pyspark.pandas.DataFrame.skew#
- DataFrame.skew(axis=None, skipna=True, numeric_only=None)#
Return unbiased skew normalized by N-1.
- Parameters
- axis: {index (0), columns (1)}
Axis for the function to be applied on.
- skipna: bool, default True
Exclude NA/null values when computing the result.
Changed in version 3.4.0: Supported including NA/null values.
- numeric_only: bool, default None
Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility.
- Returns
- skew: scalar for a Series, and a Series for a DataFrame.
Examples
>>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b'])
On a DataFrame:
>>> df.skew() a 0.0 b 0.0 dtype: float64
On a Series:
>>> df['a'].skew() 0.0