## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, warning = FALSE, message = FALSE, comment = "#>" ) ## ----eval=FALSE--------------------------------------------------------------- # install.packages("tntpr") ## ----load_packages------------------------------------------------------------ # NOTE: We are not simply loading `tidyverse` in this vignette due to how vignettes # are built to create the documentation website. In other contexts, however, we # would simply use `library(tidyverse)` instead of loading many of the packages individually. library(tntpr) library(ggplot2) library(dplyr) library(tidyr) library(purrr) library(stringr) library(forcats) library(ggalt) library(ggridges) ## ----------------------------------------------------------------------------- # base plot we will reuse in this section plt <- ggplot(ggplot2::mpg, aes(displ, hwy)) + geom_point() + labs( title = "Cars with higher displacement\nhave a lower MPG", subtitle = "Displacement vs. MPG", caption = "Data from ggplot's mpg dataset", x = "Engine Displ.", y = "MPG" ) plt + tntp_style() ## ----------------------------------------------------------------------------- plt + tntp_style(show_axis_titles = TRUE, family = "sans", base_size = 20) + theme(plot.subtitle = ggplot2::element_text(family = "serif", size = 25)) ## ----------------------------------------------------------------------------- plt + tntp_style(show_axis_titles = TRUE) + theme(panel.border = element_rect(color = "black", fill = NA)) ## ----------------------------------------------------------------------------- tntp_colors("green", "mint") ## ----------------------------------------------------------------------------- show_tntp_colors("green", "moss", "mint") ## ----------------------------------------------------------------------------- # Note: the cex_label parameter is used to adjust the relative font size show_tntp_colors(cex_label = 0.7) ## ----------------------------------------------------------------------------- tntp_palette("likert_6") ## ----------------------------------------------------------------------------- show_tntp_palette("likert_6", reverse = TRUE) ## ----------------------------------------------------------------------------- show_tntp_palette() ## ----message = FALSE---------------------------------------------------------- # load fake data into global environment # remove all salaries of 0 county_data <- tntpr::fake_county |> filter(t_salary > 0) avg_salary <- county_data |> filter(t_salary != 0) |> group_by(school_year) |> summarize(avg_salary = mean(t_salary, na.rm = TRUE), .groups = "drop") ## ----------------------------------------------------------------------------- base_font_size <- 16 ## ----message = FALSE---------------------------------------------------------- #Make plot ggplot(avg_salary, aes(x = school_year, y = avg_salary)) + geom_line(colour = tntp_colors("green"), linewidth = 1) + scale_y_continuous(labels = scales::dollar, limits = c(0, 5000)) + labs( title="Average Teacher Salaries", subtitle = "Teacher salaries remained constant between 2012 and 2015" ) + tntp_style(base_size = base_font_size) ## ----------------------------------------------------------------------------- #Prepare data school_salary <- county_data |> filter(t_salary != 0) |> group_by(school_year, school_name) |> summarize(avg_salary = mean(t_salary, na.rm = TRUE), .groups = "drop") # create list of school names so we can easily filter data set for the number of schools we want school_names <- unique(school_salary$school_name) # only plot two schools line_plot_schools <- school_salary |> filter(school_name %in% school_names[1:3]) ## ----------------------------------------------------------------------------- ggplot(line_plot_schools, aes(x = school_year, y = avg_salary, color = school_name)) + geom_line(linewidth = 1) + scale_y_continuous(labels = scales::dollar, limits = c(0, 5000)) + scale_colour_manual(values = tntp_palette("colorful")) + labs( title="Average Teacher Salaries", subtitle = "Teacher salaries remained constant between 2012 and 2015" ) + tntp_style(base_size = base_font_size) ## ----------------------------------------------------------------------------- #Prepare data bar_df <- school_salary |> filter( school_year == 2015, school_name %in% school_names[1:5] ) |> # add line breaks for better plotting mutate(school_name = str_wrap(school_name, 7)) ggplot(bar_df, aes(x = school_name, y = avg_salary)) + geom_bar(stat="identity", position="identity", fill= tntp_colors("gold")) + scale_y_continuous(labels = scales::dollar, limits = c(0, 5000)) + labs( title="Acacia had higher average salaries in 2015", subtitle = "Average teacher salaries in 2015 by school" ) + tntp_style(base_size = base_font_size) ## ----------------------------------------------------------------------------- #prepare data stacked_df <- county_data |> filter( school_year == 2015, school_name %in% school_names[1:5] ) |> mutate(t_salary_cut = cut(t_salary, breaks = c(0, 2500, 3500, 4500, 10000), labels = c("under $2.5k", "$2.5k-$3.5k", "$3.5k-$4.5k", "$4.5k+"))) |> group_by(school_name, t_salary_cut) |> summarise(n_cut_school = n(), .groups = "drop_last") |> mutate( n_cut_salary = sum(n_cut_school, na.rm = TRUE), perc_in_each_cut = n_cut_school / n_cut_salary ) |> # add line breaks for better plotting mutate(school_name = str_wrap(school_name, 7)) #set order of stacks by changing factor levels stacked_df$t_salary_cut = factor(stacked_df$t_salary_cut, levels = rev(levels(stacked_df$t_salary_cut))) ## ----------------------------------------------------------------------------- ggplot( data = stacked_df, aes(x = school_name, y = perc_in_each_cut, fill = t_salary_cut) ) + geom_bar(stat = "identity", position = "stack") + scale_y_continuous(labels = scales::percent, limits = c(0,1)) + scale_fill_manual(values = tntp_palette("greens")) + labs(title = "Most teachers earn between $2.5K and $4.5K", subtitle = "Percentage of teachers by salary range") + theme(legend.position = "top", legend.justification = "left") + guides(fill = guide_legend(reverse = TRUE)) + tntp_style(base_size = base_font_size) ## ----------------------------------------------------------------------------- # only plot the lowest and highest earning groups earnings_to_keep <- levels(stacked_df$t_salary_cut)[c(4,1)] # map bar colors to values colors_to_use <- tntp_colors("yellow", "green") |> set_names(earnings_to_keep) dodged_df <- stacked_df |> # only plot the lowest and highest earning groups filter(t_salary_cut %in% !!earnings_to_keep) |> # switch order of factors so that the lowest earnings plot first mutate(t_salary_cut = factor(t_salary_cut, levels = earnings_to_keep)) ggplot(dodged_df, aes(x = school_name, y = perc_in_each_cut, fill = t_salary_cut)) + geom_bar(stat = "identity", position = position_dodge2(preserve = "single")) + scale_y_continuous(labels = scales::percent, limits = c(0,1)) + scale_fill_manual(values = colors_to_use) + labs(title = "More teachers earn over $4.5k than under $2.5k", subtitle = "Percentage of teachers by salary range") + tntp_style(base_size = base_font_size) ## ----------------------------------------------------------------------------- # create data set showing school test scores and average school salaries scores_salary <- county_data |> group_by(school_name) |> summarize( avg_test_score = mean(sch_ela_avg + sch_math_avg, na.rm=FALSE), avg_salary = mean(t_salary, na.rm = FALSE), enrollment = mean(sch_enroll_2015, na.rm = TRUE), .groups = "drop" ) |> mutate(perc_rank_test_score = percent_rank(avg_test_score)) |> drop_na() ## ----------------------------------------------------------------------------- ggplot(scores_salary, aes(avg_salary, perc_rank_test_score)) + geom_point(color = tntp_colors("tangerine"), alpha = 0.9, size = 3) + labs( title = "Schools with higher salaries do not have higher test scores", subtitle = "Relationship between school test scores and salaries", x = "Average school salary", y = "Percentile rank test score" ) + scale_x_continuous(labels = scales::dollar) + scale_y_continuous(labels = scales::percent) + tntp_style(base_size = base_font_size, show_axis_titles = TRUE) ## ----------------------------------------------------------------------------- dumbbell_df <- dodged_df |> pivot_wider(id_cols = "school_name", names_from = "t_salary_cut", values_from = "n_cut_school") |> mutate(across(where(is.numeric), ~replace_na(.x, 0))) ggplot(dumbbell_df, aes(x = `under $2.5k`, xend = `$4.5k+`, y = fct_reorder(school_name, `under $2.5k`)), group = school_names) + geom_dumbbell( color = tntp_colors("light_grey"), size = 3, colour_x = tntp_colors("gold"), colour_xend = tntp_colors("green"), show.legend = TRUE ) + labs(title = "More teachers earn over $4.5k than under $2.5k", subtitle = "Number of teachers by salary range", x = "Number of teachers earnign a given salary") + tntp_style(base_size = base_font_size) ## ----message = FALSE---------------------------------------------------------- # number of teachers per school number_teachers_school <- county_data |> count(school_year, school_name) ggplot(number_teachers_school, aes(n)) + geom_histogram(binwidth = 5, colour = "white", fill = tntp_colors('navy')) + labs( title = "Schools have a wide distribution in the number of teachers", subtitle = "Total number of teachers per school", x = "Number of teacher in school", y = "Count" ) + tntp_style(base_size = base_font_size) ## ----------------------------------------------------------------------------- ggplot(county_data, aes(x = t_salary, y = school_year, group = school_year, fill = factor(school_year))) + geom_density_ridges(quantile_lines = TRUE, quantiles = 4) + scale_x_continuous(labels = scales::dollar) + labs(title = "Income distrubutions for teachers has remained constant", subtitle = "Income distrubution and quantiles for teachers") + tntp_style(base_size = base_font_size) + theme(legend.position = "none") + scale_fill_manual(values = tntp_palette("colorful")) ## ----------------------------------------------------------------------------- teacher_survey <- tntpr::teacher_survey # the y-axis will contain text of an entire survey question # we want to place line breaks in this text so plots look better axis_line_breaks <- 40 # scales in HE questions, in order starting with the strongest agree_disagree_scale <- rev(c("Strongly Agree", "Agree", "Somewhat Agree", "Somewhat Disagree", "Disagree", "Strongly Disagree")) # put survey into long form and clean up question names teacher_survey_he <- teacher_survey |> select(-timing) |> pivot_longer(cols = everything(), names_to = "question", values_to = "response") # calculate percentage of responses to each high expectations question teacher_survey_he_perc <- teacher_survey_he |> drop_na("response") |> # calculate the number of responses for each response option count(question, response, name = "n_response") |> # calculate the number of responses for each question group_by(question) |> mutate(n_question = sum(n_response)) |> ungroup() |> # calculate percentages mutate( # calculate percentages percent = n_response / n_question, # make a column that is text of the percent for plotting percent_pretty = scales::percent(percent, accuracy = 1) ) # calculate percentage of strongly agree and agree teacher_survey_he_perc <- teacher_survey_he_perc |> mutate(scale_strength = ifelse(response %in% !!agree_disagree_scale[c(5,6)], "Strong response", "Weak response")) |> group_by(question, scale_strength) |> mutate(strong_response_percent = sum(percent)) |> ungroup() |> mutate( strong_response_percent = ifelse(response == "Agree", strong_response_percent, NA), # create line breaks for questions ,which will make plots look better question = str_wrap(question, axis_line_breaks), response = factor(response, levels = agree_disagree_scale) ) ## ----------------------------------------------------------------------------- ggplot(teacher_survey_he_perc, aes(percent, question, fill = response)) + geom_col() + geom_text( aes(label = scales::percent(strong_response_percent, accuracy = 1), x = strong_response_percent), color = "white", fontface = "bold", family = "Halyard Display", size = 5, hjust = 1.05 ) + scale_x_continuous(labels = scales::percent, limits = c(0,1)) + scale_fill_manual(values = tntp_palette("top2_6"), drop = FALSE) + guides(fill=guide_legend(nrow=2, byrow=TRUE, reverse = TRUE)) + labs(title = "High Expectations Survey Responses") + tntp_style(base_size = base_font_size) ## ----eval=FALSE--------------------------------------------------------------- # geom_col(position = "diverge") ## ----------------------------------------------------------------------------- ggplot(teacher_survey_he_perc, aes(x = percent, y = question, fill = fct_rev(response))) + geom_col(position = position_diverge()) + scale_fill_manual( values = tntp_palette("likert_6"), drop = FALSE, breaks = agree_disagree_scale, labels = agree_disagree_scale ) + geom_vline(aes(xintercept = 0), linetype = 1, linewidth = 1.2, alpha = .7) + scale_x_continuous(limits = c(-1, 1), breaks = seq(-1, 1, .25), labels = \(x) scales::percent(abs(x))) + labs(title = "High Expectations Survey Responses") + tntp_style(base_size = base_font_size) ## ----------------------------------------------------------------------------- ggplot(teacher_survey_he_perc, aes(x = percent, y = question, fill = fct_rev(response))) + geom_col(position = position_diverge(break_after = "Agree")) + geom_text(aes(label = ifelse(percent > 0.1, percent_pretty, "")), position = position_diverge(break_after = "Agree", vjust = 0.5), family = "Halyard Display", size = 3) + scale_fill_manual( values = tntp_palette("likert_6"), drop = FALSE, breaks = agree_disagree_scale, labels = agree_disagree_scale ) + geom_vline(aes(xintercept = 0), linetype = 1, linewidth = 1.2, alpha = .7) + scale_x_continuous(limits = c(-1, 1), breaks = seq(-1, 1, .25), labels = \(x) scales::percent(abs(x))) + labs(title = "High Expectations Survey Responses") + tntp_style(base_size = base_font_size)