38
df1-methods, 38
df2-methods, 39

∗ density
d-methods, 35

∗ dimension
dim-methods, 39
dimension-methods, 39

∗ discrete distribution
Binom-class, 21
Dirac-class, 40
DiscreteDistribution, 43
DiscreteDistribution-class, 45
distr-package, 5
Distribution-class, 50
Geom-class, 75
Hyper-class, 80
LatticeDistribution-class, 88
Nbinom-class, 109
Pois-class, 132
RtoDPQ.d, 149
support-methods, 162
UnivarLebDecDistribution-class,

INDEX 193

177
UnivarMixingDistribution-class,

182
∗ distribution

AbscontDistribution, 11
AbscontDistribution-class, 14
Arcsine-class, 17
Beta-class, 18
BetaParameter-class, 20
Binom-class, 21
BinomParameter-class, 23
Cauchy-class, 24
CauchyParameter-class, 26
Chisq-class, 27
ChisqParameter-class, 29
CompoundDistribution, 30
CompoundDistribution-class, 31
convpow-methods, 33
d-methods, 35
decomposePM-methods, 35
DExp-class, 36
df-methods, 38
df1-methods, 38
df2-methods, 39
Dirac-class, 40
DiracParameter-class, 41
DiscreteDistribution, 43
DiscreteDistribution-class, 45
distr-package, 5
distrARITH, 49
Distribution-class, 50
DistributionSymmetry-class, 51
DistrList, 52
DistrList-class, 53
distrMASK, 54
distroptions, 55
DistrSymmList, 57
DistrSymmList-class, 58
EllipticalSymmetry, 58
EllipticalSymmetry-class, 59
EmpiricalDistribution, 60
EuclideanSpace-class, 61
Exp-class, 63
ExpParameter-class, 64
Fd-class, 66
flat.LCD, 68
flat.mix, 69
FParameter-class, 70

Gammad-class, 71
GammaParameter-class, 73
gaps-methods, 74
Geom-class, 75
getLabel, 77
getLow,getUp, 78
Huberize-methods, 79
Hyper-class, 80
HyperParameter-class, 81
img-methods, 83
k-methods, 84
lambda-methods, 84
Lattice-class, 85
LatticeDistribution, 86
LatticeDistribution-class, 88
Length-methods, 91
liesIn-methods, 92
liesInSupport, 92
Lnorm-class, 94
LnormParameter-class, 96
location-methods, 97
Logis-class, 98
LogisParameter-class, 100
m-methods, 101
makeAbscontDistribution, 101
Math-methods, 102
Max-methods, 103
mean-methods, 104
meanlog-methods, 104
Min-methods, 105
Minimum-methods, 105
n-methods, 107
name-methods, 107
Naturals-class, 108
Nbinom-class, 109
NbinomParameter-class, 111
ncp-methods, 112
Norm-class, 113
NormParameter-class, 115
NoSymmetry, 116
NoSymmetry-class, 117
operators-methods, 117
OptionalParameter-class, 122
p-methods, 124
p.l-methods, 124
param-methods, 125
Parameter-class, 125
pivot-methods, 126

194 INDEX

plot-methods, 126
Pois-class, 132
PoisParameter-class, 134
print-methods, 137
prob-methods, 137
q-methods, 138
q.r-methods, 139
qqbounds, 139
qqplot, 141
r-methods, 145
rate-methods, 145
Reals-class, 146
rSpace-class, 147
RtoDPQ, 148
RtoDPQ.d, 149
RtoDPQ.LC, 151
scale-methods, 152
sd-methods, 153
sdlog-methods, 154
shape-methods, 154
shape1-methods, 155
shape2-methods, 155
simplifyD-methods, 156
simplifyr-methods, 157
size-methods, 158
SphericalSymmetry, 159
SphericalSymmetry-class, 160
support-methods, 162
Td-class, 163
TParameter-class, 165
Truncate-methods, 166
Unif-class, 168
UnifParameter-class, 169
UniNormParameter-class, 171
UnivarDistrList, 172
UnivarDistrList-class, 173
UnivariateDistribution-class, 174
UnivarLebDecDistribution, 176
UnivarLebDecDistribution-class,

177
UnivarMixingDistribution, 181
UnivarMixingDistribution-class,

182
Weibull-class, 185
WeibullParameter-class, 187
width-methods, 188

∗ documentation
distrARITH, 49

distrMASK, 54
∗ dplot

options, 123
∗ eigenvalue decomposition

solve-methods, 158
sqrt-methods, 161

∗ elliptical symmetry
EllipticalSymmetry, 58
EllipticalSymmetry-class, 59

∗ empirical distribution
EmpiricalDistribution, 60

∗ environment
options, 123

∗ generating function
AbscontDistribution, 11
Arcsine-class, 17
Beta-class, 18
Binom-class, 21
Cauchy-class, 24
Chisq-class, 27
CompoundDistribution, 30
CompoundDistribution-class, 31
DExp-class, 36
DiscreteDistribution, 43
DistrList, 52
EmpiricalDistribution, 60
Exp-class, 63
Fd-class, 66
Gammad-class, 71
Geom-class, 75
Hyper-class, 80
LatticeDistribution, 86
LatticeDistribution-class, 88
Nbinom-class, 109
Pois-class, 132
Td-class, 163
Unif-class, 168
UnivarLebDecDistribution, 176
UnivarMixingDistribution, 181
UnivarMixingDistribution-class,

182
Weibull-class, 185

∗ global options
distroptions, 55
options, 123

∗ hplot
plot-methods, 126
qqbounds, 139

INDEX 195

qqplot, 141
∗ image distribution

flat.mix, 69
Math-methods, 102
operators-methods, 117
RtoDPQ, 148
RtoDPQ.d, 149
RtoDPQ.LC, 151
simplifyr-methods, 157

∗ info file
convpow-methods, 33
distrARITH, 49
distrMASK, 54

∗ inverse
solve-methods, 158
sqrt-methods, 161

∗ iplot
options, 123

∗ lattice distribution
Binom-class, 21
CompoundDistribution-class, 31
Dirac-class, 40
DiscreteDistribution-class, 45
distr-package, 5
Distribution-class, 50
Geom-class, 75
Hyper-class, 80
LatticeDistribution, 86
LatticeDistribution-class, 88
Nbinom-class, 109
Pois-class, 132
UnivarMixingDistribution-class,

182
∗ lattice of a distribution

LatticeDistribution, 86
LatticeDistribution-class, 88

∗ lattice
Length-methods, 91
pivot-methods, 126
width-methods, 188

∗ left-continuous
p.l-methods, 124
q-methods, 138
q.r-methods, 139

∗ list
CompoundDistribution, 30
DistrList, 52
DistrList-class, 53

UnivarDistrList, 172
UnivarDistrList-class, 173
UnivarLebDecDistribution, 176
UnivarMixingDistribution, 181

∗ location family
Dirac-class, 40

∗ location parameter
DiracParameter-class, 41
location-methods, 97
mean-methods, 104

∗ location scale family
CauchyParameter-class, 26
location-methods, 97
Logis-class, 98
LogisParameter-class, 100
mean-methods, 104
Norm-class, 113
NormParameter-class, 115
scale-methods, 152
sd-methods, 153

∗ masking
distrMASK, 54

∗ math
distrARITH, 49
flat.LCD, 68
igamma, 83
operators-methods, 117
RtoDPQ, 148
RtoDPQ.d, 149
RtoDPQ.LC, 151
simplifyr-methods, 157

∗ maximum
Minimum-methods, 105

∗ memoryless distribution
Exp-class, 63

∗ methods
d-methods, 35
decomposePM-methods, 35
df-methods, 38
df1-methods, 38
df2-methods, 39
dim-methods, 39
dimension-methods, 39
gaps-methods, 74
getLow,getUp, 78
Huberize-methods, 79
img-methods, 83
k-methods, 84

196 INDEX

lambda-methods, 84
Length-methods, 91
liesIn-methods, 92
liesInSupport, 92
location-methods, 97
m-methods, 101
Max-methods, 103
mean-methods, 104
meanlog-methods, 104
Min-methods, 105
Minimum-methods, 105
n-methods, 107
name-methods, 107
ncp-methods, 112
OptionalParameter-class, 122
p-methods, 124
p.l-methods, 124
param-methods, 125
Parameter-class, 125
pivot-methods, 126
plot-methods, 126
print-methods, 137
q-methods, 138
q.r-methods, 139
r-methods, 145
rate-methods, 145
scale-methods, 152
sd-methods, 153
sdlog-methods, 154
shape-methods, 154
shape1-methods, 155
shape2-methods, 155
simplifyD-methods, 156
support-methods, 162
Truncate-methods, 166
width-methods, 188

∗ minimum
Minimum-methods, 105

∗ misc
distr-defunct, 48

∗ multivariate distribution
Distribution-class, 50
DistrList, 52
DistrList-class, 53
UnivarDistrList-class, 173
UnivarLebDecDistribution, 176
UnivarMixingDistribution, 181

∗ naturals

Naturals-class, 108
∗ non centrality parameter

ncp-methods, 112
∗ options

distroptions, 55
options, 123

∗ package
distr-package, 5

∗ parameter
BetaParameter-class, 20
BinomParameter-class, 23
CauchyParameter-class, 26
ChisqParameter-class, 29
df-methods, 38
df1-methods, 38
df2-methods, 39
DiracParameter-class, 41
ExpParameter-class, 64
FParameter-class, 70
GammaParameter-class, 73
HyperParameter-class, 81
k-methods, 84
lambda-methods, 84
LnormParameter-class, 96
location-methods, 97
LogisParameter-class, 100
m-methods, 101
Max-methods, 103
mean-methods, 104
meanlog-methods, 104
Min-methods, 105
n-methods, 107
NbinomParameter-class, 111
ncp-methods, 112
NormParameter-class, 115
OptionalParameter-class, 122
param-methods, 125
Parameter-class, 125
PoisParameter-class, 134
prob-methods, 137
rate-methods, 145
scale-methods, 152
sd-methods, 153
sdlog-methods, 154
shape-methods, 154
shape1-methods, 155
shape2-methods, 155
size-methods, 158

INDEX 197

TParameter-class, 165
UnifParameter-class, 169
UniNormParameter-class, 171
WeibullParameter-class, 187

∗ positive-definite matrix
PosDefSymmMatrix, 135
PosDefSymmMatrix-class, 136

∗ positive-semi-definite matrix
PosDefSymmMatrix, 135
PosDefSymmMatrix-class, 136

∗ print
print-methods, 137

∗ probability function
d-methods, 35

∗ programming
distrMASK, 54
standardMethods, 162

∗ pseudo inverse
solve-methods, 158
sqrt-methods, 161

∗ pseudo random number
r-methods, 145

∗ pseudo-inverse distribution function
q-methods, 138
q.r-methods, 139

∗ quantile function
q-methods, 138
q.r-methods, 139

∗ random number generator
r-methods, 145

∗ random sample
flat.mix, 69
RtoDPQ, 148
RtoDPQ.d, 149
RtoDPQ.LC, 151
simplifyr-methods, 157

∗ range space of a distribution
img-methods, 83

∗ replacement function
df-methods, 38
df1-methods, 38
df2-methods, 39
dimension-methods, 39
gaps-methods, 74
k-methods, 84
lambda-methods, 84
Length-methods, 91
location-methods, 97

m-methods, 101
Max-methods, 103
mean-methods, 104
meanlog-methods, 104
Min-methods, 105
n-methods, 107
name-methods, 107
ncp-methods, 112
pivot-methods, 126
prob-methods, 137
rate-methods, 145
scale-methods, 152
sd-methods, 153
sdlog-methods, 154
shape-methods, 154
shape1-methods, 155
shape2-methods, 155
size-methods, 158
width-methods, 188

∗ right-continuous
p-methods, 124
q.r-methods, 139

∗ scale parameter
scale-methods, 152
sd-methods, 153

∗ set
EuclideanSpace-class, 61
Lattice-class, 85
liesIn-methods, 92
Naturals-class, 108
Reals-class, 146
rSpace-class, 147

∗ shape
shape-methods, 154
shape1-methods, 155
shape2-methods, 155

∗ space
dim-methods, 39
dimension-methods, 39
EuclideanSpace-class, 61
img-methods, 83
Lattice-class, 85
Length-methods, 91
liesIn-methods, 92
liesInSupport, 92
Naturals-class, 108
pivot-methods, 126
Reals-class, 146

198 INDEX

rSpace-class, 147
width-methods, 188

∗ spherical symmetry
SphericalSymmetry, 159
SphericalSymmetry-class, 160

∗ support of a distribution
CompoundDistribution-class, 31
DiscreteDistribution-class, 45
UnivarMixingDistribution-class,

182
∗ support

getLow,getUp, 78
liesInSupport, 92
support-methods, 162

∗ svd
solve-methods, 158
sqrt-methods, 161

∗ symmetric matrix
PosDefSymmMatrix, 135
PosDefSymmMatrix-class, 136

∗ symmetry
DistributionSymmetry-class, 51
DistrSymmList, 57
DistrSymmList-class, 58
EllipticalSymmetry, 58
EllipticalSymmetry-class, 59
NoSymmetry, 116
NoSymmetry-class, 117
Symmetry-class, 163

∗ truncation
decomposePM-methods, 35
Huberize-methods, 79
simplifyD-methods, 156
Truncate-methods, 166

∗ univariate distribution
Distribution-class, 50
UnivarDistrList, 172
UnivariateDistribution-class, 174

∗ utilities
getLow,getUp, 78
standardMethods, 162
Version Management, 184

∗ utility
flat.LCD, 68
flat.mix, 69
getLabel, 77
RtoDPQ, 148
RtoDPQ.d, 149

RtoDPQ.LC, 151
simplifyr-methods, 157

∗ version management
Version Management, 184

∗ virtual class
OptionalParameter-class, 122

*,AbscontDistribution,numeric-method
(operators-methods), 117

*,AcDcLcDistribution,AcDcLcDistribution-method
(operators-methods), 117

*,AffLinAbscontDistribution,numeric-method
(operators-methods), 117

*,AffLinDiscreteDistribution,numeric-method
(operators-methods), 117

*,AffLinLatticeDistribution,numeric-method
(operators-methods), 117

*,AffLinUnivarLebDecDistribution,numeric-method
(operators-methods), 117

*,Cauchy,numeric-method
(operators-methods), 117

*,CompoundDistribution,numeric-method
(operators-methods), 117

*,DExp,numeric-method
(operators-methods), 117

*,Dirac,Dirac-method
(operators-methods), 117

*,Dirac,UnivariateDistribution-method
(operators-methods), 117

*,Dirac,numeric-method
(operators-methods), 117

*,DiscreteDistribution,numeric-method
(operators-methods), 117

*,Exp,numeric-method
(operators-methods), 117

*,ExpOrGammaOrChisq,numeric-method
(operators-methods), 117

*,LatticeDistribution,numeric-method
(operators-methods), 117

*,Lnorm,numeric-method
(operators-methods), 117

*,Logis,numeric-method
(operators-methods), 117

*,Norm,numeric-method
(operators-methods), 117

*,Unif,numeric-method
(operators-methods), 117

*,UnivarLebDecDistribution,numeric-method
(operators-methods), 117

INDEX 199

*,UnivariateDistribution,Dirac-method
(operators-methods), 117

*,UnivariateDistribution,numeric-method
(operators-methods), 117

*,Weibull,numeric-method
(operators-methods), 117

*,numeric,LatticeDistribution-method
(operators-methods), 117

*,numeric,UnivariateDistribution-method
(operators-methods), 117

+,AbscontDistribution,AbscontDistribution-method
(operators-methods), 117

+,AbscontDistribution,DiscreteDistribution-method
(operators-methods), 117

+,AbscontDistribution,numeric-method
(operators-methods), 117

+,AcDcLcDistribution,AcDcLcDistribution-method
(operators-methods), 117

+,AffLinAbscontDistribution,numeric-method
(operators-methods), 117

+,AffLinDiscreteDistribution,numeric-method
(operators-methods), 117

+,AffLinLatticeDistribution,numeric-method
(operators-methods), 117

+,AffLinUnivarLebDecDistribution,numeric-method
(operators-methods), 117

+,Binom,Binom-method
(operators-methods), 117

+,Cauchy,Cauchy-method
(operators-methods), 117

+,Cauchy,numeric-method
(operators-methods), 117

+,Chisq,Chisq-method
(operators-methods), 117

+,CompoundDistribution,numeric-method
(operators-methods), 117

+,Dirac,Dirac-method
(operators-methods), 117

+,Dirac,DiscreteDistribution-method
(operators-methods), 117

+,Dirac,UnivariateDistribution-method
(operators-methods), 117

+,Dirac,numeric-method
(operators-methods), 117

+,DiscreteDistribution,AbscontDistribution-method
(operators-methods), 117

+,DiscreteDistribution,DiscreteDistribution-method
(operators-methods), 117

+,DiscreteDistribution,numeric-method
(operators-methods), 117

+,ExpOrGammaOrChisq,ExpOrGammaOrChisq-method
(operators-methods), 117

+,LatticeDistribution,DiscreteDistribution-method
(operators-methods), 117

+,LatticeDistribution,LatticeDistribution-method
(operators-methods), 117

+,LatticeDistribution,numeric-method
(operators-methods), 117

+,Logis,numeric-method
(operators-methods), 117

+,Nbinom,Nbinom-method
(operators-methods), 117

+,Norm,Norm-method (operators-methods),
117

+,Norm,numeric-method
(operators-methods), 117

+,Pois,Pois-method (operators-methods),
117

+,Unif,numeric-method
(operators-methods), 117

+,UnivarLebDecDistribution,UnivarLebDecDistribution-method
(operators-methods), 117

+,UnivarLebDecDistribution,numeric-method
(operators-methods), 117

+,UnivariateDistribution,Dirac-method
(operators-methods), 117

+,UnivariateDistribution,UnivariateDistribution-method
(operators-methods), 117

+,UnivariateDistribution,numeric-method
(operators-methods), 117

+,numeric,LatticeDistribution-method
(operators-methods), 117

+,numeric,UnivariateDistribution-method
(operators-methods), 117

-,AcDcLcDistribution,AcDcLcDistribution-method
(operators-methods), 117

-,Dirac,Dirac-method
(operators-methods), 117

-,LatticeDistribution,LatticeDistribution-method
(operators-methods), 117

-,LatticeDistribution,UnivariateDistribution-method
(operators-methods), 117

-,LatticeDistribution,missing-method
(operators-methods), 117

-,LatticeDistribution,numeric-method
(operators-methods), 117

200 INDEX

-,Norm,missing-method
(operators-methods), 117

-,UnivariateDistribution,LatticeDistribution-method
(operators-methods), 117

-,UnivariateDistribution,UnivariateDistribution-method
(operators-methods), 117

-,UnivariateDistribution,missing-method
(operators-methods), 117

-,UnivariateDistribution,numeric-method
(operators-methods), 117

-,numeric,Beta-method
(operators-methods), 117

-,numeric,LatticeDistribution-method
(operators-methods), 117

-,numeric,UnivariateDistribution-method
(operators-methods), 117

.logExact (Distribution-class), 50

.logExact,Distribution-method
(Distribution-class), 50

.logExact,UnivarMixingDistribution-method
(UnivarMixingDistribution-class),
182

.logExact-methods (Distribution-class),
50

.lowerExact (Distribution-class), 50

.lowerExact,Distribution-method
(Distribution-class), 50

.lowerExact,UnivarMixingDistribution-method
(UnivarMixingDistribution-class),
182

.lowerExact-methods
(Distribution-class), 50

.mergegaps2, 75

.trunc.low, 167

.trunc.up, 167
/,AcDcLcDistribution,AcDcLcDistribution-method

(operators-methods), 117
/,Dirac,Dirac-method

(operators-methods), 117
/,LatticeDistribution,numeric-method

(operators-methods), 117
/,UnivariateDistribution,numeric-method

(operators-methods), 117
/,numeric,AcDcLcDistribution-method

(operators-methods), 117
/,numeric,Dirac-method

(operators-methods), 117
^,AcDcLcDistribution,AcDcLcDistribution-method

(operators-methods), 117
^,AcDcLcDistribution,Dirac-method

(UnivarLebDecDistribution-class),
177

^,AcDcLcDistribution,Integer-method
(operators-methods), 117

^,AcDcLcDistribution,numeric-method
(operators-methods), 117

^,numeric,AcDcLcDistribution-method
(operators-methods), 117

abs,AbscontDistribution-method
(Math-methods), 102

abs,DiscreteDistribution-method
(Math-methods), 102

abs,UnivarLebDecDistribution-method
(UnivarLebDecDistribution-class),
177

AbscontDistribution, 11, 14, 17, 102
AbscontDistribution-class, 14
AcDcLcDistribution-class

(UnivarLebDecDistribution-class),
177

acPart
(UnivarLebDecDistribution-class),
177

acPart,UnivarLebDecDistribution-method
(UnivarLebDecDistribution-class),
177

acPart-methods
(UnivarLebDecDistribution-class),
177

acPart<-
(UnivarLebDecDistribution-class),
177

acPart<-,UnivarLebDecDistribution-method
(UnivarLebDecDistribution-class),
177

acPart<--methods
(UnivarLebDecDistribution-class),
177

acWeight
(UnivarLebDecDistribution-class),
177

acWeight,UnivarLebDecDistribution-method
(UnivarLebDecDistribution-class),
177

acWeight-methods
(UnivarLebDecDistribution-class),

INDEX 201

177
acWeight<-

(UnivarLebDecDistribution-class),
177

acWeight<-,UnivarLebDecDistribution-method
(UnivarLebDecDistribution-class),
177

acWeight<--methods
(UnivarLebDecDistribution-class),
177

AffLinAbscontDistribution-class
(AbscontDistribution-class), 14

AffLinDiscreteDistribution-class
(DiscreteDistribution-class),
45

AffLinDistribution-class
(AbscontDistribution-class), 14

AffLinLatticeDistribution-class
(LatticeDistribution-class), 88

AffLinUnivarLebDecDistribution-class
(UnivarLebDecDistribution-class),
177

approxfun, 69, 149, 150, 152
Arcsine (Arcsine-class), 17
Arcsine-class, 17
ARITHMETICS (distrARITH), 49

Beta (Beta-class), 18
Beta-class, 18
BetaParameter-class, 20
Binom (Binom-class), 21
Binom-class, 21
BinomParameter-class, 23

Cauchy (Cauchy-class), 24
Cauchy-class, 24
CauchyParameter-class, 26
Chisq (Chisq-class), 27
Chisq-class, 27
ChisqParameter-class, 29
coerce,AbscontDistribution,UnivarLebDecDistribution-method

(UnivarLebDecDistribution-class),
177

coerce,AffLinDiscreteDistribution,LatticeDistribution-method
(DiscreteDistribution-class),
45

coerce,AffLinLatticeDistribution,AffLinDiscreteDistribution-method
(LatticeDistribution-class), 88

coerce,AffLinUnivarLebDecDistribution,UnivarLebDecDistribution-method
(UnivarLebDecDistribution-class),
177

coerce,CompoundDistribution,UnivarLebDecDistribution-method
(CompoundDistribution-class),
31

coerce,DiscreteDistribution,LatticeDistribution-method
(DiscreteDistribution-class),
45

coerce,DiscreteDistribution,UnivarLebDecDistribution-method
(UnivarLebDecDistribution-class),
177

coerce,Distribution,DistrList-method
(DistrList-class), 53

coerce,LatticeDistribution,DiscreteDistribution-method
(LatticeDistribution-class), 88

coerce,UnivariateDistribution,UnivarDistrList-method
(UnivarDistrList-class), 173

CompoundDistribution, 30, 32
CompoundDistribution-class, 31
conv2NewVersion, 6, 14, 51, 183
conv2NewVersion (Version Management),

184
conv2NewVersion,ANY-method (Version

Management), 184
conv2NewVersion,LatticeDistribution-method

(Version Management), 184
conv2NewVersion-methods (Version

Management), 184
convpow, 9, 16, 47, 68, 180
convpow (convpow-methods), 33
convpow,AbscontDistribution-method

(convpow-methods), 33
convpow,AcDcLcDistribution-method

(convpow-methods), 33
convpow,Binom-method (convpow-methods),

33
convpow,Cauchy-method

(convpow-methods), 33
convpow,Dirac-method (convpow-methods),

33
convpow,DiscreteDistribution-method

(convpow-methods), 33
convpow,ExpOrGammaOrChisq-method

(convpow-methods), 33
convpow,LatticeDistribution-method

(convpow-methods), 33
convpow,Nbinom-method

202 INDEX

(convpow-methods), 33
convpow,Norm-method (convpow-methods),

33
convpow,Pois-method (convpow-methods),

33
convpow-methods, 33

d (d-methods), 35
d,Distribution-method (d-methods), 35
d-methods, 35
d.ac (UnivarLebDecDistribution-class),

177
d.ac,UnivarLebDecDistribution-method

(UnivarLebDecDistribution-class),
177

d.ac-methods
(UnivarLebDecDistribution-class),
177

d.discrete
(UnivarLebDecDistribution-class),
177

d.discrete,UnivarLebDecDistribution-method
(UnivarLebDecDistribution-class),
177

d.discrete-methods
(UnivarLebDecDistribution-class),
177

decomposePM, 121
decomposePM (decomposePM-methods), 35
decomposePM,AbscontDistribution-method

(decomposePM-methods), 35
decomposePM,DiscreteDistribution-method

(decomposePM-methods), 35
decomposePM,UnivarLebDecDistribution-method

(decomposePM-methods), 35
decomposePM-methods, 35
DefaultNrFFTGridPointsExponent

(distroptions), 55
DefaultNrGridPoints (distroptions), 55
Defunct, 49
density, 69, 149, 150, 152
devNew, 123
DExp (DExp-class), 36
DExp-class, 36
df (df-methods), 38
df,Chisq-method (df-methods), 38
df,ChisqParameter-method (df-methods),

38
df,Td-method (df-methods), 38

df,TParameter-method (df-methods), 38
df-methods, 38
df1 (df1-methods), 38
df1,Fd-method (df1-methods), 38
df1,FParameter-method (df1-methods), 38
df1-methods, 38
df1<- (df1-methods), 38
df1<-,Fd-method (df1-methods), 38
df1<-,FParameter-method (df1-methods),

38
df1<--methods (df1-methods), 38
df2 (df2-methods), 39
df2,Fd-method (df2-methods), 39
df2,FParameter-method (df2-methods), 39
df2-methods, 39
df2<- (df2-methods), 39
df2<-,Fd-method (df2-methods), 39
df2<-,FParameter-method (df2-methods),

39
df2<--methods (df2-methods), 39
df<- (df-methods), 38
df<-,Chisq-method (df-methods), 38
df<-,ChisqParameter-method

(df-methods), 38
df<-,Td-method (df-methods), 38
df<-,TParameter-method (df-methods), 38
df<--methods (df-methods), 38
digamma,AbscontDistribution-method

(Math-methods), 102
digamma,DiscreteDistribution-method

(Math-methods), 102
dim (dim-methods), 39
dim,UnivariateDistribution-method

(dim-methods), 39
dim-methods, 39
dimension (dimension-methods), 39
dimension,EuclideanSpace-method

(dimension-methods), 39
dimension-methods, 39
dimension<- (dimension-methods), 39
dimension<-,EuclideanSpace-method

(dimension-methods), 39
dimension<--methods

(dimension-methods), 39
Dirac (Dirac-class), 40
Dirac-class, 40
DiracParameter-class, 41
DiscreteDistribution, 43, 61, 69, 151

INDEX 203

DiscreteDistribution-class, 45
discretePart

(UnivarLebDecDistribution-class),
177

discretePart,UnivarLebDecDistribution-method
(UnivarLebDecDistribution-class),
177

discretePart-methods
(UnivarLebDecDistribution-class),
177

discretePart<-
(UnivarLebDecDistribution-class),
177

discretePart<-,UnivarLebDecDistribution-method
(UnivarLebDecDistribution-class),
177

discretePart<--methods
(UnivarLebDecDistribution-class),
177

discreteWeight
(UnivarLebDecDistribution-class),
177

discreteWeight,UnivarLebDecDistribution-method
(UnivarLebDecDistribution-class),
177

discreteWeight-methods
(UnivarLebDecDistribution-class),
177

discreteWeight<-
(UnivarLebDecDistribution-class),
177

discreteWeight<-,UnivarLebDecDistribution-method
(UnivarLebDecDistribution-class),
177

discreteWeight<--methods
(UnivarLebDecDistribution-class),
177

distr (distr-package), 5
distr-defunct, 48
distr-package, 5
distrARITH, 49
DistrCollapse (distroptions), 55
Distribution-class, 50
DistributionAggregate.Unique.Warn

(distroptions), 55
DistributionSymmetry-class, 51
DistrList, 52, 53, 173
DistrList-class, 53

distrMASK, 54
distroptions, 10, 55, 156, 159
DistrResolution (distroptions), 55
DistrSymmList, 57
DistrSymmList-class, 58
DoubleExponential (DExp-class), 36

ecdf, 69, 149, 150, 152
eigen, 159
EllipticalSymmetry, 58, 60
EllipticalSymmetry-class, 59
EmpiricalDistribution, 60
EuclideanSpace (EuclideanSpace-class),

61
EuclideanSpace-class, 61
Exp (Exp-class), 63
exp,AbscontDistribution-method

(Math-methods), 102
exp,DiscreteDistribution-method

(Math-methods), 102
exp,UnivarLebDecDistribution-method

(UnivarLebDecDistribution-class),
177

Exp-class, 63
ExpParameter-class, 64

Fd (Fd-class), 66
Fd-class, 66
flat.LCD, 68, 120–122, 181
flat.mix, 33, 68, 69, 156, 183
FParameter-class, 70

gamma,AbscontDistribution-method
(Math-methods), 102

gamma,DiscreteDistribution-method
(Math-methods), 102

gamma-methods (Math-methods), 102
Gammad (Gammad-class), 71
Gammad-class, 71
GammaParameter-class, 73
gaps, 6, 14
gaps (gaps-methods), 74
gaps,AbscontDistribution-method

(gaps-methods), 74
gaps,UnivarMixingDistribution-method

(UnivarMixingDistribution-class),
182

gaps-methods, 74
gaps<- (gaps-methods), 74

204 INDEX

gaps<-,AbscontDistribution-method
(gaps-methods), 74

gaps<--methods (gaps-methods), 74
Geom (Geom-class), 75
Geom-class, 75
GeomParameter-class (distr-defunct), 48
getdistrOption (distroptions), 55
getLabel, 77
getLow (getLow,getUp), 78
getLow,AbscontDistribution-method

(getLow,getUp), 78
getLow,DiscreteDistribution-method

(getLow,getUp), 78
getLow,getUp, 78
getLow,LatticeDistribution-method

(getLow,getUp), 78
getLow,UnivarLebDecDistribution-method

(getLow,getUp), 78
getLow,UnivarMixingDistribution-method

(getLow,getUp), 78
getLow-methods (getLow,getUp), 78
getOption, 56, 123, 124
getUp (getLow,getUp), 78
getUp,AbscontDistribution-method

(getLow,getUp), 78
getUp,DiscreteDistribution-method

(getLow,getUp), 78
getUp,LatticeDistribution-method

(getLow,getUp), 78
getUp,UnivarLebDecDistribution-method

(getLow,getUp), 78
getUp,UnivarMixingDistribution-method

(getLow,getUp), 78
getUp-methods (getLow,getUp), 78

Huberize, 16, 47, 106, 156, 167, 180
Huberize (Huberize-methods), 79
Huberize,AcDcLcDistribution-method

(Huberize-methods), 79
Huberize-methods, 79
Hyper (Hyper-class), 80
Hyper-class, 80
HyperParameter-class, 81

igamma, 83
img (img-methods), 83
img,Distribution-method (img-methods),

83
img-methods, 83

initialize,AbscontDistribution-method
(AbscontDistribution-class), 14

initialize,AffLinAbscontDistribution-method
(AbscontDistribution-class), 14

initialize,AffLinDiscreteDistribution-method
(DiscreteDistribution-class),
45

initialize,AffLinLatticeDistribution-method
(LatticeDistribution-class), 88

initialize,Arcsine-method
(Arcsine-class), 17

initialize,Beta-method (Beta-class), 18
initialize,BetaParameter-method

(BetaParameter-class), 20
initialize,Binom-method (Binom-class),

21
initialize,BinomParameter-method

(BinomParameter-class), 23
initialize,Cauchy-method

(Cauchy-class), 24
initialize,CauchyParameter-method

(CauchyParameter-class), 26
initialize,Chisq-method (Chisq-class),

27
initialize,ChisqParameter-method

(ChisqParameter-class), 29
initialize,DExp-method (DExp-class), 36
initialize,Dirac-method (Dirac-class),

40
initialize,DiracParameter-method

(DiracParameter-class), 41
initialize,DiscreteDistribution-method

(DiscreteDistribution-class),
45

initialize,EuclideanSpace-method
(EuclideanSpace-class), 61

initialize,Exp-method (Exp-class), 63
initialize,ExpParameter-method

(ExpParameter-class), 64
initialize,Fd-method (Fd-class), 66
initialize,FParameter-method

(FParameter-class), 70
initialize,Gammad-method

(Gammad-class), 71
initialize,GammaParameter-method

(GammaParameter-class), 73
initialize,Geom-method (Geom-class), 75
initialize,GeomParameter-method

INDEX 205

(distr-defunct), 48
initialize,Hyper-method (Hyper-class),

80
initialize,HyperParameter-method

(HyperParameter-class), 81
initialize,LatticeDistribution-method

(LatticeDistribution-class), 88
initialize,Lnorm-method (Lnorm-class),

94
initialize,LnormParameter-method

(LnormParameter-class), 96
initialize,Logis-method (Logis-class),

98
initialize,LogisParameter-method

(LogisParameter-class), 100
initialize,Naturals-method

(Naturals-class), 108
initialize,Nbinom-method

(Nbinom-class), 109
initialize,NbinomParameter-method

(NbinomParameter-class), 111
initialize,Norm-method (Norm-class), 113
initialize,NormParameter-method

(NormParameter-class), 115
initialize,Pois-method (Pois-class), 132
initialize,PoisParameter-method

(PoisParameter-class), 134
initialize,Reals-method (Reals-class),

146
initialize,Td-method (Td-class), 163
initialize,TParameter-method

(TParameter-class), 165
initialize,Unif-method (Unif-class), 168
initialize,UnifParameter-method

(UnifParameter-class), 169
initialize,UniNormParameter-method

(UniNormParameter-class), 171
initialize,UnivariateDistribution-method

(UnivariateDistribution-class),
174

initialize,Weibull-method
(Weibull-class), 185

initialize,WeibullParameter-method
(WeibullParameter-class), 187

isOldVersion, 6, 14
isOldVersion (Version Management), 184
isOldVersion,ANY-method (Version

Management), 184

isOldVersion-methods (Version
Management), 184

k (k-methods), 84
k,Hyper-method (k-methods), 84
k,HyperParameter-method (k-methods), 84
k-methods, 84
k<- (k-methods), 84
k<-,Hyper-method (k-methods), 84
k<-,HyperParameter-method (k-methods),

84
k<--methods (k-methods), 84
ks.test, 140, 141

lambda (lambda-methods), 84
lambda,Pois-method (lambda-methods), 84
lambda,PoisParameter-method

(lambda-methods), 84
lambda-methods, 84
lambda<- (lambda-methods), 84
lambda<-,Pois-method (lambda-methods),

84
lambda<-,PoisParameter-method

(lambda-methods), 84
lambda<--methods (lambda-methods), 84
Laplace (DExp-class), 36
Lattice (Lattice-class), 85
lattice (LatticeDistribution-class), 88
lattice,LatticeDistribution-method

(LatticeDistribution-class), 88
Lattice-class, 85
lattice-method

(LatticeDistribution-class), 88
LatticeDistribution, 86, 88, 91
LatticeDistribution-class, 88
Length (Length-methods), 91
Length,Lattice-method (Length-methods),

91
Length,LatticeDistribution-method

(Length-methods), 91
Length-methods, 91
Length<- (Length-methods), 91
Length<-,Lattice-method

(Length-methods), 91
Length<-,LatticeDistribution-method

(Length-methods), 91
Length<--methods (Length-methods), 91
lgamma,AbscontDistribution-method

(Math-methods), 102

206 INDEX

lgamma,DiscreteDistribution-method
(Math-methods), 102

lgamma-methods (Math-methods), 102
liesIn (liesIn-methods), 92
liesIn,EuclideanSpace,numeric-method

(liesIn-methods), 92
liesIn,Naturals,numeric-method

(liesIn-methods), 92
liesIn-methods, 92
liesInSupport, 92
liesInSupport,AbscontDistribution,numeric-method

(liesInSupport), 92
liesInSupport,Beta,numeric-method

(liesInSupport), 92
liesInSupport,Cauchy,numeric-method

(liesInSupport), 92
liesInSupport,DExp,numeric-method

(liesInSupport), 92
liesInSupport,DiscreteDistribution,numeric-method

(liesInSupport), 92
liesInSupport,Distribution,matrix-method

(liesInSupport), 92
liesInSupport,ExpOrGammaOrChisq,numeric-method

(liesInSupport), 92
liesInSupport,Fd,numeric-method

(liesInSupport), 92
liesInSupport,LatticeDistribution,numeric-method

(liesInSupport), 92
liesInSupport,Lnorm,numeric-method

(liesInSupport), 92
liesInSupport,Logis,numeric-method

(liesInSupport), 92
liesInSupport,Norm,numeric-method

(liesInSupport), 92
liesInSupport,Td,numeric-method

(liesInSupport), 92
liesInSupport,Unif,numeric-method

(liesInSupport), 92
liesInSupport,UnivarLebDecDistribution,numeric-method

(liesInSupport), 92
liesInSupport,UnivarMixingDistribution,numeric-method

(liesInSupport), 92
liesInSupport,Weibull,numeric-method

(liesInSupport), 92
liesInSupport-methods (liesInSupport),

92
Lnorm (Lnorm-class), 94
Lnorm-class, 94

LnormParameter-class, 96
location (location-methods), 97
location,Cauchy-method

(location-methods), 97
location,CauchyParameter-method

(location-methods), 97
location,Dirac-method

(location-methods), 97
location,DiracParameter-method

(location-methods), 97
location,Logis-method

(location-methods), 97
location,LogisParameter-method

(location-methods), 97
location-methods, 97
location<- (location-methods), 97
location<-,Cauchy-method

(location-methods), 97
location<-,CauchyParameter-method

(location-methods), 97
location<-,Dirac-method

(location-methods), 97
location<-,DiracParameter-method

(location-methods), 97
location<-,Logis-method

(location-methods), 97
location<-,LogisParameter-method

(location-methods), 97
location<--methods (location-methods),

97
log,AbscontDistribution-method

(Math-methods), 102
log,Dirac-method (Dirac-class), 40
log,DiscreteDistribution-method

(Math-methods), 102
log,UnivarLebDecDistribution-method

(UnivarLebDecDistribution-class),
177

log-methods (Math-methods), 102
log10,AbscontDistribution-method

(Math-methods), 102
log10,DiscreteDistribution-method

(Math-methods), 102
log10,UnivarLebDecDistribution-method

(UnivarLebDecDistribution-class),
177

log10-methods (Math-methods), 102
Logis (Logis-class), 98

INDEX 207

Logis-class, 98
LogisParameter-class, 100

m (m-methods), 101
m,Hyper-method (m-methods), 101
m,HyperParameter-method (m-methods), 101
m-methods, 101
m<- (m-methods), 101
m<-,Hyper-method (m-methods), 101
m<-,HyperParameter-method (m-methods),

101
m<--methods (m-methods), 101
makeAbscontDistribution, 101
MASKING (distrMASK), 54
Math, 9, 102, 103, 118
Math,AbscontDistribution-method

(Math-methods), 102
Math,AcDcLcDistribution-method

(Math-methods), 102
Math,Dirac-method (Dirac-class), 40
Math,DiscreteDistribution-method

(Math-methods), 102
Math,UnivarLebDecDistribution-method

(UnivarLebDecDistribution-class),
177

Math-methods, 102
Max (Max-methods), 103
Max,Unif-method (Max-methods), 103
Max,UnifParameter-method (Max-methods),

103
Max-methods, 103
Max<- (Max-methods), 103
Max<-,Unif-method (Max-methods), 103
Max<-,UnifParameter-method

(Max-methods), 103
Max<--methods (Max-methods), 103
Maximum (Minimum-methods), 105
Maximum,AcDcLcDistribution,AcDcLcDistribution-method

(Minimum-methods), 105
Maximum,AcDcLcDistribution,numeric-method

(Minimum-methods), 105
Maximum-methods (Minimum-methods), 105
mean, 164
mean (mean-methods), 104
mean,Norm-method (mean-methods), 104
mean,NormParameter-method

(mean-methods), 104
mean-methods, 104
mean<- (mean-methods), 104

mean<-,Norm-method (mean-methods), 104
mean<-,NormParameter-method

(mean-methods), 104
mean<--methods (mean-methods), 104
meanlog (meanlog-methods), 104
meanlog,Lnorm-method (meanlog-methods),

104
meanlog,LnormParameter-method

(meanlog-methods), 104
meanlog-methods, 104
meanlog<- (meanlog-methods), 104
meanlog<-,Lnorm-method

(meanlog-methods), 104
meanlog<-,LnormParameter-method

(meanlog-methods), 104
meanlog<--methods (meanlog-methods), 104
Min (Min-methods), 105
Min,Unif-method (Min-methods), 105
Min,UnifParameter-method (Min-methods),

105
Min-methods, 105
Min<- (Min-methods), 105
Min<-,Unif-method (Min-methods), 105
Min<-,UnifParameter-method

(Min-methods), 105
Min<--methods (Min-methods), 105
Minimum, 16, 47, 68, 156, 167, 180
Minimum (Minimum-methods), 105
Minimum,AbscontDistribution,AbscontDistribution-method

(Minimum-methods), 105
Minimum,AbscontDistribution,Dirac-method

(Minimum-methods), 105
Minimum,AbscontDistribution,numeric-method

(Minimum-methods), 105
Minimum,AcDcLcDistribution,AcDcLcDistribution-method

(Minimum-methods), 105
Minimum,AcDcLcDistribution,numeric-method

(Minimum-methods), 105
Minimum,DiscreteDistribution,DiscreteDistribution-method

(Minimum-methods), 105
Minimum,DiscreteDistribution,numeric-method

(Minimum-methods), 105
Minimum-methods, 105
mixCoeff

(UnivarMixingDistribution-class),
182

mixCoeff,UnivarMixingDistribution-method
(UnivarMixingDistribution-class),

208 INDEX

182
mixCoeff-methods

(UnivarMixingDistribution-class),
182

mixCoeff<-
(UnivarMixingDistribution-class),
182

mixCoeff<-,UnivarMixingDistribution-method
(UnivarMixingDistribution-class),
182

mixCoeff<--methods
(UnivarMixingDistribution-class),
182

mixDistr
(UnivarMixingDistribution-class),
182

mixDistr,UnivarMixingDistribution-method
(UnivarMixingDistribution-class),
182

mixDistr-methods
(UnivarMixingDistribution-class),
182

mixDistr<-
(UnivarMixingDistribution-class),
182

mixDistr<-,UnivarMixingDistribution-method
(UnivarMixingDistribution-class),
182

mixDistr<--methods
(UnivarMixingDistribution-class),
182

n (n-methods), 107
n,Hyper-method (n-methods), 107
n,HyperParameter-method (n-methods), 107
n-methods, 107
n<- (n-methods), 107
n<-,Hyper-method (n-methods), 107
n<-,HyperParameter-method (n-methods),

107
n<--methods (n-methods), 107
NA, 144
name (name-methods), 107
name,Parameter-method (name-methods),

107
name,rSpace-method (name-methods), 107
name-methods, 107
name<- (name-methods), 107

name<-,Parameter-method (name-methods),
107

name<-,rSpace-method (name-methods), 107
name<--methods (name-methods), 107
Naturals (Naturals-class), 108
Naturals-class, 108
Nbinom (Nbinom-class), 109
Nbinom-class, 109
NbinomParameter-class, 111
ncp (ncp-methods), 112
ncp,Beta-method (ncp-methods), 112
ncp,BetaParameter-method (ncp-methods),

112
ncp,Chisq-method (ncp-methods), 112
ncp,ChisqParameter-method

(ncp-methods), 112
ncp,Fd-method (ncp-methods), 112
ncp,FParameter-method (ncp-methods), 112
ncp,Td-method (ncp-methods), 112
ncp,TParameter-method (ncp-methods), 112
ncp-methods, 112
ncp<- (ncp-methods), 112
ncp<-,Beta-method (ncp-methods), 112
ncp<-,BetaParameter-method

(ncp-methods), 112
ncp<-,Chisq-method (ncp-methods), 112
ncp<-,ChisqParameter-method

(ncp-methods), 112
ncp<-,Fd-method (ncp-methods), 112
ncp<-,FParameter-method (ncp-methods),

112
ncp<-,Td-method (ncp-methods), 112
ncp<-,TParameter-method (ncp-methods),

112
ncp<--methods (ncp-methods), 112
newDevice (options), 123
Norm (Norm-class), 113
Norm-class, 113
NormParameter-class, 115
NoSymmetry, 116, 117
NoSymmetry-class, 117
NumbOfSummandsDistr

(CompoundDistribution-class),
31

NumbOfSummandsDistr,CompoundDistribution-method
(CompoundDistribution-class),
31

NumbOfSummandsDistr-methods

INDEX 209

(CompoundDistribution-class),
31

operators, 34
operators (operators-methods), 117
operators-methods, 9, 16, 25, 41, 47, 68,

114, 117, 180
OptionalMatrix-class

(OptionalParameter-class), 122
OptionalParameter-class, 122
options, 56, 123, 123, 124

p (p-methods), 124
p,Distribution-method (p-methods), 124
p-methods, 124
p.ac (UnivarLebDecDistribution-class),

177
p.ac,UnivarLebDecDistribution-method

(UnivarLebDecDistribution-class),
177

p.ac-methods
(UnivarLebDecDistribution-class),
177

p.discrete
(UnivarLebDecDistribution-class),
177

p.discrete,UnivarLebDecDistribution-method
(UnivarLebDecDistribution-class),
177

p.discrete-methods
(UnivarLebDecDistribution-class),
177

p.l (p.l-methods), 124
p.l,AbscontDistribution-method

(p.l-methods), 124
p.l,DiscreteDistribution-method

(p.l-methods), 124
p.l,UnivarLebDecDistribution-method

(p.l-methods), 124
p.l,UnivarMixingDistribution-method

(p.l-methods), 124
p.l-methods, 124
p.r (p-methods), 124
p.r,Distribution-method (p-methods), 124
p.r-methods (p-methods), 124
par, 128, 130
param (param-methods), 125
param,Distribution-method

(param-methods), 125

param-methods, 125
Parameter-class, 125
pivot (pivot-methods), 126
pivot,Lattice-method (pivot-methods),

126
pivot,LatticeDistribution-method

(pivot-methods), 126
pivot-methods, 126
pivot<- (pivot-methods), 126
pivot<-,Lattice-method (pivot-methods),

126
pivot<-,LatticeDistribution-method

(pivot-methods), 126
pivot<--methods (pivot-methods), 126
plot, 129, 130
plot (plot-methods), 126
plot,AbscontDistribution,missing-method

(plot-methods), 126
plot,AffLinUnivarLebDecDistribution,missing-method

(plot-methods), 126
plot,CompoundDistribution,missing-method

(plot-methods), 126
plot,DiscreteDistribution,missing-method

(plot-methods), 126
plot,DistrList,missing-method

(plot-methods), 126
plot,UnivarLebDecDistribution,missing-method

(plot-methods), 126
plot-methods, 126
plot.default, 128–130
plot.new, 123
plot.stepfun, 128–130
pmatch, 178
points, 128
Pois (Pois-class), 132
Pois-class, 132
PoisParameter-class, 134
PosDefSymmMatrix, 135, 136
PosDefSymmMatrix-class, 136
PosSemDefSymmMatrix (PosDefSymmMatrix),

135
PosSemDefSymmMatrix-class

(PosDefSymmMatrix-class), 136
print,UnivariateDistribution-method

(print-methods), 137
print-methods, 137
prob (prob-methods), 137
prob,Binom-method (prob-methods), 137

210 INDEX

prob,BinomParameter-method
(prob-methods), 137

prob,DiscreteDistribution-method
(prob-methods), 137

prob,Geom-method (prob-methods), 137
prob,GeomParameter-method

(prob-methods), 137
prob,Nbinom-method (prob-methods), 137
prob,NbinomParameter-method

(prob-methods), 137
prob,UnivarLebDecDistribution-method

(prob-methods), 137
prob-methods, 137
prob<- (prob-methods), 137
prob<-,Binom-method (prob-methods), 137
prob<-,BinomParameter-method

(prob-methods), 137
prob<-,DiscreteDistribution-method

(prob-methods), 137
prob<-,Geom-method (prob-methods), 137
prob<-,GeomParameter-method

(prob-methods), 137
prob<-,Nbinom-method (prob-methods), 137
prob<-,NbinomParameter-method

(prob-methods), 137
prob<--methods (prob-methods), 137

q (q-methods), 138
q,Distribution-method (q-methods), 138
q-methods, 138
q.ac (UnivarLebDecDistribution-class),

177
q.ac,UnivarLebDecDistribution-method

(UnivarLebDecDistribution-class),
177

q.ac-methods
(UnivarLebDecDistribution-class),
177

q.discrete
(UnivarLebDecDistribution-class),
177

q.discrete,UnivarLebDecDistribution-method
(UnivarLebDecDistribution-class),
177

q.discrete-methods
(UnivarLebDecDistribution-class),
177

q.l (q-methods), 138
q.l,Distribution-method (q-methods), 138

q.l-methods (q-methods), 138
q.r (q.r-methods), 139
q.r,AbscontDistribution-method

(q.r-methods), 139
q.r,DiscreteDistribution-method

(q.r-methods), 139
q.r,UnivarLebDecDistribution-method

(q.r-methods), 139
q.r,UnivarMixingDistribution-method

(q.r-methods), 139
q.r-methods, 139
qqbounds, 139, 144
qqplot, 141, 141, 142, 144
qqplot,ANY,ANY-method (qqplot), 141
qqplot,UnivariateDistribution,UnivariateDistribution-method

(qqplot), 141
qqplot-methods (qqplot), 141

r (r-methods), 145
r,Distribution-method (r-methods), 145
r-methods, 145
r.ac (UnivarLebDecDistribution-class),

177
r.ac,UnivarLebDecDistribution-method

(UnivarLebDecDistribution-class),
177

r.ac-methods
(UnivarLebDecDistribution-class),
177

r.discrete
(UnivarLebDecDistribution-class),
177

r.discrete,UnivarLebDecDistribution-method
(UnivarLebDecDistribution-class),
177

r.discrete-methods
(UnivarLebDecDistribution-class),
177

rate (rate-methods), 145
rate,DExp-method (rate-methods), 145
rate,Exp-method (rate-methods), 145
rate,ExpParameter-method

(rate-methods), 145
rate-methods, 145
rate<- (rate-methods), 145
rate<-,DExp-method (rate-methods), 145
rate<-,Exp-method (rate-methods), 145
rate<-,ExpParameter-method

(rate-methods), 145

INDEX 211

rate<--methods (rate-methods), 145
rbeta, 19, 20
rbinom, 21, 23
rcauchy, 24, 26
rchisq, 27, 29, 164
Reals (Reals-class), 146
Reals-class, 146
rexp, 36, 37, 63, 64
rf, 66, 67
rgamma, 71, 72
rgeom, 75, 76
rhyper, 80, 81
rlnorm, 94, 96
rlogis, 98, 100
rnbinom, 109, 110
rnorm, 5, 113, 114
rpois, 132, 133
rSpace-class, 147
rt, 163, 165
RtoDPQ, 13, 17, 118, 148, 151, 175, 176
RtoDPQ.d, 44, 48, 88, 91, 118, 149
RtoDPQ.e (distroptions), 55
RtoDPQ.LC, 151, 176
runif, 168, 169
rweibull, 185, 186

scale (scale-methods), 152
scale,Cauchy-method (scale-methods), 152
scale,CauchyParameter-method

(scale-methods), 152
scale,Chisq-method (scale-methods), 152
scale,Gammad-method (scale-methods), 152
scale,GammaParameter-method

(scale-methods), 152
scale,Logis-method (scale-methods), 152
scale,LogisParameter-method

(scale-methods), 152
scale,Weibull-method (scale-methods),

152
scale,WeibullParameter-method

(scale-methods), 152
scale-methods, 152
scale<- (scale-methods), 152
scale<-,Cauchy-method (scale-methods),

152
scale<-,CauchyParameter-method

(scale-methods), 152
scale<-,Gammad-method (scale-methods),

152

scale<-,GammaParameter-method
(scale-methods), 152

scale<-,Logis-method (scale-methods),
152

scale<-,LogisParameter-method
(scale-methods), 152

scale<-,Weibull-method (scale-methods),
152

scale<-,WeibullParameter-method
(scale-methods), 152

scale<--methods (scale-methods), 152
sd, 153, 164
sd (sd-methods), 153
sd,Norm-method (sd-methods), 153
sd,NormParameter-method (sd-methods),

153
sd-methods, 153
sd<- (sd-methods), 153
sd<-,Norm-method (sd-methods), 153
sd<-,NormParameter-method (sd-methods),

153
sd<--methods (sd-methods), 153
sdlog (sdlog-methods), 154
sdlog,Lnorm-method (sdlog-methods), 154
sdlog,LnormParameter-method

(sdlog-methods), 154
sdlog-methods, 154
sdlog<- (sdlog-methods), 154
sdlog<-,Lnorm-method (sdlog-methods),

154
sdlog<-,LnormParameter-method

(sdlog-methods), 154
sdlog<--methods (sdlog-methods), 154
setgaps, 14
setgaps (gaps-methods), 74
setgaps,AbscontDistribution-method

(gaps-methods), 74
setgaps,UnivarMixingDistribution-method

(gaps-methods), 74
setgaps-methods (gaps-methods), 74
shape (shape-methods), 154
shape,Chisq-method (shape-methods), 154
shape,Exp-method (shape-methods), 154
shape,Gammad-method (shape-methods), 154
shape,GammaParameter-method

(shape-methods), 154
shape,Weibull-method (shape-methods),

154

212 INDEX

shape,WeibullParameter-method
(shape-methods), 154

shape-methods, 154
shape1 (shape1-methods), 155
shape1,Beta-method (shape1-methods), 155
shape1,BetaParameter-method

(shape1-methods), 155
shape1-methods, 155
shape1<- (shape1-methods), 155
shape1<-,Beta-method (shape1-methods),

155
shape1<-,BetaParameter-method

(shape1-methods), 155
shape1<--methods (shape1-methods), 155
shape2 (shape2-methods), 155
shape2,Beta-method (shape2-methods), 155
shape2,BetaParameter-method

(shape2-methods), 155
shape2-methods, 155
shape2<- (shape2-methods), 155
shape2<-,Beta-method (shape2-methods),

155
shape2<-,BetaParameter-method

(shape2-methods), 155
shape2<--methods (shape2-methods), 155
shape<- (shape-methods), 154
shape<-,Gammad-method (shape-methods),

154
shape<-,GammaParameter-method

(shape-methods), 154
shape<-,Weibull-method (shape-methods),

154
shape<-,WeibullParameter-method

(shape-methods), 154
shape<--methods (shape-methods), 154
show,DistrList-method

(DistrList-class), 53
show,LatticeDistribution-method

(print-methods), 137
show,Symmetry-method (Symmetry-class),

163
show,UnivariateDistribution-method

(print-methods), 137
show,UnivarLebDecDistribution-method

(print-methods), 137
show,UnivarMixingDistribution-method

(print-methods), 137
show-methods (print-methods), 137

sign,AbscontDistribution-method
(Math-methods), 102

sign,AcDcLcDistribution-method
(UnivarLebDecDistribution-class),
177

sign,DiscreteDistribution-method
(Math-methods), 102

sign,UnivarLebDecDistribution-method
(UnivarLebDecDistribution-class),
177

sign-methods (Math-methods), 102
simplifyD, 31, 33, 79, 106, 120–122, 167,

177, 179, 181–183
simplifyD (simplifyD-methods), 156
simplifyD,AbscontDistribution-method

(simplifyD-methods), 156
simplifyD,DiscreteDistribution-method

(simplifyD-methods), 156
simplifyD,UnivarLebDecDistribution-method

(simplifyD-methods), 156
simplifyD,UnivarMixingDistribution-method

(simplifyD-methods), 156
simplifyD-methods, 156
simplifyr (simplifyr-methods), 157
simplifyr,UnivariateDistribution-method

(simplifyr-methods), 157
simplifyr-methods, 157
size (size-methods), 158
size,Binom-method (size-methods), 158
size,BinomParameter-method

(size-methods), 158
size,Geom-method (size-methods), 158
size,Nbinom-method (size-methods), 158
size,NbinomParameter-method

(size-methods), 158
size-methods, 158
size<- (size-methods), 158
size<-,Binom-method (size-methods), 158
size<-,BinomParameter-method

(size-methods), 158
size<-,Geom-method (size-methods), 158
size<-,Nbinom-method (size-methods), 158
size<-,NbinomParameter-method

(size-methods), 158
size<--methods (size-methods), 158
solve, 56, 159, 161
solve (solve-methods), 158
solve,ANY,ANY-method (solve-methods),

INDEX 213

158
solve,ANY-method (solve-methods), 158
solve,PosDefSymmMatrix,ANY-method

(solve-methods), 158
solve,PosDefSymmMatrix-method

(solve-methods), 158
solve,PosSemDefSymmMatrix,ANY-method

(solve-methods), 158
solve,PosSemDefSymmMatrix-method

(solve-methods), 158
solve-methods, 158
SphericalSymmetry, 159, 161
SphericalSymmetry-class, 160
sqrt (sqrt-methods), 161
sqrt,AbscontDistribution-method

(AbscontDistribution-class), 14
sqrt,AcDcLcDistribution-method

(UnivarLebDecDistribution-class),
177

sqrt,DiscreteDistribution-method
(DiscreteDistribution-class),
45

sqrt,LatticeDistribution-method
(LatticeDistribution-class), 88

sqrt,PosSemDefSymmMatrix-method
(sqrt-methods), 161

sqrt,UnivarLebDecDistribution-method
(UnivarLebDecDistribution-class),
177

sqrt-methods, 161
standardMethods, 162
SummandsDistr

(CompoundDistribution-class),
31

SummandsDistr,CompoundDistribution-method
(CompoundDistribution-class),
31

SummandsDistr-methods
(CompoundDistribution-class),
31

support, 6
support (support-methods), 162
support,DiscreteDistribution-method

(support-methods), 162
support,UnivarMixingDistribution-method

(UnivarMixingDistribution-class),
182

support-methods, 162

svd, 159
SymmCenter (Symmetry-class), 163
SymmCenter,Symmetry-method

(Symmetry-class), 163
Symmetry (Distribution-class), 50
Symmetry,Distribution-method

(Distribution-class), 50
Symmetry,UnivarMixingDistribution-method

(UnivarMixingDistribution-class),
182

Symmetry-class, 163
Symmetry-methods (Distribution-class),

50

Td (Td-class), 163
Td-class, 163
TParameter-class, 165
Truncate, 16, 47, 79, 106, 156, 180
Truncate (Truncate-methods), 166
Truncate,AbscontDistribution-method

(Truncate-methods), 166
Truncate,DiscreteDistribution-method

(Truncate-methods), 166
Truncate,LatticeDistribution-method

(Truncate-methods), 166
Truncate,UnivarLebDecDistribution-method

(Truncate-methods), 166
Truncate-methods, 166
TruncQuantile (distroptions), 55
type (Symmetry-class), 163
type,Symmetry-method (Symmetry-class),

163

Unif (Unif-class), 168
Unif-class, 168
UnifParameter-class, 169
UniNormParameter-class, 171
UnivarDistrList, 52, 172, 172, 173
UnivarDistrList-class, 173
UnivariateDistribution-class, 174
UnivarLebDecDistribution, 176, 177
UnivarLebDecDistribution-class, 177
UnivarMixingDistribution, 156, 181, 182
UnivarMixingDistribution-class, 182
UnivDistrListOrDistribution-class

(CompoundDistribution-class),
31

use.generalized.inverse.by.default
(distroptions), 55

214 INDEX

Version Management, 184

warn.makeDNew (distroptions), 55
WarningArith (distroptions), 55
WarningSim (distroptions), 55
Weibull (Weibull-class), 185
Weibull-class, 185
WeibullParameter-class, 187
width (width-methods), 188
width,Lattice-method (width-methods),

188
width,LatticeDistribution-method

(width-methods), 188
width-methods, 188
width<- (width-methods), 188
width<-,Lattice-method (width-methods),

188
width<-,LatticeDistribution-method

(width-methods), 188
width<--methods (width-methods), 188
withgaps (distroptions), 55
withSweave (distroptions), 55

	distr-package
	AbscontDistribution
	AbscontDistribution-class
	Arcsine-class
	Beta-class
	BetaParameter-class
	Binom-class
	BinomParameter-class
	Cauchy-class
	CauchyParameter-class
	Chisq-class
	ChisqParameter-class
	CompoundDistribution
	CompoundDistribution-class
	convpow-methods
	d-methods
	decomposePM-methods
	DExp-class
	df-methods
	df1-methods
	df2-methods
	dim-methods
	dimension-methods
	Dirac-class
	DiracParameter-class
	DiscreteDistribution
	DiscreteDistribution-class
	distr-defunct
	distrARITH
	Distribution-class
	DistributionSymmetry-class
	DistrList
	DistrList-class
	distrMASK
	distroptions
	DistrSymmList
	DistrSymmList-class
	EllipticalSymmetry
	EllipticalSymmetry-class
	EmpiricalDistribution
	EuclideanSpace-class
	Exp-class
	ExpParameter-class
	Fd-class
	flat.LCD
	flat.mix
	FParameter-class
	Gammad-class
	GammaParameter-class
	gaps-methods
	Geom-class
	getLabel
	getLow,getUp
	Huberize-methods
	Hyper-class
	HyperParameter-class
	igamma
	img-methods
	k-methods
	lambda-methods
	Lattice-class
	LatticeDistribution
	LatticeDistribution-class
	Length-methods
	liesIn-methods
	liesInSupport
	Lnorm-class
	LnormParameter-class
	location-methods
	Logis-class
	LogisParameter-class
	m-methods
	makeAbscontDistribution
	Math-methods
	Max-methods
	mean-methods
	meanlog-methods
	Min-methods
	Minimum-methods
	n-methods
	name-methods
	Naturals-class
	Nbinom-class
	NbinomParameter-class
	ncp-methods
	Norm-class
	NormParameter-class
	NoSymmetry
	NoSymmetry-class
	operators-methods
	OptionalParameter-class
	options
	p-methods
	p.l-methods
	param-methods
	Parameter-class
	pivot-methods
	plot-methods
	Pois-class
	PoisParameter-class
	PosDefSymmMatrix
	PosDefSymmMatrix-class
	print-methods
	prob-methods
	q-methods
	q.r-methods
	qqbounds
	qqplot
	r-methods
	rate-methods
	Reals-class
	rSpace-class
	RtoDPQ
	RtoDPQ.d
	RtoDPQ.LC
	scale-methods
	sd-methods
	sdlog-methods
	shape-methods
	shape1-methods
	shape2-methods
	simplifyD-methods
	simplifyr-methods
	size-methods
	solve-methods
	SphericalSymmetry
	SphericalSymmetry-class
	sqrt-methods
	standardMethods
	support-methods
	Symmetry-class
	Td-class
	TParameter-class
	Truncate-methods
	Unif-class
	UnifParameter-class
	UniNormParameter-class
	UnivarDistrList
	UnivarDistrList-class
	UnivariateDistribution-class
	UnivarLebDecDistribution
	UnivarLebDecDistribution-class
	UnivarMixingDistribution
	UnivarMixingDistribution-class
	Version Management
	Weibull-class
	WeibullParameter-class
	width-methods
	Index

