## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(fig.width=10, fig.height=10,fig.asp = 0.618, out.width = "95%", fig.align = "center", fig.dpi = 150, collapse = FALSE, comment = "#") #knitr::opts_chunk$set(dev = 'pdf') ## ----results='hide', message=FALSE, warning=FALSE----------------------------- require(rasterdiv) require(terra) require(rasterVis) require(RColorBrewer) require(viridis) require(latticeExtra) require(ggplot2) ## ----results='hide', message=FALSE, warning=FALSE, eval=FALSE----------------- # copNDVI <- load_copNDVI() # copNDVIlr <- terra::aggregate(copNDVI, fact=10) # values(copNDVIlr) <- as.integer(values(copNDVIlr)) # world <- load_world() ## ----echo = T, results = 'hide', warning=FALSE, message=FALSE, eval=FALSE----- # RaoC <- paRao(x=copNDVIlr, area=world, field='CONTINENT', alpha=c(1,2)) ## ----fig01, warning=FALSE, message=FALSE, eval=FALSE, eval=FALSE-------------- # #Plot classic area-based Rao's index # plot(RaoC, col=hcl(RaoC$alpha.1*10), main="Classic Rao's index per continent alpha 1") # text(RaoC, label=paste("Rao'Q =", round(RaoC$alpha.1,1)), col="black", family="Arial", halo=TRUE) ## ----echo = T, results = 'hide', warning=FALSE, message=FALSE, eval=FALSE----- # # Adding a second "noise" SpatRaster layer # # copNDVIlr <- terra::aggregate(copNDVI, fact=20) # values(copNDVIlr) <- as.integer(values(copNDVIlr)) # noise = rast(copNDVIlr) # noise[] = as.integer(runif(n=ncell(noise),min=1, max=10)) # RaoMC <- paRao(x=c(copNDVIlr,noise), area=world, field='CONTINENT', alpha=2, method="multidimension", simplify=0) ## ----fig02, warning=FALSE, message=FALSE, eval=FALSE-------------------------- # #Plot area-based Rao's index # plot(RaoMC, col=hcl(RaoMC$alpha.2*10000), main="Multidimension Rao's index per continent alpha 10") # text(RaoMC, label=paste("Rao'Q =", round(RaoMC$alpha.2,3)), col="black", family="Arial", halo=TRUE) ## ----include-figure02, echo=FALSE, fig.align='center', fig.cap='', out.width='80%', eval=FALSE---- # knitr::include_graphics("Rao_areabased_multidimensional.png") ## ----echo = T, results = 'hide', warning=FALSE, message=FALSE, eval=FALSE----- # #Subset # africa <- subset(world, world$CONTINENT=="Africa") # # #Make the raster grid # africa.r <- rast(ext(africa), nrow=20, ncol=20, crs = "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0") # africa.r[] <- 1:ncell(africa.r) # # #Vectorise the SpatRaster # africa.v = as.polygons(africa.r) ## ----echo = T, results = 'hide', warning=FALSE, message=FALSE, eval=FALSE----- # #Derive Rao's (alpha=2) for each grid cell # RaoGRID <- paRao(x=copNDVIlr, area=africa.v, field='lyr.1', alpha=2, simplify=0, na.tolerance=0.2) ## ----results='hide', message=FALSE, warning=FALSE, include = FALSE, eval=FALSE---- # RaoGRID <- readRDS("RaoGRID.RDS") ## ----echo = T, results = 'hide', warning=FALSE, message=FALSE, eval=FALSE----- # #Transform the spatial polygon data frame in a raster layer that can be used in levelplot # rr <- rast(RaoGRID, ncol=20, nrow=20) # values(rr) <- RaoGRID$alpha.2 ## ----fig03, echo = T, results = 'hide', warning=FALSE, message=FALSE, eval=FALSE---- # #Plot Rao's per grid cell # ggplot() + # geom_raster(data = as.data.frame(rr, xy=TRUE), aes(x = x, y = y, fill = lyr.1)) + # scale_fill_viridis(option = "D", direction = 1) + # geom_polygon(data = fortify(as(africa.v, "Spatial")), aes(x = long, y = lat, group = group), fill = NA, color = "grey", linewidth=0.3) + # geom_polygon(data = fortify(as(world, "Spatial")), aes(x = long, y = lat, group = group), fill = NA, color = "black", , linewidth=0.5) + # theme(legend.position = "none", aspect.ratio = 0.5) ## ----include-figure03, echo=FALSE, fig.align='center', fig.cap='', out.width='100%', eval=FALSE---- # knitr::include_graphics("vignette02fig03.png")