
CUBE3-Qt — User Manual
Generic Display for Application Performance Data

Version 3.2 / August 18, 2009

Pavel Saviankou, Erika Ábrahám, Daniel Becker, Markus Geimer, Felix Wolf, Brian Wylie, Feng-
guang Song, Farzona Pulatova

Copyright c© 2008–2009 Forschungszentrum Jülich GmbH
Copyright c© 2008 University of Tennessee

Contents

1 Introduction 4

2 Using the Display 5

2.1 Basic Principles . 5

2.2 GUI Components . 7

2.2.1 Menu Bar . 7

2.2.2 Toolbar . 12

2.2.3 Value modes . 13

2.2.4 Tree browsers . 15

2.2.5 Topology Display . 19

2.2.6 Selected value info . 22

2.2.7 Color Legend . 22

2.2.8 Status Bar . 22

2.3 Features enabled through statistic files . 22

2.3.1 Statistical information about performance patterns 23

2.3.2 Display of most severe pattern instances using a trace browser 23

2.4 Keyboard and mouse control . 26

2.4.1 General control . 26

2.4.2 Source code editor . 26

3 Performance Algebra and Tools 27

3.1 Difference . 27

3.2 Merge . 28

3.3 Mean . 29

3.4 Compare . 30

3.5 Clean . 30

3.6 Reroot, Prune . 31

3.7 Remap . 31

3.8 Score . 32

3.9 Statistics . 33

3.10 TAU→ CUBE . 34

4 Creating CUBE Files 35

4.1 CUBE API . 35

4.1.1 Metric Dimension . 35

4.1.2 Program Dimension . 36

4.1.3 System Dimension . 37

4.1.4 Virtual Topologies . 38

4.1.5 Severity Mapping . 39

4.1.6 Miscellaneous . 40

4.1.7 Writer Library in C . 40

4.2 Typical Usage . 42

A File format of statistic files 46

3

Abstract

CUBE is a presentation component suitable for displaying performance data for parallel
programs including MPI and OpenMP applications. Program performance is represented in a
multi-dimensional space including various program and system resources. The tool allows the
interactive exploration of this space in a scalable fashion and browsing the different kinds of
performance behavior with ease. CUBE also includes a library to read and write performance
data as well as operators to compare, integrate, and summarize data from different experi-
ments. This user manual provides instructions of how to use the CUBE display, how to use
the operators, and how to write CUBE files.

The CUBE3 implementation has an incompatible API and file format to preceding ver-
sions.

1 Introduction

CUBE (CUBE Uniform Behavioral Encoding) is a presentation component suitable for display-
ing a wide variety of performance data for parallel programs including MPI [5] and OpenMP [6]
applications. CUBE allows interactive exploration of the performance data in a scalable fashion.
Scalability is achieved in two ways: hierarchical decomposition of individual dimensions and
aggregation across different dimensions. All metrics are uniformly accommodated in the same
display and thus provide the ability to easily compare the effects of different kinds of program
behavior.

CUBE has been designed around a high-level data model of program behavior called the CUBE per-
formance space. The CUBE performance space consists of three dimensions: a metric dimension,
a program dimension, and a system dimension. The metric dimension contains a set of metrics,
such as communication time or cache misses. The program dimension contains the program’s call
tree, which includes all the call paths onto which metric values can be mapped. The system di-
mension contains the items executing in parallel, which can be processes or threads depending on
the parallel programming model. Each point (m,c,s) of the space can be mapped onto a number
representing the actual measurement for metric m while the control flow of process/thread s was
executing call path c. This mapping is called the severity of the performance space.

Each dimension of the performance space is organized in a hierarchy. First, the metric dimension
is organized in an inclusion hierarchy where a metric at a lower level is a subset of its parent. For
example, communication time is a subset of execution time. Second, the program dimension is
organized in a call-tree hierarchy. However, sometimes it can be advantageous to abstract away
from the hierarchy of the call tree, for example if one is interested in the severities of certain
methods, independently of the position of their invocations. For this purpose CUBE supports
also flat call profiles, that are represented as a flat sequence of all methods. Finally, the system
dimension is organized in a multi-level hierarchy consisting of the levels: machine, SMP node,
process, and thread.

CUBE also provides a library to read and write instances of the previously described data model
in the form of an XML file. The file representation is divided into a metadata part and a data part.
The metadata part describes the structure of the three dimensions plus the definitions of various
program and system resources. The data part contains the actual severity numbers to be mapped
onto the different elements of the performance space.

The display component can load such a file and display the different dimensions of the perfor-
mance space using three coupled tree browsers (Figure 1). The browsers are connected in such

4

a way that you can view one dimension with respect to another dimension. The connection is
based on selections: in each tree you can select one or more nodes. For example, in Figure 1
the Execution metric, the sweep call path node, and Process 0 are selected. For each tree, the
selections in the trees on its left-hand-side (if any) restrict the considered data: The metric nodes
aggregate data over all call path nodes and all system items, the call tree aggregates data for the
Execution metric over all system nodes, and each node of the system tree shows the severity
for the Execution metric of the sweep call path node for this system node.

If the CUBE file contains topological information, the distribution of the performance metric across
the topology can be examined using the topology view. Furthermore, the display is augmented with
a source-code display that shows the position of a call site in the source code.

As performance tuning of parallel applications usually involves multiple experiments to compare
the effects of certain optimization strategies, CUBE includes a feature designed to simplify cross-
experiment analysis. The CUBE algebra [8] is an extension of the framework for multi-execution
performance tuning by Karavanic and Miller [3] and offers a set of operators that can be used to
compare, integrate, and summarize multiple CUBE data sets. The algebra allows the combination
of multiple CUBE data sets into a single one that can be displayed and examined like the original
ones.

In addition to the information provided by plain CUBE files a statistics file can be provided, en-
abling the display of additional statistical information of severity values. Furthermore, a statistics
file can also contain information about the most severe instances of certain performance patterns –
globally as well as with respect to specific call paths. If a trace file of the program being analyzed
is available, the user can connect to a trace browser (i.e., Vampir or Paraver) and then use CUBE to
zoom their timelines to the most severe instances of the performance patterns for a more detailed
examination of the cause of these performance patterns.

The following sections explain how to use the CUBE display, how to create CUBE files, and how
to use the algebra and other tools.

2 Using the Display

This section explains how to use the CUBE QT display component. After installation, the ex-
ecutable "cube3-qt" can be found in the specified directory of executables (specifiable by the
“prefix” argument of configure, see the CUBE Installation Manual). The program supports as an
optional command-line argument the name of a cube file that will be opened upon program start.

After a brief description of the basic principles, different components of the GUI will be described
in detail.

2.1 Basic Principles

The CUBE QT display has three tree browsers, each of them representing a dimension of the
performance space (Figure 1). Per default, the left tree displays the metric dimension, the middle
tree displays the program dimension, and the right tree displays the system dimension. The nodes
in the metric tree represent metrics. The nodes in the program dimension can have different
semantics depending on the particular view that has been selected. In Figure 1, they represent
call paths forming a call tree. The nodes in the system dimension represent machines, nodes,
processes, or threads from top to bottom.

5

Figure 1: CUBE display window.

Figure 2: CUBE display window with expanded Execution metric node.

Each node is associated with a value, which is called the severity and is displayed simultaneously
using a numerical value as well as a colored square. Colors enable the easy identification of nodes
of interest even in a large tree, whereas the numerical values enable the precise comparison of
individual values. The sign of a value is visually distinguished by the relief of the colored square.
A raised relief indicates a positive sign, a sunken relief indicates a negative sign.

Users can perform two basic types of actions: selecting a node or expanding/collapsing a node. In
the metric tree in Figure 1, the metric Execution is selected. Selecting a node in a tree causes the
other trees on its right to display values for that selection. For the example of Figure 1, the metric

6

tree displays the total metric values over all call tree and system nodes, the call tree displays values
for the Execution metric over all system entities, and the system tree for the Execution metric
and the sweep call tree node. Briefly, a tree is always an aggregation over all selected nodes of its
neighboring trees to the left.

Collapsed nodes with a subtree that is not shown are marked by a [+] sign, expanded nodes with a
visible subtree by a [-] sign. You can expand/collapse a node by left-clicking on the corresponding
[+]/[-] signs. Collapsed nodes have inclusive values, i.e., their severity is the sum of the severities
over the whole collapsed subtree. For the example of Figure 1, the Execution metric value 1.23e7
is the total time for all executions. On the other hand, the displayed values of expanded nodes are
their exclusive values. E.g., the expanded Execution metric node in Figure 2 shows that the
program needed 3.18e6 seconds for execution other than MPI.

Note that expanding/collapsing a selected node causes the change of the current values in the trees
on its right-hand side. As explained above, in our example in Figure 1 the call tree displays values
for the Execution metric over all system entities. Since the Execution node is collapsed, the
call tree severities are computed for the whole Execution metric’s subtree. When expanding the
selected Execution node, as shown in Figure 2, the call tree displays values for the Execution
metric without the MPI metric.

2.2 GUI Components

The GUI consists (from top to bottom) of

• a menu bar,

• a tool bar,

• three value mode combo boxes,

• three resizable panes each containing some tabs,

• three selected value information widgets,

• a color legend, and

• a status bar.

The three resizable panes offer different views: the metric, the call, and the system pane. You
can switch between the different tabs of a pane by left-clicking on the desired tab at the top of
the pane. Note that the order of the panes can be changed (see the description of the menu item
Display⇒Dimension order in Section 2.2.1).

The metric pane provides only the metric tree browser. The call pane offers a call tree browser
and a flat call profile. The system pane has a system tree browser, and possibly several topology
views, if corresponding topology data is defined in the CUBE file. Tree browsers also provide a
context menu.

2.2.1 Menu Bar

The menu bar consists of four menus: a file menu, a display menu, a topology menu and a help
menu. Some menu functions also have a keyboard shortcut, which is written besides the menu

7

item’s name in the menu. E.g., you can open a file with Ctrl+O without going into the menu. A
short description of the menu items is visible in the status bar if you stay for a short while with the
mouse above a menu item.

1. File: The file menu offers the following functions:

(a) Open (Ctrl+O): Offers a selection dialog to open a CUBE file. In case of an already
opened file, it will be closed before a new file gets opened. If a file got opened suc-
cessfully, it gets added to the top of the recent files list (see below). If it was already
in the list, it is moved to the top.

(b) Close (Ctrl+W): Closes the currently opened CUBE file. Disabled if no file is opened.

(c) Open external: Opens a file for the external percentage value mode (see Sec-
tion 2.2.3).

(d) Close external: Closes the current external file and removes all corresponding data.
Disabled if no external file is opened.

(e) Connect to trace browser: This menu item is only visible if a CUBE file with a
corresponding statistics file, containing information about the most severe instances
of certain performance patterns, is open and CUBE was configured for remote trace
browsing. In this case, it offers to connect to a trace browser (i.e., Vampir or Paraver)
to examine the behaviour of the program around the most severe pattern instances. For
an in-depth explanation of this feature see subsection 2.3.2.

(f) Settings: This menu item offers the saving, loading, and the deletion of settings. You
can save several settings under different names.
On the one hand, settings store the appearance of the application like the widget sizes,
color and precision settings, the order of panes, etc. On the other hand, settings can
also store which data is loaded, which tree nodes are expanded, etc. When saving a
setting, the appearance is always saved. While saving, you will be asked whether you
would also like to save the data-related settings.
If you load a setting which stores also data settings, the corresponding data is also
loaded. In the dialog for loading settings you are offered the list of all available set-
tings. For the settings with data, the name of the corresponding cube file is displayed
in braces. Note that settings with data only store the name of the cube file from which
to load the data, but not the data itself. Thus if the cube file is not available any more,
CUBE cannot load the data settings. CUBE also makes some basic tests on the data to
check if it could have changed since saving the setting. E.g., if the number of items
does not coincide with those upon saving, it also does not load the data.

(g) Dynamic loading threshold: This menu item is only available if CUBE was config-
ured for dynamic loading.
By default, CUBE always loads the whole amount of data when you open a CUBE file.
However, CUBE offers also a possibility to load only those data which is needed for
the current display. To be more precise, the data for the selected metric(s) and, if a
selected metric is expanded, the data for its children are loaded. If you change the
metric selection, possibly some new data is needed for the display that is dynamically
loaded on demand. Currently unneeded data gets unloaded.
This functionality is useful mostly for large files. Under this menu item you can define
a file size threshold (in bytes) above which CUBE offers you dynamic data loading. If a

8

file being opened is larger than this threshold, CUBE will ask you if you wish dynamic
loading.

(h) Screenshot: The function offers you to save a screenshot in a PNG file. Unfortunately
the outer frame of the main window is not saved, only the application itself.

(i) Quit (Ctrl+Q): Closes the application.

(j) Recent files: The last 5 opened files are offered for re-opening, the top-most being the
most recently opened one. A full path to the file is visible in the status bar if you move
the mouse above one of the recent file items in the menu.

2. Display: The display menu offers the following functions:

(a) Dimension order: As explained above, CUBE has three resizable panes. Initially the
metric pane is on the left, the call pane is in the middle, and the system pane is on the
right-hand side. However, sometimes you may be interested in other orders, and that
is what this menu item is about. It offers all possible pane orderings. For example,
assume you would like to see the metric and call values for a certain thread. In this
case, you could place the system pane on the left, the metric pane in the middle, and
the call pane on the right, as shown in Figure 3. Note that in panes to the left of the
metric pane no meaningful valuescan be presented, since they miss a reference metric;
in this case values are specified to be undefined, denoted by a “-” sign.

Figure 3: Modified pane order via the menu Display⇒Dimension order.

(b) General coloring: Opens a dialog where different color settings can be changed. The
dialog is show in Figure 4. The Ok button applies the settings to the display and closes
the dialog, the Apply button applies the settings to the display, and Cancel cancels all
changes since the dialog was opened (even if “Apply” was pressed in between) and
closes the dialog.
At the top of the dialog you see a color legend with some vertical black lines, showing
the position of the color scale start, the colors cyan, green, and yellow, and the color

9

Figure 4: The color dialog opened via the menu Display⇒General coloring.

scale end. These lines can be dragged with the left mouse button, or their position can
also be changed by typing in some values between 0.0 (left end) and 1.0 (right end)
below the color legend in the corresponding spins.

The different coloring methods offer different functions to interpolate the colors at
positions between the 5 data points specified above.

With the upper spin below the coloring methods you can define a threshold percentage
value between 0.0 and 100.0, below which colors are lightened. The nearer to the left
end of the color scale, the stronger the lightening (with linear increase).

With the spin at the bottom of the dialog you can define a threshold percentage value
between 0.0 and 100.0, below which values should be colored white.

(c) Precision: Activating this menu item opens a dialog for precision settings (see Fig-
ure 5). Besides Ok and Cancel, the dialog offers an Apply button, that applies the
current dialog settings to the display. Pressing Cancel undoes all changes due to the
dialog, even if you already pressed Apply previously, and closes the dialog. Ok applies
the settings and closes the dialog.

It consists of two parts: precision settings for the tree displays, and precision settings
for the selected value info widgets and the topology displays. For both formats, three
values can be defined:

i. Number of digits after the decimal point: As the name suggests, you can spec-
ify the precision for the fraction part of the values. E.g., the number 1.234 is
displayed as 1.2 if you set this precision to 1, as 1.234 if you set it to 3, and as
1.2340 if you set it to 4.

ii. Exponent representation above 10x with x: Here you can define above which
threshold scientific notation should be used. E.g., the value 1000 is displayed as
1000 if this value is larger then 3 and as 1e3 otherwise.

10

Figure 5: The precision dialog opened via the menu Display⇒Precision.

Figure 6: The font dialog opened via the menu Display⇒Trees⇒Font.

iii. Display zero values below 10−x with x: Due to inexact floating point represen-
tation, it often happens that users wish to round down values near by zero to zero.
Here you can define the threshold below which this rounding should take place.
E.g., the value 0.0001 is displayed as 0.0001 if this value is larger than 3 and as
zero otherwise.

(d) Trees: This menu item offers two sub-items:

i. Font: Here you can specify the font, the font size (in pt), and the line spacing
for the tree displays (see Figure 6). The Ok button applies the settings to the
display and closes the dialog, the Apply button applies the settings to the display,
and Cancel cancels all changes since the dialog was opened (even if Apply was
pressed in between) and closes the dialog.

ii. Selection marking: Here you can specify if selected items in trees should be
marked by a blue background or by a frame.

(e) Optimize width: Under this menu item CUBE offers widget rescaling such that the
amount of information shown is maximized, i.e., CUBE optimally distributes the avail-
able space between its components. You can chose if you would like to stick to the
current main window size, or if you allow to resize it.

3. Topology: The topology menu offers the following functions related to the topology display
described in Section 2.2.5:

11

(a) Item coloring: Offers a choice how zero-valued system nodes should be colored in
the topology display. The two offered options are either to use white or to use white
only if all system leaf values are zero and use the minimal color otherwise.

(b) Line coloring: Allows to define the color of the lines in topology painting. Available
colors are black, gray, white, or no lines.

(c) Toolbar: This menu item allows to specify if the topology toolbar buttons should be
labeled by icons, by a text description, or if the toolbar should be hidden. For more
information about the toolbar see Section 2.2.2.

(d) Show also unused hardware in topology: If not checked, unused topology planes,
i.e., planes whose grid elements don’t have any processes/threads assigned to, are
hidden. Unused plane elements, if not hidden, are colored gray.

(e) Topology antialiasing: If checked, antialiasing is used when drawing lines in the
topologies.

4. Help: The help menu provides help on usage and gives some information about CUBE .

(a) Getting started: Opens a dialog with some basic information on the usage of CUBE .

(b) Mouse and keyboard control: Lists mouse and keyboard controls as given in Sec-
tion 2.4.

(c) What’s this?: Here you can get more specific information on parts of the CUBE GUI.
If you activate this menu item, you switch to the “What’s this?” mode. If you now
click on a widget, an appropriate help text is shown. The mode is left when help is
given or when you press Esc.
Another way to ask the question is to move the focus to the relevant widget and press
Shift+F1.

(d) About: Opens a dialog with release information.

2.2.2 Toolbar

As already mentioned, the system pane may contain topology displays if corresponding data is
specified in the CUBE file. For the topology displays see Section 2.2.5. Basically, a topology
display draws a two- or three-dimensional grid, in the form of some planes placed one above the
other. Each plane consists of a two-dimensional grid of processes or threads.

The toolbar is enabled only if the system pane shows a topology display, and it offers functions to
manipulate the display of the above grid planes. The toolbar can be labeled by icons, by text, or it
can be hidden, see menu Topology ⇒Toolbar in Section 2.2.1. The toolbar buttons have tool tips,
i.e., a short description pops up if the toolbar is enabled and you move the mouse above a button.

The functions are the following, listed from the left to the right in the topology toolbar:

Move left Moves the whole topology to the left.

Move right Moves the whole topology to the right.

Move up Moves the whole topology upwards.

Move down Moves the whole topology downwards.

Increase plane distance Increase the distance between the planes of the topology.

12

Decrease plane distance Decrease the distance between the planes of the topology.

Zoom in Enlarge the topology.

Zoom out Scale down the topology.

Reset Reset the display. It scales the topology such that it fits
into the visible rectangle, and transforms it into a default
position.

Scale into window It scales the topology such that it fits into the visible rect-
angle, without transformations.

Set minimum/maximum
values for coloring

Similarly to the functions offered in the context menu of
trees (see Section 2.2.4), you can activate and deactivate
the application of user-defined minimal and maximal val-
ues for the color extremes, i.e., the values corresponding
to the left and right end of the color legend. If you ac-
tivate user-defined values for the color extremes, you are
asked to define two values that should correspond to the
minimal and to the maximal colors. All values outside of
this interval will get the color gray. Note that canceling
any of the input windows causes no changes in the color-
ing method. If user-defined min/max values are activated,
the selected value information widget displays a “(u)” for
“user-defined” behind the minimal and maximal color val-
ues.

x-rotation Rotate the topology cube about the x-axis with the defined
angle.

y-rotation Rotate the topology cube about the y-axis with the defined
angle.

Dimension order for
topology displays

The topologies may have two or three dimensions. Here
you can define the order of dimensions in the display.

2.2.3 Value modes

Each tree view has its own value mode combobox, a drop-down menu above the tree, where it is
possible to change the way the severity values are displayed.

The default value mode is the Absolute value mode. In this mode, as explained below, the severity
values from the CUBE file are displayed. However, sometimes these values may be hard to inter-
pret, and in such cases other value modes can be applied. Basically, there are three categories of
additional value modes.

• The first category presents all severities in the tree as percentage of a reference value. The
reference value can be the absolute value of a selected or a root node from the same tree or
in one of the trees on the left-hand side. For example, in the Own root percent value mode
the severity values are presented as percentage of the own root’s (inclusive) severity value.
This way you can see how the severities are distributed within the tree. All the value modes

13

2–8 fall into this category.

All nodes of trees on the left-hand side of the metric tree have undefined values. (Basically,
we could compute values for them, but it would sum up the severities over all metrics, that
have different meanings and usually even different units, and thus those values would not
have much expressiveness.) Since we cannot compute percentage values based on undefined
reference values, such value modes are not supported. For example, if the call tree is on the
left-hand side, and the metric tree is in the middle, then the metric tree does not offer the
Call root percent mode.

• The second category is available for system trees only, and shows the distribution of the
values within hierarchy levels. E.g., the Peer percent value mode displays the severities as
percentage of the maximal value on the same hierarchy depth. The value modes 9–10 fall
into this category.

• Finally, the External percent value mode relates the severity values to severities from an-
other external CUBE file (see below for the explanation).

Depending on the type and position of the tree, the following value modes may be available:

1. Absolute (default): Available for all trees. The displayed values are the severity value as
read from the cube file, in units of measurement (e.g., seconds). Note that these values can
be negative, too, i.e., the expression “absolute” in not used in its mathematical sense here.

2. Own root percent: Available for all trees. The displayed node values are the percentage of
their absolute values with respect to the absolute value of their root node in collapsed state.

3. Metric root percent: Available for trees on the right-hand side of the metric tree. The
displayed node values are the percentage of their absolute values with respect to the absolute
value of the collapsed metric root node. If there are several metric roots, the root of the
selected metric node is taken. Note, that multiple selection in the metric tree is possible
within one root’s subtree only, thus there is always a unique metric root for this mode.

4. Metric selection percent: Available for trees on the right-hand side of the metric tree.
The displayed node values are the percentage of their absolute values with respect to the
selected metric node’s absolute value in its current collapsed/expanded state. In case of
multiple selection, the sum of the selected metrics’ values for the percentage computation is
taken.

5. Call root percent: Available for trees on the right-hand side of the call tree. Similar to the
metric root percent, but the call tree root instead of the metric tree root is considered. In case
of multiple selection with different call roots, the sum of those root values is considered.

6. Call selection percent: Available for trees on the right-hand side of the call tree. Similar to
the metric selection percent, percentage is computed with respect to the selected call node’s
value in its current collapsed/expanded state. In case of multiple selections, the sum of the
selected call values is considered.

7. System root percent: Available for trees on the right-hand side of the system tree. Similar
to the call root percent, the sum of the inclusive values of all roots of selected system nodes
are considered for percentage computation.

14

8. System selection percent: Available for trees on the right-hand side of the system tree.
Similar to the call selection percent, percentage is computed with respect to the selected
system node(s) in its current collapsed/expanded state.

9. Peer percent: For the system tree only. The peer percentage mode shows the percentage
of the nodes’ inclusive absolute values relative to the largest inclusive absolute peer value,
i.e., to the largest inclusive value between all entities on the current hierarchy depth. For
example, if there are 3 threads with inclusive absolute values 100, 120, and 200, then they
have the peer percent values 50,60, and 100.

10. Peer distribution: For the system tree only. The peer distribution mode shows the percent-
age of the system nodes’ inclusive absolute values on the scale between the minimum and
the maximum of peer inclusive absolute values. For example, if there are 3 threads with
absolute values 100, 120, and 200, then they have the peer distribution values 0, 20, and
100.

11. External percent: Available for all trees, if the metric tree is the left-most widget. To
facilitate the comparison of different experiments, users can choose the external percentage
mode to display percentages relative to another data set. The external percentage mode
is basically like the metric root percentage mode except that the value equal to 100% is
determined by another data set.

Note that in all modes, only the leaf nodes in the system hierarchy (i.e., processes or threads)
have associated severity values. All other hierarchy levels (i.e., machines, nodes and eventually
processes) are only used to structure the hierarchy. This means that their severity is undefined—
denoted by a “-” sign—when they are expanded.

2.2.4 Tree browsers

A tree browser displays different hierarchical data structures in form of trees. Currently supported
tree types are metric trees, call trees, flat call profiles, and system trees. The structure of the
displayed data is common in all trees: The indentation of the tree nodes reflects the hierarchical
structure. Expandable nodes, i.e., nodes with non-hidden children, are equipped with a [+]/[-] sign
([+] for collapsed and [-] for expanded nodes). Furthermore, all nodes have a color icon, a value,
and a label.

The value of a node is computed, as explained earlier, basing on the current selections in the trees
on the left-hand side and on the current value mode. The precision of the value display in trees
can be modified, see the menu item Display ⇒Precision in Section 2.2.1. The color icon reflects
the position of the node’s value between 0.0 and a maximal value. These maximal value is the
maximal value in the tree for the absolute value mode, or 100.0 otherwise. See the menu item
Display ⇒General coloring in Section 2.2.1 and the context menu item Min/max values in the
context menu description below for color settings.

A label in the metric tree shows the metric’s name. A label in the call tree shows the last callee of
a particular call path. If you want to know the complete call path, you must read all labels from the
root down to the particular node you are interested in. After switching to the flat profile view (see
below), labels in the flat call profile denote methods or program regions. A label in the system
tree shows the name of the system resource it represents, such as a node name or a machine
name. Processes and threads are usually identified by a rank number, but it is possible to give

15

them specific names when creating a CUBE file. The thread level of single-threaded applications
is hidden. Multiple root nodes are supported.

After opening a data set, the middle panel shows the call tree of the program. However, a user
might wish to know which fraction of a metric can be attributed to a particular region (e.g., method)
regardless of from where it was called. In this case, you can switch from the call-tree view (default)
to the flat-profile view (Figure 7). In the flat-profile view, the call-tree hierarchy is replaced with
a source-code hierarchy consisting of two levels: regions and their subroutines. Any subroutines
are displayed as a single child node labeled Subroutines. A subroutine node represents all regions
directly called from the region above. In this way, you are able to see which fraction of a metric is
associated with a region exclusively, that is, without its regions called from there.

Tree displays are controlled by the left and right mouse buttons and some keyboard keys. The
left mouse button is used to select or expand/collapse a node: You can expand/collapse a node
by left-clicking on the attached [+]/[-] sign, and select it by left-clicking elsewhere in the node’s
line. To select multiple items, Ctrl + left mouse button can be used. Selection without the Ctrl key
deselects all previously selected nodes and selects the clicked node. In single-selection mode you
can also use the up/down arrows to move the selection one node up/down. The right mouse button
is used to pop up a context menu with node-specific information, such as online documentation
(see the description of the context menu below).

Figure 7: CUBE flat profile.

Each tree has its own context menu which can be activated by a right mouse click within the
tree’s window. If you right-click on one of the tree’s nodes, this node gets framed, and serves as a
reference node for some of the menu items. If you click outside of tree items, there is no refernce
node, and some menu items are disabled.

The context menu consists, depending on the type of the tree, of some of the following items. If
you move the mouse over a context menu item, the status bar displays some explanation of the
functionality of that item.

1. Collapse all: For all trees. Collapses all nodes in the tree.

16

2. Collapse subtree: For all trees. Enabled only if there is a reference node. It collapses all
nodes in the subtree of the reference node (including the reference node).

3. Collapse peers: For system trees only. Enabled only if there is a reference node. Collapses
all peer nodes of the reference node, i.e., all nodes at the same hierarchy level.

4. Expand all: For all trees. Expands all nodes in the tree.

5. Expand subtree: For all trees. Enabled only if there is a reference node. Expands all nodes
in the subtree of the reference node (including the reference node).

6. Expand peers: For system trees only. Enabled only if there is a reference node. Expands
all peer nodes of the reference node, i.e., all nodes at the same hierarchy level.

7. Expand largest: For all trees. Enabled only if there is a reference node. Starting at the
reference node, expands its child with the largest inclusive value (if any), and continues
recursively with that child until it finds a leaf. It is recommended to collapse all nodes
before using this function in order to be able to see the path along the largest values.

8. Dynamic hiding: Not available for metric trees. This menu item activates dynamic hid-
ing. All currently hidden nodes get shown. You are asked to define a percentage threshold
between 0.0 and 100.0. All nodes whose color position on the color scale (in percent) is
below this threshold get hidden. As default value, the color percentage position of the refer-
ence node is suggested, if you right-clicked over a node. If not, the default value is the last
threshold. The hiding is called dynamic, because upon value changes (caused for example
by changing the node selection) hiding is re-computed for the new values. In other words,
value changes may change the visibility of the nodes.

(a) Redefine threshold: This menu item is enabled if dynamic hiding is already activated.
This function allows to re-define the dynamic hiding threshold as described above.

During dynamic hiding, for expanded nodes with some hidden children and for nodes with
all of its children hidden, their displayed (exclusive) value includes the hidden children’s
inclusive value. The percentage of the hidden children is shown in brackets next to this
aggregate value.

9. Static hiding: Not available for metric trees. This menu item activates static hiding. All
currently hidden nodes stay hidden. Additionally, you can hide and show nodes using the
now enabled sub-items:

(a) Static hiding of minor values: Enabled only in the static hiding mode. As described
under dynamic hiding, you are asked for a hiding threshold. All nodes whose current
color position on the color scale is below this percentage threshold get hidden. How-
ever, in contrast to dynamic hiding, these hidings are static: Even if after some value
changes the color position of a hidden node gets above the threshold, the node stays
hidden.

(b) Hide this: Enabled only in the static hiding mode if there is a reference node. Hides
the reference node.

(c) Show children of this: Enabled only in the static hiding mode if there is a reference
node. Shows all hidden children of the reference node, if any.

17

Like for dynamic hiding, for expanded nodes with some hidden children and for nodes with
all of its children hidden, their displayed (exclusive) value includes the hidden children’s
inclusive value. The percentage of the hidden children is shown in brackets next to this
aggregate value.

10. No hiding: Not available for metric trees. This menu item deactivates any hiding, and
shows all hidden nodes.

11. Find items: For all trees. Opens a dialog to get a regular expression from the user. If the
user called the context menu over an item, the default text is the name of the reference node,
otherwise it is the last regular expression which was searched for.

The function marks all non-hidden nodes whose names contain the given text by a yellow
background, and all collapsed nodes whose subtree contains such a non-hidden node by a
light yellow background. The current node found, that is initialized to the first found node,
is marked by a distinguishable yellow hue.

12. Find next: For all trees. Changes the current found node to the next found node. If you did
not start a search yet, then you are asked for the regular expression to search for.

13. Clear found items: For all trees. Removes the background markings of the preceding find
items.

14. Info: For all trees (for call trees under Called region). Gives some short information about
the reference node. Disabled if there is no reference node or if no information is available
for the reference node.

15. Online description: For metric trees and flat call profiles (for call trees see under Called
region). Shows some (usually more extensive) online description for the reference node.
For example, metrics might point to an online documentation explaining their semantics, or
regions representing library functions might point to the corresponding library documenta-
tion. Disabled if there is no reference node or if no online information is available.

16. Location: For flat profiles only. Disabled if there is no reference node. Displays informa-
tion about the module and position within the module (line numbers) where the method is
defined.

17. Source code: For flat call profiles only (for call trees see Call site and Called region below).
Disabled if there is no reference node. Opens an editor for displaying, editing, and saving
the source code of the method/region to which the reference node refers. The begin and the
end of the method/region are highlighted. If the specified source file is not found, you are
asked to choose a file to open.

The file is in a read-only mode per default. If you wish to edit the text, please uncheck
the Read only box in the bottom left corner. For keyboard and mouse control, see Sec-
tion 2.4.2.

18. Call site: For call trees only. Enabled only if there is a reference node. Offers information
about the caller of the reference node.

(a) Location: Displays information about the module and position within the module
(line numbers) of the caller of the reference node.

18

(b) Source code: Opens an editor for displaying, editing, and saving the source code
where the call for which the reference node stays for happens. The begin and the end
of the relevant source code region are highlighted. If the specified source file is not
found, you are asked to chose a file to open.

19. Called region: For call trees only. Enabled only if there is a reference node. Offers infor-
mation about the reference node.

(a) Info: Gives some short information about the reference node.

(b) Online description: Shows some (usually more extensive) online description for the
reference node. Disabled if no online description is available.

(c) Location: Displays information about the module and position within the module
(line numbers) where the callee method of the reference node is defined.

(d) Source code: Opens an editor for displaying, editing, and saving the source code of
the callee of the reference node. Begin and end of the relevant region are highlighted.
If the specified source code does not exists, you are asked to choose a file to open.

20. Min/max values: Not for metric trees. Here you can activate and deactivate the application
of user-defined minimal and maximal values for the color extremes, i.e., the values corre-
sponding to the left and right end of the color legend. If you activate user-defined values for
the color extremes, you are asked to define two values that should correspond to the min-
imal and to the maximal colors. All values outside of this interval will get the color gray.
Note that canceling any of the input windows causes no changes in the coloring method.
If user-defined min/max values are activated, the selected value information widget (see
Section 2.2.6) displays a “(u)” for “user-defined” behind the minimal and maximal color
values.

21. Statistics: Only available if a statistics file for the current CUBE file is provided. Displays
statistical information about the instances of the selected metric in the form of a box plot.
For an in-depth explanation of this feature see subsection 2.3.1.

22. Max severity in trace browser: Only available for metric and call trees and only if a
statistics file providing information about the most severe instance(s) of the selected metric
is present. If CUBE is already connected to a trace browser (via File ⇒Connect to trace
browser), the timeline display of the trace browser is zoomed to the position of the occur-
rence of the most severe pattern so that the cause for the pattern can be examined further.
For a more detailed explanation of this feature see subsection 2.3.2.

23. Sort by value (descending): For flat call profiles only. Sorts the nodes by their current
values in descending order. Note that if an item is expanded, its exclusive value is taken for
sorting, otherwise its inclusive value.

24. Sort by name (ascending): For flat call profiles only. Sorts the nodes alphabetically by
name in ascending order.

2.2.5 Topology Display

In many parallel applications, each process (or thread) communicates only with a limited number
of processes. The parallel algorithm divides the application domain into smaller chunks known as

19

sub-domains. A process usually communicates with processes owning sub-domains adjacent to its
own. The mapping of data onto processes and the neighborhood relationship resulting from this
mapping is called virtual topology. Many applications use one or more virtual topologies specified
as one-, two- or three-dimensional Cartesian grids.

Another sort of topologies are physical topologies reflecting the hardware structure on which the
application was run. A typical three-dimensional physical topology is given by the (hardware)
nodes in the first dimension, and the arrangement of cores/processors on nodes in further two
dimensions.

The CUBE display supports one-, two-, and three-dimensional Cartesian grids. If the currently
opened cube file defines such a topology, the topology display shows performance data mapped
onto the Cartesian topology of the application. The corresponding grid is specified by the number
of dimensions and the size of each dimension. Threads/processes are attached to the grid elements,
as specified by the CUBE file. Not all system items have to be attached to a grid element, and not
every grid element has a system item attached. Examples of a two- and of a three-dimensional
topology are shown on Figure 8. Note that the topology toolbar is enabled when a topology is
displayed.

The Cartesian grid is presented by planes stacked on top of each other in a three dimensional
projection. The number of planes depends on the number of dimensions in the grid. Each plane is
divided into squares (typically shown as rombi). The number of squares depends on the dimension
size. Each square represents a system resource (e.g., a process) of the application and has a
coordinate associated with it.

The current value of each grid element (with respect to the selections on the left-hand side and to
the current value mode) is represented by coloring the grid element. To make use of the whole
color scale, coloring in topologies in absolute value mode is based on the minimal and the maximal
system leaf values, instead of considering all system items, as for the system tree coloring. In all
other value modes, coloring is based on a value scale from 0.0 to 100.0. Grid elements without
having a system item attached to it are colored gray. See Section 2.2.1 (menu Topology) for further
topology-specific coloring settings. For example, the upper topology in Figure 8 is drawn without
lines, and the one below with black lines and topology line antialiasing.

If the selected system item (or the first selected one in case of multiple selection) occurs in the
topology, it is marked by an additional frame and by additional lines at the side of the plane which
contains the corresponding grid point, such that the selected item’s position is also visible if the
corresponding plane is not completely visible.

Besides the functions offered by the topology toolbar (see 2.2.2), the following functionality is
supported:

1. Item selection: You can change the current system selection by left-clicking on a grid
element which has a system item assigned to it (resulting in the selection of that system
item).

2. Info: By right-clicking on a grid element, an information widget appears with information
about the system item assigned to it. The information contains

• the coordinate of the grid point,

• the hardware node to which the attached system item belongs to,

• the system item’s name,

20

Figure 8: Topology Display

• its MPI rank,

• its identifier,

• and its value, followed by the percentage of this value on the scale between the minimal
and maximal topology values.

3. Rotation about the x and y axes: can be done with left-mouse drag (click and hold the
left-mouse button while moving the mouse).

4. Increasing/decreasing the distance between the planes: with Ctrl+<left-mouse drag>

21

5. Moving the whole topology up/down/left/right: with Shift+<left-mouse drag>

2.2.6 Selected value info

Below each pane there is a selected value information widget. If no data is loaded, the widget is
empty. Otherwise, the widget displays more extensive and precise information about the selected
values in the tree above. This information widget and the topologies may have different precision
settings than the trees, such that there is the possibility to display more precise information here
than in the trees (see Section 2.2.1, menu Display⇒Precision).

The widget has a 3-line display. The first line displays at most 4 numbers. The left-most number
shows the smallest value in the tree (or 0.0 in any percentage value mode for trees, or the user-
defined minimal value for coloring if activated), and the right-most number shows the largest value
in the tree (or 100.0 in any percentage value mode in trees, or the user-defined maximal value
for coloring if activated). Between these two numbers the current value of the selected node is
displayed, if it is defined. Additionally, in the absolute value mode it is followed by the percentage
of the selected value on the scale between the minimal and maximal values, shown in brackets.
Note that the values of expanded non-leaf system nodes and of nodes of trees on the left-hand side
of the metric tree are not defined. If the value mode is not the absolute value mode, then in the
second line similar information is displayed for the absolute values in a light gray color.

In case of multiple selection, the information refers to the sum of all selected values. In case of
multiple selection in system trees in the peer distribution and in the peer percent modes, this sum
does not state any valuable information, but is displayed for consistency reasons.

If the widget width is not large enough to display all numbers in the given precision, then a part of
the number displays get cut down and a “. . .” indicates that not all digits could be displayed.

Below these numbers, in the third line, a small color bar shows the position of the color of the
selected node in the color legend. In case of undefined values, the legend is filled with a gray grid.

2.2.7 Color Legend

By default, the colors are taken from a spectrum ranging from blue over cyan, green, and yellow
to red, representing the whole range of possible values. You can change the color settings in the
menu,Display ⇒General coloring, see Section 2.2.1. Exact zero values are represented by
the color white (in topologies you can decide whether you would like to use white or the minimal
color, see Section 2.2.1, menu Topology).

2.2.8 Status Bar

The status bar displays some status information, like state of execution for longer procedures, hints
for menus the mouse pointing at etc.

2.3 Features enabled through statistic files

In this section we will explain two features – namely the display of statistical information about
performance patterns which represent performance problems and the display of the most severe
instances of these patterns in a trace browser – which both are only available if a statistic file for

22

the currently opened CUBE file is present. Currently, such a statistic file can be generated by the
EXPERT analyzer [10]. The file format of statistic files is described in the Appendix A.

In order for CUBE to recognize the statistic file, it must be placed in the same folder as the CUBE

file. If the CUBE file is named expert.cube, the statistic file must be called epik.stat. In any
other case the basename of the statistic file has to be identical to that of the CUBE file, but with the
suffix .stat. If for example the CUBE file is called foo.cube, the corresponding statistic file is
called foo.stat.

2.3.1 Statistical information about performance patterns

If a statistic file is provided, you can view statistical information about one or multiple patterns
(for example in order to compare them). This is done by selecting the desired metrics in the metric
tree and then selecting the Statistics menu item in the context menu. This brings up the box plot
window as shown in Figure 9.

The box plot shows a graphical representation of the statistical data of the selected patterns. The
slender black lines on the top and the bottom designate the maximum and the minimum measured
severity of the pattern, respectively. The lower and the upper borders of the white box indicate the
values of the 25% and 75% quantile. The thick line inside the box represents the median of the
values, while the dashed line indicates the mean.

There are two ways of interacting with the box plot. You can zoom to a certain interval on the
y-axis by clicking on a position with the height of the desired maximal or minimal value and by
consecutively dragging the mouse to a position with the height of the corresponding other extreme
value. You can reset the view (i.e., to undo all zooming) by clicking the middle mouse button
somewhere on the box plot.

If you are interested in more precise values for the severity statistics of a certain metric, you can
click somewhere in the column of the desired metric, which will yield a small window (as shown
in the top right corner of Figure 9) displaying the exact values of the statistics.

2.3.2 Display of most severe pattern instances using a trace browser

If a statistic file also contains information about the most severe instances of certain patterns, CUBE

can be connected to a trace browser (currently Vampir [2, 9] and Paraver [4, 1] are supported) in
order to view the state of the program being analyzed at the time this most severe pattern instance
occurred. For collective operations, the most severe instance is the one with the largest sum of the
waiting times of all processes, which is not necessarily the one with the largest maximal waiting
time of each individual process.

To use this feature, you first have to connect to a trace browser by using the Connect to trace
browser menu item of the File menu, which offers to connect to Vampir as well as to Paraver. This
will open one of the two dialog windows shown in Figure 11.

For Vampir, you have to specify the host name and port of the Vampir server you want to con-
nect to and the path of the trace file you want to load. This will launch the Vampir client (if
it is correctly configured) and load the specified trace file. To configure Vampir so that it can
be started automatically by CUBE , a service file (com.gwt.vampir.service), describing the
path to your Vampir client executable must be placed under /usr/share/dbus-1/service or
$HOME/.local/share/dbus-1/services. This service file must be exactly as shown in Figure

23

Figure 9: Screenshot of a box plot as shown by CUBE displaying statistical information about
the selected patterns. The additional window on the top right displaying the exact values of the
statistics.

[D-BUS Service]
Name=com.gwt.vampir
Exec=/private/utils/bin/vng+

Figure 10: An example of the com.gwt.vampir.service file

10, with the exception that Exec should point to your Vampir client executable.

For Paraver, you have to specify a configuration file (which is used to initialize the Paraver window
which is opened when zooming) as well as the path of the desired trace file. This will launch
Paraver which will directly open the correct trace file. In order for CUBE to be able to launch
Paraver, the executable directory of Paraver must be in your path.

It is also possible to connect to multiple trace browsers so that you can view a trace file in Paraver
and Vampir simultaneously, but due to limitations with the Vampir client you can only have two
Vampir clients running at the same time. All trace browsers will be zoomed simultaneously if you
select a zoom command (as described below).

Once CUBE is connected to a trace browser you can select the Max severity in trace browser menu
item of the metric tree so that all connected trace browsers are zoomed to the (globally) most
severe instance of the selected pattern.

24

Figure 11: The dialog windows for a connection to Vampir and to Paraver.

A more sophisticated feature is the ability to zoom to the most severe instance of a pattern in a
selected call path. This can be done by selecting a metric in the metric tree which will highlight the
most severe call paths in the call tree. You can then use the context menu of the call tree to select
the Max severity in trace browser menu item (see Figure 12 for illustration). This menu item will
then zoom all connected trace browsers to the most severe instance of the selected pattern with
respect to the chosen call path.

Figure 12: CUBE display window with a selected metric and a context menu called on the same
metric in a special call path, showing the Max severity in trace browser menu item.

25

2.4 Keyboard and mouse control

2.4.1 General control

Shift+F1 Help: What’s this?
Ctrl+O Shortcut for menu File ⇒Open
Ctrl+W Shortcut for menu File ⇒Close
Ctrl+Q Shortcut for menu File ⇒Quit
Left click over menu/tool bar: activate menu/function

over value mode combo: select value mode
over tab: switch to tab
in tree: select/deselect/expand/collapse items
in topology: select item

Right click in tree: context menu
in topology: context information

Ctrl+Left click in tree: multiple selection/deselection
Left drag over scroll bar: scroll

in topology: rotate topology
Ctrl+Left drag in topology: increase plane distance
Shift+Left drag in topology: move topology
Mouse wheel in topology: zoom in/out
Up arrow in tree: move selection one item up (single-selection only)

in topology/scroll area: scroll one unit up
Down arrow in tree: move selection one item down (single-selection only)

in topology/scroll area: scroll one unit down
Left arrow in scroll area: scroll to the left
Right arrow in scroll area: scroll to the right
Page up in tree/topology/scroll area: scroll one page up
Page down in tree/topology/scroll area: scroll one page down

2.4.2 Source code editor

Control in read only mode:

Up Arrow Move one line up
Down Arrow Move one line down
Left Arrow Scroll one character to the left (if horizontally scrollable)
Right Arrow Scroll one character to the right (if horizontally scrollable)
Page Up Move one (viewport) page up
PageDown Move one (viewport) page down
Home Move to the beginning of the text
End Move to the end of the text
Mouse wheel Scroll the page vertically
Alt+Mouse wheel Scroll the page horizontally (if horizontally scrollable)
Ctrl+Mouse wheel Zoom the text
Ctrl+A Select all text

26

Additionally for the read and write mode:

Left Arrow Move one character to the left
Right Arrow Move one character to the right
Backspace Delete the character to the left of the cursor
Delete Delete the character to the right of the cursor
Ctrl+C Copy the selected text to the clipboard
Ctrl+Insert Copy the selected text to the clipboard
Ctrl+K Delete to the end of the line
Ctrl+V Paste the clipboard text into text edit
Shift+Insert Paste the clipboard text into text edit
Ctrl+X Delete the selected text and copy it to the clipboard
Shift+Delete Delete the selected text and copy it to the clipboard
Ctrl+Z Undo the last operation
Ctrl+Y Redo the last operation
Ctrl+Left arrow Move the cursor one word to the left
Ctrl+Right arrow Move the cursor one word to the right
Ctrl+Home Move the cursor to the beginning of the text
Ctrl+End Move the cursor to the end of the text
Hold Shift + some move-
ment (e.g., Right arrow)

Select region

3 Performance Algebra and Tools

As performance tuning of parallel applications usually involves multiple experiments to compare
the effects of certain optimization strategies, CUBE offers a mechanism called performance alge-
bra that can be used to merge, subtract, and average the data from different experiments and view
the results in the form of a single “derived” experiment. Using the same representation for derived
experiments and original experiments provides access to the derived behavior based on familiar
metaphors and tools in addition to an arbitrary and easy composition of operations. The algebra is
an ideal tool to verify and locate performance improvements and degradations likewise. The alge-
bra includes three operators—diff, merge, and mean—provided as command-line utilities which
take two or more CUBE files as input and generate another CUBE file as output. The operations
are closed in the sense that the operators can be applied to the results of previous operations. Note
that although all operators are defined for any valid CUBE data sets, not all possible operations
make actually sense. For example, whereas it can be very helpful to compare two versions of the
same code, computing the difference between entirely different programs is unlikely to yield any
useful results.

3.1 Difference

Changing a program can alter its performance behavior. Altering the performance behavior means
that different results are achieved for different metrics. Some might increase while others might
decrease. Some might rise in certain parts of the program only, while they drop off in other
parts. Finding the reason for a gain or loss in overall performance often requires considering the
performance change as a multidimensional structure. With CUBE ’s difference operator, a user

27

can view this structure by computing the difference between two experiments and rendering the
derived result experiment like an original one. The difference operator takes two experiments
and computes a derived experiment whose severity function reflects the difference between the
minuend’s severity and the subtrahend’s severity.

The possible output is presented below.

user@host: cube3_diff scout.cube remapped.cube -o result.cube
Reading scout.cube ... done.
Reading remapped.cube ... done.
++++++++++++ Diff operation begins ++++++++++++++++++++++++++
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Adding topologies...

Topology retained in experiment.
done.

INFO::Diff operation... done.
++++++++++++ Diff operation ends successfully ++++++++++++++++
Writing result.cube ... done.

Usage: cube3 diff [-o output] [-c] [-C] [-h] minuend subtrahend

-o Name of the output file (default: diff.cube)

-c Do not collapse system dimension, if experiments are incompatible

-C Collapse system dimension!

-h Help; Output a brief help message.

3.2 Merge

The merge operator’s purpose is the integration of performance data from different sources. Often
a certain combination of performance metrics cannot be measured during a single run. For exam-
ple, certain combinations of hardware events cannot be counted simultaneously due to hardware
resource limits. Or the combination of performance metrics requires using different monitoring
tools that cannot be deployed during the same run. The merge operator takes an arbitrary number
of CUBE experiments with a different or overlapping set of metrics and yields a derived CUBE

experiment with a joint set of metrics.

The possible output is presented below.

user@host: cube3_merge scout.cube remapped.cube -o result.cube
++++++++++++ Merge operation begins ++++++++++++++++++++++++++
Reading scout.cube ... done.
Reading remapped.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.

28

INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Merge operation...

Topology retained in experiment.

Topology retained in experiment.
done.
++++++++++++ Merge operation ends successfully ++++++++++++++++
Writing result.cube ... done.

Usage: cube3 merge [-o output] [-c] [-C] [-h] cube ...

-o Name of the output file (default: merge.cube)

-c Do not collapse system dimension, if experiments are incompatible

-C Collapse system dimension!

-h Help; Output a brief help message.

3.3 Mean

The mean operator is intended to smooth the effects of random errors introduced by unrelated
system activity during an experiment or to summarize across a range of execution parameters. You
can conduct several experiments and create a single average experiment from the whole series. The
mean operator takes an arbitrary number of arguments.

The possible output is presented below.

user@host: cube3_mean scout1.cube scout2.cube scout3.cube scout4.cube -o mean.cube
++++++++++++ Mean operation begins ++++++++++++++++++++++++++
Reading scout1.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Adding topologies... done.
INFO::Mean operation... done.
Reading scout2.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Adding topologies... done.
INFO::Mean operation... done.
Reading scout3.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.

29

INFO::Mapping severities... done.
INFO::Adding topologies... done.
INFO::Mean operation... done.
Reading scout4.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Adding topologies... done.
INFO::Mean operation... done.
++++++++++++ Mean operation ends successfully ++++++++++++++++
Writing mean.cube ... done.

Usage: cube3 mean [-o output] [-c] [-C] [-h] cube ...

-o Name of the output file (default: mean.cube)

-c Do not collapse system dimension, if experiments are incompatible

-C Collapse system dimension!

-h Help; Output a brief help message.

3.4 Compare

Compares two experiments and prints out if they are equal or not. Two experiments are equal if
they have same dimensions hierarchy and the equal values of the severieties.

An example of the output is below.

user@host: cube3_cmp remapped.cube scout1.cube
Reading remapped.cube ... done.
Reading scout1.cube ... done.
++++++++++++ Compare operation begins ++++++++++++++++++++++++++
Experiments are not equal.
+++++++++++++ Compare operation ends successfully ++++++++++++++++

Usage: cube3 cmp [-h] cube1 cube2

-h Help; Output a brief help message.

3.5 Clean

CUBE files may contain more data in the definition part than absolutely necessary. The
cube3 clean utility creates a new CUBE file with an identical structure as the input experiment,
but with the definition part cleaned up.

An example of the output is presented below.

30

user@host: cube3_clean remapped.cube -o cleaned.cube
++++++++++++ Clean operation begins ++++++++++++++++++++++++++
Reading remapped.cube ... done.

Topology retained in experiment.
++++++++++++ Clean operation ends successfully ++++++++++++++++
Writing cleaned.cube ... done.

Usage: cube3 clean [-o output] [-h] cube

-o Name of the output file (default: clean.cube|.gz)

-h Help; Output a brief help message.

3.6 Reroot, Prune

For the detailed study of some part of the execution, the CUBE file can be modified based on a
given call-tree node. Two different operations are possible:

• The call tree may be re-rooted, i.e., only sub-trees with the given call-tree node as root are
retained in the experiment.

• An entire sub-tree may be pruned, i.e., removed from the experiment. In this case, all metric
values for that sub-tree will be attributed to it’s parent call-tree node (= “inlined”).

An example of the output is presented below.

user@host: cube3_cut -r inner_auto_ -p flux_err_ -o cutted.cube remapped.cube
Reading remapped.cube ... done.
++++++++++++ Cut operation begins ++++++++++++++++++++++++++

Topology retained in experiment.
++++++++++++ Cut operation ends successfully ++++++++++++++++
Writing cutted.cube ... done.

Usage: cube3 cut [-h] [-r nodename] [-p nodename] [-o output] cube

-o Name of the output file (default: cut.cube|.gz)

-r Re-root call tree at named node

-p Prune call tree from named node (= ”inline”)

-h Help; Output a brief help message.

3.7 Remap

The Scalasca toolset initially creates CUBE files containing data for only a limited number of
performance metrics. The full hierarchy of performance metrics is then created during post-
processing using the cube3 remap tool. Typically, it is automatically called by the scalasca
-examine command, but can also be executed manually.

31

Usage: cube3 remap [-o output] [-h] cube

-o Name of the output file (default: remap.cube|.gz)

-h Help; Output a brief help message.

3.8 Score

Classifies program regions by type and generates aggregated data for them. In addition, the
cube3 score tool can be used to estimate trace buffer requirements based on a given CUBE file,
typically from a previous summary experiment.

Regions are classified into the categories ANY (aggregate of all regions), MPI (pure MPI func-
tions), OMP (pure OpenMP functions/regions), USR (pure user regions not containing MPI or
OpenMP) and COM (”combined” user regions calling MPI/OpenMP, directly or indirectly).

The metric(s) to be displayed can be specified via a command line option. The default is to
calculate teh absolute value as well as the percentage of the total time, and the maximum trace
buffer requirements across all processes. Metrics can be any of those defined in the CUBE file, or
two special metrics:

1. The total tbc metric provides an estimate of total size of trace data (in bytes), aggregated
across all processes.

2. The max tbc metric provides an estimate for the trace buffer capacity (in bytes) that is re-
quired to store all events that would be generated by a single process.

If an unknown metric name is given, a list of metrics available in the input file is given.

An example of the output is presented below.

user@host: ./cube3_score experiment.cube
Reading experiment.cube... done.
Estimated aggregate size of event trace (total_tbc): 5775744 bytes
Estimated size of largest process trace (max_tbc): 1444008 bytes
(When tracing set ELG_BUFFER_SIZE larger than this to avoid intermediate flushes
or reduce requirements using file listing names of USR regions to be filtered.)

flt type max_tbc time % region
ANY 1444008 143.20 100.00 (summary) ALL
MPI 960072 62.53 43.67 (summary) MPI
USR 3048 3.48 2.43 (summary) USR
COM 480888 77.19 53.90 (summary) COM

Usage: cube3 score [-r] [-f filename] [-m metric[, metric . . .]] cube

-r Print metrics for each region

-f File containing names of regions to filter

-m List of metrics that should be displayed (default: max tbc, time)

-h Help; Output a brief help message.

32

3.9 Statistics

Extracts statistical information from the CUBE files.

user@host: ./cube3_stat -m time,mpi -p remapped.cube -%
MetricRoutine Count Sum Mean Variance Minimum Quartile 25 Median Quartile 75 Maximum
time INCL(MAIN__) 4 143.199101 35.799775 0.001783 35.759769 35.800086 35.839160
time EXCL(MAIN__) 4 0.078037 0.019509 0.000441 0.001156 0.019585 0.037711
time task_init_ 4 0.568882 0.142221 0.001802 0.102174 0.142428 0.181852
time read_input_ 4 0.101781 0.025445 0.000622 0.000703 0.024549 0.051980
time decomp_ 4 0.000005 0.000001 0.000000 0.000001 0.000001 0.000002
time inner_auto_ 4 142.361593 35.590398 0.000609 35.566589 35.591439 35.612125
time task_end_ 4 0.088803 0.022201 0.000473 0.000468 0.022318 0.043699

mpi INCL(MAIN__) 4 62.530811 15.632703 2.190396 13.607989 15.880178 17.162466
mpi EXCL(MAIN__) 4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
mpi task_init_ 4 0.304931 0.076233 0.001438 0.040472 0.075618 0.113223
mpi read_input_ 4 0.101017 0.025254 0.000633 0.000034 0.024516 0.051952
mpi decomp_ 4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
mpi inner_auto_ 4 62.037503 15.509376 2.194255 13.478049 15.764083 17.031288
mpi task_end_ 4 0.087360 0.021840 0.000473 0.000108 0.021959 0.043333

user@host: ./cube3_stat -t33 remapped.cube -p -m time,mpi,visits
Region NumberOfCalls ExclusiveTime InclusiveTime time mpi visits
sweep_ 48 76.438435 130.972847 76.438435 0.000000 48
MPI_Recv 39936 36.632249 36.632249 36.632249 36.632249 39936
MPI_Send 39936 17.684986 17.684986 17.684986 17.684986 39936
MPI_Allreduce 128 7.383530 7.383530 7.383530 7.383530 128
source_ 48 3.059890 3.059890 3.059890 0.000000 48
MPI_Barrier 12 0.382902 0.382902 0.382902 0.382902 12
flux_err_ 48 0.380047 1.754759 0.380047 0.000000 48
TRACING 8 0.251017 0.251017 0.251017 0.000000 8
MPI_Bcast 16 0.189381 0.189381 0.189381 0.189381 16
MPI_Init 4 0.170402 0.419989 0.170402 0.170402 4
snd_real_ 39936 0.139266 17.824251 0.139266 0.000000 39936
MPI_Finalize 4 0.087360 0.088790 0.087360 0.087360 4
initialize_ 4 0.084858 0.168192 0.084858 0.000000 4
initxs_ 4 0.083242 0.083242 0.083242 0.000000 4
MAIN__ 4 0.078037 143.199101 0.078037 0.000000 4
rcv_real_ 39936 0.077341 36.709590 0.077341 0.000000 39936
inner_ 4 0.034985 142.337220 0.034985 0.000000 4
inner_auto_ 4 0.024373 142.361593 0.024373 0.000000 4
task_init_ 4 0.014327 0.568882 0.014327 0.000000 4
read_input_ 4 0.000716 0.101781 0.000716 0.000000 4
octant_ 416 0.000581 0.000581 0.000581 0.000000 416
global_real_max_ 48 0.000441 1.374712 0.000441 0.000000 48
global_int_sum_ 48 0.000298 5.978850 0.000298 0.000000 48
global_real_sum_ 32 0.000108 0.030815 0.000108 0.000000 32
barrier_sync_ 12 0.000105 0.383007 0.000105 0.000000 12
bcast_int_ 12 0.000068 0.189395 0.000068 0.000000 12
timers 2 0.000044 0.000044 0.000044 0.000000 2
initgeom_ 4 0.000042 0.000042 0.000042 0.000000 4
initsnc_ 4 0.000038 0.000050 0.000038 0.000000 4
task_end_ 4 0.000013 0.088803 0.000013 0.000000 4
bcast_real_ 4 0.000010 0.000065 0.000010 0.000000 4
decomp_ 4 0.000005 0.000005 0.000005 0.000000 4
timers_ 2 0.000004 0.000048 0.000004 0.000000 2

Usage: cube3 stat [-h] [-p] [-m metric[,metric...]] [-%] [-r routine[,routine...]] cubefile

OR

cube3 stat [-h] [-p] [-m metric[,metric...]] [-t topN] cubefile

-h Display this help message

-p Pretty-print statistics (instead of CSV output)

-% Provide statistics about process/thread metric values

33

-m List of metrics (default: time)

-r List of routines (default: main)

-t Number for topN regions flat profile

3.10 TAU→ CUBE

Converts a profile generated by the TAU Performance System [7] into the CUBE format. Currently,
only 1-level, 2-level and full call-path profiles are supported.

An example of the output is presented below.

user@host: ./tau2cube3 tau2 -o b.cube
Parsing TAU profile...
tau2/profile.0.0.2
tau2/profile.1.0.0
Parsing TAU profile... done.
Creating CUBE profile...
Number of call paths : 5
Childmain int (int, char **)
Number of call paths : 5
ChildsomeA void (void)
Number of call paths : 5
ChildsomeB void (void)
Number of call paths : 5
ChildsomeC void (void)
Number of call paths : 5
ChildsomeD void (void)
Path to Parents : 5
Path to Child : 1
Number of roots : 5
Call-tree node created
Call-tree node created
Call-tree node created
Call-tree node created
Call-tree node created
value time :: 8.0151
value ncalls :: 1
value time :: 11.0138
value ncalls :: 1
value time :: 8.01506
value ncalls :: 1
value time :: 11.0138
value ncalls :: 1
value time :: 5.00815
value ncalls :: 1
value time :: 11.0138
value ncalls :: 1

34

value time :: 0.000287
value ncalls :: 1
value time :: 11.0138
value ncalls :: 1
value time :: 0
value ncalls :: 0
value time :: 9.00879
value ncalls :: 1
done.

Usage: tau2cube [tau-profile-dir][-o cube]

4 Creating CUBE Files

The CUBE data format in an XML instance [11]. The CUBE library provides an interface to create
CUBE files. It is a simple class interface and includes only a few methods. This section first
describes the CUBE API and then presents a simple C++ program as an example of how to use it.

4.1 CUBE API

The class interface defines a class Cube. The class provides a default constructor and fourty
methods. The methods are divided into four groups. The first three groups are used to define the
three dimensions of the performance space and the last group is used to enter the actual data. In
addition, an output operator << to write the data to a file is provided.

4.1.1 Metric Dimension

This group refers to the metric dimension of the performance space. It consists of a single method
used to build metric trees. Each node in the metric tree represents a performance metric. Metrics
have different units of measurement. The unit can be either “sec” (i.e., seconds) for time based
metrics, such as execution time, or “occ” (i.e., occurrences) for event-based metrics, such as
floating-point operations. During the establishment of a metric tree, a child metric is usually
more specific than its parent, and both of them have the same unit of measurement. Thus, a child
performance metric has to be a subset of its parent metric (e.g., system time is a subset of execution
time).

Metric* def met (const std::string &disp name, const std::string &uniq name,
const std::string &dtype, const std::string &uom,
const std::string &val, const std::string &url,
const std::string &descr, Metric* parent);

Returns a metric with display name disp name, unique name uniq name and description
descr. dtype specifies the data type, which can either be “INTEGER” or “FLOAT”. uom is the
unit of measurement, which is either “sec” for seconds or “occ” for number of occurrences.
The val field specifies whether there is any data available for this particular metric. It can
either be “VOID” (no data available, metric will not be shown in CUBE) or an empty string
(metric will be shown and data is present). parent is a previously created metric which will

35

be the new metric’s parent. To define a root node, use NULL instead. url is a link to an HTML

page describing the new metric in detail. If you want to mirror the page at several locations,
you can use the macro @mirror@ as a prefix, which will be replaced by an available mirror
defined using def mirror() (see Section 4.1.6).

const std::vector<Metric*>& get metv () const;

Returns a vector with all metrics in the CUBE object.

const std::vector<Metric*>& get root metv () const;

Returns a vector with all roots of the metric dimension in the CUBE object.

Metric* get met (const std::string& uniq name) const;

Returns a metric with the given uniq name. Returns NULL if the CUBE object doesn’t con-
tain a metric with this name.

Metric* get root met (Metric * met);

Returns the root metric for the given metric met.

4.1.2 Program Dimension

This group refers to the program dimension of the performance space. The entities presented
in this dimension are region, call site, and call-tree node (i.e., call paths). A region can be a
function, a loop, or a basic block. Each region can have multiple call sites from which the control
flow of the program enters a new region. Although we use the term call site here, any place that
causes the program to enter a new region can be represented as a call site, including loop entries.
Correspondingly, the region entered from a call site is called callee, which might as well be a loop.
Every call-tree node points to a call site. The actual call path represented by a call-tree node can
be derived by following all the call sites starting at the root node and ending at the particular node
of interest. The user can choose among three ways of defining the program dimension:

1. Call tree with line numbers

2. Call tree without line numbers

3. Flat profile

A call tree with line numbers is defined as a tree whose nodes point to call sites. A call tree without
line numbers is defined as a tree whose nodes point to regions (i.e., the callees). A flat profile is
simply defined as a set of regions, that is, no tree has to be defined.

Region* def region (const std::string &name, long begln, long endln,
const std::string &url, const std::string &descr,
const std::string &mod);

Returns a new region with region name name and description descr. The region is located
in the module mod and exists from line begln to line endln. url is a link to an HTML page
describing the new region in detail. For example, if the region is a library function, the url
can point its documentation. If you want to mirror the page at several locations, you can use
the macro @mirror@ as a prefix, which will be replaced by an available mirror defined
using def mirror() (see Section 4.1.6).

36

Cnode* def cnode (Region* callee,
const std::string &mod, int line,
Cnode* parent);

Returns a new call-tree node representing a call from call site located at the line line of the
module mod. The call tree node calls the callee callee (i.e., a previously defined region).
parent is a previously created call-tree node which will be the new one’s parent. To define
a root node, use NULL instead. This method is used to create a call tree with line numbers.

Cnode* def cnode (Region* region,
Cnode* parent);

Defines a new call-tree node representing a call to the region region. parent is a previously
created call-tree node which will be the new one’s parent. To define a root node, use NULL
instead. Note that different from the previous def cnode(), this method is used to create a
call-tree without line numbers where each call-tree node points to a region.

To define a call tree with line numbers use def cnode(Region*, string, int...). To define a
call tree without line numbers use def cnode(Region*, Cnode*) instead. To create a flat profile
use neither one — just defining a set of regions will be sufficient.

const std::vector<Region*>& get regv () const;

Returns a vector with all regions in the CUBE object.

const std::vector<Cnode*>& get cnodev () const;

Returns a vector with all call-tree nodes in the CUBE object.

Cnode* get cnode (Cnode & cn) const;

Search a call-tree node cn. Returns NULL if the CUBE object does not contain the given
call-tree node.

4.1.3 System Dimension

This group refers to the system dimension of the performance space. It reflects the system re-
sources which the program is using at runtime. The entities present in this dimension are machine,
node, process, and thread, which populate four levels of the system hierarchy in the given order.
That is, the first level consists of machines, the second level of nodes, and so on. Finally, the last
(i.e., leaf) level is populated only by threads. The system tree is built in a top-down way starting
with a machine. Note that even if every process has only one thread, users still need to define the
thread level.

Machine* def mach (const std::string &name, const std::string &desc);

Returns a new machine with the name name and description desc.

Node* def node (const std::string &name, Machine* mach);

Returns a new (SMP) node which has the name name and which belongs to the machine
mach.

Process* def proc (const std::string &name, int rank,
Node* node);

37

Returns a new process which has the name name and the rank rank. The rank is a number
from 0− (n− 1), where n is the total number of processes. MPI applications may use the
rank in MPI COMM WORLD. The process runs on the node node.

Thread* def thrd (cosnt std::string name&, int rank,
Process* proc);

Defines a new thread which has the name name and the rank rank. The rank is a number
from 0− (n− 1), where n is the total number of threads spawned by a process. OpenMP

applications may use the OpenMP thread number. The thread belongs to the process proc.

const std::vector<Sysres*>& get sysv () const;

Returns a vector with all system resources (e.g. node, thread, process) available in the CUBE

object.

const std::vector<Machine*>& get machv () const;

Returns a vector with all machines in the CUBE object.

const std::vector<Node*>& get nodev () const;

Returns a vector with all nodes of all machines in the CUBE object.

const std::vector<Process*>& get procv () const;

Returns a vector with all processes in the CUBE object.

const std::vector<Thread*>& get thrdv () const;

Returns a vector with all threads in the CUBE object.

Machine * get mach (Machine & mach) const;

Search for the machine mach in the CUBE object. Returns NULL if the CUBE object does not
contain the given machine.

Node *get node (Node & node) const ;

Search for the node node in the CUBE object. Returns NULL if the CUBE object does not
contain the given node.

4.1.4 Virtual Topologies

Virtual topologies are used to describe adjacency relationships among machines, SMP nodes, pro-
cesses or threads. A topology usually consists of a single class of entities such as threads or
processes. The CUBE API provides a set of functions to create Cartesian topologies and to de-
fine the machine/SMP node/process/thread mappings onto coordinates. Note that the definition of
virtual topologies is optional.

Cartesian* def cart (long ndims, const std::vector<long>& dimv,
const std::vector<bool>& periodv);

Defines a new Cartesian topology. ndims and dimv specify the number of dimensions and
the size of each dimension. periodv specifies the periodicity for each dimension. Currently,
the maximum value for ndims is three.

38

void def coords (Cartesian* cart, Sysres* sys,
const std::vector<long>& coordv);

Maps a specific system resource onto a Cartesian coordinate. The system resource sys may
be a machine, SMP node, process or a thread. It is not recommended to map a mixed set
of entities onto one topology (e.g., machines and threads are located in the same topology).
The parameter of cart has been defined by the above def cart() method.

const std::vector<Cartesian *>& get cartv () const ;

Returns a vector of all cartesian topologies available in the CUBE object.

const Cartesian * get cart (int i) const ;

Returns in i-th topology in the CUBE object.

4.1.5 Severity Mapping

After the establishment of the performance space, users can assign severity values to points of the
space. Each point is identified by a tuple (met, cnode, thrd). The value should be inclusive
with respect to the metric, but exclusive with respect to the call-tree node, that is it should not
cover its children. The default severity value for the data points left undefined is zero. Thus, users
only need to define non-zero data points.

void set sev (Metric* met, Cnode* cnode,
Thread* thrd, double value);

Assigns the value value to the point (met, cnode, thrd).

void add sev (Metric* met, Cnode* cnode,
Thread* thrd, double value);

Adds the value value to the present value at point (met, cnode, thrd).

The previous two methods set sev() and add sev() are intended to be used when the program
dimension contains a call tree and not a flat profile. As the flat profile does not require the definition
of call-tree nodes, the following two functions should be used instead:

void set sev (Metric* met, Region* region,
Thread* thrd, double value);

Assigns the value value to the point (met, region, thrd).

void add sev (Metric* met, Region* region,
Thread* thrd, double value);

Adds the value value to the present value at point (met, region, thrd).

double get sev (Metric * met, Cnode * cnode, Thread * thrd) const;

Returns the value for the point(met, cnode, thrd).

39

4.1.6 Miscellaneous

Often users may want to define some information related to the CUBE file itself, such as the
creation date, experiment platform, and so on. For this purpose, CUBE allows the definition of
arbitrary attributes in every CUBE data set. An attribute is simply a key-value pair and can be
defined using the following method:

void def attr (const std::string &key, const std::tring &value);

Assigns the value value to the attribute key.

CUBE allows using multiple mirrors for the online documentation associated with metrics and
regions. The url expression supplied as an argument for def metric() and def region() can
contain a prefix @mirror@. When the online documentation is accessed, CUBE can substitute all
mirrors defined for the prefix until a valid one has been found. If no valid online mirror can be
found, CUBE will substitute the ./doc directory of the installation path for @mirror@.

void def mirror (const std::string &mirror);

Defines the mirror mirror as potential substitution for the URL prefix @mirror@.

std::string get attr(const std::string &key) const;

Returns the attribute in the CUBE object stored for the given key.

const std::map<std::string, std::string> get attrs() const;

Returns all attributes associated to the CUBE object as a map.

const std::vector<std::string>& get mirrors() const;

Returns all mirrors defined in the CUBE object.

int get num thrd() const;

Returns the maximal number of threads per process in the CUBE object.

4.1.7 Writer Library in C

In order to create data files, another possibility is to use the C version of the CUBE writer API. The
interface defines a struct cube t and provides the following functions:

cube t* cube create();

Returns a new CUBE structure.

void cube free(cube t* c);

Destroys the given CUBE structure.

cube metric* cube def met (cube t* c, const char* disp name,
const char* uniq name, const char* dtype,
const char* uom, const char* val,
const char* url, const char* descr,
cube metric* parent);

Returns a new metric structure.

40

cube region* cube def region (cube t* c, const char* name, long begln,
long endln, const char* url,
const char* descr, const char* mod);

Returns a new region.

cube cnode* cube def cnode cs (cube t* c, cube region* callee,
const char* mod, int line,
cube cnode* parent);

Returns a new call-tree node structure with line numbers.

cube cnode* cube def cnode (cube t* c, cube region* callee,
cube cnode* parent);

Returns a new call-tree node structure without line numbers.

cube machine* cube def mach (cube t* c, const char* name
const char* desc);

Returns a new machine.

cube node* cube def node (cube t* c, const char* name,
cube machine* mach);

Returns a new node.

cube process* cube def proc (cube t* c, const char* name,
int rank, cube node* node);

Returns a new process.

cube thread* cube def thrd (cube t* c, const char* name,
int rank, cube process* proc);

Returns a new thread.

cube cartesian* cube def cart (cube t* c, long ndims,
long int* dimv, int* periodv);

Defines a new Cartesian topology.

void cube def coords (cube t* c, cube cartesian* cart,
cube thread* thrd, long int* coord);

Maps a thread onto a Cartesian coordinate.

void cube set sev (cube t* c, cube metric* met, cube cnode* cnode,
cube thread* thrd, double value);

Assigns the severity value to the point (met, cnode, thrd). Can only be used after
metric, cnode and thread definitions are complete. Note that you can only use either the
region or the cnode form of these calls, but not both at the same time.

double cube get sev (cube t* c, cube metric* met, cube cnode* cnode,
cube thread* thrd);

Returns the severity of the point (met, cnode, thrd).

void cube set sev reg (cube t* c, cube metric* met, cube region* reg,
cube thread* thrd, double value);

41

Assigns the severity value to the point (met, reg, thrd). Can only be used after metric,
regino and thread definitions are complete. Note that you can only use either the region or
the cnode form of these calls, but not both at the same time.

void cube add sev (cube t* c, cube metric* met, cube cnode* cnode,
cube thread* thrd, double value);

Adds the severity value to the present value at point (met, cnode, thrd). Can only be
used after metric, cnode and thread definitions are complete. Note that you can only use
either the region or the cnode form of these calls, but not both at the same time.

void cube add sev reg (cube t* c, cube metric* met, cube region* reg,
cube thread* thrd, double value);

Adds the severity value to the present value at point (met, reg, thrd). Can only be used
after metric, region and thread definitions are complete. Note that you can only use either
the region or the cnode form of these calls, but not both at the same time.

void cube write all (cube t* c, FILE* fp);

Writes the entire CUBE data to the given file. This basically corresponds to calling
cube write def() and cube write sev matrix().

void cube write def (cube t* c, FILE* fp);

Writes the definitions part of the CUBE data to the given file. Should only be used after
definitions are complete.

void cube write sev matrix (cube t* c, FILE* fp);

Writes the severity values part of the CUBE data to the given file. Should only be used after
severity values are completely set. Unset values default to zero.

void cube write sev row (cube t* c, FILE* fp,
cube metric* met,
cube cnode* cnode,
double* sevs);

Writes the given severity values of (met, cnode) for all threads to the given file. This can
be used instead of cube write sev matrix() to incrementally write parts of the severity
matrix.

void cube write finish (cube t* c, FILE* fp);

Writes the end tags to a file. Must be called at the very end before closing the file, but only
when incrementally writing the severity matrix using cube write sev matrix(). When
using cube write sev matrix() to write the severity matrix in one chunk, calling this
function is not needed.

4.2 Typical Usage

A simple C++ program is given to demonstrate how to use the CUBE write interface. Figure 14
shows the corresponding CUBE display. The source code of the target application is provided in
Figure 13.

42

1 void foo() {
...

10 }
11 void bar() {

...
20 }
21 int main(int argc, char* argv) {

...
60 foo();

...
80 bar();

...
100 }

Figure 13: Target-application source code example.c

// A C++ example using CUBE write interface
#include <cube3/Cube.h>
#include <string>
#include <fstream>

using namespace std;
using namespace cube;

int main(int argc, char* argv[]) {
Cube cube;

// Specify mirrors (optional)
cube.def_mirror("http://icl.cs.utk.edu/software/kojak/");
cube.def_mirror("http://www.fz-juelich.de/jsc/kojak/");

// Specify information related to the file (optional)
cube.def_attr("experiment time", "September 27th, 2006");
cube.def_attr("description", "a simple example");

// Build metric tree
Metric* met0 = cube.def_met("Time", "Time", "FLOAT", "sec", "",

"@mirror@patterns-2.1.html#execution",
"root node", NULL); // using mirror

Metric* met1 = cube.def_met("User time", "User Time", "FLOAT", "sec", "",
"http://www.cs.utk.edu/usr.html",
"2nd level", met0); // without using mirror

Metric* met2 = cube.def_met("System time", "System Time", "FLOAT", "sec", "",
"http://www.cs.utk.edu/sys.html",
"2nd level", met0); // without using mirror

// Build call tree
string mod = "/ICL/CUBE/example.c";
Region* regn0 = cube.def_region("main", 21, 100, "", "1st level", mod);
Region* regn1 = cube.def_region("foo", 1, 10, "", "2nd level", mod);

43

Region* regn2 = cube.def_region("bar", 11, 20, "", "2nd level", mod);

Cnode* cnode0 = cube.def_cnode(regn0, mod, 21, NULL);
Cnode* cnode1 = cube.def_cnode(regn1, mod, 60, cnode0);
Cnode* cnode2 = cube.def_cnode(regn2, mod, 80, cnode0);

// Build system resource tree
Machine* mach = cube.def_mach("MSC", "");
Node* node = cube.def_node("Athena", mach);
Process* proc0 = cube.def_proc("Process 0", 0, node);
Process* proc1 = cube.def_proc("Process 1", 1, node);
Thread* thrd0 = cube.def_thrd("Thread 0", 0, proc0);
Thread* thrd1 = cube.def_thrd("Thread 1", 1, proc1);

// Build 2D Cartesian a topology (a 5x5 grid)
int ndims = 2;
vector<long> dimv;
vector<bool> periodv;
for (int i = 0; i < ndims; i++) {
dimv.push_back(5);
if (i % 2 == 0)
periodv.push_back(true);

else
periodv.push_back(false);

}
Cartesian* cart = cube.def_cart(ndims, dimv, periodv);
vector<long> coord0, coord1;
coord0.push_back(0);
coord0.push_back(0);
coord1.push_back(3);
coord1.push_back(3);
// map the two threads onto the above 2 coordinates
cube.def_coords(cart, thrd0, coord0);
cube.def_coords(cart, thrd1, coord1);

// Severity mapping
cube.set_sev(met0, cnode0, thrd0, 4);
cube.set_sev(met0, cnode0, thrd1, 4);
cube.set_sev(met0, cnode1, thrd0, 4);
cube.set_sev(met0, cnode1, thrd1, 4);
cube.set_sev(met0, cnode2, thrd0, 4);
cube.set_sev(met0, cnode2, thrd1, 4);
cube.set_sev(met1, cnode0, thrd0, 1);
cube.set_sev(met1, cnode0, thrd1, 1);
cube.set_sev(met1, cnode1, thrd0, 1);
cube.set_sev(met1, cnode1, thrd1, 1);
cube.set_sev(met1, cnode2, thrd0, 1);
cube.set_sev(met1, cnode2, thrd1, 1);
cube.set_sev(met2, cnode0, thrd0, 1);
cube.set_sev(met2, cnode0, thrd1, 1);
cube.set_sev(met2, cnode1, thrd0, 1);
cube.set_sev(met2, cnode1, thrd1, 1);
cube.set_sev(met2, cnode2, thrd0, 1);
cube.set_sev(met2, cnode2, thrd1, 1);

44

// Output to a cube file
ofstream out;
out.open("example.cube");
out << cube;

}

Figure 14: Display of example.cube

45

PatternName MetricID Count Mean Median Minimum Maximum Sum Variance Quartil25 Quartil75
LateBroadcast 6 4 0.010 0.000031 0.000004 0.042856 0.042 0.000459
- cnode: 5 enter: 0.245877 exit: 0.256608 duration: 0.042856

WaitAtBarrier 18 20 0.018 0.006477 0.000002 0.065293 0.369 0.000698 0.000040 0.047409
- cnode: 14 enter: 0.192332 exit: 0.192378 duration: 0.000100
- cnode: 12 enter: 0.326120 exit: 0.335651 duration: 0.065293

BarrierCompletion 17 20 0.000 0.000005 0.000002 0.000018 0.000 0.000000 0.000003 0.000009
- cnode: 14 enter: 0.192332 exit: 0.192378 duration: 0.000009
- cnode: 12 enter: 0.159321 exit: 0.165005 duration: 0.000018

WaitAtIBarrier 27 144 0.001 0.000027 0.000001 0.028451 0.212 0.000028 0.000002 0.000437
- cnode: 11 enter: 0.297292 exit: 0.297316 duration: 0.000057
- cnode: 10 enter: 0.322577 exit: 0.332093 duration: 0.028451

Figure 15: An example of a statistic file

A File format of statistic files

Statistic files (for an example see Figure 15) are simply text files which contain the necessary
data. The first line is always ignored but should look similar to that in the example as it simplifies
the understanding for the human reader. All values in a statistic file are simply separated by an
arbitrary number of spaces.

For each pattern there is a line which contains at least the pattern name (as plain text without
spaces), its corresponding metric id in the CUBE file (integer as text) and the count – i.e., how
many instances of the pattern exist (also as integer). If more values are provided, there have to be
the mean value, median, minimum and maximum as well as the sum (all as floating point numbers
in arbitrary format). If one of these values is provided, all have to. The next optional value is the
variance (also as a floating point number). The last two optional values of which both or none
have to be provided are the 25% and the 75% quantile, also as floating point numbers.

If any of these values is omitted, all following values have to be omitted, too. If for example the
variance is not provided, the lower and the upper quartile must not be provided either.

In the subsequent lines (there can be an arbitrary number), the information of the most severe
instances is provided. Each of these lines has to begin with a minus sign (-). Then the text cnode:,
followed by the cnode id of this instance in the CUBE file (integer as text) is provided. The same
holds for enter, exit and duration (floats as text).

The begin of the next pattern is indicated by a blank line.

46

References

[1] Barcelona Supercomputing Center. Paraver: Obtain Detailed Information from Raw Perfor-
mance Traces, Oct 2008. http://www.bsc.es/plantillaA.php?cat_id=485.

[2] H. Brunst and W. E. Nagel. Scalable performance analysis of parallel systems: Concepts and
experiences. In Proc. of the Parallel Computing Conference (ParCo), Dresden, Germany,
2003.

[3] K. L. Karavanic and B. Miller. A Framework for Multi-Execution Performance Tuning. Par-
allel and Distributed Computing Practices, 4(3), September 2001. Special Issue on Moni-
toring Systems and Tool Interoperability.

[4] J. Labarta, S. Girona, V. Pillet, T. Cortes, and L. Gregoris. DiP: A parallel program develop-
ment environment. In Proc. of the 2nd International Euro-Par Conference, pages 665–674,
Lyon, France, August 1996. Springer.

[5] Message Passing Interface Forum. MPI: A Message Passing Interface Standard, June 1995.
http://www.mpi-forum.org.

[6] OpenMP Architecture Review Board. OpenMP Application Program Interface — Version
2.5, May 2005. http://www.openmp.org.

[7] Sameer S. Shende and Allen D. Malony. The TAU parallel performance system. Interna-
tional Journal of High Performance Computing Applications, 20(2):287–331, Summer 2006.

[8] F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore. An Algebra for Cross-Experiment
Performance Analysis. In Proc. of ICPP 2004, pages 63–72, Montreal, Canada, August
2004.

[9] Technical University Dresden. Vampir - Performance Optimization, Oct 2008. http://
vampir.eu/.

[10] F. Wolf, B. Mohr, J. Dongarra, and S. Moore. Efficient Pattern Search in Large Traces
through Successive Refinement. In Proc. of the European Conference on Parallel Comput-
ing (Euro-Par), Lecture Notes in Computer Science, Pisa, Italy, August - September 2004.
Springer.

[11] World Wide Web Consortium. Extensible Markup Language (XML) 1.0 (Second Edition),
October 2000. http://www.w3.org/TR/REC-xml.

47

http://www.bsc.es/plantillaA.php?cat_id=485
http://www.mpi-forum.org
http://www.openmp.org
http://vampir.eu/
http://vampir.eu/
http://www.w3.org/TR/REC-xml

	Introduction
	Using the Display
	Basic Principles
	GUI Components
	Menu Bar
	Toolbar
	Value modes
	Tree browsers
	Topology Display
	Selected value info
	Color Legend
	Status Bar

	Features enabled through statistic files
	Statistical information about performance patterns
	Display of most severe pattern instances using a trace browser

	Keyboard and mouse control
	General control
	Source code editor

	Performance Algebra and Tools
	Difference
	Merge
	Mean
	Compare
	Clean
	Reroot, Prune
	Remap
	Score
	Statistics
	TAU CUBE

	Creating cube Files
	CUBE API
	Metric Dimension
	Program Dimension
	System Dimension
	Virtual Topologies
	Severity Mapping
	Miscellaneous
	Writer Library in C

	Typical Usage

	File format of statistic files

