## ----setup,echo=FALSE, include=FALSE------------------------------------------ # setup chunk NOT_CRAN <- identical(tolower(Sys.getenv("NOT_CRAN")),"true") knitr::opts_chunk$set(purl = NOT_CRAN) library(insee) embed_png <- function(path, dpi = NULL) { meta <- attr(png::readPNG(path, native = TRUE, info = TRUE), "info") if (!is.null(dpi)) meta$dpi <- rep(dpi, 2) knitr::asis_output(paste0( "" ))} ## ----message=FALSE, warning=FALSE, include=FALSE------------------------------ library(kableExtra) library(htmltools) library(prettydoc) ## ----echo = FALSE------------------------------------------------------------- embed_png("pop_map.png") ## ----message=FALSE, warning=FALSE,eval=FALSE---------------------------------- # library(insee) # library(ggplot2) # library(dplyr) # library(magrittr) # library(stringr) # # library(raster) # library(rgdal) # library(geosphere) # library(broom) # library(viridis) # library(mapproj) # # dataset_list = get_dataset_list() # # list_idbank = # get_idbank_list("TCRED-ESTIMATIONS-POPULATION") %>% # filter(AGE == "00-") %>% #all ages # filter(SEXE == 0) %>% #men and women # filter(str_detect(REF_AREA, "^D")) %>% #select only departements # add_insee_title() # # list_idbank_selected = list_idbank %>% pull(idbank) # # # get population data by departement # pop = get_insee_idbank(list_idbank_selected) # # #get departements' geographical limits # FranceMap <- raster::getData(name = "GADM", country = "FRA", level = 2) # # # extract the population by departement in 2020 # pop_plot = pop %>% # group_by(TITLE_EN) %>% # filter(DATE == "2020-01-01") %>% # mutate(dptm = gsub("D", "", REF_AREA)) %>% # filter(dptm %in% FranceMap@data$CC_2) %>% # mutate(dptm = factor(dptm, levels = FranceMap@data$CC_2)) %>% # arrange(dptm) %>% # mutate(id = dptm) # # vec_pop = pop_plot %>% pull(OBS_VALUE) # # # add population data to the departement object map # FranceMap@data$pop = vec_pop # # get_area = function(long, lat){ # area = areaPolygon(data.frame(long = long, lat = lat)) / 1000000 # return(data.frame(area = area)) # } # # # extract the departements' limits from the spatial object and compute the surface # FranceMap_tidy_area <- # broom::tidy(FranceMap) %>% # group_by(id) %>% # group_modify(~get_area(long = .x$long, lat = .x$lat)) # # FranceMap_tidy <- # broom::tidy(FranceMap) %>% # left_join(FranceMap_tidy_area) # # # mapping table # dptm_df = data.frame(dptm = FranceMap@data$CC_2, # dptm_name = FranceMap@data$NAME_2, # pop = FranceMap@data$pop, # id = rownames(FranceMap@data)) # # FranceMap_tidy_final_all = # FranceMap_tidy %>% # left_join(dptm_df, by = "id") %>% # mutate(pop_density = pop/area) %>% # mutate(density_range = case_when(pop_density < 40 ~ "< 40", # pop_density >= 40 & pop_density < 50 ~ "[40, 50]", # pop_density >= 50 & pop_density < 70 ~ "[50, 70]", # pop_density >= 70 & pop_density < 100 ~ "[70, 100]", # pop_density >= 100 & pop_density < 120 ~ "[100, 120]", # pop_density >= 120 & pop_density < 160 ~ "[120, 160]", # pop_density >= 160 & pop_density < 200 ~ "[160, 200]", # pop_density >= 200 & pop_density < 240 ~ "[200, 240]", # pop_density >= 240 & pop_density < 260 ~ "[240, 260]", # pop_density >= 260 & pop_density < 410 ~ "[260, 410]", # pop_density >= 410 & pop_density < 600 ~ "[410, 600]", # pop_density >= 600 & pop_density < 1000 ~ "[600, 1000]", # pop_density >= 1000 & pop_density < 5000 ~ "[1000, 5000]", # pop_density >= 5000 & pop_density < 10000 ~ "[5000, 10000]", # pop_density >= 20000 ~ ">= 20000" # )) %>% # mutate(`people per square kilometer` = factor(density_range, # levels = c("< 40","[40, 50]", "[50, 70]","[70, 100]", # "[100, 120]", "[120, 160]", "[160, 200]", # "[200, 240]", "[240, 260]", "[260, 410]", # "[410, 600]", "[600, 1000]", "[1000, 5000]", # "[5000, 10000]", ">= 20000"))) # # ggplot(data = FranceMap_tidy_final_all, # aes(fill = `people per square kilometer`, x = long, y = lat, group = group) , # size = 0, alpha = 0.9) + # geom_polygon() + # geom_path(colour = "white") + # coord_map() + # theme_void() + # scale_fill_viridis(discrete = T) + # ggtitle("Distribution of the population within French territory in 2020") + # labs(subtitle = "the density displayed here is an approximation, it should not be considered as an official statistics") # #