## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----message=FALSE------------------------------------------------------------ library(tern) library(dplyr) ## ----------------------------------------------------------------------------- # Create table layout pure rtables lyt <- rtables::basic_table() %>% rtables::split_cols_by(var = "ARM") %>% rtables::split_rows_by(var = "AVISIT") %>% rtables::analyze(vars = "AVAL", mean, format = "xx.x") ## ----------------------------------------------------------------------------- # Create table layout with tern analyze_vars analyze function lyt2 <- rtables::basic_table() %>% rtables::split_cols_by(var = "ARM") %>% rtables::split_rows_by(var = "AVISIT") %>% analyze_vars(vars = "AVAL", .formats = c("mean_sd" = "(xx.xx, xx.xx)")) ## ----------------------------------------------------------------------------- # Apply table layout to data and produce `rtables` object adrs <- formatters::ex_adrs rtables::build_table(lyt, df = adrs) rtables::build_table(lyt2, df = adrs) ## ----------------------------------------------------------------------------- adsl <- formatters::ex_adsl adlb <- formatters::ex_adlb adlb <- dplyr::filter(adlb, PARAMCD == "ALT", AVISIT != "SCREENING") ## ----------------------------------------------------------------------------- library(nestcolor) ## ----------------------------------------------------------------------------- # Mean with CI g_lineplot(adlb, adsl, subtitle = "Laboratory Test:") ## ----fig.height=10, fig.width=8----------------------------------------------- # Mean with CI, table and customized confidence level g_lineplot( adlb, adsl, table = c("n", "mean", "mean_ci"), title = "Plot of Mean and 80% Confidence Limits by Visit" )