XSPICE
SOFTWARE USER’S MANUAL

December 1992

Prepared by:

F.L. Cox, W.B. Kuhn, H.W. Li, J.P. Murray, S.D. Tynor, M.J. Willis

Computer Science and Information Technology Laboratory
Georgia Tech Research Institute
Georgia Institute of Technology
Atlanta, Georgia 30332

XSPICE Simulator

Software User's Manual

Copyright 1992

Georgia Tech Research Corporation

A1l Rights Reserved.

This material may be reproduced by or for the U.S. Government
pursuant to the copyright license under the clause at DFARS
262.227-7013 (Oct. 1988)

Contents

1 Scope
1.1 Identification
1.2 System Overview
1.2.1 The XSPICE Simulator
1.2.2 The XSPICE Code Model Subsystem
1.2.3 XSPICE User Interfaces,
1.2.4 XSPICE Top-Level Diagram
1.3 Document Overview
1.4 Acknowledgments Lo
2 Referenced Documents
3 Execution Procedures
3.1 Simulation and Modeling Overview
3.1.1 Simulation Algorithms oL
3.1.1.1 Analog Simulation oo
3.1.1.2 Digital Simulation oL oL
3.1.1.3 Mixed-Mode Simulation
3.1.1.4 XSPICE User-Defined Nodes
3.1.2 Describing the Circuit Lo
3.1.2.1 Example Circuit Description Input
3.1.2.2 Models and Subcircuitso
3.1.2.3 XSPICE Code Models
3.1.24 Node Bridge Models
3.1.2.5 Practical Model Development
3.2 Supported Analysis Modes
3.3 Circuit Description Syntax
3.3.1 SPICE3 Syntax
3.31.1 AnalysisModes oL
3312 Input Format oL

o N NN e

(S5}

CONTENTS

3.4

35

XSPICE Simulator

Software User's Manual

3.3.1.3 Title, Commentand .END Cards. 20
3.3.14 ControlCards 20
3.3.15 ElementCards 20
3.3.2 XSPICE Syntax Extensions 23
3.3.2.1 Code Model Element & .MODEL Cards 23
3.3.2.2 Polynomial Source Compatibility 28
3.3.2.3 General Enhancements 28
Code Models and User-Defined Nodes 32
3.4.1 Creating Code Models, . 33
3.4.2 Creating User-Defined Nodes 34
3.4.3 Compiling and Linking the Simulator 35
3.4.4 Interface Specification File 36
3441 TheName Table 38
3442 ThePort Table 39
3443 The Parameter Table 41
3.4.4.4 Static Variable Table 42
3.4.5 Model Definition File, 44
3451 Macros e e e 44
3.45.2 Function Libraryo oo 52
3.4.6 User-Defined Node Definition File 61
3461 Macros e e e 62
3.4.6.2 Function Library oo oL 62
3.4.6.3 Example UDN Definition File. 65
Predefined Code Models 69
35.1 Analog Models oL 69
35.1.1 Gain e 70
3.5.1.2 Summer e 71
3.5.1.3 Multiphero o 73
3514 Divider 75
3515 Limiter 78
3.5.1.6 Controlled Limiter 80
3.5.1.7 PWL Controlled Source 83
3.5.1.8 Analog Switch oo 86
3519 ZenerDiode. 88
3.5.1.10 Current Limiter 90
3.5.1.11 Hysteresis Block 94
3.5.1.12 Differentiator 96
35.1.13 Integrator L 98
3.5.1.14 S-Domain Transfer Function 100
3.5.1.15 Slew Rate Block 104
3.5.1.16 Inductive Coupling 106
3.5.1.17 Magnetic Core 108

XSPICE Simulator CONTENTS

Software User's Manual

3.5.1.18 Controlled Sine Wave Oscillator 113

3.5.1.19 Controlled Triangle Wave Oscillator 115

3.5.1.20 Controlled Square Wave Oscillator 117

35.1.21 Controlled One-Shot 119

3.5.1.22 Capacitance Meter 122

3.5.1.23 Inductance Meter Lo 123

3.5.2 Hybrid Models 124
3.6.2.1 Digital-to-Analog Node Bridge 125

3.6.2.2 Analog-to-Digital Node Bridge 127

3.5.2.3 Controlled Digital Oscillator 129

35.3 Digital Models 131
3531 Buffer 132

3532 nverter e 134

3533 And e 136

3534 Nand 138

3535 Or . . e e e 140

3536 Nor e 142

3537 Xor ... e 144

3538 Xnor. e 146

3539 Trstate 148

35310 Pullup . . . o oo o 150

3.5.3.11 Pulldown 151

35312 DFlipFlop 152

35313 JKFlipFlop. o o 155

35.3.14 Toggle FlipFlop 158

35.3.15 Set-Reset FlipFlop 161

35316 Dlatch 164

35.3.17 Set-Reset Latch 167

3.5.3.18 State Machine L. 171

3.5.3.19 Frequency Divider oL 175

35320 RAM e 177

3.5.3.21 Digital Source 181

3.6 Predefined Node Types 183
3.6.1 Real Node Type e 183
3.6.2 Int Node Type 183

4 Error Messages 185
4.1 Preprocessor Error Messages Lo oL 185
4.2 Simulator Error Messages L 191
4.3 Code Model Error Messages 193
4.3.1 Code Model aswitch 193
432 Code Model climit. 193

CONTENTS

433 Code Modelcore
434 Code Modeldosc
435 Code Model dsource
436 Code Modeldstate
437 Code Model oneshot
438 Code Model pwl
439 Code Model sxfer.
4.3.10 Code Model sine.
4.3.11 Code Model square
4.3.12 Code Model triangle

5 Notes

51 Glossary
5.2 Acronyms and Abbreviations

APPENDICES

A XSPICE System Requirements
B Code Model Data Type Definitions

C XSPICE/Nutmeg Simulation Examples

C.1 Simulation Example1
C.2 Simulation Example2
C.3 Simulation Example 3.

XSPICE Simulator

Software User's Manual

201

.............. 202
.............. 204

List of Figures

1.1

3.1
3.2

C.1
C.2
C.3
C4
C.5
C.6
C.7

XSPICE Top-Level Diagramo oo 3
Example Circuit 10 oo 11
Example Circuit 20 o s 13
Transistor Amplifier Simulation Example 214
Code Model Simulation Example0 0 0. 215
Mixed-Mode Simulation Example o 0oL 216
Nutmeg Plot of Input and Base Voltages 219
Nutmeg Plot of VCC, Collector, and Emitter Voltages 220
Nutmeg Plot of Filter Input and Qutput 231
Nutmeg Plot of Subcircuit Internal Node 232

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Standard SPICE3C1 Control Cards 21
Standard SPICE3C1 Elements 22
Port Type Modifiers 26
Dependent Polynomial Sources oL 28
Port Types o o e 40
Accessor Macros o o e e e e e e 53
User-Defined Node Macros. 62

vii

1 Scope

1.1 Identification

This Software User’s Manual describes the operation of the XSPICE simulator. XSPICE
is an enhanced and extended version of the University of California at Berkeley’s SPICE3
analog circuit simulator.

XSPICE was developed under contract to the United States Air Force as part of the Auto-
matic Test Equipment Software Support Environment (ATESSE), version 2.0. The ATESSE
is an integrated set of software tools designed to assist engineers who develop software that
controls Automatic Test Equipment (ATE) to test and diagnose faults in modern analog
and hybrid (analog/digital) systems. XSPICE provides the board-level and system-level
simulation and modeling capabilities needed to make detailed analysis of such systems pos-

sible.

1.2 System Overview

XSPICE consists of two major components:

e The XSPICE Simulator
e The XSPICE Code Model Subsystem

Scope XSPICE Simulator

System Overview Software User’'s Manual

1.2.1 The XSPICE Simulator

The XSPICE simulator is the main software program that performs mathematical simula-
tion of a circuit specified by you, the user. It takes input in the form of commands and
circuit descriptions and produces output data (e.g. voltages, currents, digital states, and
waveforms) that describe the circuit’s behavior.

Unlike SPICE3, which is designed for analog simulation and is based exclusively on matrix
solution techniques, XSPICE includes both analog and event-driven simulation capabilities.
Thus, designs that contain significant portions of digital circuitry can be efficiently simulated
together with the analog components. XSPICE also includes a new “User-Defined Node”
capability that allows event-driven simulations to be carried out with any type of data.

1.2.2 The XSPICE Code Model Subsystem

The second major component of XSPICE, the Code Model Subsystem, provides the tools
needed to model the various parts of your system. While SPICE3 is targeted primarily at
integrated circuit (IC) analysis, XSPICE includes features to model and simulate board-
level and system-level designs as well. The Code Model Subsystem is central to this new
capability, providing XSPICE with an extensive set of models to use in designs and allowing
you to add your own models to this model set.

The SPICE3 simulator at the core of XSPICE includes built-in models for discrete compo-
nents commonly found within integrated circuits. These “model primitives” include com-
ponents such as resistors, capacitors, diodes, and transistors. The XSPICE Code Model
Subsystem extends this set of primitives in two ways. First, it provides a library of over 40
additional primitives, including summers, integrators, digital gates, controlled oscillators,
s-domain transfer functions, and digital state machines. Second, it provides a set of pro-
gramming utilities to make it easy for you to create your own models by writing them in
the C programming language.

1.2.3 XSPICE User Interfaces

The approach you will use to enter commands and circuit descriptions to XSPICE and to
examine output data produced by XSPICE depends on the interface you are using. XSPICE
currently supports two different user interfaces:

o The ATESSE Simulator Interface (SI)

¢ Nutmeg

If you are using the ATESSE system, you will not be communicating directly with the
XSPICE simulator. Instead, you will enter circuit descriptions in schematic form and issue

XSPICE Simulator Scope

Software User’'s Manual System Overview

commands by making menu selections from the ATESSE SI. Similarly you will examine
results produced by XSPICE through the ATESSE SI. In this case, this document serves
as a reference manual for using simulation models supplied with the XSPICE simulator
and for creating new models of your own. Please refer to the ATESSIE SI Software User’s

Manual for details on running simulations through this user interface.

If you do not have access to the ATESSE SI software, you can use the XSPICE simulator
through the built-in Nutmeg software developed by the University of Calironia at Berkeley
as part of the SPICE3 program on which XSPICE is based. Nutmeg is a command-line
interface for controlling the simulator and examining results. With this user interface, you
create circuit descriptions as text files and enter commands by typing their names and
arguments at the XSPICE prompt after invoking the program. Results may be viewed by
typing appropriate commands and examining the resulting textual or graphical displays.

1.2.4 XSPICE Top-Level Diagram

A top-level diagram of the XSPICE system outlined in the paragraphs above is shown
in Figure 1.1. The XSPICE Simulator is made up of the SPICE3 core, the event-driven
algorithm, circuit description syntax parser extensions, code model device routines, the
Nutmeg user interface, and interprocess communications code used to integrate XSPICE
with the ATESSE SI. The XSPICE Code Model Subsystem consists of the Code Model
Toolkit, the Code Model Library, the Node Type Library, and interfaces to User-Defined
Code Models and to User-Defined Node Types.

Code Model Subsystem

-
| " XSPICE Simulator Core
I < B
: Code Model User Defined |
Libr. Code Models | _
| id | E\;Sgn Interprocess
: | Algorithm — Communi-
| cation
' I
: XSPICE | Parser L
| SPICE3 [~
| Code M odel] = Extensions Core
| Toolkit I —]
: I
|
Code Model
: -— | Device — L{ Nutmeg
" | Routines
| Node Type User Defined !
" Library Node Types |
|
|
e e e e e e e e e o |

Figure 1.1 XSPICE Top-Level Diagram

Scope XSPICE Simulator

Document Overview Software User's Manual

1.3 Document Overview

The remainder of this document describes the steps involved in using the various compo-
nents of XSPICE. Chapter 2 lists specifications, standards and other documents applicable
to this manual and to XSPICE. Chapter 3 describes the execution procedures for the sim-
ulator, including the circuit description (SPICE deck) syntax !, and the steps involved in
creating Code Models and User-Defined Nodes. This chapter also includes descriptions of
the libraries of predefined Code Models and predefined Node Types provided with the sim-
ulator. Error messages that may be encountered when using the simulator or associated
tools are documented in Chapter 4. Chapter 5 provides a glossary and list of acronyms
used in the document.

Finally, a number of appendices are included. These appendices cover requirements for
installing XSPICE on your system, type definitions used in creating code models, and
tutorial examples of using the simulator through the Nutmeg user inteface.

1.4 Acknowledgments

The XSPICE simulator is based on the SPICE3 program developed by the Electronics Re-
search Laboratory, Department of FElectrical Engineering and Computer Sciences, University
of California at Berkeley. The authors of XSPICE gratefully acknowledge UC Berkeley’s
development and distribution of this software, and their licensing policies which promote
further improvements to simulation technology.

We also gratefully acknowledge the participation and support of our U.S. Air Force sponsors,
the Aeronautical Systems Center and the Warner Robins Air Logistics Command, without
which the development of XSPICE would not have been possible.

14gPICE deck” is the historical name for a file used to describe a circuit and the desired analysis to be
performed. This document generally uses more modern terms such as “circuit description”.

Referenced Documents

. SPICE3C.1 Nutmeg Programmer’s Manual, Department of Flectrical Engineer-
ing and Computer Sciences, University of California, Berkeley, California, April,
1987.

. SPICE3 Version 3C1 User’s Guide, Thomas L. Quarles, Department of Elec-
trical Engineering and Computer Sciences, University of California, Berkeley,
California, April, 1989.

. The C Programming Language, Second Edition, Brian Kernighan and Dennis
Ritchie, Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

. “Code-Level Modeling in XSPICE.,” F.L. Cox, W.B. Kuhn, J.P. Murray, and
S.D. Tynor, published in the Proceedings of the 1992 International Symposium
on Circuits and Systems, San Diego, CA, May 1992, vol 2, pp. 871-874.

3 Execution Procedures

This chapter covers operation of the XSPICE simulator and the Code Model Subsystem.
It begins with background material on simulation and modeling and then discusses the
analysis modes supported in XSPICE and the circuit description syntax used for model-
ing. Detailed descriptions of the predefined Code Models and Node Types provided in the
XSPICE libraries are also included.

3.1 Simulation and Modeling Overview

This section introduces the concepts of circuit simulation and modeling. It is intended
primarily for users who have little or no previous experience with circuit simulators, and
also for those who have not used circuit simulators recently. However, experienced SPICE
users may wish to scan the material presented here since it provides background for the
capabilities of XSPICE’s new Code Model and User-Defined Node capabilities.

3.1.1 Simulation Algorithms

Computer-based circuit simulation is often used as a tool by designers, test engineers, and
others who want to analyze the operation of a design without examining the physical circuit.
Simulation allows you to change quickly the parameters of many of the circuit elements to
determine how they affect the circuit response. Often it is difficult or impossible to change
these parameters in a physical circuit.

However, to be practical, a simulator must execute in a reasonable amount of time. The
key to efficient execution is choosing the proper level of modeling abstraction for a given

Execution Procedures XSPICE Simulator
Simulation and Modeling Overview Software User’s Manual

problem. To support a given modeling abstraction, the simulator must provide appropriate
algorithms.

Historically, circuit simulators have supported either an analog simulation algorithm or a
digital simulation algorithm. Many newer simulators such as XSPICE support two or more
such algorithms and are referred to as “mixed-mode” simulators.

3.1.1.1 Analog Simulation

The simulation of analog circuitry is typically accomplished using one of the many versions
of a program called “Simulation Program with Integrated Circuit Emphasis”, or SPICE. As
the name implies, SPICE was originally developed as an aid in the design and analysis of
integrated circuit devices. However, its utility in the analysis of discrete circuits, subsystems,
and systems quickly became apparent. It is now the standard for simulation of all types of
analog circuits.

Analog simulation focuses on the linear and non-linear behavior of a circuit over a continuous
time interval. The circuit response is obtained by iteratively solving Kirchoff’s Laws for
the circuit at time steps selected to ensure the solution has converged to a stable value and
that numerical approximations of integrations are sufficiently accurate. Since Kirchoff’s
laws form a set of simultaneous equations, the simulator operates by solving a matrix of
equations at each time point. This matrix processing generally results in slower simulation
times when compared to digital circuit simulators.

The response of a circuit is a function of the applied sources. SPICE offers a variety of
source types including DC, sinewave, and pulse. In addition to specifying sources, the user
must define the type of simulation to be run. This is termed the “mode of analysis”. Anal-
ysis modes include DC analysis, AC analysis, and transient analysis. For DC analysis, the
time-varying behavior of reactive elements is neglected and the simulator calculates the DC
solution of the circuit. Swept DC analysis may also be accomplished with SPICE. This
is simply the repeated application of DC analysis over a range of DC levels for the input
sources. For AC analysis, the simulator determines the response of the circuit, including
reactive elements to small-signal sinusoidal inputs over a range of frequencies. The simu-
lator output in this case includes amplitudes and phases as a function of frequency. For
transient analysis, the circuit response, including reactive elements, is analyzed to calculate
the behavior of the circuit as a function of time.

3.1.1.2 Digital Simulation

Digital circuit simulation differs from analog circuit simulation in several respects. A pri-
mary difference is that a solution of Kirchoff’s laws is not required. Instead, the simulator
must only determine whether a change in the logic state of a node has occurred and prop-
agate this change to connected elements. Such a change is called an “event”.

XSPICE Simulator Execution Procedures
Software User’s Manual Simulation and Modeling Overview

When an event occurs, the simulator examines only those circuit elements that are affected
by the event. As a result, matrix analysis is not required in digital simulators. By compar-
ison, analog simulators must iteratively solve for the behavior of the entire circuit because
of the forward and reverse transmission properties of analog components. This difference
results in a considerable computational advantage for digital circuit simulators, which is
reflected in the significantly greater speed of digital simulations.

3.1.1.3 Mixed-Mode Simulation

Modern circuits often contain a mix of analog and digital circuits. To simulate such circuits
efficiently and accurately a mix of analog and digital simulation techniques is required.
When analog simulation algorithms are combined with digital simulation algorithms, the
result is termed “mixed-mode simulation”.

Two basic methods of implementing mixed-mode simulation used in practice are the “native
mode” and “glued mode” approaches. Native mode simulators implement both an analog
algorithm and a digital algorithm in the same executable. Glued mode simulators actually
use two simulators, one of which is analog and the other digital. This type of simulator must
define an input/output protocol so that the two executables can communicate with each
other effectively. The communication constraints tend to reduce the speed, and sometimes
the accuracy, of the complete simulator. On the other hand, the use of a glued mode
simulator allows the component models developed for the separate executables to be used
without modification.

XSPICE is a native mode simulator providing both analog and event-based simulation in
the same executable. The underlying algorithms of XSPICE and the associated Code Model
Subsystem allow use of all the standard SPICE models, provide a pre-defined collection of
the most common analog and digital functions, and provide an extensible base on which to
build additional models.

3.1.1.4 XSPICE User-Defined Nodes

In addition to the Code Model features of XSPICE that support traditional analog and
digital modeling, XSPICE supports creation of “User-Defined Node” types.

User-Defined Node types allow you to specify nodes that propagate data other than volt-
ages, currents, and digital states. Like digital nodes, User-Defined Nodes use event-driven
simulation, but the state value may be an arbitrary data type. A simple example applica-
tion of User-Defined Nodes is the simulation of a digital signal processing filter algorithm.
In this application, each node could assume a real or integer value. More complex appli-
cations may define types that involve complex data such as digital data vectors or even
non-electronic data.

Execution Procedures XSPICE Simulator
Simulation and Modeling Overview Software User’s Manual

XSPICE’s digital simulation is actually implemented as a special case of this User-Defined
Node capability where the digital state is defined by a data structure that holds a Boolean
logic state and a strength value.

3.1.2 Describing the Circuit

This section provides an overview of the circuit description syntax expected by the XSPICE
simulator.

If you are using the ATESSE SI user interface to the simulator, you do not need to create
these circuit descriptions yourself. The ATESSE SI will automatically create a circuit
description from your schematic and other information entered through menu selections.
However, a general understanding of circuit description syntax will still be helpful to you
should you encounter problems with your circuit and need to examine the simulator’s error
messages, or should you wish to develop your own models.

If you are using the Nutmeg user interface, this section will introduce you to the creation
of circuit description input files.

In either case, note that this material is presented in an overview form. Details of circuit
description syntax are given later in this chapter and in the references.

3.1.2.1 Example Circuit Description Input

Although different SPICI-based simulators may include various enhancements to the ba-
sic version from the University of California at Berkeley, most use a similar approach in
describing circuits. This approach involves capturing the information present in a circuit
schematic in the form of a text file that follows a defined format. This format requires the
assignment of alphanumeric identifiers to each circuit node, the assignment of component
identifiers to each circuit device, and the definition of the significant parameters for each
device. For example, the circuit description below shows the equivalent input file for the
circuit shown in Figure 3.1.

Small Signal Amplifier
*

*This circuit simulates a simple small signal amplifier.

*
Vin Input 0 0 SIN(O .1 500Hz)
R_source Input Amp_In 100

C1 Amp_In O 1uF

R_Amp_Input Amp_In O 1MEG

E1l (Amp_Out 0) (Amp_In 0) -10

R_Load Amp_Out O 1000

10

XSPICE Simulator Execution Procedures

Software User’s Manual Simulation and Modeling Overview
*
.Tran 1.0u 0.01
*
.end
E1
| NPUT J\/lior APIN o Ay=-10 AVP_OUT
R_SOURCE ol + 2
3 s 2% - x 29
VIN STz Sy % ST

! I

Figure 3.1 Example Circuit 1

This file exhibits many of the most important properties common to all SPICE circuit
description files including the following;:

e The first line of the file is always interpreted as the title of the circuit. The title may
consist of any text string.

e Lines which provide user comments, but no circuit information, are begun by an asterisk.

e A circuit device is specified by a device name, followed by the node(s) to which it is
connected, and then by any required parameter information.

e The first character of a device name tells the simulator what kind of device it is (e.g.
R = resistor, C = capacitor, E = voltage controlled voltage source).

e Nodes may be labeled with any alphanumeric identifier. The only specific labelling
requirement is that 0 must be used for ground.

o A line that begins with a dot is a “control directive”. Control directives are used most
frequently for specifying the type of analysis the simulator is to carry out.

e An “.end” statement must be included at the end of the file.

e With the exception of the Title and .end statements, the order in which the circuit file
is defined is arbitrary.

e All identifiers are case insensitive - the identifier ‘npn’ is equivalent to ‘NPN’ and to

‘nPn’.

e Spaces and parenthesis are treated as white space.

e Long lines may be continued on a succeeding line by beginning the next line with a ‘4’
in the first column.

11

Execution Procedures XSPICE Simulator
Simulation and Modeling Overview Software User’s Manual

In this example, the title of the circuit is ‘Small Signal Amplifier’. Three comment lines are
included before the actual circuit description begins. The first device in the circuit is voltage
source ‘Vin’, which is connected between node ‘Input’ and ‘0’ (ground). The parameters
after the nodes specify that the source has an initial value of 0, a waveshape of ‘SIN’, and a
DC offset, amplitude, and frequency of 0, .1, and 500 respectively. The next device in the
circuit is resistor ‘R_Source’, which is connected between nodes ‘Input’ and ‘Amp_In’, with
a value of 100 Ohms. The remaining device lines in the file are interpreted similarly.

The control directive that begins with ‘. Tran’ specifies that the simulator should carry
out a simulation using the Transient analysis mode. In this example, the parameters to
the transient analysis control directive specify that the maximum timestep allowed is 1
microsecond and that the circuit should be simulated for 0.01 seconds of circuit time.

Other control cards are used for other analysis modes. For example, if a frequency response
plot is desired, perhaps to determine the effect of the capacitor in the circuit, the following
statement will instruct the simulator to perform a frequency analysis from 100 Hz to 10
MHz in decade intervals with ten points per decade.

.ac dec 10 100 10meg

To determine the quiescent operating point of the circuit, the following statement may be
inserted in the file.

.op

A fourth analysis type supported by XSPICE is swept DC analysis. An example control
statement for the analysis mode is

.dc Vin -0.1 0.2 .05

This statement specifies a DC sweep which varies the source Vin from -100 millivolts to
+200 millivolts in steps of 50 millivolts.

3.1.2.2 Models and Subcircuits

The file discussed in the previous section illustrated the most basic syntax rules of a circuit
description file. However, XSPICE (and other SPICE-based simulators) include many other
features which allow for accurate modelling of semiconductor devices such as diodes and
transistors and for grouping elements of a circuit into a macro or ‘subcircuit’ description
which can be reused throughout a circuit description. For instance, the file shown below is
a representation of the schematic shown in Figure 3.2.

12

XSPICE Simulator Execution Procedures
Software User’s Manual Simulation and Modeling Overview

Small Signal Amplifier with Limit Diodes
*

*This circuit simulates a small signal amplifier
*with a diode limiter.

*
.dc Vin -1 1 .05

*

Vin Input O DC O
R_source Input Amp_In 100

*

D_Neg 0 Amp_In 1n4148
D_Pos Amp_In O 1n4148

*

C1 Amp_In O 1uF

X1 Amp_In O Amp_Out Amplifier
R_Load Amp_Out O 1000

*

.model 1n4148 D (is=2.495E-09 rs=4.755E-01 n=1.679E+00

+ 1£%=3.030E-09 cjo=1.700E-12 vj=1 m=1.959E-01 bv=1.000E+02
+ 1ibv=1.000E-04)

*

.subckt Amplifier Input Common Output

E1l (Output Common) (Input Common) -10

R_Input Input Common imeg

.ends Amplifier

*

.end

AMPLIFIER
SUBCIRCUIT
100 AVP_IN | AVP_OUT

R_SOURCE § Qe l 2

D‘ X Z ! 3 E 9

VIN g NE e 2
P4
—

Figure 3.2 Fxample Circuit 2

13

Execution Procedures XSPICE Simulator
Simulation and Modeling Overview Software User’s Manual

This is the same basic circuit as in the initial example, with the addition of two components
and some changes to the simulation file. The two diodes have been included to illustrate
the use of device models, and the amplifier is implemented with a subcircuit. Additionally,
this file shows the use of the swept DC control card.

3.1.2.2.1 Device Models

Device models allow you to specify, when required, many of the parameters of the devices
being simulated. In this example, model statements are used to define the silicon diodes.
Electrically, the diodes serve to limit the voltage at the amplifier input to values between
about +/- 700 millivolts. The diode is simulated by first declaring the “instance” of each
diode with a device statement. Instead of attempting to provide parameter information
separately for both diodes, the label “1n4148” alerts the simulator that a separate model
statement is included in the file which provides the necessary electrical specifications for the
device (“1n4148” is the part number for the type of diode the model is meant to simulate).

The model statement that provides this information is:

.model 1n4148 D (is=2.495E-09 rs=4.755E-01 n=1.679E+00
+ tt=3.030E-09 cjo=1.700E-12 vj=1 m=1.959E-01 bv=1.000E+02
+ 1ibv=1.000E-04)

The model statement always begins with the string “.model” followed by an identifier and
the model type (D for diode, NPN for NPN transistors, etc).

The optional parameters (‘is’, ‘rs’, ‘n’, ‘etc.”) shown in this example configure the simulator’s

mathematical model of the diode to match the specific behavior of a particular part (e.g. a
1n4148).

3.1.2.2.2 Subcircuits

In some applications, describing a device by imbedding the required elements in the main
circuit file, as is done for the amplifier in Figure 3.1, is not desirable. A hierarchical
approach may be taken by using subcircuits. An example of a subcircuit statement is
shown in the second circuit file:

X1 Amp_In O Amp_Out Amplifier

Subcircuits are always identified by a device label beginning with “X”. Just as with other
devices, all of the connected nodes are specified. Notice, in this example, that three nodes
are used. Finally, the name of the subcircuit is specified. Elsewhere in the circuit file, the
simulator looks for a statement of the form:

14

XSPICE Simulator Execution Procedures
Software User’s Manual Simulation and Modeling Overview

.subckt <Name> <Nodel> <Node2> <Node3> ...

This statement specifies that the lines that follow are part of the Amplifier subcircuit, and
that the three nodes listed are to be treated wherever they occur in the subcircuit definition
as referring, respectively, to the nodes on the main circuit from which the subcircuit was
called. Normal device, model, and comment statements may then follow. The subcircuit
definition is concluded with a statement of the form:

.ends <Name>

3.1.2.3 XSPICE Code Models

In the previous example, the specification of the amplifier was accomplished by using a
SPICE Voltage Controlled Voltage Source device. This is an idealization of the actual am-
plifier. Practical amplifiers include numerous non-ideal effects, such as offset error voltages
and non-ideal input and output impedances. The accurate simulation of complex, real-
world components can lead to cumbersome subcircuit files, long simulation run times, and
difficulties in synthesizing the behavior to be modeled from a limited set of internal devices
known to the simulator.

To address these problems, XSPICE allows you to create Code Models which simulate
complex, non-ideal effects without the need to develop a subcircuit design. For example,
the following file provides simulation of the circuit in Figure 3.2, but with the subcircuit
amplifier replaced with a Code Model called ‘Amp’ that models several non-ideal effects
including input and output impedance and input offset voltage.

Small Signal Amplifier

*

*This circuit simulates a small signal amplifier
*with a diode limiter.

*
.dc Vin -1 1 .05

*

Vin Input O DC O
R_source Input Amp_In 100

*

D_Neg 0 Amp_In 1n4148
D_Pos Amp_In O 1n4148

*

C1 Amp_In O 1uF

A1 Amp_In O Amp_Out Amplifier
R_Load Amp_Out O 1000

*

.model 1n4148 D (is=2.495E-09 rs=4.755E-01 n=1.679E+00

15

Execution Procedures XSPICE Simulator
Simulation and Modeling Overview Software User’s Manual

+ tt=3.030E-09 cjo=1.700E-12 vj=1 m=1.959E-01 bv=1.000E+02
+ 1ibv=1.000E-04)

*

.model Amplifier Amp (gain = -10 in_offset = le-3

+ rin = imeg rout = 0.4)

*

.end

A statement with a device label beginning with “A” alerts the simulator that the device uses
a Code Model. The model statement is similar in form to the one used to specify the diode.
The model label ‘Amp’ directs XSPICE to use the code model with that name. Parameter
information has been added to specify a gain of -10, an input offset of 1 millivolt, an input
impedance of 1 meg ohm, and an output impedance of 0.4 ohm. Subsequent sections of
this document detail the steps required to create such a Code Model and include it in the
XSPICE simulator.

3.1.2.4 Node Bridge Models

When a mixed-mode simulator is used, some method must be provided for translating
data between the different simulation algorithms. XSPICE’s Code Model support allows
you to develop models that work under the analog simulation algorithm, the event-driven
simulation algorithm, or both at once.

In XSPICE, models developed for the express purpose of translating between the different
algorithms or between different User-Defined Node types are called “Node Bridge” models.
For translations between the built-in analog and digital types, predefined node bridge models
are included in the XSPICE Code Model Library.

3.1.2.5 Practical Model Development

In practice, developing models often involves using a combination of SPICE passive devices,
device models, subcircuits, and XSPICE Code Models. XSPICE’s Code Models may be seen
as an extension to the set of device models offered in standard SPICE. The collection of
over 40 predefined Code Models included with XSPICE provides you with an enriched set
of modeling primitives with which to build subcircuit models. In general, you should first
attempt to construct your models from these available primitives. This is often the quickest
and easiest method.

If you find that you cannot easily design a subcircuit to accomplish your goal using the
available primitives, then you should turn to the code modeling approach. Because they
are written in a general purpose programming language (C), code models enable you to
simulate virtually any behavior for which you can develop a set of equations or algorithms.

16

XSPICE Simulator Execution Procedures
Software User’'s Manual Supported Analysis Modes

3.2 Supported Analysis Modes

The XSPICE simulator supports four different types of analysis:

1. DC Analysis
2. Swept DC Analysis

3. Transient Analysis

4. AC Analysis

Applications that are exclusively analog can make use of all four analysis modes, whereas
event-driven applications that include digital and User-Defined Node types may make use of
the first three types only. AC analysis as defined in standard SPICE usage is not applicable
to event-driven simulation.

In order to understand the relationship between the different analyses and the two underly-
ing simulation algorithms of XSPICE, it is important to understand what is meant by each
analysis type. This is detailed below.

DC and Swept DC analyses are steady-state forms of system modeling. There is assumed to
be no time dependence on any of the sources within the system description. The simulator
algorithm subdivides the circuit into those portions which require the analog simulator
algorithm and those which require the event-driven algorithm. FEach subsystem block is
then iterated to solution, with the interfaces between analog nodes and event-driven nodes
iterated for consistency across the entire system. Once stable values are obtained for all
nodes in the system, the analysis halts and the results may be displayed or printed out as
you request them. The difference between DC and Swept DC analyses is that the latter
involves multiple DC analyses performed by “sweeping” a particular input across a given
range of values. Running a swept DC analysis is equivalent to running multiple DC analyses
separately, changing the value of an input slightly for each run.

Transient analysis is an extension of DC analysis to the time domain. A transient analysis
begins by obtaining a DC solution to provide a point of departure for simulating time-
varying behavior. Once the DC solution is obtained, the time-dependent aspects of the
system are reintroduced, and the two simulator algorithms incrementally solve for the time-
varying behavior of the entire system. Inconsistancies in node values are resolved by the
two simulation algorithms such that the time-dependent waveforms created by the analysis
are consistent across the entire simulated time interval. Resulting time-varying descriptions
of node behavior for the specified time interval are accessible to you.

AC analysis is limited to analog nodes and represents the small signal, sinusoidal solution
of the analog system described at a particular frequency or set of frequencies. This analysis

17

Execution Procedures XSPICE Simulator
Circuit Description Syntax Software User’'s Manual

is similar to the DC analysis in that it represents the steady-state behavior of the described
system with a single input node at a given set of stimulus frequencies. The input stimulus
is incrementally swept across a given frequency interval, and the magnitude and phase
responses of the system are calculated at each frequency. Results of the analysis include
magnitude and phase values for each analog node in the system as a result of the single
input stimulus.

3.3 Circuit Description Syntax

If you are using the ATESSE system, you will enter most of the information about a circuit
through graphical means, and the ATESSE Simulator Interface will automatically handle
the translation of the graphical schematic into the XSPICE simulator’s circuit description
input language. Because of this, the circuit description language used by the simulator will
rarely be visible to you unless you are developing models or need to examine error messages
output by the simulator.

If you need to debug a simulation, if you are planning to develop your own models, or if
you are using the XSPICE simulator through the Nutmeg user interface, you will need to
become familiar with the circuit description language.

The previous sections presented example circuit description input files. The following sec-
tions provide more detail on XSPICE circuit descriptions with particular emphasis on the
syntax for creating and using models. First, the language and syntax of the SPICE3 sim-
ulator are described and references to additional information are given. Next, XSPICE
extensions to the SPICE3 syntax are detailed. Finally, various enhancements to SPICE op-
eration are discussed including polynomial sources, arbitrary phase sources, supply ramping,
matrix conditioning, convergence options, and debugging support.

3.3.1 SPICE3 Syntax

XSPICE is built around the U.C. Berkeley SPICE3C1 simulator and derives much of its
SPICE deck syntax from that simulator. Consequently, a thorough discussion of simulator
syntax must begin with a review of SPICE3C1 syntax. An in-depth discussion of SPICE3C1
syntax may be found in the SPICE3 Version 3C1 User’s Guide (see Referenced Documents).
The following is a brief overview of the SPICE3C1 syntax designed to acquaint the new user
with its form.! Notes are included in this section describing those SPICE3C1 capabilities
that are supported by XSPICE and those that are not. If you are in doubt as to whether

"Much of the material found in this section was abstracted from the SPICE3 Version 3C1 User’s Guide,
pages 2-38.

18

XSPICE Simulator Execution Procedures
Software User’'s Manual Circuit Description Syntax

a particular SPICE3C1 feature is supported in the simulator, the following sections should
be consulted.

3.3.1.1 Analysis Modes

SPICE3C1 provides several analysis modes. Of these, DC analysis, swept DC analysis,
Transient analysis and AC small-signal analysis are currently supported in XSPICE. The DC
analysis mode of SPICE3C1 determines the DC operating point of a circuit with inductors
shorted and capacitors opened. The swept DC analysis mode of SPICE3C1 allows for
multiple DC operating point solutions to be obtained across a range of DC input voltage
values. The Transient analysis mode of SPICE3C1 computes transient output values as a
function of time over a user-specified time interval. The AC small-signal mode of SPICE3C1
computes AC output values as a function of frequency.

3.3.1.2 Input Format

The input format for the simulator is of the free format type. Fields on a card are separated
by white-space characters, which for SPICE3C1 include blanks, commas, equal signs (=),
and left or right parentheses. A card? may be continued by entering a plus (+) sign in the
first column of the following line; SPICIE3C1 continues reading beginning with column 2.

Floating point numbers and integers in SPICE3C1 may be scaled by appending one of the
following scale factors to the number:

T=1E12 G=1E9 MEG=1E6 K=1E3 MIL=25.4E-6
M=1E-3 U=1E-6 N=1E-9 P=1E-12 F=1E-15

Warning: You must use “MEG” to indicate 1E6. SPICE is case insensitive and
always interprets the single letter “M” or “m” as “milli” (1E-3). Thus, the following is the
correct way to specify a one million ohm resistor in a SPICE deck:

rlarge 0 13 1.0MEG

24card” is the traditional name for a single logical line of information in a SPICE deck. See the glossary

for more details.

19

Execution Procedures XSPICE Simulator
Circuit Description Syntax Software User’'s Manual

In contrast, the values of the resistors specified in the following lines will be interpreted
identically despite the intent of the user to specify the first resistor as one million ohms and
the second as one thousandth of an ohm:

rlarge 0 13 1.0M
rtiny 0 14 1.0m

3.3.1.3 Title, Comment and .END Cards

The title card is always the first card in a SPICE3C1 input deck. Comment cards begin
with an asterisk (*) in the first column of the line and may contain any information after
the asterisk. The .END card is always the last card in a SPICE3C1 deck. It defines the
end of the input to the simulator.

3.3.1.4 Control Cards

Table 3.1 lists SPICE3C1 control cards supported by XSPICE, along with a description
of their required form. For more detail on how each of these control cards affects the
simulation, you should refer to the SPICE3 Version 3C1 User’s Guide.

Values separated by a forward slash (/) represent groups of values, only one of which may
be selected for any single occurrence of the control card.

3.3.1.5 Element Cards
3.3.1.5.1 Element Descriptions

Table 3.2 lists standard SPICE3C1 elements supported by XSPICE, along with a description
of their required form. All SPICE3C1 model names mentioned in the SPICE3 Version 3C1

User’s Guide are supported by the ATESSE system. These include R, C, URC, D, NPN,
PNP, NJF, PJF, NMOS, PMOS, NMF, PMF, SW and CSW models. Only MOSFET level
1, 2 and 3 model types are supported.

3.3.1.5.2 The .MODEL Card

Table 3.2 lists two types of standard SPICE elements: those which may be completely
described using one logical element card (R, C, VCVS, etc.), and those which require more
than one logical element card (diode, BJT, JFET and MOSFET). The latter are declared
through the use of two cards: an instance card and a .MODEL card. This method is
generally used by transistors, etc., which require a large number of parameters.

20

XSPICE Simulator Execution Procedures

Software User’'s Manual Circuit Description Syntax
| Control Card | Form | Description |
.op .op Requests an operating point analysis.

This is the way you request a DC
analysis.
.de .dc¢ srenam start stop incr Requests a swept-DC analysis with

name of source to sweep, starting and
stopping values of sweep, and sweep
increment.

Aran tran tstep tstop Requests a transient analysis with
specified maximum timestep and
specified end time.

.ac .ac dec/oct/lin nd/no/np fstart fstop | Requests an AC analysis. First ar-
gument should be dec, oct, or lin to
specify type of sweep (dec="“decade”,
oct=“octave”, lin=“linear”). Sec-
ond argument specifies number of
points (nd=“# of points per decade”,
no="“4# of points per octave”, np="“#
of points in full linear sweep”). Third
and fourth arguments specify start-
ing and stopping frequencies of sweep
range.

.options .options optl opt2 ... (or opt=optval) | Allows you to set various simulation
options

Table 3.1 Standard SPICE3C1 Control Cards

The .MODEL card specifies a set of model parameters that will be used by one or more
elements. Individual elements are specified through the use of an instance card (refer to
the SPICE3 Version 3C1 User’s Guide for details of standard SPICE instance types which
require this method of declaring an instance). The form of a .MODEL card is as follows:

.MODEL MODELNAME TYPE(PNAME1=PVAL1l PNAME2=PVAL2...)

The MODELNAME entry on the card must agree with that specified on the instance card
that references the model. As a complete example, the following card pair completely
describes a SPICE3C1 call to an NPN transistor:

Q754 11 16 13 BJTMOD1
.MODEL BJTMOD1 NPN (IS=1.5E-16 NF=1.2 BF=175 ISE=1E-13)

The transistor instance is named “q75a”, and it is this name which distinguishes it from
another transistor. Node number “11” is the collector node of the transistor, node “16” is
the base node and “13” is the emitter node. The parameter names on the .MODEL card

21

Execution Procedures XSPICE Simulator
Circuit Description Syntax Software User’'s Manual

are specific to the SPICE BJT model, and their definition can be found in the SPICE3
Version 3C1 User’s Guide. Also in the above, the ordering of the cards is not important.
Section 3.3.3.1 describes the use of MODEL cards for code models. It will be shown that
code models use a similar syntax to that used for diodes, BJTs, JFETS, and MOSFETS
(i.e. instance and .model cards together describing an element).

Standard SPICE3C1 Elements

Type | Form
RESISTOR RXXXXXXX N1 N2 VALUE
CAPACITOR CXXXXXXX N+ N- VALUE
INDUCTOR LXXXXXXX N+ N- VALUE
DIODE DXXXXXXX N+ N- MODELNAME
BIPOLAR TRANSISTOR | QXXXXXXX NC NB NE <Ns> MODELNAME1
JUNCTION FET JXXXXXXX ND NG NS MODELNAMEI1
MOSFET MXXXXXXX ND NG NS NB MODELNAME
VOLTAGE SOURCE VXXXXXXX N+ N- <<DC> DC/TRANSIENT VALUE> <AC

<ACMAG <ACPHASE>>>

VXXXXXXX N+ N- PULSE(VINITTAL, VFINAL, TD, TR, TF,
PW, PER)

VXXXXXXX N4+ N- SIN(OFFSET, AMPL, FREQ, TD,
DAMPFAC)

VXXXXXXX N+ N- EXP(VINITIAL, VFINAL, TDRISE, TAU-
RISE, TDFALL, TAUFALL)

VXXXXXXX N+ N- PWL(T1 V1 <T2 V2 T3 V3...>)

VXXXXXXX N+ N- SFFM(OFFSET, AMPL,
FCARRIER,MODINDEX FSIGNAL)
CURRENT SOURCE IXXXXXXX N+ N- <<DC> DC/TRANSIENT VALUE> <AC

<ACMAG <ACPHASE>>>

IXXXXXXX N+ N- PULSE(IINITIAL, IFINAL, TD, TR, TF,
PW, PER)

IXXXXXXX N+ N- SIN(OFFSET, AMPL, FREQ, TD,
DAMPFAC)

IXXXXXXX N+ N- EXP(IINITTAL, IFINAL, TDRISE, TAU-
RISE, TDFALL, TAUFALL)

IXXXXXXX N+ N- PWL(TI 11 <T2 12 T3 13...>)

IXXXXXXX N+ N- SFFM(OFFSET, AMPL, FCARRIER,
MODINDEX, FSIGNAL)

VCVS EXXXXXXX N+ N- NC+ NC- VALUE
CCOS FXXXXXXX N+ N- VNAM VALUE
VCCS GXXXXXXX N+ N- NC+ NC- VALUE
CCVS HXXXXXXX N+ N- VNAM VALUE

In the above, values bounded by angle brackets (<>) are considered optional.

Table 3.2 Standard SPICE3C1 Elements

22

XSPICE Simulator Execution Procedures
Software User’'s Manual Circuit Description Syntax

3.3.1.5.3 Subcircuit Cards

A subcircuit that consists of SPICE3C1 elements can be defined and referenced in a fashion
similar to device models. The subcircuit is defined in the input deck by a grouping of element
cards delimited by the .SUBCKT and the .ENDS cards; the program then automatically
inserts the defined group of elements wherever the subcircuit is referenced. Instances of
subcircuits within a larger circuit are defined through the use of an instance card which
begins with the letter “X”. A complete example of all three of these cards follows:

* The following is the instance card: *
XDIV1 10 7 O VDIVIDE

* The following are the subcircuit definition cards: *
.SUBCKT VDIVIDE 1 2 3
R1 1 2 10K
R2 2 3 5K
.ENDS

The above specifies a subcircuit with ports numbered “17, “2” and “3”. Resistor “R1” is
connected from port “1” to port “2”, and has value 10 Kohms. Resistor “R2” is connected
from port “2” to port “3”, and has value 5 Kohms. The instance card, when placed in a
SPICE deck, will cause subcircuit port “1” to be equated to circuit node “10”, while port
“2” will be equated to node “7” and port “3” will equated to node “07.

3.3.2 XSPICE Syntax Extensions

In the preceding discussion, SPICE3C1 syntax was reviewed, and those features of SPICE3C1
that are specifically supported by the XSPICE simulator were enumerated. In addition to
these features, there exist extensions to the SPICE3C1 capabilities that provide much more
flexibility in describing and simulating a circuit. The following sections describe these ca-
pabilities, as well as the syntax required to make use of them.

3.3.2.1 Code Model Element & .MODEL Cards

XSPICE includes a library of predefined “Code Models” that can be placed within any
circuit description in a manner similar to that used to place standard SPICE3C1 device
models. Code model instance cards always begin with the letter “A”, and always make use
of a . MODEL card to describe the code model desired. Section 3.4 of this document goes into
greater detail as to how a code model similar to the predefined models may be developed, but
once any model is created and linked into the simulator it may be placed using one instance
card and one .MODEL card (note here we conform to the SPICE custom of referring to

23

Execution Procedures XSPICE Simulator
Circuit Description Syntax Software User’'s Manual

a single logical line of information as a “card”). As an example, the following uses the
predefined “gain” code model which takes as an input some value on node 1, multiplies it
by a gain of 5.0, and outputs the new value to node 2. Note that, by convention, input
ports are specified first on code models. Output ports follow the inputs.

al 1 2 amp
.model amp gain(gain=5.0)

In this example the numerical values picked up from single-ended (i.e. ground referenced)
input node 1 and output to single-ended output node 2 will be voltages, since in the Interface
Specification File for this code model (i.e., gain), the default port type is specified as a
voltage (more on this later). However, if you didn’t know this, the following modifications
to the instance card could be used to insure it:

al %v(1) %v(2) amp
.model amp gain(gain=5.0)

The specification “%v” preceding the input and output node numbers of the instance card
indicate to the simulator that the inputs to the model should be single-ended voltage values.
Other possibilities exist, as described later.

Some of the other features of the instance and .MODEL cards are worth noting. Of partic-
ular interest is the portion of the MODEL card which specifies gain=5.0. This portion of
the card assigns a value to a parameter of the “gain” model. There are other parameters
which can be assigned values for this model, and in general code models will have several.
In addition to numeric values, code model parameters can take non-numeric values (such
as TRUE and FALSE), and even vector values. All of these topics will be discussed at
length in the following pages. In general, however, the instance and .MODEL cards which
define a code model will follow the abstract form described below. This form illustrates that
the number of inputs and outputs and the number of parameters which can be specified is
relatively open-ended and can be interpreted in a variety of ways (note that angle-brackets
“<” and “>” enclose optional inputs):

AXXXXXXX <%v,%i,%vd,%id,%g,%gd,%h,%hd, or %d>

+ <[> <"><Yv,%hi,%vd, %id, %g,hgd, kh,%hd, or %d><NIN1 or +NIN1 -NIN1 or "null'">
<7>, L L<NIN2.. <I> >

<4hv,%i,%vd,%id,%g,%gd,%h,%hd,%d or %vname>

<[> <~><%v,%i,%vd,%id,%g,%gd,%h,%hd, or %d><NOUT1 or +NOUT1 -NOUT1>

+ + 4+

24

XSPICE Simulator Execution Procedures
Software User’'s Manual Circuit Description Syntax

+ <7>...<NOUT2.. <]>>
+ MODELNAME

.MODEL MODELNAME MODELTYPE
+ <(PARAMNAME1= <[> VAL1 <VAL2... <]>> PARAMNAME2..>)>

Square brackets ([]) are used to enclose vector input nodes. In addition, these brackets are
used to delineate vectors of parameters.

The literal string “null”, when included in a node list, is interpreted as no connection at
that input to the model. “Null” is not allowed as the name of a model’s input or output if
the model only has one input or one output. Also, “null” should only be used to indicate
a missing connection for a code model; use on other XSPICE component is not interpreted
as a missing connection, but will be interpreted as an actual node name.

The tilde, “~”, when prepended to a digital node name, specifies that the logical value of that
node be inverted prior to being passed to the code model. This allows for simple inversion
of input and output polarities of a digital model in order to handle logically equivalent cases
and others that frequently arise in digital system design. The following example defines a
NAND gate, one input of which is inverted:

al ["1 2] 3 nandl
.model nandl d_nand (rise_delay=0.1 fall_delay=0.2)

The optional symbols %v, %i, %vd, etc. specify the type of port the simulator is to expect
for the subsequent port or port vector. The meaning of each symbol is given in Table 3.3.

25

Execution Procedures XSPICE Simulator
Circuit Description Syntax Software User’'s Manual

Port Type Modifiers

Modifier | Interpretation

%ov represents a single-ended voltage port - one node name or number
is expected for each port.

%l represents a single-ended current port - one node name or number
is expected for each port.

%g represents a single-ended voltage-input, current-output (VCCS)

port - one node name or number is expected for each port. This
type of port is automatically an input/output.

%h represents a single-ended current-input, voltage-output (CCVS)
port - one node name or number is expected for each port. This
type of port is automatically an input/output.

%d represents a digital port - one node name or number is expected for
each port. This type of port may be either an input or an output.
%vnam | represents the name of a voltage source, the current through which
is taken as an input. This notation is provided primarily in order to
allow models defined using SPICE2G6 syntax to operate properly

in XSPICE.

Yovd represents a differential voltage port - two node names or numbers
are expected for each port.

%id represents a differential current port - two node names or numbers
are expected for each port.

%ogd represents a differential VCCS port - two node names or numbers
are expected for each port.

%hd represents a differential CCVS port - two node names or numbers

are expected for each port.

Table 3.3 Port Type Modifiers

The symbols described in Table 3.3 may be omitted if the default port type for the model
is desired. Note that non-default port types for multi-input or multi-output (vector) ports
must be specified by placing one of the symbols in front of EACH vector port. On the other
hand, if all ports of a vector port are to be declared as having the same non-default type,
then a symbol may be specified immediately prior to the opening bracket of the vector. The
following examples should make this clear:

Example 1: - Specifies two differential voltage connections, one
tonodes 1 & 2, and one to nodes 3 & 4.

%vd [1 2 3 4]

26

XSPICE Simulator Execution Procedures

Software User’'s Manual Circuit Description Syntax
Example 2: - Specifies two single-ended connections to node 1 and
at node 2, and one differential connection to
nodes 3 & 4.

Yv [1 2 %vd 3 4]

Example 3: - Identical to the previous example...parenthesis
are added for additional clarity.

W [1 2 %vd(3 4)]

Example 4: - Specifies that the node numbers are to be treated in the
default fashion for the particular
model. If this model had ‘‘)v’’ as a default for this
port, then this notation would represent four single-ended
voltage connections.

[1 2 3 4]

The parameter names listed on the .MODEL card must be identical to those named in the
code model itself. The parameters for each predefined code model are described in detail in
Section 3.5. The steps required in order to specify parameters for user-defined models are
described in Section 3.4.

The following is a list of instance card and associated .MODEL card examples showing use
of predefined models within an XSPICE deck:

al 1 2 amp
.model amp gain(in_offset=0.1 gain=5.0 out_offset=-0.01)

a2 %il[1 2] 3 suml
.model suml summer(in_offset=[0.1 -0.2] in_gain=[2.0 1.0]
+ out_gain=5.0 out_offset=-0.01)

a21 %il[1 %vd(2 5) 7 10] 3 sum2
.model sum2 summer(out_gain=10.0)

27

Execution Procedures XSPICE Simulator
Circuit Description Syntax Software User’'s Manual

ab 1 2 1limith

.model 1imit5 limit(in_offset=0.1 gain=2.5 out_lower_limit=-5.0

+ out_upper_limit=5.0 limit_domain=0.10
fraction=FALSE)

a7 2 %id(4 7) xfer_cntll

.model xfer_cntll pwl(x_array=[-2.0 -1.0 2.0 4.0 5.0]

+ y_array=[-0.2 -0.2 0.1 2.0 10.0]
input_domain=0.05 fraction=TRUE)

a8 3 Ygd(6 7) switch3
.model switch3 aswitch(cntl_off=0.0 cntl_on=5.0 r_off=1e6
+ r_on=10.0 log=TRUE)

3.3.2.2 Polynomial Source Compatibility

Dependent polynomial sources available in SPICE2G6 (the version of UCB SPICE on which
the ATESSE Version 1.0 system was built) are fully supported in the XSPICE. Dependent
polynomial sources are not supported in SPICE3 but were reinstated in XSPICE to allow
existing third party models to be incorporated readily into XSPICE. Polynomial source
syntax is also supported for compatibility with the previous version of ATESSE to allow
circuit descriptions written for that system or for the SPICE2G6 simulator to operate in
XSPICE. The form used to specify these sources is shown in Table 3.4.

Dependent Polynomial Sources
Source Type | Instance Card

POLYNOMIAL VCVS | EXXXXXXX N+ N- (POLY (ND)) NCI+ NCI- P0 (P1..))
POLYNOMIAL VCCS | GXXXXXXX N+ N- (POLY (ND)) NC1+ NCI- PO (P1...)
POLYNOMIATL CCCS | FXXXXXXX N+ N- (POLY (ND)) VNAMI <VNAM2..> PO
(P1..)

POLYNOMIAL CCVS | HXXXXXXX N+ N- (POLY (ND)) VNAMI <VNAMZ2..> P0
(P1...)

Table 3.4 Dependent Polynomial Sources

3.3.2.3 General Enhancements

The following general enhancements are intended to provide better support for electronic
board-level simulation but, in general, may be viewed as enhancements which allow you to

28

XSPICE Simulator Execution Procedures
Software User’'s Manual Circuit Description Syntax

have more control over the simulation process regardless of the system simulated. These
capabilities are not provided by the SPICE3 Version 3C1 simulator.

3.3.2.3.1 Arbitrary Phase Sources

The XSPICE simulator supports arbitrary phase independent sources that output at
TIME=0.0 a value corresponding to some specified phase shift. Other versions of SPICE
use the TD (delay time) parameter to set phase-shifted sources to their time-zero value
until the delay time has elapsed. The XSPICE phase parameter is specified in degrees and
is included after the SPICE3 parameters normally used to specify an independent source.
Partial XSPICE deck examples of usage for pulse and sine waveforms are shown below:

* Phase shift is specified after Berkeley defined parameters

*# on the independent source cards. Phase shift for both of the
* following is specified as +45 degrees

*

vl 10 0.0 sin(0 1 1k 0 0 45.0)

rli 10 1k

*

v2 2 0 0.0 pulse(-1 1 0 le-5 le-5 5e-4 1le-3 45.0)

r2 2 0 1k

*

3.3.2.3.2 Initial Conditions

The simulator supports the specification of voltage and current initial conditions on ca-
pacitor and inductor models, respectively. These models are not the standard ones
supplied with SPICE3, but are in fact code models which can be substituted for
the SPICE models when realistic initial conditions are required.Partial XSPICE
deck examples of usage of these models are shown below:

This circuit contains a capacitor and an inductor with
initial conditions on them. Each of the components
has a parallel resistor so that an exponential decay
of the initial condition occurs with a time constant of
1 second.

* K K X X ¥ ¥

al 1 0 cap

.model cap capacitor (¢=1000uf ic=1)
rl1 10 1k

*

a2 2 0 ind

.model ind inductor (1=1H ic=1)
r2201.0

*

29

Execution Procedures XSPICE Simulator
Circuit Description Syntax Software User’'s Manual

3.3.2.3.3 Supply Ramping

A supply ramping function is provided by the simulator as an option to a transient analysis
to simulate the turn-on of power supplies to a board level circuit. The supply ramping
function linearly ramps the values of all independent sources and the XSPICE capacitor
and inductor code models with initial conditions toward their final value at a rate which
you define. A complete XSPICE deck example of usage of the ramptime option is shown
below:

Supply ramping option

This circuit demonstrates the use of the option
"ramptime'" which ramps independent sources and the
capacitor and inductor initial conditions from
zero to their final value during the time period
specified.

* K X X X ¥ ¥ ¥

.tran 0.1 5

.option ramptime=0.2

*

al 1 0 cap

.model cap capacitor (¢=1000uf ic=1)
rl1 10 1k

*

a2 2 0 ind

.model ind inductor (1=1H ic=1)
r2201.0

*

vli 30 1.0

r3 3 0 1k
*

i1 4 0 1e-3
r4 4 0 1k
*

v2 50 0.0 sin(0 1 0.3 00 45.0)

r5 5 0 1k
*

.end

3.3.2.3.4 Matrix Conditioning

In most SPICE-based simulators (including SPICE3C1), problems can arise with certain
circuit topologies. One of the most common problems is the absense of a DC path to ground
at some node. This may happen, for example, when two capacitors are connected in series
with no other connection at the common node or when certain code models are cascaded.
The result is an ill-conditioned or nearly singular matrix that prevents the simulation from
completing.

30

XSPICE Simulator Execution Procedures
Software User’'s Manual Circuit Description Syntax

XSPICE introduces a new “rshunt” option to help eliminate this problem. When used,
this option inserts resistors to ground at all the analog nodes in the circuit. In general,
the value of “rshunt” should be set to some very high resistance (e.g. 1000 Meg Ohms
or greater) so that the operation of the circuit is essentially unaffected, but the matrix
problems are corrected. If you should encounter a “no DC path to ground” or a “matrix
is nearly singular” error message with your circuit, you should try adding the following
.option card to your circuit description deck.

.option rshunt = 1.0el2

Usually a value of 1.0el12 is sufficient to correct the matrix problems. However, if you still
have problems, you may wish to try lowering this value to 1.0e10 or 1.0e9.

3.3.2.3.5 DC Convergence Options

The following options are provided to allow you to have more control over simulator ex-
ecution. In general, these options are useful in cases where standard simulator execution
defaults result in failure of the simulator to converge to a solution.

An option is provided by XSPICE to allow you to disable the simulator’s GMIN stepping
mode, making source stepping the default DC convergence algorithm. In addition, the
source stepping algorithm can be modified to use a variable step size to improve the conver-
gence probability for difficult circuits. Options also exist for setting the maximum number
of analog/event alternations that the simulator can use in solving a hybrid circuit, for set-
ting the number of event iterations that are allowed at an analysis point, for disallowing
alternations between the analog and event-driven simulator during a DC operating point
analysis, and for setting a limit on the absolute and relative size of steps seen by the code
models in a circuit. All of these may be of value in getting difficult circuits to converge
(although none can guarantee convergence for all cases).

In the following partial XSPICE deck example, the GMIN stepping algorithm is disabled by
setting gminsteps to zero and the number of steps to use in the source stepping algorithm is
set to 1000. In addition, the maximum number of analog/event alternations is set to 1000,
the maximum number of event iterations is set to 2000, and analog/event alternations are
enabled. The final two statements control automatic convergence assistance on code models
by establishing relative and absolute step size limits to be applied to code model inputs in
solving for the DC operating point.

*
.option gminsteps=0
.option srcsteps=1000
.option maxopalter=1000
.option maxevtiter=2000

31

Execution Procedures XSPICE Simulator
Code Models and User-Defined Nodes Software User's Manual

.option noopalter=FALSE
.option convstep=0.01
.option convabsstep=1le-6
*

3.3.2.3.6 Convergence Debugging Support

When a simulation is failing to converge, the simulator can be asked to return convergence
diagnostic information that may be useful in identifying the areas of the circuit in which
convergence problems are occurring. When running the simulator with the ATESSE SI,
these messages are included in the simulator text output. When running through the
Nutmeg user interface, these messages are written directly to the terminal.

3.3.2.3.7 Digital Nodes

Support is included for digital nodes that are simulated by an event-driven algorithm.
Because the event-driven algorithm is faster than the standard SPICE matrix solution
algorithm, and because all “digital”, “real”, “int” and User-Defined Node types make use
of the event-driven algorithm, reduced simulation time for circuits that include these models
can be anticipated compared to simulation of the same circuit using analog code models
and nodes.

3.3.2.3.8 User-Defined Nodes

Support is provided for User Defined Nodes that operate with the event-driven algorithm.
These nodes allow the passing of arbitrary data structures among models. The real and
integer node types supplied with XSPICE are actually predefined User-Defined Node types.

3.4 Code Models and User-Defined Nodes

The following sections explain the steps required to create code models and User-Defined
Nodes (UDNs) and link them into the simulator. The XSPICE simulator includes libraries
of predefined models and node types that span the analog and digital domains. These are
detailed later in this document (see Section 3.5, Predefined Code Models). However, the
real power of the XSPICE simulator is in its support for extending these libraries with new
models written by users. In order to provide this capability, XSPICE includes a “Code
Model Toolkit” that enables you to define new models and node data types to be passed
between them. These models are handled by XSPICE in a manner analogous to its handling
of SPICE devices and XSPICE Predefined Code Models.

32

XSPICE Simulator Execution Procedures
Software User's Manual Code Models and User-Defined Nodes

The basic steps required to create code models or User-Defined Nodes and link them into
the XSPICE simulator are similar. They consist of 1) creating the code model or User-
Defined Node (UDN) directory and its associated model or data files, and 2) creating a
simulator directory (or returning to the existing simulator directory) and linking the new
files into a new XSPICE simulator executable. Once the simulator executable has been
created, instances of models, can be placed into any simulator deck that describes a circuit
of interest and simulated along with all of the other components in that circuit.

3.4.1 Creating Code Models

The first step in creating a new code model within XSPICE is to create a model directory
containing a UNIX ‘Makefile” and the following template files: ‘Makefile’.

o Interface Specification File

o Model Definition File

After this, the template Interface Specification File (ifspec.ifs) is edited to define the
model’s inputs, outputs, parameters, etc. You then edit the template Model Definition
File (cfunc.mod) to include the C-language source code that defines the model behavior.
Once this is done, the files are preprocessed by the XSPICE Code Model Toolkit under the
direction of the UNIX Makefile and then compiled into object files ready to be linked into
a simulator executable.

The first step in the process of producing a code model, that of creating the model direc-
tory and the associated template files, is handled automatically. You simply execute the
“mkmoddir” command in a UNIX shell as follows:

mkmoddir <directory name>

This command creates the named directory, a “Makefile”, and the two template files if-
spec.ifs and cfunc.mod. You then edit the ifspec.ifs and cfunc.mod files to define your code
model. A complete list of the steps taken to create a model follows:

1. In a UNIX shell, execute the command “mkmoddir” to create a directory con-
taining a “Makefile” and templates for an ifspec.ifs file and a cfunc.mod file.
2. Move into the newly created directory using the UNIX command “cd”.

3. Edit the Interface Specification template file (ifspec.ifs) to specify the model’s
name, ports, parameters, and static variables.

33

Execution Procedures XSPICE Simulator
Code Models and User-Defined Nodes Software User's Manual

4. Edit the model definition template file (cfunc.mod) to include the C-language
source code that defines the model’s behavior.

5. Execute the UNIX command “make” to preprocess and compile the Interface
Specification and Model Definition files.

The Interface Specification File is a text file that describes, in a tabular format, information
needed for the code model to be properly interpreted by the simulator when it is placed
with other circuit components into a SPICE deck. This information includes such things
as the parameter names, parameter default values, and the name of the model itself. The
specific format presented to you in the Interface Specification File template must be followed
exactly, but is quite straightforward. A detailed description of the required syntax, along
with numerous examples, is included in Section 3.4.2.

The Model Definition File contains a C programming language function definition. This
function specifies the operations to be performed within the model on the data passed to it
by the simulator. Special macros are provided that allow the function to retrieve input data
and return output data. Similarly, macros are provided to allow for such things as storage
of information between iteration timepoints and sending of error messages. Section 3.4.3
describes the form and function of the Model Definition File in detail and lists the support
macros provided within the simulator for use in code models.

3.4.2 Creating User-Defined Nodes

In addition to providing the capability of adding new models to the simulator, a facility
exists which allows node types other than those found in standard SPICE to be created.
Models may be constructed which pass information back and forth via these nodes. Such
models are constructed in the manner described in the previous sections, with appropriate
changes to the Interface Specification and Model Definition Files.

Because of the need of electrical engineers to have ready access to both digital and analog
simulation capabilities, the “digital” node type is provided as a built-in node type along with
standard SPICE analog nodes. For “digital” nodes, extensive support is provided in the form
of macros and functions so that you can treat this node type as a standard type analogous to
standard SPICE analog nodes when creating and using code models. In addition to “analog”
and “digital” nodes, the node types “real” and “int” are also provided with the simulator.
These were created using the User-Defined Node (UDN) creation facilities described below.

The first step in creating a new node type within XSPICE is to set up a node type directory
along with the appropriate template files needed. After this, the UDN Definition File
(cfunc.udn) is edited to provide the node-specific functions which will be needed to support
code models using this node type.

34

XSPICE Simulator Execution Procedures
Software User's Manual Code Models and User-Defined Nodes

The first step in the process of producing a UDN type, that of creating the UDN direc-
tory and the associated template files, is handled automatically. You simply execute the
“mkudndir” command in a UNIX shell as follows:

mkudndir <directory name>

This command creates the named directory, a “Makefile”, and the template file udnfunc.c.
You may then edit the template file as described below. A complete list of the steps
necessary to create a User-Defined Node type follows:

1. In a UNIX shell, execute the command “mkudndir” to create a directory con-
taining a “Makefile” and a template for a udnfunc.c file.

2. Move into the newly created directory using the UNIX command “cd”.

3. Edit the udnfunc.c template file to code the required C functions (see Section
3.4.4 for details).

4. Execute the UNIX command “make” to preprocess and compile the node func-
tions.

The UDN Definition File contains a set of C language functions. These functions perform
operations such as allocating space for data structures, initializing them, and comparing
them to each other. Section 3.4.4 describes the form and function of the User-Defined Node
Definition File in detail and includes an example UDN Definition File.

3.4.3 Compiling and Linking the Simulator

The concept of creating a new “version” of XSPICE whenever a code model needs to be
added is probably foreign to most users. However, the advantages gained from taking this
approach are considerable. Most mixed-mode simulators are closed systems; the set of
models they provide cannot be extended by the average user. In many cases, even the
creators of the original software are not in a position to easily add to the set of models.
Consequently, when the need arises for new models they must be defined as subcircuits
based on the built-in models.

For simple devices, the synthesis of models from the set of built-in models does not neces-
sarily lead to a degradation of simulator performance. However, if you wish to build up a
model that does not lend itself readily to such a synthesis, penalties in the form of increased
simulation time and lower modeling accuracy can result.

With this in mind, XSPICE was constructed so that you can readily add to the lowest
level of simulator functionality simply by creating a new model or User-Defined Node type

35

Execution Procedures XSPICE Simulator
Code Models and User-Defined Nodes Software User's Manual

and linking it into a new simulator executable. This process is described in the following
paragraphs.

The first step in creating a new instatnce of the XSPICE simulator is to set up a simulation
directory along with the appropriate model-list template file and User-Defined Node-list
template file. After this, the model-list template and User-Defined Node list template files
should be edited to specify the path names to directories containing the code models to be
incorporated into the simulator, and the path names to any User-Defined Node type defi-
nitions required by the simulator, respectively. Once this is done, the files are preprocessed
by the Code Model Toolkit and the executable is built.

The first step in the process of producing a working version of the simulator, that of creating
the simulator directory and the associated template files, is handled automatically for you.
You simply execute the “mksimdir” command in a UNIX shell as follows:

mksimdir <directory name>

This command creates the named directory, a “Makefile”, and the model-list and User-
Defined Node-list template files. The template files may then be edited as described below.
A complete list of the steps necessary to create a new version of the simulator follows:

1. In a UNIX shell, execute the command “mksimdir” to create a directory contain-
ing a “Makefile” and the template files for the model list file and the UDN-list
file.

2. Move into the newly created directory using the UNIX command “cd”.

3. Edit the model list template file to indicate the path names to directories con-
taining the desired code models.

4. Edit the User-Defined Node list template file to indicate the path names to
directories containing the required User-Defined Node types.

5. Type “make xspice” or “make atesse xspice” to preprocess the list files, link the
specified models and node types, and create the desired simulator executable.

Making “xspice” will create a stand-alone simulator that incorporates the Nutmeg user
interface. Making “atesse xspice” creates a version of the simulator suitable for use with
the ATESSIE SI user interface.

3.4.4 Interface Specification File

The Interface Specification (IFS) file is a text file that describes the model’s naming infor-
mation, its expected input and output ports, its expected parameters, and any variables

36

XSPICE Simulator

Software User's Manual

Execution Procedures

Code Models and User-Defined Nodes

within the model that are to be used for storage of data across an entire simulation. These
four types of data are described to the simulator in IFS file sections labeled NAME_TABLE,
PORT_TABLE, PARAMETER_TABLE and STATIC_VAR_TABLE, respectively. An ex-
ample IF'S file is given below. The example is followed by detailed descriptions of each of
the entries, what they signify, and what values are acceptable for them. Keywords are case
insensitive.

NAME_TABLE:

C_Function_Name: ucm_xfer

Spice_Model_Name: xfer

Description: "arbitrary transfer function"
PORT_TABLE:

Port_Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,1,1id] [v,vd,1,1id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:
Parameter_Name:

num_coeff

Description: "numerator polynomial coefficients"
Data_Type: real

Default_Value: -

Limits: -

Vector: yes

Vector_Bounds: [1 -]

Null_Allowed: no

PARAMETER_TABLE:

Parameter_Name: den_coeff

Description:
Data_Type:
Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

"denominator polynomial coefficients"
real

yes
[1 -]

no

37

Execution Procedures XSPICE Simulator
Code Models and User-Defined Nodes Software User's Manual

PARAMETER_TABLE:

Parameter_Name: int_ic

Description: "integrator stage initial conditions"
Data_Type: real

Default_Value: 0.0

Limits: -

Vector: yes

Vector_Bounds: den_coeff

Null_Allowed: yes

STATIC_VAR_TABLE:

Static_Var_Name: X
Data_Type: pointer
Description: "x-coefficient array"

3.4.4.1 The Name Table

The name table is introduced by the “Name_Table:” keyword. It defines the code model’s
C function name, the name used on a .MODEL card, and an optional textual description.
The following sections define the valid fields that may be specified in the Name Table.

3.4.4.1.1 C Function Name

The C function name is a valid C identifier which is the name of the function for the
code model. It is introduced by the “C_Function_Name:” keyword followed by a valid C
identifier. To reduce the chance of name conflicts, it is recommended that user-written code
model names use the prefix “uem_” for this entry. Thus, in the example given above, the
model name is “xfer”, but the C function is “ucm _xfer”. Note that when you subsequently
write the model function in the Model Definition File, this name must agree with that of
the function (i.e., “ucm_xfer”), or an error will result in the linking step.

3.4.4.1.2 SPICE Model Name

The SPICE model name is a valid SPICE identifier that will be used on SPICE .MODEL
cards to refer to this code model. It may or may not be the same as the C function name.
It is introduced by the “Spice_Model _Name:” keyword followed by a valid SPICE identifier.

3.4.4.1.3 Description

The description string is used to describe the purpose and function of the code model. It is
introduced by the “Description:” keyword followed by a C string literal.

38

XSPICE Simulator Execution Procedures
Software User's Manual Code Models and User-Defined Nodes

3.4.4.2 The Port Table

The port table is introduced by the “Port_Table:” keyword. It defines the set of valid ports
available to the code model. The following sections define the valid fields that may be
specified in the port table.

3.4.4.2.1 Port Name

The port name is a valid SPICE identifier. It is introduced by the “Port Name:” keyword
followed by the name of the port. Note that this port name will be used to obtain and
return input and output values within the model function. This will be discussed in more
detail in the next section.

3.4.4.2.2 Description

The description string is used to describe the purpose and function of the code model. It is
introduced by the “Description:” keyword followed by a C string literal.

3.4.4.2.3 Direction

The direction of a port specifies the dataflow direction through the port. A direction must
be one of “in”, “out”, or “inout”. It is introduced by the “Direction:” keyword followed by
a valid direction value.

3.4.4.2.4 Default Type

The Default _Type field specifies the type of a port. These types are identical to those used
to define the port types on a SPICE deck instance card (see Table 3.2), but without the
percent sign (%) preceding them. Table 3.5 summarizes the allowable types.

3.4.4.2.5 Allowed Types

A port must specify the types it is allowed to assume. An allowed type value must be a list
of type names (a blank or comma separated list of names delimited by square brackets, e.g.
“[vvd iid]” or “[d]”). The type names must be taken from those listed in Table 3.5.

3.4.4.2.6 Vector

A port which is a vector can be thought of as a bus. The Vector field is introduced with the
“Vector:” keyword followed by a boolean value: “YES”, “TRUE”, “NO” or “FALSE”.

39

Execution Procedures XSPICE Simulator
Code Models and User-Defined Nodes Software User's Manual

Default Types
Type | Description | Valid Directions
d digital in or out
g conductance (VCCS) inout
gd differential conductance (VCCS) | inout
h resistance (CCVS) inout
hd differential resistance (CCVS) inout
1 current in or out
id differential current in or out
v voltage in or out
vd differential voltage in or out
<identifier> | user-defined type in or out

Table 3.5 Port Types

The values “YES” and “TRUE” are equivalent and specify that this port is a vector.
Likewise, “NO” and “FALSE” specify that the port is not a vector. Vector ports must
have a corresponding vector bounds field that specifies valid sizes of the vector port.

3.4.4.2.7 Vector Bounds

If a port is a vector, limits on its size must be specified in the vector bounds field. The
Vector Bounds field specifies the upper and lower bounds on the size of a vector. The
Vector Bounds field is usually introduced by the “Vector_Bounds:” keyword followed by
a range of integers (e.g. “[1 7]” or “[3, 20]”). The lower bound of the vector specifies
the minimum number of elements in the vector; the upper bound specifies the maximum
number of elements. If the range is unconstrained, or the associated port is not a vector, the
vector bounds may be specified by a hyphen (“-”). Using the hyphen convention, partial
constraints on the vector bound may be defined (e.g., “[2, -]” indicates that the least number
of port elements allowed is two, but there is no maximum number).

3.4.4.2.8 Null Allowed

In some cases, it is desirable to permit a port to remain unconnected to any electrical
node in a circuit. The Null_Allowed field specifies whether this constitutes an error for a
particular port. The Null_Allowed field is introduced by the “Null_Allowed:” keyword and
is followed by a boolean constant: “YES”, “TRUE”, “NO” or “FALSE”. The values “YES”
and “TRUE” are equivalent and specify that it is legal to leave this port unconnected.
“NO” or “FALSE” specify that the port must be connected.

40

XSPICE Simulator Execution Procedures
Software User's Manual Code Models and User-Defined Nodes

3.4.4.3 The Parameter Table

The parameter table is introduced by the “Parameter_Table:” keyword. It defines the set of
valid parameters available to the code model. The following sections define the valid fields
that may be specified in the parameter table.

3.4.4.3.1 Parameter Name

The parameter name is a valid SPICE identifier which will be used on SPICE .MODEL
cards to refer to this parameter. It is introduced by the “Parameter Name:” keyword

followed by a valid SPICE identifier.

3.4.4.3.2 Description

The description string is used to describe the purpose and function of the parameter. It is
introduced by the “Description:” keyword followed by a string literal.

3.4.4.3.3 Data Type

The parameter’s data type is specified by the Data Type field. The Data Type field is
introduced by the keyword “Data_Type:” and is followed by a valid data type. Valid data
types include boolean, complex, int, real, and string.

3.4.4.3.4 Null Allowed

The Null_Allowed field is introduced by the “Null_Allowed:” keyword and is followed by a
boolean literal. A value of “TRUE” or “YES” specify that it is valid for the corresponding
SPICE .MODEL card to omit a value for this parameter. If the parameter is omitted, the
default value is used. If there is no default value, an undefined value is passed to the code
model, and the PARAM_NULL() macro will return a value of “TRUE” so that defaulting
can be handled within the model itself. If the value of Null_Allowed is “FALSE” or “NO”,
then the simulator will flag an error if the SPICE .MODEL card omits a value for this
parameter.

3.4.4.3.5 Default Value

If the Null_Allowed field specifies “TRUE” for this parameter, then a default value may be
specified. This value is supplied for the parameter in the event that the SPICE .MODEL
card does not supply a value for the parameter. The default value must be of the correct
type. The Default Value field is introduced by the “Default_Value:” keyword and is followed
by a numeric, boolean, complex, or string literal, as appropriate.

41

Execution Procedures XSPICE Simulator
Code Models and User-Defined Nodes Software User's Manual

3.4.4.3.6 Limits

Integer and real parameters may be constrained to accept a limited range of values. The
following range syntax is used whenever such a range of values is required. A range is
specified by a square bracket followed by a value representing a lower bound separated by
space from another value representing an upper bound and terminated with a closing square
bracket (e.g.“[0 10]”). The lower and upper bounds are inclusive. Either the lower or the
upper bound may be replaced by a hyphen (“-”) to indicate that the bound is unconstrained
(e.g. “[10 -]” is read as “the range of values greater than or equal to 10”). For a totally
unconstrained range, a single hyphen with no surrounding brackets may be used. The
parameter value limit is introduced by the “Limits:” keyword and is followed by a range.

3.4.4.3.7 Vector

The Vector field is used to specify whether a parameter is a vector or a scalar. Like the
PORT_TABLE Vector field, it is introduced by the “Vector:” keyword and followed by a
boolean value. “TRUE” or “YES” specify that the parameter is a vector. “FALSE” or
“NO” specify that it is a scalar.

3.4.4.3.8 Vector Bounds

The valid sizes for a vector parameter are specified in the same manner as are port sizes
(see Section 3.4.4.2.7). However, in place of using a numeric range to specify valid vector
bounds it is also possible to specify the name of a port. When a parameter’s vector bounds
are specified in this way, the size of the vector parameter must be the same as the associated
vector port.

3.4.4.4 Static Variable Table

The Static Variable table is introduced by the “Static_Var_Table:” keyword. It defines the
set of valid static variables available to the code model. These are variables whose values are
retained between successive invocations of the code model by the simulator. The following
sections define the valid fields that may be specified in the Static Variable Table.

3.4.4.4.1 Name

The Static variable name is a valid C identifier that will be used in the code model to refer
to this static variable. It is introduced by the “Static_Var_Name:” keyword followed by a
valid C identifier.

42

XSPICE Simulator Execution Procedures
Software User's Manual Code Models and User-Defined Nodes

3.4.4.4.2 Description

The description string is used to describe the purpose and function of the static variable.
It is introduced by the “Description:” keyword followed by a string literal.

3.4.4.4.3 Data Type

The static variable’s data type is specified by the Data Type field. The Data Type field is
introduced by the keyword “Data_Type:” and is followed by a valid data type. Valid data
types include boolean, complex, int, real, string and pointer.

Note that pointer types are used to specify vector values; in such cases, the allocation of
memory for vectors must be handled by the code model through the use of the malloc()
or calloc() C function. Such allocation must only occur during the initialization cycle of
the model (which is identified in the code model by testing the INIT macro for a value of
TRUE). Otherwise, memory will be unnecessarily allocated each time the model is called.

Following is an example of the method used to allocate memory to be referenced by a static
pointer variable “x” and subsequently use the allocated memory. The example assumes
that the value of “size” is at least 2, else an error would result. The references to STATIC_
VAR(x) that appear in the example illustrate how to set the value of, and then access, a
static variable named “x”. In order to use the variable “x” in this manner, it must be
declared in the Static Variable Table of the code model’s Interface Specification File.

/* Define local pointer variable */
double #*local_x;

/* Allocate storage to be referenced by the static variable x. */
/* Do this only if this is the initial call of the code model. */
if (INIT == TRUE) {

STATIC_VAR(x) = calloc(size, sizeof(double));
}

/* Assign the value from the static pointer value to the local */
/* pointer variable. */
local_x = STATIC_VAR(x);

/* Assign values to first two members of the array */

local_x[0] = 1.234;
local_x[1] = 5.678;

43

Execution Procedures XSPICE Simulator
Code Models and User-Defined Nodes Software User's Manual

3.4.5 Model Definition File

The Model Definition File is a C source code file that defines a code model’s behavior given
input values which are passed to it by the simulator. The file itself is always given the
name “cfunc.mod”. In order to allow for maximum flexibility, passing of input, output,
and simulator-specific information is handled through accessor macros, which are described
below. In addition, certain predefined library functions (e.g. smoothing interpolators,
complex arithmetic routines) are included in the simulator in order to ease the burden of
the code model programmer. These are also described below.

3.4.5.1 Macros

The use of the accessor macros is illustrated in the following example. Note that the
argument to most accessor macros is the name of a parameter or port as defined in the
Interface Specification File. Note also that all accessor macros except “ARGS” resolve to
an lvalue (C language terminology for something that can be assigned a value). Accessor
macros do not implement expressions or assignments.

void code_model(ARGS) /* private structure accessed by
accessor macros */

{

/* The following code fragments are intended to show how */
/* information in the argument list is accessed. The reader */
/* should not attempt to relate one fragment to another. */
/* Consider each fragment as a separate example. */

double p, /# variable for use in the following code fragments */
X, /% variable for use in the following code fragments */
y; /% variable for use in the following code fragments */

int i; /# indexing variable for use in the following */
j; /% indexing variable for use in the following */

UDN_Example_Type *a_ptr, /* A pointer used to access a User-
Defined Node type */

y_ptr; / A pointer used to access a User-
Defined Node type */

/* Initializing and outputting a User-Defined Node result */
if (INIT) {
OUTPUT(y) = malloc(sizeof(user_defined_struct));
y_ptr = QUTPUT(y);
y_ptr->componentl =
y_ptr->component2 =

0.0;
0.0;

H

44

XSPICE Simulator Execution Procedures
Software User's Manual Code Models and User-Defined Nodes

else {
y_ptr = OUTPUT(y);
y_ptr->componentl = x1;
y_ptr->component2 = x2;

/* Determining analysis type */
if (ANALYSIS == AC) {

/* Perform AC analysis-dependent operations here */

/* Accessing a parameter value from the .model card */
p = PARAM(gain);

/* Accessing a vector parameter from the .model card */
for(i = 0; 1 < PARAM_SIZE(in_offset); i++)
p = PARAM(in_offset[i]);

/* Accessing the value of a simple real-valued input */
x = INPUT(a);

/* Accessing a vector input and checking for null port */
if (! PORT_NULL(a))

for(i = 0; 1 < PORT_SIZE(a); i++)
x = INPUT(alil);

/* Accessing a digital input */
x = INPUT(a);

/* Accessing the value of a User-Defined Node input... */
/* This node type includes two elements in its definition. */
a_ptr = INPUT(a);

x = a_ptr—->componentl;

y = a_ptr—->component2;

/* Outputting a simple real-valued result */
OUTPUT (out1) = 0.0;

/* Outputting a vector result and checking for null */
if (! PORT_NULL(a))
for(i = 0; i < PORT_SIZE(a); i++)
OUTPUT(alil) = 0.0;

45

Execution Procedures XSPICE Simulator
Code Models and User-Defined Nodes Software User's Manual

/* Outputting the partial of output outl w.r.t. input a */
PARTIAL(outl,a) = PARAM(gain);

/* Outputting the partial of output out2(i) w.r.t. input b(j) */
for(i = 0; i < PORT_SIZE(out2); i++) {
for(j = 0; j < PORT_SIZE(b); j++) {
PARTIAL(out2[i],b[j1) = 0.0;
}
}

/* Outputting gain from input ¢ to output out3 in an AC analysis */
complex_gain.real = 1.0;

complex_gain.imag = 0.0;

AC_GAIN(out3,c) = complex_gain;

/* Outputting a digital result */
OUTPUT_STATE (out4) = ONE;

/* Outputting the delay for a digital or user-defined output */
OUTPUT_DELAY (out5) = 1.0e-9;

3.4.5.1.1 Macro Definitions

The full set of accessor macros is listed below. Arguments shown in parenthesis are examples
only. Explanations of the accessor macros are provided in the subsections below.

Circuit Data:

ARGS

CALL_TYPE

INIT

ANALYSIS
FIRST_TIMEPOINT
TIME

T(n)

RAD_FREQ
TEMPERATURE

Parameter Data:
PARAM(gain)
PARAM_SIZE(gain)
PARAM_NULL(gain)

46

XSPICE Simulator Execution Procedures
Software User's Manual Code Models and User-Defined Nodes

Port Data:
PORT_SIZE(a)
PORT_NULL(a)
LOAD(a)
TOTAL_LOAD(a)

Input Data:
INPUT(a)
INPUT_STATE(a)
INPUT_STRENGTH(a)

Output Data:
OUTPUT (y)
OUTPUT _CHANGED (a)
OUTPUT_DELAY(y)
OUTPUT_STATE(a)
OUTPUT_STRENGTH(a)

Partial Derivatives:
PARTIAL(y,a)

AC Gains:
AC_GAIN(y,a)

Static Variable:
STATIC_VAR(x)

3.4.5.1.2 Circuit Data

ARGS

CALL_TYPE

INIT

ANALYSIS
FIRST_TIMEPOINT
TIME

T(n)

RAD_FREQ
TEMPERATURE

ARGS is a macro which is passed in the argument list of every code model. It is there to
provide a way of referencing each model to all of the remaining macro values. It must be

47

Execution Procedures XSPICE Simulator
Code Models and User-Defined Nodes Software User's Manual

present in the argument list of every code model; it must also be the only argument present
in the argument list of every code model.

CALL_TYPE is a macro which returns one of two possible symbolic constants. These
are EVENT and ANALOG. Testing may be performed by a model using CALL_TYPE to
determine whether it is being called by the analog simulator or the event-driven simulator.
This will, in general, only be of value to a hybrid model such as the adc_bridge or the
dac_bridge.

INIT is an integer (int) that takes the value 1 or 0 depending on whether this is the first
call to the code model instance or not, respectively.

ANALYSIS is an enumerated integer that takes values of DC, AC, or TRANSIENT.

FIRST_TIMEPOINT is an integer that takes the value 1 or 0 depending on whether this is
the first call for this instance at the current analysis step (i.e., timepoint) or not, respectively.

TIME is a double representing the current analysis time in a transient analysis.

T(n) is a double vector giving the analysis time for a specified timepoint in a transient
analysis, where n takes the value 0 or 1. T(0) is equal to TIME. T(1) is the last accepted
timepoint. (T(0) - T(1)) is the timestep (i.e., the delta-time value) associated with the
current time.

RAD_FREQ is a double representing the current analysis frequency in an AC analysis
expressed in units of radians per second.

TEMPERATURE is a double representing the current analysis temperature.

3.4.5.1.3 Parameter Data

PARAM(gain)
PARAM_SIZE(gain)
PARAM_NULL(gain)

PARAM(gain) resolves to the value of the scalar (i.e., non-vector) parameter “gain” which
was defined in the Interface Specification File tables. The type of “gain” is the type given
in the ifspec.ifs file. The same accessor macro can be used regardless of type. If “gain” is
a string, then PARAM(gain) would resolve to a pointer. PARAM(gain[n]) resolves to the
value of the nth element of a vector parameter “gain”.

PARAM_SIZE(gain) resolves to an integer (int) representing the size of the “gain” vector
(which was dynamically determined when the SPICE deck was read). PARAM_SIZE(gain)
is undefined if gain is a scalar.

PARAM_NULL(gain) resolves to an integer with value 0 or 1 depending on whether a value
was specified for gain, or whether the value is defaulted, respectively.

48

XSPICE Simulator Execution Procedures
Software User's Manual Code Models and User-Defined Nodes

3.4.5.1.4 Port Data

PORT_SIZE(a)
PORT_NULL(a)
LOAD(a)
TOTAL_LOAD(a)

(1)

PORT_SIZE(a) resolves to an integer (int) representing the size of the “a” port (which was
dynamically determined when the SPICE deck was read). PORT_SIZE(a) is undefined if

gain is a scalar.

PORT_NULL(a) resolves to an integer (int) with value 0 or 1 depending on whether the
SPICE deck has a node specified for this port, or has specified that the port is null, respec-
tively.

LOAD(a) is used in a digital model to post a capacitive load value to a particular input
or output port during the INIT pass of the simulator. All values posted for a particular
event-driven node using the LOAD() macro are summed, producing a total load value which

TOTAL_LOAD(a) returns a double value which represents the total capacitive load seen
on a specified node to which a digital code model is connected. This information may be
used after the INIT pass by the code model to modify the delays it posts with its output
states and strengths. Note that this macro can also be used by non-digital event-driven

code models (see LOAD(), above).

3.4.5.1.5 Input Data

INPUT(a)
INPUT_STATE(a)
INPUT_STRENGTH(a)

INPUT(a) resolves to the value of the scalar input “a” that was defined in the Interface
Specification File tables (“a” can be either a scalar port or a port value from a vector; in
the latter case, the notation used would be “a[i]”, where is the index value for the port).
The type of “a” is the type given in the ifspec.ifs file. The same accessor macro can be used

@
1

regardless of type.

INPUT_STATE(a) resolves to the state value defined for digital node types. These will be
one of the symbolic constants ZERO, ONE, or UNKNOWN.

INPUT_STRENGTH(a) resolves to the strength with which a digital input node is being
driven. This is determined by a resolution algorithm which looks at all outputs to a node
and determines its final driven strength. This value in turn is passed to a code model when
requested by this macro. Possible strength values are:

49

Execution Procedures XSPICE Simulator
Code Models and User-Defined Nodes Software User's Manual

STRONG
RESISTIVE
HILIMPEDANCE
UNDETERMINED

= W N =

3.4.5.1.6 Output Data

OUTPUT (y)

OUTPUT _CHANGED (a)
OUTPUT_DELAY(y)
OUTPUT_STATE(a)
OUTPUT_STRENGTH(a)

OUTPUT(y) resolves to the value of the scalar output “y” that was defined in the Interface
Specification File tables. The type of “y” is the type given in the ifspec.ifs file. The same
accessor macro can be used regardless of type. If “y” is a vector, then OUTPUT(y) would
resolve to a pointer.

OUTPUT_CHANGED(a) may be assigned one of two values for any particular output from
a digital code model. If assigned the value TRUE (the default), then an output state,
strength and delay must be posted by the model during the call. If, on the other hand, no
change has occurred during that pass, the OUTPUT_CHANGED(a) value for an output
can be set to FALSE. In this case, no state, strength or delay values need subsequently
be posted by the model. Remember that this macro applies to a single output port. If a
model has multiple outputs that have not changed, OUTPUT_CHANGED(a) must be set
to FALSE for each of them.

OUTPUT_DELAY(y) may be assigned a double value representing a delay associated with
a particular digital or User-Defined Node output port. Note that this macro must be set
for each digital or User-Defined Node output from a model during each pass, unless the
OUTPUT_CHANGED(a) macro is invoked (see above). Note also that a non-zero
value must be assigned to OUTPUT_DELAY(). Assigning a value of zero (or a
negative value) will cause an error.

OUTPUT_STATE(a) may be assigned a state value for a digital output node. Valid values
are ZERO, ONE, and UNKNOWN. This is the normal way of posting an output state from
a digital code model.

OUTPUT_STRENGTH(a) may be assigned a strength value for a digital output node. This
is the normal way of posting an output strength from a digital code model. Valid values
are:

50

XSPICE Simulator Execution Procedures
Software User's Manual Code Models and User-Defined Nodes

STRONG
RESISTIVE
HILIMPEDANCE
UNDETERMINED

H~ W N

3.4.5.1.7 Partial Derivatives

PARTIAL(y,a)
PARTIAL(y[n],a)
PARTIAL(y,a[m])
PARTIAL(y[n],a[m])

PARTIAL(y,a) resolves to the value of the partial derivative of scalar output “y” with
respect to scalar input “a”. The type is always double since partial derivatives are only
defined for nodes with real valued quantities (i.e., analog nodes).

The remaining uses of PARTIAL are shown for the cases in which either the output, the
input, or both are vectors.

Partial derivatives are required by the simulator to allow it to solve the non-linear equations
that describe circuit behavior for analog nodes. Since coding of partial derivatives can
become difficult and error-prone for complex analog models, you may wish to consider using
the cm_analog_auto_partial() code model support function instead of using this macro.

3.4.5.1.8 AC Gains

AC_GAIN(y,a)
AC_GAIN(y[n],a)
AC_GAIN(y,a[m])
AC_GAIN(y[n],alm])

AC_GAIN(y,a) resolves to the value of the AC analysis gain of scalar output “y” from scalar
input “a”. The type is always a structure (“Complex_t”) defined in the standard code model

header file:

typedef struct Complex_s {
double real; /* The real part of the complex number */
double imag; /* The imaginary part of the complex number */
} Complex_t;

The remaining uses of AC_GAIN are shown for the cases in which either the output, the
input, or both are vectors.

51

Execution Procedures XSPICE Simulator
Code Models and User-Defined Nodes Software User's Manual

3.4.5.1.9 Static Variables

STATIC_VAR(X)

STATIC_VAR(x) resolves to an lvalue or a pointer which is assigned the value of some
scalar code model result or state defined in the Interface Spec File tables, or a pointer to a
value or a vector of values. The type of “x” is the type given in the Interface Specification
File. The same accessor macro can be used regardless of type since it simply resolves to an
lvalue. If “x” is a vector, then STATIC_VAR(x) would resolve to a pointer. In this case,
the code model is responsible for allocating storage for the vector and assigning the pointer

to the allocated storage to STATIC_VAR(x).

3.4.5.1.10 Accessor Macros

Table 3.6 describes the accessor macros available to the Model Definition File programmer
and their C types. The PARAM and STATIC_VAR macros, whose types are labeled CD
(context dependent), return the type defined in the Interface Specification File. Arguments
listed with “[i]” take an optional square bracket delimited index if the corresponding port
or parameter is a vector. The index may be any C expression - possibly involving calls to
other accessor macros (e.g., “OUTPUT (out [PORT_SIZE(out)-11)")

3.4.5.2 Function Library
3.45.2.1 Overview

Aside from the accessor macros, the simulator also provides a library of functions callable
from within code models. The header file containing prototypes to these functions is au-
tomatically inserted into the Model Definition File for you. The complete list of available
functions follows:

Smoothing Functions:
void cm_smooth_corner
void cm_smooth_discontinuity
double cm_smooth_pwl

Model State Storage Functions:
void *cm_analog_alloc
void *cm_event_alloc
void *cm_analog_get_ptr
void *cm_event_get_ptr

52

XSPICE Simulator

Software User's Manual

Execution Procedures

Code Models and User-Defined Nodes

| Name | Type | Args | Description

AC_GAIN Complex_t y[i],x[i] | AC gain of output y with respect to input x

ANALYSIS enum <none> | Type of analysis: DC, AC, TRANSIENT

ARGS Mif_Private_t <none> | Standard argument to all code model functions

CALL_TYPE enum <none> | Type of model evaluation call: ANALOG or EVENT

INIT Boolean_t <none> | Is this the first call to the model?

INPUT double or void * | namel[i] | Value of analoginput port, or value of structure pointer
for User-Defined Node port.

INPUT_STATE enum nameli State of a digital input: ZERO, ONE, or UNKNOWN.

INPUT_STRENGTH enum nameli Strength of digital input: STRONG, RESISTIVE,
HIIMPEDANCE, or UNDETERMINED

INPUT_TYPE char * nameli The port type of the input

LOAD double nameli The digital load value placed on a port by this model.

MESSAGE char * nameli A message output by a model on an event-driven node.

ouTPUT double or void * | nameli Value of the analog output port or value of structure
pointer for User-Defined Node port.

OUTPUT_CHANGED Booleant name[i] | Has a new value been assigned to this event-driven out-
put by the model?

OUTPUT_DELAY double nameli Delay in seconds for an event-driven output

OUTPUT_STATE enum nameli State of a digital output: ZERO, ONE, or UNKNOWN.

OUTPUT_STRENGTH | enum nameli Strength of digital output: STRONG, RESISTIVE,
HIIMPEDANCE, or UNDETERMINED

OUTPUT_TYPE char * nameli The port type of the output

PARAM CD nameli Value of the parameter

PARAM_NULL Boolean_t nameli Was the parameter not included on the SPICE .model
card?

PARAM_SIZE int name Size of parameter vector

PARTIAL double y[i],x[i] | Partial derivative of output y with respect to input x

PORT_NULL Mif_Boolean_t name Has this port been specified as unconnected?

PORT_SIZE int name Size of port vector

RAD_FREQ double <none> | Current analysis frequency in radians per second

STATIC_VAR CD name Value of an static variable

STATIC_VAR_SIZE int name Size of static var vector (currently unused).

T(n) int index Current and previous analysis times (T(0) = TIME =
current analysis time, T(1) = previous analysis time)

TEMPERATURE double <none> | Current analysis temperature

TIME double <none> | Current analysis time (same as T(0))

TOTAL_LOAD double name[i] | The total of all loads on the node attached to this event-
driven port.

Table 3.6 Accessor Macros

53

Execution Procedures

Code Models and User-Defined Nodes

Integration and Convergence Functions:
int cm_analog_integrate
int cm_analog_converge
void cm_analog_not_converged
void cm_analog_auto_partial
double cm_analog_ramp_factor

Message Handling Functions:
char *cm_message_get_errmsg
void cm_message_send

Breakpoint Handling Functions:
int cm_analog_set_temp_bkpt
int cm_analog_set_perm_bkpt
int cm_event_queue

Special Purpose Functions:
void cm_climit_fcn
double cm_netlist_get_c
double cm_netlist_get_1

Complex Math Functions:
complex_t cm_complex_set
complex_t cm_complex_add
complex_t cm_complex_sub
complex_t cm_complex_mult
complex_t cm_complex_div

3.4.5.2.2 Smoothing Functions

void cm_smooth_corner (x_input, x_center, y_center, domain,
lower_slope, upper_slope, y_output, dy_dx)

double x_input; /* The value of the x input */

double x_center; /* The x intercept of the two slopes */
double y_center; /* The y intercept of the two slopes */
double domain; /* The smoothing domain */

double lower_slope; /* The lower slope */
double upper_slope; /* The upper slope */
double *y_output; /* The smoothed y output */
double *dy_dx; /* The partial of y wrt x */

54

XSPICE Simulator

Software User's Manual

XSPICE Simulator Execution Procedures
Software User's Manual Code Models and User-Defined Nodes

void cm_smooth_discontinuity(x_input, x_lower, y_lower, x_upper, y_upper
y_output, dy_dx)

double x_input; /* The x value at which to compute y */
double x_lower; /* The x value of the lower corner */
double y_lower; /* The y value of the lower corner */
double x_upper; /* The x value of the upper corner */
double y_upper; /* The y value of the upper corner */
double *y_output; /* The computed smoothed y value */
double *dy_dx; /* The partial of y wrt x */

double cm_smooth_pwl(x_input, x, y, size, input_domain, dout_din)

double x_input; /* The x input value */

double *x; /* The vector of x values */

double *y; /* The vector of y values */

int size; /* The size of the xy vectors */

double input_domain; /* The smoothing domain */

double *dout_din; /* The partial of the output wrt the input */

cm_smooth_corner() automates smoothing between two arbitrarily-sloped lines that meet
at a single center point. You specify the center point (x_center, y_center), plus a domain
(x-valued delta) above and below x_center. This defines a smoothing region about the
center point. Then, the slopes of the meeting lines outside of this smoothing region are
specified (lowerslope, upper_slope). The function then interpolates a smoothly-varying
output (*y_output) and its derivative (*dy_dx) for the x_input value. This function helps
to automate the smoothing of piecewise-linear functions, for example. Such smoothing aids
the simulator in achieving convergence.

cm_smooth_discontinuity() allows you to obtain a smoothly-transitioning output (*y_output)
that varies between two static values (y_lower, y_upper) as an independent variable (x_input)
transitions between two values (x_lower, x_upper). This function is useful in interpolating
between resistances or voltage levels that change abruptly between two values.

cm_smooth_pwl() duplicates much of the functionality of the predefined pwl code model.
The cm_smooth_pwl() takes an input value plus x-coordinate and y-coordinate vector values
along with the total number of coordinate points used to describe the piecewise linear
transfer function and returns the interpolated or extrapolated value of the output based on
that transfer function. More detail is available by looking at the description of the pwl code
model. Note that the output value is the function’s returned value.

55

Execution Procedures XSPICE Simulator
Code Models and User-Defined Nodes Software User's Manual

3.4.5.2.3 Model State Storage Functions
void *cm_analog_alloc(tag, size)

int tag; /* The user-specified tag for this block of memory */
int size; /* The number of bytes to allocate */

void *cm_event_alloc(tag, size)

int tag; /* The user-specified tag for the memory block */
int size; /* The number of bytes to be allocated */

void *cm_analog_get_ptr(tag, timepoint)

int tag; /* The user-specified tag for this block of memory */
int timepoint; /* The timepoint of interest - O=current l=previous */

void *cm_event_get_ptr(tag, timepoint)

int tag; /* The user-specified tag for the memory block */
int timepoint; /* The timepoint - O=current, l=previous */

*cm_analog_alloc() and *cm_event_alloc() allow you to allocate storage space for analog
and event-driven model state information. The storage space is not static, but rather,
like the T(n) accessor macro information (see section 3.4.3.2), represents a storage vector
of two values which rotate with each accepted simulator timepoint evaluation. This is
explained more fully below. The “tag” parameter allows you to specify an integer tag when
allocating space. This allows more than one rotational storage location per model to be
allocated. The “size” parameter specifies the size in bytes of the storage (computed by the
C language “sizeof()” operator). Both *cm_analog_alloc() and *cm_event_alloc() return a
generic pointer to allocated space. The former should be used by an analog model; the
latter should be used by an event-driven model.

*cm_analog_get_ptr() and *cm_event_get_ptr() retrieve the pointer location of previously-
allocated rotational storage space. The functions take the integer “tag” used to allocate the
space, and an integer from 0 to 1 which specifies the timepoint with which the desired state
variable is associated (e.g. timepoint = 0 will retrieve the address of storage for the current
timepoint; timepoint = 1 will retrieve the address of storage for the last accepted timepoint).
Note that once a model is exited, storage to the current timepoint state storage
location (i.e., timepoint = 0) will, upon the next timepoint iteration, be rotated
to the previous location (i.e., timepoint = 1). When rotation is done, a copy of the
old “timepoint = 07 storage value is placed in the new “timepoint = 0”7 storage location.
Thus, if a value does not change for a particular iteration, specific writing to “timepoint =
0” storage is not required. These features allow a model coder to constantly know which
piece of state information is being dealt with within the model function at each timepoint.

56

XSPICE Simulator Execution Procedures
Software User's Manual Code Models and User-Defined Nodes

3.4.5.2.4 Integration and Convergence Functions

int cm_analog_integrate(integrand, integral, partial)

double integrand; /* The integrand */
double *integral; /* The current and returned value of integral */
double *partial; /* The partial derivative of integral wrt integrand */

int cm_analog_converge(state)

double *state; /* The state to be converged */
void cm_analog_not_converged()
void cm_analog_auto_partial ()

double cm_ramp_factor()

cm_analog_integrate takes as input the integrand (the input to the integrator) and produces
as output the integral value and the partial of the integral with respect to the integrand.
The integration itself is with respect to time, and the pointer to the integral value must
have been previously allocated using *cm_analog_alloc(). This is required because of the
need for the integrate routine itself to have access to previously-computed values of the
integral.

cm_analog_converge() takes as an input the address of a state variable that was previously
allocated using *cm_analog_alloc(). The function itself serves to notify the simulator that
for each timestep taken, that variable must be iterated upon until it converges.

cm_analog_not_converged() is a function that can and should be called by an analog model
whenever it performs internal limiting of one or more of its inputs to aid in reaching con-
vergence. This causes the simulator to call the model again at the current timepoint and
continue solving the circuit matrix. A new timepoint will not be attempted until the code
model returns without calling the cm_analog not_converged() function. For circuits which
have trouble reaching a converged state (often due to multiple inputs changing too quickly
for the model to react in a reasonable fashion), the use of this function is virtually manda-
tory.

cm_analog_auto_partial() may be called at the end of a code model function in lieu of
calculating the values of partial derivatives explicitly in the function. When this function
is called, no values should be assigned to the PARTIAL macro since these values will be
computed automatically by the simulator. The automatic calculation of partial derivatives
can save considerable time in designing and coding a model, since manual computation of
partial derivatives can become very complex and error-prone for some models. However,
the automatic evaluation may also increase simulation run time significantly. Function
cm_analog_auto_partial() causes the model to be called N additional times (for a model

57

Execution Procedures XSPICE Simulator
Code Models and User-Defined Nodes Software User's Manual

with N inputs) with each input varied by a small amount (1le-6 for voltage inputs and le-12
for current inputs). The values of the partial derivatives of the outputs with respect to the
inputs are then approximated by the simulator through divided difference calculations.

cm_analog_ramp_factor() will then return a value from 0.0 to 1.0, which indicates whether
or not a ramp time value requested in the SPICE analysis deck (with the use of .option
ramptime=<duration>) has elapsed. If the RAMPTIME option is wused, then
cm_analog_ramp _factor returns a 0.0 value during the DC operating point solution and a
value which is between 0.0 and 1.0 during the ramp. A 1.0 value is returned after the ramp
is over or if the RAMPTIME option is not used. This value is intended as a multiplication
factor to be used with all model outputs which would ordinarily experience a “power-up”
transition. Currently, all sources within the simulator are automatically ramped to the
“final” time-zero value if a RAMPTIME option is specified.

3.4.5.2.5 Message Handling Functions
char *cm_message_get_errmsg()
int cm_message_send(char *msg)

char *msg; /* The message to output. */
g g p

*cm_message_get_errmsg() is a function designed to be used with other library functions to
provide a way for models to handle error situations. More specifically, whenever a library
function which returns type “int” is executed from a model, it will return an integer value,
n. If this value is not equal to zero (0), then an error condition has occurred (likewise,
functions which return pointers will return a NULL value if an error has occurred). At
that point, the model can invoke *cm_message_get_errmsg to obtain a pointer to an error
message. This can then in turn be displayed to the user or passed to the simulator interface
through the cm_message_send() function. The C code required for this is as follows:

err = cm_analog_integrate(in, &out, &dout_din);

if (err) \{
cm_message_send(cm_message_get_errmsg()) ;

\}

else \{ ...

cm_message_send() sends messages to either the standard output screen or to the simulator
interface, depending on which is in use.

58

XSPICE Simulator Execution Procedures
Software User's Manual Code Models and User-Defined Nodes

3.4.5.2.6 Breakpoint Handling Functions
int cm_analog_set_perm_bkpt (time)

double time; /* The time of the breakpoint to be set */
int cm_analog_set_temp_bkpt (time)

double time; /* The time of the breakpoint to be set */
int cm_event_queue(time)

double time; /* The time of the event to be queued */

cm_analog_set_perm_bkpt() takes as input a time value. This value is posted to the analog
simulator algorithm and is used to force the simulator to choose that value as a breakpoint
at some time in the future. The simulator may choose as the next timepoint a value less
than the input, but not greater. Also, regardless of how many timepoints pass before the
breakpoint is reached, it will not be removed from posting. Thus, a breakpoint is guaranteed
at the passed time value. Note that a breakpoint may also be set for a time prior to the
current time, but this will result in an error if the posted breakpoint is prior to the last
accepted time (i.e., T(1)).

cm_analog_set_temp_bkpt() takes as input a time value. This value is posted to the simulator
and is used to force the simulator, for the next timestep only, to not exceed the passed time
value. The simulator may choose as the next timepoint a value less than the input, but
not greater. In addition, once the next timestep is chosen, the posted value is removed
regardless of whether it caused the break at the given timepoint. This function is useful in
the event that a timepoint needs to be retracted after its first posting in order to recalculate
a new breakpoint based on new input data (for controlled oscillators, controlled one-shots,
etc), since temporary breakpoints automatically “go away” if not reposted each timestep.
Note that a breakpoint may also be set for a time prior to the current time, but this will
result in an error if the posted breakpoint is prior to the last accepted time (i.e., T(1)).

cm_event_queue() is similar to cm_analog_set_perm_bkpt(), but functions with event-driven
models. When invoked, this function causes the model to be queued for calling at the
specified time. All other details applicable to cm_analog set_perm_bkpt() apply to this
function as well.

59

Execution Procedures XSPICE Simulator
Code Models and User-Defined Nodes Software User's Manual

3.4.5.2.7 Special Purpose Functions

void cm_climit_fcn(in, in_offset, cntl_upper, cntl_lower, lower_delta, upper_delta,
limit_range, gain, fraction, out_final, pout_pin_final,
pout_pcntl_lower_final, pout_pcntl_upper_final)

double in, /* The input value */

double in_offset, /* The input offset */

double cntl_upper, /* The upper control input value */

double cntl_lower, /* The lower control input value */

double lower_delta, /* The delta from control to limit value */
double upper_delta, /* The delta from control to limit value */
double limit_range, /* The limiting range */

double gain, /* The gain from input to output */

int percent, /* The fraction vs. absolute range flag */
double #*out_final, /* The output value */

double *pout_pin_final, /* The partial of output wrt input */

double *pout_pcntl_lower_final, /* The partial of output wrt lower control input */
double *pout_pcntl_upper_final) /* The partial of output wrt upper control input */

double cm_netlist_get_c O

double cm_netlist_get_1 ()

cm_climit_fen() is a very specific function that mimics the behavior of the climit code model
(see the Predefined Models section). In brief, the cm_climit_fen() takes as input an “in”
value, an offset, and controlling upper and lower values. Parameter values include delta
values for the controlling inputs, a smoothing range, gain, and fraction switch values. Out-
puts include the final value, plus the partial derivatives of the output with respect to signal
input, and both control inputs. These all operate identically to the similarly-named inputs

and parameters of the climit model.

The function performs a limit on the “in” value, holding it to within some delta of the
controlling inputs, and handling smoothing, etc. The cm_climit_fen() was originally used
in the ilimit code model to handle much of the primary limiting in that model, and can be
used by a code model developer to take care of limiting in larger models that require it. See
the detailed description of the climit model for more in-depth description.

cm_netlist_get_c() and cm_netlist_get_I() functions search the analog circuitry to which their
input is connected, and total the capacitance or inductance, respectively, found at that
node. The functions, as they are currently written, assume they are called by a model
which has only one single-ended analog input port.

60

XSPICE Simulator Execution Procedures
Software User's Manual Code Models and User-Defined Nodes

3.4.5.2.8 Complex Math Functions

Complex_t cm_complex_set (real_part, imag_part)

double real_part; /* The real part of the complex number */
double imag_part; /* The imaginary part of the complex number */

Complex_t cm_complex_add (x, y)

Complex_t x; /* The first operand of x + y */
Complex_t y; /* The second operand of x + y */

Complex_t cm_complex_sub (x, y)

Complex_t x; /* The first operand of x - y */
Complex_t y; /* The second operand of x - y */

Complex_t cm_complex_mult (x, y)

Complex_t x; /* The first operand of x * y */
Complex_t y; /* The second operand of x * y */

Complex_t cm_complex_div (x, y)

Complex_t x; /* The first operand of x / y */
Complex_t y; /* The second operand of x / y */

cm_complex_set() takes as input two doubles, and converts these to a Complex_t. The
first double is taken as the real part, and the second is taken as the imaginary part of the
resulting complex value.

cm_complex_add(), cm_complex_sub(), cm_complex_mult(), and cm_complex_div() each take
two complex values as inputs and return the result of a complex addition, subtraction,
multiplication, or division, respectively.

3.4.6 User-Defined Node Definition File

The User-Defined Node Definition File (udnfunc.c) defines the C functions which imple-
ment basic operations on user-defined nodes such as data structure creation, initialization,
copying, and comparison. Unlike the Model Definition File which uses the Code Model
Preprocessor to translate Accessor Macros, the User-Defined Node Definition file is a pure
C language file. This file uses macros to isolate you from data structure definitions, but the
macros are defined in a standard header file (EVTudn.h), and translations are performed
by the standard C Preprocessor.

When a directory is created for a new User-Defined Node with ‘mkudndir’, a structure of
type ’Evt_Udn_Info_t’ is placed at the bottom of the User-Defined Node Definition File.

61

Execution Procedures XSPICE Simulator
Code Models and User-Defined Nodes Software User's Manual

This structure contains the type name for the node, a description string, and pointers to
each of the functions that define the node. This structure is complete except for a text
string that describes the node type. This string is stubbed out and may be edited by you
if desired.

3.4.6.1 Macros

You must code the functions described in the following section using the macros appropriate
for the particular function. You may elect whether not to provide the optional functions.

It is an error to use a macro not defined for a function. Note that a review of the sample
directories for the “real” and “int” UDN types will make the function usage clearer.

The macros used in the User-Defined Node Definition File to access and assign data values
are defined in Table 3.7. The translations of the macros and of macros used in the function
argument lists are defined in the document Interface Design Document for the XSPICE

Simulator of the Automatic Test Equipment Software Support Environment (ATESSE).

| Name | Type | Description |
MALLOCED_PTR void * Assign pointer to alloced structure to this
macro
STRUCT_PTR void * A pointer to a structure of the defined type
STRUCT_PTR_1 void * A pointer to a structure of the defined type
STRUCT_PTR_2 void * A pointer to a structure of the defined type
EQUAL Mif_Boolean_t | Assign TRUE or FALSE to this macro ac-
cording to the results of structure comparison
INPUT_STRUCT_PTR void * A pointer to a structure of the defined type
OUTPUTSTRUCT_PTR void * A pointer to a structure of the defined type
INPUT STRUCT_PTR_ARRAY void ** An array of pointers to structures of the de-
fined type
INPUT_STRUCT_PTR_ARRAY _SIZE | int The size of the array
STRUCT_-MEMBER_ID char * A string naming some part of the structure
PLOT_VAL double The value of the specified structure member
for plotting purposes
PRINT_VAL char * The value of the specified structure member
for printing purposes

Table 3.7 User-Defined Node Macros

3.4.6.2 Function Library

The functions (required and optional) that define a User-Defined Node are listed below.
For optional functions, the function “stub” can be deleted from the udnfunc.c file template
created by “mkudndir,” and the pointer in the Evt_Udn_Info_t structure can be changed to
NULL.

62

XSPICE Simulator

Execution Procedures

Software User's Manual Code Models and User-Defined Nodes

Required functions:

create

initialize

copy

compare

Allocate data structure used as inputs and outputs to
code models.

Set structure to appropriate initial value for first use as
model input.

Make a copy of the contents into created but possibly
uninitialized structure.

Determine if two structures are equal in value.

Optional functions:

dismantle
invert

resolve

plot_val

print_val

ipc_val

Free allocations inside structure (but not structure itself).
Invert logical value of structure.

Determine the resultant when multiple outputs are connected
to a node.

Output a real value for specified structure component for
plotting purposes.

Output a string value for specified structure component for
printing.

OQutput a binary representation of the structure suitable
for sending over the IPC channel.

The required actions for each of these functions are described in the following subsections.
In each function, “mkudndir” replaces the XXX with the node type name specified by you
when mkudndir is invoked. The macros used in implementing the functions are described

in a later section.

3.4.6.2.1 Function udn_XXX_create

Allocate space for the data structure defined for the User-Defined Node to pass data be-
tween models. Then assign pointer created by the storage allocator (e.g. malloc) to MAL-

LOCED_PTR.

63

Execution Procedures XSPICE Simulator
Code Models and User-Defined Nodes Software User's Manual

3.4.6.2.2 Function udn XXX _initialize

Assign STRUCT_PTR to a pointer variable of defined type and then initialize the value of
the structure.

3.4.6.2.3 Function udn XXX _compare

Asgsign STRUCT_PTR_1 and STRUCT_PTR_2 to pointer variables of the defined type.
Compare the two structures and assign either TRUE or FALSE to EQUAL.

3.4.6.2.4 Function udn_XXX_copy

Assign INPUT_STRUCT_PTR and OUTPUT_STRUCT_PTR to pointer variables of the
defined type and then copy the elements of the input structure to the output structure.
3.4.6.2.5 Function udn XXX _dismantle

Asgsign STRUCT_PTR to a pointer variable of defined type and then free any allocated
substructures (but not the structure itself!). If there are no substructures, the body of this
function may be left null.

3.4.6.2.6 Function udn_XXX_invert

Assign STRUCT_PTR to a pointer variable of the defined type, and then invert the logical
value of the structure.

3.4.6.2.7 Function udn_XXX_resolve

Asgsign INPUT STRUCT_PTR_ARRAY to a variable declared as an array of pointers of
the defined type - e.g.:

<type> **struct_array;
struct_array = INPUT_STRUCT_PTR_ARRAY;

Then, the number of elements in the array may be determined from the integer valued

INPUT_STRUCT_PTR_ARRAY _SIZE macro.
Asgsign OUTPUT_STRUCT_PTR to a pointer variable of the defined type.

Scan through the array of structures, compute the resolved value, and assign it into the
output structure.

64

XSPICE Simulator Execution Procedures
Software User's Manual Code Models and User-Defined Nodes

3.4.6.2.8 Function udn XXX _plot_val

Assign STRUCT _PTR to a pointer variable of the defined type. Then, access the member
of the structure specified by the string in STRUCT_MEMBER_ID and assign some real
valued quantity for this member to PLOT_VALUE.

3.4.6.2.9 Function udn XXX _print_val

Assign STRUCT _PTR to a pointer variable of the defined type. Then, access the member
of the structure specified by the string in STRUCT_MEMBER_ID and assign some string
valued quantity for this member to PRINT_VALUE.

If the string is not static, a new string should be allocated on each call. Do not free the
allocated strings.

3.4.6.2.10 Function udn XXX _ipc_val

Use STRUCT_PTR to access the value of the node data. Assign to IPC_VAL a bi-
nary representation of the data. Typically this can be accomplished by simply assigning
STRUCT_PTR to IPC_VAL.

Assign to [PC_VAL_SIZE an integer representing the size of the binary data in bytes.

3.4.6.3 Example UDN Definition File

The following is an example UDN Definition File which is included with the XSPICE system.
It illustrates the definition of the functions described above for a User-Defined Node type
which is included with the XSPICE system: in this case, the “int” (for “integer”) node

type.

#include "EVTudn.h"

void *malloc(unsigned) ;

K e */
void udn_int_create (CREATE_ARGS)
{
/* Malloc space for an int */
MALLOCED_PTR = malloc(sizeof (int));
¥
K e */

65

Execution Procedures XSPICE Simulator
Code Models and User-Defined Nodes Software User's Manual

void udn_int_dismantle (DISMANTLE_ARGS)

{
/* Do nothing. There are no internally malloc’ed things to dismantle */
¥
K e */
void udn_int_initialize (INITIALIZE_ARGS)
{
int *int_struct = STRUCT_PTR;
/% Initialize to zero */
*int_struct = 0;
¥
K e */
void udn_int_invert (INVERT_ARGS)
{
int *int_sgtruct = STRUCT_PTR;
/* Invert the state */
*int_struct = -(*int_struct);
¥
K e */
void udn_int_copy(COPY_ARGS)
{
int *int_from_struct = INPUT_STRUCT_PTR;
int *int_to_struct = QUTPUT_STRUCT_PTR;
/* Copy the structure */
*int_to_struct = *int_from_struct;
¥
K e */

void udn_int_resolve(RESOLVE_ARGS)
{

int **array INPUT_STRUCT_PTR_ARRAY;
OUTPUT_STRUCT_PTR;

INPUT_STRUCT_PTR_ARRAY_SIZE;

int *out

int num_struct

int sum;
int i;

/* Sum the values #*/
for(i = 0, sum = 0; i < num_struct; i++)
sum += #(array[i]);

66

XSPICE Simulator

Execution Procedures

Software User's Manual Code Models and User-Defined Nodes

/* Assign the result */
*out = sum;

¥
K e */
void udn_int_compare (COMPARE_ARGS)
{

int *int_structl = STRUCT_PTR_1;

int *int_struct2 = STRUCT_PTR_2;

/* Compare the structures */

if ((*int_structl) == (*int_struct2))

EQUAL = TRUE;
else
EQUAL = FALSE;

¥
K e */
void udn_int_plot_val (PLOT_VAL_ARGS)
{

int *int_sgtruct = STRUCT_PTR;

/* Output a value for the int struct */

PLOT_VAL = *int_struct;
¥
K e */
void udn_int_print_val (PRINT_VAL_ARGS)
{

int *int_sgtruct = STRUCT_PTR;

/* Allocate space for the printed value */

PRINT_VAL = malloc(30);

/* Print the value into the string */

sprintf (PRINT_VAL, "%8d", *int_struct);
¥
K e */
void udn_int_ipc_val (IPC_VAL_ARGS)
{

/* Simply return the structure and its size */

IPC_VAL = STRUCT_PTR;

IPC_VAL_SIZE = sizeof(int);
¥
K e */

67

Execution Procedures

Code Models and User-Defined Nodes

Evt_Udn_Info_t udn_int_info = {

l|intl| s
"integer valued data",

udn_int_create,
udn_int_dismantle,
udn_int_initialize,
udn_int_invert,
udn_int_copy,
udn_int_resolve,
udn_int_compare,
udn_int_plot_val,
udn_int_print_val,
udn_int_ipc_val

68

XSPICE Simulator

Software User's Manual

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

3.5 Predefined Code Models

3.5.1 Analog Models

The following analog models are supplied with XSPICE. The descriptions included consist
of the model Interface Specification File and a description of the model’s operation. This is
followed by an example of a simulator-deck placement of the model, including the . MODEL
card and the specification of all available parameters.

69

Execution Procedures XSPICE Simulator

Predefined Code Models Software User’'s Manual

3.5.1.1 Gain
NAME_TABLE:
C_Function_Name: cm_gain
Spice_Model_Name: gain
Description: "A simple gain block"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no

Vector_Bounds: - -
Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: in_offset gain out_offset
Description: "input offset" "gain" "output offset"
Data_Type: real real real
Default_Value: 0.0 1.0 0.0

Limits: - - -

Vector: no no no

Vector_Bounds: - - -
Null_Allowed: yes yes yes

Description: This function is a simple gain block with optional offsets on the input and the
output. The input offset is added to the input, the sum is then multiplied by the gain, and
the result is produced by adding the output offset. This model will operate in DC, AC, and
Transient analysis modes.

Example SPICE Usage:

al 1 2 amp
.model amp gain(in_offset=0.1 gain=5.0 out_offset=-0.01)

70

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

3.5.1.2 Summer

NAME_TABLE:

C_Function_Name: cm_summer
Spice_Model_Name: summer

Description: "A summer block"
PORT_TABLE:

Port Name: in out
Description: "input vector'" ‘'output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: yes no

Vector_Bounds: - -
Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: in_offset in_gain
Description: "input offset vector" "input gain vector"
Data_Type: real real

Default_Value: 0.0 1.0

Limits: - -

Vector: yes yes

Vector_Bounds: in in

Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: out_gain out_offset
Description: "output gain" "output offset"
Data_Type: real real
Default_Value: 1.0 0.0

Limits: - -

Vector: no no

Vector_Bounds: - -
Null_Allowed: yes yes

Description: This function is a summer block with 2-to-N input ports. Individual gains
and offsets can be applied to each input and to the output. Each input is added to its
respective offset and then multiplied by its gain. The results are then summed, multiplied
by the output gain and added to the output offset. This model will operate in DC, AC,
and Transient analysis modes.

71

Execution Procedures XSPICE Simulator
Predefined Code Models Software User's Manual

Example SPICE Usage:

a2 [1 2] 3 suml

.model suml summer(in_offset=[0.1 -0.2] in_gain=[2.0 1.0]
+ out_gain=5.0 out_offset=-0.01)

72

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

3.5.1.3 Multiplier

NAME_TABLE:

C_Function_Name: cm_mult
Spice_Model_Name: mult

Description: "multiplier block"
PORT_TABLE:

Port_Name: in out
Description: "input vector'" ‘'output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: in_offset in_gain
Description: "input offset vector" "input gain vector"
Data_Type: real real

Default_Value: 0.0 1.0

Limits: - -

Vector: yes yes

Vector_Bounds: in in

Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: out_gain out_offset
Description: "output gain" "output offset"
Data_Type: real real
Default_Value: 1.0 0.0

Limits: - -

Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes

Description: This function is a multiplier block with 2-to-N input ports. Individual gains
and offsets can be applied to each input and to the output. Each input is added to its
respective offset and then multiplied by its gain. The results are multiplied along with the
output gain and are added to the output offset. This model will operate in DC, AC, and
Transient analysis modes. However, in ac analysis it is important to remember that results

73

Execution Procedures XSPICE Simulator
Predefined Code Models Software User's Manual

are invalid unless only ONE INPUT of the multiplier is connected to a node which bears
an AC signal (this is exemplified by the use of a multiplier to perform a potentiometer
function: one input is DC, the other carries the AC signal).

Example SPICE Usage:
a3 [1 2 3] 4 sigmult

.model sigmult mult(in_offset=[0.1 0.1 -0.1] 1in_gain=[10.0 10.0
+ 10.0] out_gain=5.0 out_offset=0.05)

74

XSPICE Simulator

Software User's Manual

3.5.1.4 Divider

NAME_TABLE:

C_Function_Name:

Spice_Model_Name:

Description:

PORT_TABLE:

Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

cm_divide
divide
"divider block"

num
"numerator"

in

v
[v,vd,i,id,vnam]

no

no

num_offset
"numerator offset"
real

0.0

no

yes

den_offset
"denominator offset"
real

0.0

no

75

Execution Procedures

Predefined Code Models

den out
"denominator" "output"
in out
v v
[v,vd,i,id,vnam] [v,vd,i,id]
no no
no no
num_gain
"numerator gain"
real
1.0
no
yes
den_gain
"denominator gain"
real
1.0
no

Execution Procedures

Predefined Code Models

Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

XSPICE Simulator

Software User's Manual

yes yes

den_lower_limit
"denominator lower limit"
real

1.0e-10

no

yes

den_domain

"denominator smoothing domain"
real

1.0e-10

no

yes

fraction

"smoothing fraction/absolute value switch"
boolean

false

no

yes

76

XSPICE Simulator

Software User's Manual

PARAMETER_TABLE:

Parameter_Name: out_gain
Description: "output gain"
Data_Type: real
Default_Value: 1.0

Limits: -

Vector: no
Vector_Bounds: -
Null_Allowed: yes

Execution Procedures

Predefined Code Models

out_offset
"output offset"
real

0.0

no

yes

Description: This function is a two-quadrant divider. It takes two inputs; num (numerator)
and den (denominator). Divide offsets its inputs, multiplies them by their respective gains,
divides the results, multiplies the quotient by the output gain, and offsets the result. The
denominator is limited to a value above zero via a user specified lower limit. This limit is
approached through a quadratic smoothing function, the domain of which may be specified
as a fraction of the lower limit value (default), or as an absolute value. This model will
operate in DC, AC and Transient analysis modes. However, in ac analysis it is important
to remember that results are invalid unless only ONE INPUT of the divider is connected to
a node which bears an AC signal (this is exemplified by the use of the divider to perform a
potentiometer function: one input is DC, the other carries the AC signal).

Example SPICE Usage:

a4 1 2 4 divider

.model divider divide(num_offset=0.1 num_gain=2.5 den_offset=-0.1
den_gain=5.0 den_lower_limit=1e-5 den_domain=1e-6
fraction=FALSE out_gain=1.0 out_offset=0.0)

77

Execution Procedures XSPICE Simulator
Predefined Code Models Software User's Manual

3.5.1.5 Limiter

NAME_TABLE:

C_Function_Name: cm_limit
Spice_Model_Name: limit

Description: "limit block"
PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no

Vector_Bounds: - -
Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no

Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: out_lower_limit out_upper_limit
Description: "output lower limit" "output upper limit"
Data_Type: real real

Default_Value: 0.0 1.0

Limits: - -

Vector: no no

Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: limit_range
Description: "upper & lower smoothing range"
Data_Type: real

78

XSPICE Simulator Execution Procedures

Software User’s Manual Predefined Code Models
Default_Value: 1.0e-6
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: fraction

Description: "smoothing fraction/absolute value switch"
Data_Type: boolean

Default_Value: FALSE

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

Description: The Limiter is a single input, single output function similar to the Gain Block.
However, the output of the Limiter function is restricted to the range specified by the output
lower and upper limits. This model will operate in DC, AC and Transient analysis modes.

Note that the limit range is the value BELOW THE UPPER LIMIT AND ABOVE THE
LOWER LIMIT at which smoothing of the output begins. For this model, then, the
limit_range represents the delta WITH RESPECT TO THE OUTPUT LEVEL at which
smoothing occurs. Thus, for an input gain of 2.0 and output limits of 1.0 and -1.0 volts,
the output will begin to smooth out at £0.9 volts, which occurs when the input value is at

+0.4.

Example SPICE Usage:
ab 1 2 1limith

.model 1imit5 limit(in_offset=0.1 gain=2.5 out_lower_limit=-5.0
+ out_upper_limit=5.0 1limit_range=0.10 fraction=FALSE)

79

XSPICE Simulator

Software User's Manual

Execution Procedures

Predefined Code Models

3.5.1.6 Controlled Limiter

NAME_TABLE:

C_Function_Name: cm_climit

Spice_Model_Name: climit

Description: "controlled limiter block"
PORT_TABLE:

Port_Name: in cntl_upper
Description: "input" "upper lim. control input"
Direction: in in

Default_Type: v v

Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id,vnam]
Vector: no no

Vector_Bounds: - -

Null_Allowed: no no

PORT_TABLE:

Port_Name: cntl_lower out
Description: "lower limit control input"” '"output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0

Limits: - -

Vector: no no

Vector_Bounds:

80

XSPICE Simulator

Software User's Manual

Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

yes

upper_delta

"output upper delta"
real

0.0

no

yes

limit_range

"upper & lower sm. range"
real

1.0e-6

no

yes

Execution Procedures

Predefined Code Models

yes

lower_delta

"output lower delta"
real

0.0

no

yes

fraction

"smoothing %/abs switch"
boolean

FALSE

no

yes

Description: The Controlled Limiter is a single input, single output function similar to the
Gain Block. However, the output of the Limiter function is restricted to the range specified
by the output lower and upper limits. This model will operate in DC, AC, and Transient
analysis modes.

Note that the limit range is the value BELOW THE CNTL_UPPER LIMIT AND ABOVE
THE CNTL_.LOWER LIMIT at which smoothing of the output begins (minimum positive
value of voltage must exist between the CNTL_UPPER input and the CNTL_LOWER input
at all times). For this model, then, the limit_range represents the delta WITH RESPECT
TO THE OUTPUT LEVEL at which smoothing occurs. Thus, for an input gain of 2.0 and
output limits of 1.0 and -1.0 volts, the output will begin to smooth out at £0.9 volts, which
occurs when the input value is at £0.4.

Note also that the Controlled Limiter code tests the input values of cntl lower and cntl_upper
to make sure that they are spaced far enough apart to guarantee the existence of a linear
range between them. The range is calculated as the difference between (cntl_upper - up-

81

Execution Procedures XSPICE Simulator
Predefined Code Models Software User's Manual

per_delta - limit_range) and (cntl_lower + lower_delta + limit_range) and must be greater
than or equal to zero. Note that when the limit_range is specified as a fractional value, the
limit_range used in the above is taken as the calculated fraction of the difference between
cntl_upper and cntl lower. Still, the potential exists for too great a limit_range value to be
specified for proper operation, in which case the model will return an error message.

Example SPICE Usage:

a6 3 6 8 4 varlimit

.model varlimit climit(in_offset=0.1 gain=2.5 wupper_delta=0.0
+ lower_delta=0.0 limit_range=0.10 fraction=FALSE)

82

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

3.5.1.7 PWL Controlled Source

NAME_TABLE:

C_Function_Name: cm_pwl

Spice_Model_Name: pwl

Description: "piecewise linear controlled source"
PORT_TABLE:

Port_Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no

Vector_Bounds: - -
Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: x_array y_array
Description: "x-element array" "y-element array"
Data_Type: real real
Default_Value: - -

Limits: - -

Vector: yes yes
Vector_Bounds: [2 -] [2 -]
Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: input_domain fraction

Description: "input sm. domain" "smoothing /abs switch"
Data_Type: real boolean

Default_Value: 0.01 TRUE

Limits: [1e-12 0.5] -

Vector: no no

Vector_Bounds: - -

83

Execution Procedures XSPICE Simulator
Predefined Code Models Software User's Manual

Null_Allowed: yes yes

STATIC_VAR_TABLE:

Static_Var_Name: last_x_value
Data_Type: pointer
Description: "iteration holding variable for limiting"

Description: The Piece-Wise Linear Controlled Source is a single input, single output func-
tion similar to the Gain Block. However, the output of the PWIL Source is not necessarily
linear for all values of input. Instead, it follows an I/O relationship specified by you via the
x_array and y_array coordinates. This is detailed below.

The x_array and y_array values represent vectors of coordinate points on the x and y axes,
respectively. The x_array values are progressively increasing input coordinate points, and
the associated y_array values represent the outputs at those points. There may be as few
as two (x_array[n],y_array[n]) pairs specified, or as many as memory and simulation speed
allow. This permits you to very finely approximate a non-linear function by capturing
multiple input-output coordinate points.

Two aspects of the PWL Controlled Source warrant special attention. These are the han-
dling of endpoints and the smoothing of the described transfer function near coordinate
points.

In order to fully specify outputs for values of “in” outside of the bounds of the PWL
function (i.e., less than x_array[0] or greater than x_array[n], where n is the largest user-
specified coordinate index), the PWL Controlled Source model extends the slope found
between the lowest two coordinate pairs and the highest two coordinate pairs. This has
the effect of making the transfer function completely linear for “in” less than x_array[0]
and “in” greater than x_array[n]. It also has the potentially subtle effect of unrealistically
causing an output to reach a very large or small value for large inputs. You should thus
keep in mind that the PWL Source does not inherently provide a limiting capability.

In order to diminish the potential for nonconvergence of simulations when using the PWL
block, a form of smoothing around the x_array, y_array coordinate points is necessary. This
is due to the iterative nature of the simulator and its reliance on smooth first derivatives of
transfer functions in order to arrive at a matrix solution. Consequently, the “input_domain”
and “fraction” parameters are included to allow you some control over the amount and
nature of the smoothing performed.

“Fraction” is a switch that is either TRUE or FALSE. When TRUE (the default setting),
the simulator assumes that the specified input_domain value is to be interpreted as a frac-
tional figure. Otherwise, it is interpreted as an absolute value. Thus, if fraction=TRUE

84

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

and input_domain=0.10, The simulator assumes that the smoothing radius about each co-
ordinate point is to be set equal to 10% of the length of either the x_array segment above
each coordinate point, or the x_array segment below each coordinate point. The specific
segment length chosen will be the smallest of these two for each coordinate point.

On the other hand, if fraction=FALSE and input=0.10, then the simulator will begin
smoothing the transfer function at 0.10 volts (or amperes) below each x_array coordinate
and will continue the smoothing process for another 0.10 volts (or amperes) above each
x_array coordinate point. Since the overlap of smoothing domains is not allowed, checking
is done by the model to ensure that the specified input_domain value is not excessive.

One subtle consequence of the use of the fraction=TRUE feature of the PWL Controlled
Source is that, in certain cases, you may inadvertently create extreme smoothing of functions
by choosing inappropriate coordinate value points. This can be demonstrated by considering
a function described by three coordinate pairs, such as (-1,-1), (1,1), and (2,1). In this case,
with a 10% input_domain value specified (fraction=TRUE, input_domain=0.10), you would
expect to see rounding occur between in=0.9 and in=1.1, and nowhere else. On the other
hand, if you were to specify the same function using the coordinate pairs (-100,-100), (1,1)
and (201,1), you would find that rounding occurs between in=-19 and in=21. Clearly in the
latter case the smoothing might cause an excessive divergence from the intended linearity
above and below in=1.

Example SPICE Usage:

a7 2 4 xfer_cntll

.model xfer_cntll pwl(x_array=[-2.0 -1.0 2.0 4.0 5.0]
y_array=[-0.2 -0.2 0.1 2.0 10.0]
+ input_domain=0.05 fraction=TRUE)

85

XSPICE Simulator

Software User's Manual

Execution Procedures

Predefined Code Models

3.5.1.8 Analog Switch

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

cm_aswitch
aswitch

Description: "analog switch"

PORT_TABLE:

Port Name: cntl_in out

Description: "input" "resistive output"
Direction: in out

Default_Type: v gd

Allowed_Types: [v,vd,i,id] [gd]

Vector: no no

Vector_Bounds: - -

Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: cntl_off cntl_on
Description: "control ‘off’ value" “"control ‘on’ value"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -

Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: r_off log
Description: "off resistance" "log/linear switch"
Data_Type: real boolean
Default_Value: 1.0e12 TRUE

Limits: - -

Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: r_on

Description:
Data_Type:

"on resistance"
real

86

XSPICE Simulator Execution Procedures

Software User’s Manual Predefined Code Models
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The Analog Switch is a resistor that varies either logarithmically or linearly
between specified values of a controlling input voltage or current. Note that the input is
not internally limited. Therefore, if the controlling signal exceeds the specified OFF state
or ON state value, the resistance may become excessively large or excessively small (in the
case of logarithmic dependence), or may become negative (in the case of linear dependence).
For the experienced user, these excursions may prove valuable for modeling certain devices,
but in most cases you are advised to add limiting of the controlling input if the possibility
of excessive control value variation exists.

Example SPICE Usage:

a8 3 (6 7) switch3

.model switch3 aswitch(cntl_off=0.0 cntl_on=5.0 r_off=1e6
+ r_on=10.0 log=TRUE)

87

Execution Procedures XSPICE Simulator
Predefined Code Models Software User's Manual

3.5.1.9 Zener Diode

NAME_TABLE:

C_Function_Name: cm_zener
Spice_Model_Name: Zener
Description: "zener diode"
PORT_TABLE:

Port Name: z
Description: "zener"
Direction: inout
Default_Type: gd
Allowed_Types: [gd]
Vector: no

Vector_Bounds: -
Null_Allowed: no

PARAMETER_TABLE:

Parameter_Name: v_breakdown i_breakdown
Description: "breakdown voltage'" '"breakdown current"
Data_Type: real real

Default_Value: - 2.0e-2

Limits: [1.0e-6 1.0e6] [1.0e-9 -]

Vector: no no

Vector_Bounds: - -
Null_Allowed: no yes

PARAMETER_TABLE:

Parameter_Name: i_sat n_forward

Description: "saturation current" "forward emission
coefficient"

Data_Type: real real

Default_Value: 1.0e-12 1.0

Limits: [1.0e-15 -] [0.1 10]

Vector: no no

Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: limit_switch
Description: "switch for on-board limiting (convergence aid)"

88

XSPICE Simulator Execution Procedures

Software User's Manual Predefined Code Models
Data_Type: boolean
Default_Value: FALSE
Limits: -
Vector: no

Vector_Bounds: -
Null_Allowed: yes

STATIC_VAR_TABLE:

Static_Var_Name: previous_voltage
Data_Type: pointer
Description: "iteration holding variable for limiting"

Description: The Zener Diode models the DC characteristics of most zeners. This model
differs from the Diode/Rectifier by providing a user-defined dynamic resistance in the reverse
breakdown region. The forward characteristic is defined by only a single point, since most
data sheets for zener diodes do not give detailed characteristics in the forward region.

The first three parameters define the DC characteristics of the zener in the breakdown
region and are usually explicitly given on the data sheet.

The saturation current refers to the relatively constant reverse current that is produced
when the voltage across the zener is negative, but breakdown has not been reached. The
reverse leakage current determines the slight increase in reverse current as the voltage across
the zener becomes more negative. It is modeled as a resistance parallel to the zener with
value v_breakdown / i_rev.

Note that the limit_switch parameter engages an internal limiting function for the zener.
This can, in some cases, prevent the simulator from converging to an unrealistic solution if
the voltage across or current into the device is excessive. If use of this feature fails to yield
acceptable results, the convlimit option should be tried (add the following statement to the
SPICE input deck: .options convlimit)

Example SPICE Usage:

a9 3 4 vrefll

.model vref10 zener(v_breakdown=10.0 i_breakdown=0.02
+ r_breakdown=1.0 i_rev=1e-6 1i_sat=1le-12)

89

Execution Procedures

Predefined Code Models

3.5.1.10 Current Limiter

NAME_TABLE:
C_Function_Name:
Spice_Model_Name:
Description:

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:

cm_ilimit
ilimit
"current limiter block"

XSPICE Simulator

Software User's Manual

Description:
Data_Type:
Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:

Description:
Data_Type:

in pos_pwr

"input" "positive power supply"
in inout

v g

[v,vd] [g,gd]

no no

no yes

neg_pwr out
"negative power supply" "output"
inout inout

g g

[g,gdl] [g,gdl]
no no

yes no
in_offset gain

"input offset" "gain"

real real

0.0 1.0

no no

yes yes

r_out_source

"sourcing resistance"

real

90

r_out_sink
"sinking resistance"
real

XSPICE Simulator

Software User's Manual

Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:

Data_Type:
Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:

1.0
[1.0e-9 1.0e9]
no

yes

i_limit_source

"current sourcing limit"
real

[1.0e-12 -]

no

yes

i_limit_sink

"current sinking limit"
real

[1.0e-12 -]

no

yes

V_pwr_range
"upper & lower power
supply smoothing range"

real

1.0e-6

[1.0e-15 -]

no

yes

i_sink_range

Execution Procedures

Predefined Code Models

1.0
[1.0e-9 1.0e9]
no

yes

i_source_range
"sourcing current
smoothing range"
real
1.0e-9
[1.0e-15 -]
no

yes

"sinking current smoothing range"

real
1.0e-9

91

Execution Procedures XSPICE Simulator

Predefined Code Models Software User's Manual
Limits: [1.0e-15 -]
Vector: no

Vector_Bounds: -
Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: r_out_domain

Description: "internal/external voltage delta smoothing range"
Data_Type: real

Default_Value: 1.0e-9

Limits: [1.0e-15 -]

Vector: no

Vector_Bounds: -
Null_Allowed: yes

Description: The Current Limiter models the behavior of an operational amplifier or com-
parator device at a high level of abstraction. All of its pins act as inputs; three of the four
also act as outputs. The model takes as input a voltage value from the “in” connector. It
then applies an offset and a gain, and derives from it an equivalent internal voltage (veq),
which it limits to fall between pos_pwr and neg_pwr. If veq is greater than the output voltage
seen on the “out” connector, a sourcing current will flow from the output pin. Conversely,
if the voltage is less than vout, a sinking current will flow into the output pin.

Depending on the polarity of the current flow, either a sourcing or a sinking resistance value
(r-out_source, routsink) is applied to govern the vout/i_out relationship. The chosen
resistance will continue to control the output current until it reaches a maximum value
specified by either ilimit_source or ilimit_sink. The latter mimics the current limiting
behavior of many operational amplifier output stages.

During all operation, the output current is reflected either in the pos_pwr connector current
or the neg_pwr current, depending on the polarity of i_out. Thus, realistic power consump-
tion as seen in the supply rails is included in the model.

The user-specified smoothing parameters relate to model operation as follows: v_pwr_range
controls the voltage below vpos_pwr and above vneg_pwr inputs beyond which veq [= gain
* (vin + voffset)] is smoothed; i_source_range specifies the current below i_limit_source
at which smoothing begins, as well as specifying the current increment above i_out=0.0
at which i_pos_pwr begins to transition to zero; i_sink_range serves the same purpose with
respect toi_limit_sink and i_neg_pwr that i_source range serves for i_limit_source & i_pos_pwr;
rout_domain specifies the incremental value above and below (veg-vout)=0.0 at which
rout will be set to rout_source and r_out_sink, respectively. For values of (veq- vout) less
than r_out_domain and greater than -r_out_domain, r_out is interpolated smoothly between
r.out_source & r_out sink.

92

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

Example SPICE Usage:

al0 3 10 20 4 amp3

.model amp3 ilimit(in_offset=0.0 gain=16.0 r_out_source=1.0
r_out_sink=1.0 i_limit_source=le-3
i_limit_sink=10e-3 v_pwr_range=0.2
i_source_range=1e-6 1_sink_range=1e-6

+ + + +

r_out_domain=1e-6)

93

Execution Procedures

Predefined Code Models

3.5.1.11 Hysteresis Block

NAME_TABLE:
C_Function_Name:
Spice_Model_Name:
Description:

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:

cm_hyst
hyst

"hysteresis block"

in

"input"

in

v
[v,vd,i,id]

no

no

in_low

out

XSPICE Simulator

Software User's Manual

"output"

out

v

[v,vd,i,id]

no

no

"input low value"

real
0.0

no

yes

hyst
"hysteresis"
real

0.1

[0.0 -]

no

yes

out_upper_limit

"output upper limit"

real

in_high

"input high value"
real

1.0

no

yes

out_lower_limit
"output lower limit"
real

0.0

no

yes

input_domain
"input smoothing domain"
real

XSPICE Simulator Execution Procedures

Software User’s Manual Predefined Code Models
Default_Value: 1.0 0.01
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: fraction

Description: "smoothing fraction/absolute value switch"
Data_Type: boolean

Default_Value: TRUE

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

Description: The Hysteresis block is a simple buffer stage that provides hysteresis of the
output with respect to the input. The in_low and in_high parameter values specify the
center voltage or current inputs about which the hysteresis effect operates. The output
values are limited to out_lower_limit and out_upper_limit. The value of “hyst” is added
to the indow and in_high points in order to specify the points at which the slope of the
hysteresis function would normally change abruptly as the input transitions from a low to
a high value. Likewise, the value of “hyst” is subtracted from the in_high and in_low values
in order to specify the points at which the slope of the hysteresis function would normally
change abruptly as the input transitions from a high to a low value. In fact, the slope of
the hysteresis function is never allowed to change abruptly but is smoothly varied whenever
the input_domain smoothing parameter is set greater than zero.

Example SPICE Usage:

all 1 2 schmittil

.model schmittl hyst(in_low=0.7 in_high=2.4 hyst=0.5
+ out_lower_limit=0.5 out_upper_limit=3.0
+ input_domain=0.01 fraction=TRUE)

95

Execution Procedures XSPICE Simulator
Predefined Code Models Software User's Manual

3.5.1.12 Differentiator

NAME_TABLE:

C_Function_Name: cm_d_dt
Spice_Model_Name: d_dt

Description: "time-derivative block"
PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no

Vector_Bounds: - -
Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: gain out_offset
Description: "gain" "output offset"
Data_Type: real real
Default_Value: 1.0 0.0

Limits: - -

Vector: no no

Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: out_lower_limit out_upper_limit
Description: "output lower limit" ‘'"output upper limit"
Data_Type: real real

Default_Value: - -

Limits: - -

Vector: no no

Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: limit_range
Description: "upper & lower limit smoothing range"
Data_Type: real

96

XSPICE Simulator Execution Procedures

Software User’s Manual Predefined Code Models
Default_Value: 1.0e-6
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The Differentiator block is a simple derivative stage that approximates the time
derivative of an input signal by calculating the incremental slope of that signal since the
previous timepoint. The block also includes gain and output offset parameters to allow for
tailoring of the required signal, and output upper and lower limits to prevent convergence
errors resulting from excessively large output values. The incremental value of output
below the output_upper_limit and above the output_lower_limit at which smoothing begins
is specified via the limit_range parameter. In AC analysis, the value returned is equal to
the radian frequency of analysis multiplied by the gain.

Note that since truncation error checking is not included in the d_dt block, it is not rec-
ommended that the model be used to provide an integration function through the use
of a feedback loop. Such an arrangement could produce erroneous results. Instead, you
should make use of the “integrate” model, which does include truncation error checking for
enhanced accuracy.

Example SPICE Usage:

al2 7 12 slope_gen

.model slope_gen d_dt(out_offset=0.0 gain=1.0
out_lower_limit=1le-12 out_upper_limit=1el2
+ limit_range=1e-9)

97

Execution Procedures XSPICE Simulator
Predefined Code Models Software User's Manual

3.5.1.13 Integrator

NAME_TABLE:

C_Function_Name: cm_int

Spice_Model_Name: int

Description: "time-integration block"
PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no

Vector_Bounds: - -
Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no

Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: out_lower_limit out_upper_limit
Description: "output lower limit" "output upper limit"
Data_Type: real real

Default_Value: - -

Limits: - -

Vector: no no

Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: limit_range
Description: "upper & lower limit smoothing range"
Data_Type: real

98

XSPICE Simulator Execution Procedures

Software User's Manual Predefined Code Models
Default_Value: 1.0e-6
Limits: -
Vector: no

Vector_Bounds: -
Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: out_ic

Description: "output initial condition"
Data_Type: real

Default_Value: 0.0

Limits: -

Vector: no

Vector_Bounds: -
Null_Allowed: yes

Description: The Integrator block is a simple integration stage that approximates the inte-
gral with respect to time of an input signal. The block also includes gain and input offset
parameters to allow for tailoring of the required signal, and output upper and lower limits to
prevent convergence errors resulting from excessively large output values. Note that these
limits specify integrator behavior similar to that found in an operational amplifier-based in-
tegration stage, in that once a limit is reached, additional storage does not occur. Thus, the
input of a negative value to an integrator which is currently driving at the out_upper_limit
level will immediately cause a drop in the output, regardless of how long the integrator
was previously summing positive inputs. The incremental value of output below the out-
put_upper_limit and above the output_lower_limit at which smoothing begins is specified via
the limit_range parameter. In AC analysis, the value returned is equal to the gain divided
by the radian frequency of analysis.

Note that truncation error checking is included in the “int” block. This should provide
for a more accurate simulation of the time integration function, since the model will inher-
ently request smaller time increments between simulation points if truncation errors would
otherwise be excessive.

Example SPICE Usage:

al3 7 12 time_count

.model time_count int(in_offset=0.0 gain=1.0
out_lower_limit=-1el2 out_upper_limit=1el2
+ limit_range=1e-9 out_ic=0.0)

99

Execution Procedures XSPICE Simulator
Predefined Code Models Software User's Manual

3.5.1.14 S-Domain Transfer Function

NAME_TABLE:

C_Function_Name: cm_s_xfer
Spice_Model_Name: s_xfer

Description: "s-domain transfer function"
PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no

Vector_Bounds: - -
Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no

Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: num_coeff

Description: "numerator polynomial coefficients"
Data_Type: real

Default_Value: -

Limits: -

Vector: yes

Vector_Bounds: (1 -]

Null_Allowed: no

PARAMETER_TABLE:

Parameter_Name: den_coeff
Description: "denominator polynomial coefficients"
Data_Type: real

100

XSPICE Simulator

Software User's Manual

Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

Execution Procedures

Predefined Code Models

yes
[1 -]

no

int_ic

"integrator stage initial conditions"
real

0.0

yes

den_coeff

yes

denormalized_freq

"denorm. corner freq.(radians) for 1 rad/s coeffs"
real

1.0

no

yes

Description: The s-domain transfer function is a single input, single output transfer function
in the Laplace transform variable “s” that allows for flexible modulation of the frequency-
domain characteristics of a signal. The code model may be configured to produce an arbi-
trary s-domain transfer function with the following restrictions:

1. The degree of the numerator polynomial cannot exceed that
of the denominator polynomial in the variable "s'".

2. The coefficients for a polynomial must be stated

explicitly.

That is, if a coefficient is zero, it must be

included as an input to the num coeff or den coeff vector.

The order of the coefficient parameters is from that associated with the highest-powered
term decreasing to that of the lowest. Thus, for the coefficient parameters specified below,

[A9}]

the equation in “s” is shown:

101

Execution Procedures XSPICE Simulator
Predefined Code Models Software User's Manual

.model filter s_xfer(gain=0.139713 num_coeff=[1.0 0.0 0.07464102]
+ den_coeff=[1.0 0.998942 0.01170077])

...specifies a transfer function of the form...

_ . 52+0.07464102
N(s)=0.139713 52+0.09989425+0.001170077

The s-domain transfer function includes gain and input offset parameters to allow for tailor-
ing of the required signal. There are no limits on the internal signal values or on the output
value of the s-domain transfer function, so you are cautioned to specify gain and coefficient
values that will not cause the model to produce excessively large values. In AC analysis,
the value returned is equal to the real and imaginary components of the total s-domain
transfer function at each frequency of interest.

The denormalized_freq term allows you to specify coefficients for a normalized filter (i.e.
one in which the frequency of interest is 1 rad/s). Once these coefficients are included,
specifying the denormalized frequency value “shifts” the corner frequency to the actual one
of interest. As an example, the following transfer function describes a Chebyshev lowpass
filter with a corner (passhand) frequency of 1 rad/s:

_ 1.0
N(s) = 52 41.09773541.10251

In order to define an s_xfer model for the above, but with the corner frequency equal to
1500 rad/s (9425 Hz), the following instance and model lines would be needed:

al2 chebyl
.model chebyl s_xfer(num_coeff=[1] den_coeff=[1 1.09773 1.10251]
+ denormalized_freq=1500)

In the above, you add the normalized coefficients and scales the filter through the use of
the denormalized_freq parameter. Similar results could have been achieved by performing
the denormalization prior to specification of the coeflicients, and setting denormalized _freq
to the value 1.0 (or not specifying the frequency, as the default is 1.0 rad/s) Note in the
above that frequencies are ALWAYS SPECIFIED AS RADIANS/SECOND.

Truncation error checking is included in the s-domain transfer block. This should provide for
more accurate simulations, since the model will inherently request smaller time increments
between simulation points if truncation errors would otherwise be excessive.

102

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

Example SPICE Usage:

ald 9 22 cheby_LP_3KHz

.model cheby_LP_3KHz s_xfer(in_offset=0.0 gain=1.0 num_coeff=[1.0]
+ den_coeff=[1.0 1.42562 1.51620])

103

Execution Procedures

Predefined Code Models

3.5.1.15 Slew Rate Block

NAME_TABLE:
C_Function_Name:
Spice_Model_Name:
Description:

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:

XSPICE Simulator

Software User's Manual

cm_slew
slew
"A simple slew rate follower block"

in out

"input" "output"

in out

v v
[v,vd,i,id] [v,vd,i,id]
no no

no no

rise_slope

"maximum rising slope value"
real

1.0e9

no

yes

fall_slope

"maximum falling slope value"
real

1.0e9

no

yes

range
"smoothing range"
real

104

XSPICE Simulator Execution Procedures

Software User's Manual Predefined Code Models
Default_Value: 0.1
Limits: -
Vector: no

Vector_Bounds: -
Null_Allowed: yes

Description: This function is a simple slew rate block that limits the absolute slope of the
output with respect to time to some maximum or value. The actual slew rate effects of
over-driving an amplifier circuit can thus be accurately modeled by cascading the amplifier
with this model. The units used to describe the maximum rising and falling slope values
are expressed in volts or amperes per second. Thus a desired slew rate of 0.5 V/us will be
expressed as 0.5e+6, etc.

The slew rate block will continue to raise or lower its output until the difference between
the input and the output values is zero. Thereafter, it will resume following the input
signal, unless the slope again exceeds its rise or fall slope limits. The range input specifies
a smoothing region above or below the input value. Whenever the model is slewing and
the output comes to within the input + or - the range value, the partial derivative of the
output with respect to the input will begin to smoothly transition from 0.0 to 1.0. When
the model is no longer slewing (output = input), dout/din will equal 1.0.

Example SPICE Usage:
als 1 2 slewl
.model slewl slew(rise_slope=0.5e6 fall_slope=0.5e6)

105

Execution Procedures XSPICE Simulator
Predefined Code Models Software User's Manual

3.5.1.16 Inductive Coupling

NAME_TABLE:

C_Function_Name: cm_lcouple

Spice_Model_Name: lcouple

Description: "inductive coupling (for use with ’core’ model)"
PORT_TABLE:

Port_Name: 1 mmf _out

Description: "inductor" “"mmf output (in ampere-turns)"
Direction: inout inout

Default_Type: hd hd

Allowed_Types: [h,hd] [hd]

Vector: no no

Vector_Bounds: - -
Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: num_turns

Description: "number of inductor turns"
Data_Type: real

Default_Value: 1.0

Limits: -

Vector: no

Vector_Bounds: -
Null_Allowed: yes

Description: This function is a conceptual model which is used as a building block to create
a wide variety of inductive and magnetic circuit models. This function is normally used in
conjunction with the “core” model, but can also be used with resistors, hysteresis blocks,
etc. to build up systems which mock the behavior of linear and nonlinear components.

The Icouple takes as an input (on the “I” port) a current. This current value is multiplied
by the num_turns value, N, to produce an output value (a voltage value which appears
on the mmf_out port). The mmf_out acts similar to a magnetomotive force in a magnetic
circuit; when the lcouple is connected to the “core” model, or to some other resistive
device, a current will flow. This current value (which is modulated by whatever the Icouple
is connected to) is then used by the lcouple to calculate a voltage “seen” at the “1” port.
The voltage is a function of the derivative with respect to time of the current value seen at
mmf_out.

The most common use for lcouples will be as a building block in the construction of trans-
former models. To create a transformer with a single input and a single output, you would

106

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

require two lcouple models plus one “core” model. The process of building up such a
transformer is described under the description of the “core” model, below.

Example SPICE Usage:
a150 (7 0) (9 10) lcouplel
.model lcouplel lcouple(num_turns=10.0)

107

XSPICE Simulator

Software User's Manual

Execution Procedures

Predefined Code Models

3.5.1.17 Magnetic Core

NAME_TABLE:
C_Function_Name: cm_core
Spice_Model_Name: core

Description:

PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

"magnetic core"

mc
"magnetic core"
inout

gd

[g,gd]

no

no

H_array
"magnetic field array"
real

yes
[2
no

are

-]

a

""cross-sectional area'

real

no

no

108

B_array
"flux density array"
real

yes
(2 -]

no

length
"core length"
real

no

no

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

PARAMETER_TABLE:

Parameter_Name: input_domain
Description: "input sm. domain"
Data_Type: real
Default_Value: 0.01

Limits: [1e-12 0.5]
Vector: no

Vector_Bounds: -
Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: fraction

Description: "smoothing fraction/abs switch"
Data_Type: boolean

Default_Value: TRUE

Limits: -

Vector: no

Vector_Bounds: -
Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: mode

Description: "mode switch (1 = pwl, 2 = hyst)"
Data_Type: int

Default_Value: 1

Limits: [1 2]

Vector: no

Vector_Bounds: -
Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: in_low in_high
Description: "input low value" "input high value"
Data_Type: real real
Default_Value: 0.0 1.0

109

Execution Procedures

Predefined Code Models

XSPICE Simulator

Software User's Manual

Limits: - -

Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: hyst out_lower_limit
Description: "hysteresis" "output lower limit"
Data_Type: real real
Default_Value: 0.1 0.0

Limits: (o -] -

Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: out_upper_limit

Description: "output upper limit"
Data_Type: real

Default_Value: 1.0

Limits: -

Vector: no

Vector_Bounds: -
Null_Allowed: yes

Description: This function is a conceptual model which is used as a building block to create
a wide variety of inductive and magnetic circuit models. This function is almost always
expected to be used in conjunction with the “lcouple” model to build up systems which
mock the behavior of linear and nonlinear magnetic components. There are two fundamental
modes of operation for the core model. These are the pwl mode (which is the default, and
which is the most likely to be of use to you) and the hysteresis mode. These are detailed
below.

PWL Mode (mode = 1)

The core model in PWL mode takes as input a voltage which it treats as a magnetomotive
force (mmf) value. This value is divided by the total effective length of the core to pro-
duce a value for the Magnetic Field Intensity, H. This value of H is then used to find the

110

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

corresponding Flux Density, B, using the piecewise linear relationship described by you in
the H_array / B_array coordinate pairs. B is then multiplied by the cross-sectional area of
the core to find the Flux value, which is output as a current. The pertinent mathematical
equations are listed below:

H = mmf/L, where L. = Length
Here H, the Magnetic Field Intensity, is expressed in ampere-turns/meter.
B=f(H)

The B value is derived from a piecewise linear transfer function described to the model
via the (H_array[],B.array[]) parameter coordinate pairs. This transfer function does not
include hysteretic effects; for that, you would need to substitute a HYST model for the
core.

¢ = BA, where A = Area

The final current allowed to flow through the core is equal to ¢. This value in turn is
used by the “lcouple” code model to obtain a value for the voltage reflected back across its
terminals to the driving electrical circuit.

The following example code shows the use of two “lcouple” models and one core model to
produce a simple primary/secondary transformer.

Example SPICE Usage:

al (2 0) (3 0) primary
.model primary lcouple (num_turns = 155)

a2 (3 4) iron_core
.model iron_core core (H_array = [-1000 -500 -375 -250 -188 -125 -63 0O
63 125 188 250 375 500 1000]
B_array = [-3.13e-3 -2.63e-3 -2.33e-3 -1.93e-3
-1.5e-3 -6.25e-4 -2.5e-4 0
2.5e-4 6.25e-4 1.5e-3 1.93e-3 2.33e-3
2.63e-3 3.13e-3]
area = 0.01 length = 0.01)

+ + + + + o+

a3 (5 0) (4 0) secondary
.model secondary lcouple (num_turns = 310)

111

Execution Procedures XSPICE Simulator
Predefined Code Models Software User's Manual

HYSTERESIS Mode (mode = 2)

The core model in HYSTERESIS mode takes as input a voltage which it treats as a mag-
netomotive force (mmf) value. This value is used as input to the equivalent of a hysteresis
code model block. The parameters defining the input low and high values, the output low
and high values, and the amount of hysteresis are as in that model. The output from this
mode, as in PWL mode, is a current value which is seen across the mc port. An example
of the core model used in this fashion is shown below:

Example SPICE Usage:

al (2 0) (3 0) primary
.model primary lcouple (num_turns = 155)

a2 (3 4) iron_core

.model iron_core core (mode = 2 in_low=-7.0 in_high=7.0
out_lower_limit=-2.5e-4 out_upper_limit=2.5e-4

+ hyst = 2.3)

a3 (5 0) (4 0) secondary
.model secondary lcouple (num_turns = 310)

One final note to be made about the two core model nodes is that certain parameters are avail-
able in one mode, but not in the other. In particular, the in_low, in_high, out_lower_ limit,
out_upper_limit, and hysteresis parameters are not available in PWL mode. Likewise, the
H_array, B_array, area, and length values are unavailable in HYSTERESIS mode. The
input_domain and fraction parameters are common to both modes (though their behav-
ior is somewhat different; for explanation of the input_domain and fraction values for the
HYSTERESIS mode, you should refer to the hysteresis code model discussion).

112

XSPICE Simulator

Software User's Manual

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

Description:

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

3.5.1.18 Controlled Sine Wave Oscillator

cm_sine
sine

Execution Procedures

Predefined Code Models

"controlled sine wave oscillator"

cntl_in
"control input"
in

v

[v,vd,i,id]

no

no

cntl_array
"control array"
real

0.0

yes

(2 -]

no

out_low

out

"output"

out
v

[v,vd,i,id]

no

no

freq_

array

"frequency array"

real
1.0e3
[0 -]
yes
cntl_
no

"output peak low value"

real
-1.0

no

yes

113

the oscillator will output a sine wave at that frequency.

array

out_high

"output peak high value"
real

1.0

no

yes

Description: This function is a controlled sine wave oscillator with parameterizable values
of low and high peak output. It takes an input voltage or current value. This value is used
as the independent variable in the piecewise linear curve described by the coordinate points
of the cntl_array and freq_array pairs. From the curve, a frequency value is determined, and

Execution Procedures XSPICE Simulator
Predefined Code Models Software User's Manual

From the above, it is easy to see that array sizes of 2 for both the cntl_array and the
freq_array will yield a linear variation of the frequency with respect to the control input.
Any sizes greater than 2 will yield a piecewise linear transfer characteristic. For more detail,
refer to the description of the piecewise linear controlled source, which uses a similar method
to derive an output value given a control input.

Example SPICE Usage:

asine 1 2 in_sine

.model in_sine sine(cntl_array = [-1 0 5 6]

+ freq_array=[10 10 1000 1000] out_low = -5.0
out_high = 5.0)

114

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

3.5.1.19 Controlled Triangle Wave Oscillator

NAME_TABLE:

C_Function_Name: cm_triangle

Spice_Model_Name: triangle

Description: "controlled triangle wave oscillator"
PORT_TABLE:

Port Name: cntl_in out
Description: "control input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no

Vector_Bounds: - -
Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: cntl_array freq_array
Description: "control array" "frequency array"
Data_Type: real real
Default_Value: 0.0 1.0e3

Limits: - [0 -]

Vector: yes yes
Vector_Bounds: [2 -] cntl_array
Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: out_low out_high

Description: "output peak low value" "output peak high value"
Data_Type: real real

Default_Value: -1.0 1.0

Limits: - -

Vector: no no

Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: rise_duty
Description: "rise time duty cycle"
Data_Type: real

115

Execution Procedures XSPICE Simulator

Predefined Code Models Software User's Manual
Default_Value: 0.5
Limits: [1e-10 0.999999999]
Vector: no

Vector_Bounds: -
Null_Allowed: yes

Description: This function is a controlled triangle/ramp wave oscillator with parameteriz-
able values of low and high peak output and rise time duty cycle. It takes an input voltage
or current value. This value is used as the independent variable in the piecewise linear
curve described by the coordinate points of the cntl_array and freq_array pairs. From the
curve, a frequency value is determined, and the oscillator will output a triangle wave at
that frequency.

From the above, it is easy to see that array sizes of 2 for both the cntl_array and the
freq_array will yield a linear variation of the frequency with respect to the control input.
Any sizes greater than 2 will yield a piecewise linear transfer characteristic. For more detail,
refer to the description of the piecewise linear controlled source, which uses a similar method
to derive an output value given a control input.

Example SPICE Usage:

ain 1 2 rampl

.model rampl triangle(cntl_array = [-1 0 5 6]

+ freq_array=[10 10 1000 1000] out_low = -5.0
out_high = 5.0 duty_cycle = 0.9)

116

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

3.5.1.20 Controlled Square Wave Oscillator

NAME_TABLE:

C_Function_Name: cm_square

Spice_Model_Name: square

Description: "controlled square wave oscillator"
PORT_TABLE:

Port Name: cntl_in out
Description: "control input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: cntl_array freq_array
Description: "control array" "frequency array"
Data_Type: real real
Default_Value: 0.0 1.0e3

Limits: - [0 -]

Vector: yes yes
Vector_Bounds: [2 -] cntl_array
Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: out_low out_high

Description: "output peak low value" "output peak high value"
Data_Type: real real

Default_Value: -1.0 1.0

Limits: - -

Vector: no no

Vector_Bounds: - -

Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: duty_cycle rise_time
Description: "duty cycle" "output rise time"
Data_Type: real real

117

Execution Procedures XSPICE Simulator

Predefined Code Models Software User’s Manual
Default_Value: 0.5 1.0e-9
Limits: [1e-6 0.999999] -
Vector: no -
Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: fall_time
Description: "output fall time"
Data_Type: real
Default_Value: 1.0e-9

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

Description: This function is a controlled square wave oscillator with parameterizable values
of low and high peak output, duty cycle, rise time, and fall time. It takes an input voltage
or current value. This value is used as the independent variable in the piecewise linear
curve described by the coordinate points of the cntl_array and freq_array pairs. From the
curve, a frequency value is determined, and the oscillator will output a square wave at that
frequency.

From the above, it is easy to see that array sizes of 2 for both the cntl_array and the
freq_array will yield a linear variation of the frequency with respect to the control input.
Any sizes greater than 2 will yield a piecewise linear transfer characteristic. For more detail,
refer to the description of the piecewise linear controlled source, which uses a similar method
to derive an output value given a control input.

Example SPICE Usage:

ain 1 2 pulsel

.model pulsel square(cntl_array = [-1 0 5 6]

+ freq_array=[10 10 1000 1000] out_low = 0.0
out_high = 4.5 duty_cycle = 0.2
rise_time = le-6 fall_time = 2¢-6)

118

Execution Procedures

Predefined Code Models

XSPICE Simulator

Software User's Manual

3.5.1.21 Controlled One-Shot

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

cm_oneshot
oneshot

Description: "controlled one-shot"
PORT_TABLE:

Port Name: cntl_in clk
Description: "control input" "clock input"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PORT_TABLE:

Port Name: out

Description: "output"

Direction: out

Default_Type: v

Allowed_Types: [v,vd,i,id]

Vector: no

Vector_Bounds: -

Null_Allowed: no

PARAMETER_TABLE:

Parameter_Name: clk_trig

Description: "clock trigger value"
Data_Type: real

Default_Value: 0.5

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: no

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:

pos_edge_trig
"positive/negative edge trigger switch"
boolean

119

Execution Procedures XSPICE Simulator

Predefined Code Models Software User's Manual
Default_Value: TRUE
Limits: -
Vector: no

Vector_Bounds: -
Null_Allowed: no

PARAMETER_TABLE:

Parameter_Name: cntl_array pw_array
Description: "control array" "pulse width array"
Data_Type: real real

Default_Value: 0.0 1.0e-6

Limits: - [0.00 -]

Vector: yes yes

Vector_Bounds: - cntl_array
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: out_low out_high
Description: "output low value" ‘'"output high value"
Data_Type: real real

Default_Value: 0.0 1.0

Limits: - -

Vector: no no

Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: delay rise_time
Description: "output delay from trig." "output rise time"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9

Limits: - -

Vector: no no

Vector_Bounds: - -

Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: fall_time
Description: "output fall time"
Data_Type: real
Default_Value: 1.0e-9

Limits: -

120

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

Vector: -
Vector_Bounds: -
Null_Allowed: yes

Description: This function is a controlled oneshot with parameterizable values of low and
high peak output, input trigger value level, delay, and output rise and fall times. It takes
an input voltage or current value. This value is used as the independent variable in the
piecewise linear curve described by the coordinate points of the cntl_array and pw_array
pairs. From the curve, a pulse width value is determined, and the oscillator will output a
pulse of that width, delayed by the delay value, and with specified rise and fall times.

From the above, it is easy to see that array sizes of 2 for both the cntl_array and the pw_array
will yield a linear variation of the pulse width with respect to the control input. Any sizes
greater than 2 will yield a piecewise linear transfer characteristic. For more detail, refer
to the description of the piecewise linear controlled source, which uses a similar method to
derive an output value given a control input.

Example SPICE Usage:

ain 1 2 3 4 pulse2

.model pulsel oneshot(cntl_array = [-1 0 10 11]

pw_array=[le-6 le-6 le-4 le-4]

clk_trig = 0.9 pos_edge_trig = FALSE

out_low = 0.0 out_high = 4.5 duty_cycle = 0.9
rise_delay = 20.0-9 fall_delay = 35.0e-9)

+ + o+ +

121

Execution Procedures

Predefined Code Models

3.5.1.22 Capacitance Meter

NAME_TABLE:

C_Function_Name: cm_cmeter
Spice_Model_Name: cmeter

Description: "capacitance meter"
PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:

Parameter_Name: gain

Description: "gain"

Data_Type: real

Default_Value: 1.0

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

XSPICE Simulator

Software User's Manual

Description: The capacitance meter is a sensing device which is attached to a circuit node
and produces as an output a scaled value equal to the total capacitance seen on its input
multiplied by the gain parameter. This model is primarily intended as a building block for
other models which must sense a capacitance value and alter their behavior based upon it.

Example SPICE Usage:

atestl 1 2 ctest
.model ctest cmeter(gain=1.0e12)

122

XSPICE Simulator

Software User's Manual

3.5.1.23

NAME_TABLE:
C_Function_Name:
Spice_Model_Name:
Description:

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

Inductance Meter

cm_lmeter
Imeter

"inductance meter"

in

"input"

in

v
[v,vd,i,id]

no

no

gain
Ilgainll
real
1.0

no

yes

out
"output"

out

v
[v,vd,i,id]

no

no

Execution Procedures

Predefined Code Models

Description: The inductance meter is a sensing device which is attached to a circuit node
and produces as an output a scaled value equal to the total inductance seen on its input
multiplied by the gain parameter. This model is primarily intended as a building block for
other models which must sense an inductance value and alter their behavior based upon it.

Example SPICE Usage:

atest2 1 2 ltest

.model ltest lmeter(gain=1.0e6)

123

Execution Procedures XSPICE Simulator
Predefined Code Models Software User's Manual

3.5.2 Hybrid Models

The following hybrid models are supplied with XSPICE. The descriptions included below
consist of the model Interface Specification File and a description of the model’s operation.
This is followed by an example of a simulator-deck placement of the model, including the
MODEL card and the specification of all available parameters.

A note should be made with respect to the use of hybrid models for other than simple
digital-to-analog and analog-to-digital translations. The hybrid models represented in this
section address that specific need, but in the development of user-defined nodes you may
find a need to translate not only betweem digital and analog nodes, but also between real
and digital, real and int, etc. In most cases such translations will not need to be as involved
or as detailed as shown in the following.

124

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

3.5.2.1 Digital-to-Analog Node Bridge

NAME_TABLE:

C_Function_Name: cm_dac_bridge

Spice_Model_Name: dac_bridge

Description: "digital-to-analog node bridge"
PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d v
Allowed_Types: [d] [v,vd,i,id,d]
Vector: yes yes
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE: out_low

Parameter_Name: "0-valued analog output"
Description: real

Data_Type: 0.0

Default_Value: -

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

PARAMETER_TABLE: out_high

Parameter_Name: "1-valued analog output"
Description: real

Data_Type: 1.0

Default_Value: -

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

PARAMETER_TABLE: out_undef input_load
Parameter_Name: "U-valued analog output' "input load (F)"
Description: real real
Data_Type: 0.5 1.0e-12

125

Execution Procedures

Predefined Code Models

Default_Value:

XSPICE Simulator

Software User's Manual

Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE: t_rise t_fall
Parameter_Name: "rise time 0->1" "fall time 1->0"
Description: real real
Data_Type: 1.0e-9 1.0e-9
Default_Value: - -
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The dac_bridge is the first of two node bridge devices designed to allow for the
ready transfer of digital information to analog values and back again. The second device is
the adc_bridge (which takes an analog value and maps it to a digital one).

The dac_bridge takes as input a digital value from a digital node. This value by definition
may take on only one of the values “07”, “1” or “U”. The dac_bridge then outputs the value
“out_low”, “out_high” or “out_undef”, or ramps linearly toward one of these “final” values
from its current analog output level. The speed at which this ramping occurs depends on
the values of “t_rise” and “t_fall”. These parameters are interpreted by the model such that
the rise or fall slope generated is always constant.

Note that the dac_bridge includes test code in its cfunc.mod file for determining
the presence of the out_undef parameter. If this parameter is not specified by
you, and if out_high and out_low values are specified, then out_undef is assigned
the value of the arithmetic mean of out_high and out_low. This simplifies coding of
output buffers, where typically a logic family will include an out_low and out_high voltage,
but not an out_undef value.

This model also posts an input load value (in farads) based on the parameter input_load.

Example SPICE Usage:

abridgel 7 2 dacl

.model dacl dac_bridge(out_low = 0.7 out_high = 3.5 out_undef = 2.2
input_load = 5.0e-12 t_rise = 50e-9

+ f_fall = 20e-9)

126

XSPICE Simulator

Software User's Manual

Execution Procedures

Predefined Code Models

3.5.2.2 Analog-to-Digital Node Bridge

NAME_TABLE:
C_Function_Name:
Spice_Model_Name:
Description:

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:

cm_adc_bridge
adc_bridge
"analog-to-digital node bridge"

in out
"input" "output"
in out

v d
[v,vd,i,id,d] [d]

yes yes

no no
in_low

"maximum O-valued analog input"
real
1.0

no

yes

in_high

"minimum 1-valued analog input"
real

2.0

no

yes

rise_delay fall_delay
"rise delay" "fall delay"
real real

127

Execution Procedures

Predefined Code Models

Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

1.0e-9
[1.0e-12 -]
no

yes

XSPICE Simulator

Software User's Manual

1.0e-9
[1.0e-12 -]
no

yes

Description: The adc_bridge is one of two node bridge devices designed to allow for the
ready transfer of analog information to digital values and back again. The second device is
the dac_bridge (which takes a digital value and maps it to an analog one).

The adc_bridge takes as input an analog value from an analog node. This value by definition
may be in the form of a voltage, or a current. If the input value is less than or equal to
in_low, then a digital output value of “0” is generated. If the input is greater than or equal
to in_high, a digital output value of “1” is generated. If neither of these is true, then a
digital “UNKNOWN?” value is output. Note that unlike the case of the dac_bridge, no
ramping time or delay is associated with the adc_bridge. Rather, the continuous ramping
of the input value provides for any associated delays in the digitized signal.

Example SPICE Usage:

abridge2 1 8 adc_buff
.model adc_buff adc_bridge(in_low =

128

0.3 in_high = 3.5)

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

3.5.2.3 Controlled Digital Oscillator

NAME_TABLE:

C_Function_Name: cm_d_osc

Spice_Model_Name: d_osc

Description: "controlled digital oscillator"
PORT_TABLE:

Port Name: cntl_in out
Description: "control input" "output"
Direction: in out
Default_Type: v d
Allowed_Types: [v,vd,i,id] [d]
Vector: no no

Vector_Bounds: - -
Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: cntl_array freq_array
Description: "control array" "frequency array"
Data_Type: real real
Default_Value: 0.0 1.0e6

Limits: - [0 -]

Vector: yes yes
Vector_Bounds: [2 -] cntl_array
Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: duty_cycle init_phase

Description: "duty cycle" "initial phase of output"
Data_Type: real real

Default_Value: 0.5 0

Limits: [1e-6 0.999999] [-180.0 +360.0]

Vector: no no

Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real

129

Execution Procedures XSPICE Simulator

Predefined Code Models Software User’s Manual
Default_Value: 1le-9 1le-9
Limits: [0 -] [0 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The digital oscillator is a hybrid model which accepts as input a voltage or
current. This input is compared to the voltage-to-frequency transfer characteristic specified
by the cntl_array/freq_array coordinate pairs, and a frequency is obtained which represents
a linear interpolation or extrapolation based on those pairs. A digital time-varying signal
is then produced with this fundamental frequency

The output waveform, which is the equivalent of a digital clock signal, has rise and fall
delays which can be specified independently. In addition, the duty cycle and the phase of
the waveform are also variable and can be set by you.

Example SPICE Usage:

ab 1 8 var_clock

.model var_clock d_osc(cntl_array
freq_array

+ duty_cycle

+ rise_delay

[-2 -1 1 2]

[1e3 1e3 10e3 10e3]
0.4 init_phase = 180.0
10e-9 fall_delay=8e-9)

130

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

3.5.3 Digital Models

The following digital models are supplied with XSPICE. The descriptions included below
consist of an example model Interface Specification File and a description of the model’s
operation. This is followed by an example of a simulator-deck placement of the model,
including the .MODEL card and the specification of all available parameters. Note that
these models have not been finalized at this time.

Some information common to all digital models and/or digital nodes is included here. The
following are general rules which should make working with digital nodes and models more
straightforward:

1. All digital nodes are initialized to ZERO at the start of a simulation (i.e., when
INIT=TRUE). This means that a model need not post an explicit value to
an output node upon initialization if its output would normally be a ZERO
(although posting such would certainly cause no harm).

131

Execution Procedures

Predefined Code Models

3.5.3.1 Buffer

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

Description:

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

XSPICE Simulator

Software User's Manual

cm_d_buffer
d_buffer
"digital one-bit-wide buffer"

in out
"input" "output"
in out

d d

[d] [d]

no no

no no

rise_delay fall_delay
"rise delay" "fall delay"
real real
1.0e-9 1.0e-9
[1.0e-12 -] [1.0e-12 -]
no no

yes yes
input_load

"input load value (F)"

real

1.0e-12

no

yes

Description: The buffer is a single-input, single-output digital buffer which produces as
output a time-delayed copy of its input. The delays associated with an output rise and
those associated with an output fall may be different. The model also posts an input load

132

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

value (in farads) based on the parameter input_load. The output of this model does NOT,
however, respond to the total loading it sees on its output; it will always drive the output
strongly with the specified delays.

Example SPICE Usage:

a6 1 8 buffl
.model buffl d_buffer(rise_delay
+ input_load

0.5e-9 fall_delay = 0.3e-9
0.5e-12)

133

Execution Procedures

Predefined Code Models

3.5.3.2

Inverter

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

Description:

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

XSPICE Simulator

Software User's Manual

cm_d_inverter
d_inverter
"digital one-bit-wide inverter"

in out
"input" "output"
in out

d d

[d] [d]

no no

no no

rise_delay fall_delay
"rise delay" "fall delay"
real real
1.0e-9 1.0e-9
[1.0e-12 -] [1.0e-12 -]
no no

yes yes
input_load

"input load value (F)"

real

1.0e-12

no

yes

Description: The inverter is a single-input, single-output digital inverter which produces as
output an inverted, time- delayed copy of its input. The delays associated with an output
rise and those associated with an output fall may be specified independently. The model

134

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

also posts an input load value (in farads) based on the parameter input_load. The output
of this model does NOT, however, respond to the total loading it sees on its output; it will
always drive the output strongly with the specified delays.

Example SPICE Usage:

a6 1 8 invl
.model invl d_inverter(rise_delay
+ input_load

0.5e-9 fall_delay = 0.3e-9
0.5e-12)

135

Execution Procedures

Predefined Code Models

3.5.3.3 And

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

Description:

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

XSPICE Simulator

Software User's Manual

cm_d_and
d_and
"digital ‘and’ gate"

in out
"input" "output"
in out

d d

[d] [d]

yes no

[2 -1 -

no no

rise_delay fall_delay
"rise delay" "fall delay"
real real
1.0e-9 1.0e-9
[1.0e-12 -] [1.0e-12 -]
no no

yes yes
input_load

"input load value (F)"

real

1.0e-12

no

yes

Description: The digital ‘and’ gate is an n-input, single-output ‘and’ gate which produces
an active “1” value if, and only if, all of its inputs are also “1” values. If ANY of the inputs
is a “0”, the output will also be a “07; if neither of these conditions holds, the output will be

136

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

unknown. The delays associated with an output rise and those associated with an output
fall may be specified independently. The model also posts an input load value (in farads)
based on the parameter input_load. The output of this model does NOT, however, respond
to the total loading it sees on its output; it will always drive the output strongly with the
specified delays.

Example SPICE Usage:

a6 [1 2] 8 andl
.model andl d_and(rise_delay

0.5e-9 fall_delay = 0.3e-9
0.5e-12)

+ input_load

137

Execution Procedures

Predefined Code Models

3.5.3.4 Nand

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

Description:

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

parameter_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

XSPICE Simulator

Software User's Manual

cm_d_nand
d_nand
"digital ‘nand’ gate"

in out
"input" "output"
in out

d d

[d] [d]

yes no

[2 -1 -

no no

rise_delay fall_delay
"rise delay" "fall delay"
real real
1.0e-9 1.0e-9
[1.0e-12 -] [1.0e-12 -]
no no

yes yes
input_load

"input load value (F)"

real

1.0e-12

no

yes

Description: The digital ‘nand’ gate is an n-input, single-output ‘nand’ gate which produces
an active “0” value if and only if all of its inputs are “1” values. If ANY of the inputs is
a “0”, the output will be a “17”; if neither of these conditions holds, the output will be

138

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

unknown. The delays associated with an output rise and those associated with an output
fall may be specified independently. The model also posts an input load value (in farads)
based on the parameter input_load. The output of this model does NOT, however, respond
to the total loading it sees on its output; it will always drive the output strongly with the
specified delays.

Example SPICE Usage:

a6 [1 2 3] 8 nandl
.model nandl d_nand(rise_delay

0.5e-9 fall_delay = 0.3e-9
0.5e-12)

+ input_load

139

Execution Procedures

Predefined Code Models

3.5.3.5 Or

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

Description:

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

XSPICE Simulator

Software User's Manual

cm_d_or
d_or
"digital ‘or’ gate"

in out
"input" "output"
in out

d d

[d] [d]

yes no

[2 -1 -

no no

rise_delay fall_delay
"rise delay" "fall delay"
real real
1.0e-9 1.0e-9
[1.0e-12 -] [1.0e-12 -]
no no

yes yes
input_load

"input load value (F)"

real

1.0e-12

no

yes

Description: The digital ‘or’ gate is an n-input, single-output ‘or’ gate which produces an
active “1” value if at least one of its inputs is a “1” value. The gate produces a “0” value

if all inputs are “07; if neither of these two conditions holds, the output is unknown. The

140

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

delays associated with an output rise and those associated with an output fall may be
specified independently. The model also posts an input load value (in farads) based on the
parameter input_load. The output of this model does NOT, however, respond to the total

loading it sees on its output; it will always drive the output strongly with the specified
delays.

Example SPICE Usage:

a6 [1 2 3] 8 orl
.model orl d_or(rise_delay

0.5e-9 fall_delay = 0.3e-9
0.5e-12)

+ input_load

141

Execution Procedures

Predefined Code Models

3.5.3.6 Nor

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

Description:

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds
Null_Allowed:

XSPICE Simulator

Software User's Manual

cm_d_nor
d_nor
"digital ‘nor’ gate"

in out
"input" "output"
in out

d d

[d] [d]

yes no

[2 -1 -

no no

rise_delay fall_delay
"rise delay" "fall delay"
real real
1.0e-9 1.0e-9
[1.0e-12 -] [1.0e-12 -]
no no

yes yes
input_load

"input load value (F)"

real

1.0e-12

no

yes

Description: The digital ‘nor’ gate is an n-input, single-output ‘nor’ gate which produces
an active “0” value if at least one of its inputs is a “1” value. The gate produces a “0”

value if all inputs are “07; if neither of these two conditions holds, the output is unknown.

142

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

The delays associated with an output rise and those associated with an output fall may
be specified independently. The model also posts an input load value (in farads) based on
the parameter input_load. The output of this model does NOT, however, respond to the
total loading it sees on its output; it will always drive the output strongly with the specified
delays.

Example SPICE Usage:

anori2 [1 2 3 4] 8 nori2
.model norl2 d_or(rise_delay
+ input_load

0.5e-9 fall_delay = 0.3e-9
0.5e-12)

143

Execution Procedures

Predefined Code Models

3.5.3.7 Xor

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

Description:

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

XSPICE Simulator

Software User's Manual

cm_d_xor
d_xor
"digital exclusive-or gate"

in out
"input" "output"
in out

d d

[d] [d]

yes no

[2 -] -

no no

rise_delay fall_delay
"rise delay" "fall delay"
real real
1.0e-9 1.0e-9
[1.0e-12 -] [1.0e-12 -]
no no

yes yes
input_load

"input load value (F)"

real

1.0e-12

no

yes

Description: The digital ‘xor’ gate is an n-input, single-output ‘xor’ gate which produces an
active “1”7 value if an odd number of its inputs are also “1” values. The delays associated
with an output rise and those associated with an output fall may be specified independently.

144

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

The model also posts an input load value (in farads) based on the parameter input_load.
The output of this model does NOT, however, respond to the total loading it sees on its
output; it will always drive the output strongly with the specified delays. Note also that to
maintain the technology-independence of the model, any UNKNOWN input, or any floating
input causes the output to also go UNKNOWN.

Example SPICE Usage:

a9 [1 2] 8 xor3
.model xor3 d_xor(rise_delay
+ input_load

0.5e-9 fall_delay = 0.3e-9
0.5e-12)

145

Execution Procedures

Predefined Code Models

3.5.3.8 Xnor

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

Description:

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

XSPICE Simulator

Software User's Manual

cm_d_xnor
d_xnor
"digital exclusive-nor gate"

in out
"input" "output"
in out

d d

[d] [d]

yes no

[2 -1 -

no no

rise_delay fall_delay
"rise delay" "fall delay"
real real
1.0e-9 1.0e-9
[1.0e-12 -] [1.0e-12 -]
no no

yes yes
input_load

"input load value (F)"

real

1.0e-12

no

yes

Description: The digital ‘xnor’ gate is an n-input, single-output ‘xnor’ gate which produces
an active “07 value if an odd number of its inputs are also “1” values. It produces a “1”

output when an even number of “1” values occurs on its inputs. The delays associated with

146

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

an output rise and those associated with an output fall may be specified independently.
The model also posts an input load value (in farads) based on the parameter input_load.
The output of this model does NOT, however, respond to the total loading it sees on its
output; it will always drive the output strongly with the specified delays. Note also that to
maintain the technology-independence of the model, any UNKNOWN input, or any floating
input causes the output to also go UNKNOWN.

Example SPICE Usage:

a9 [1 2] 8 xnor3
.model xnor3 d_xnor(rise_delay
+ input_load

0.5e-9 fall_delay = 0.3e-9
0.5e-12)

147

XSPICE Simulator

Software User's Manual

Execution Procedures

Predefined Code Models

3.5.3.9 Tristate

NAME_TABLE:
C_Function_Name:

Spice_Model_Name:

cm_d_tristate
d_tristate

Description: "digital tristate buffer"

PORT_TABLE:

Port Name: in enable out
Description: "input" "enable" "output"
Direction: in in out
Default_Type: d d d
Allowed_Types: [d] [d] [d]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: no no no
PARAMETER_TABLE:

Parameter_Name: delay

Description: "delay"

Data_Type: real

Default_Value: 1.0e-9

Limits: [1.0e-12 -]

Vector: no

Vector_Bounds: -

Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: input_load

Description: "input load value (F)"

Data_Type: real

Default_Value: 1.0e-12

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

148

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

PARAMETER_TABLE:

Parameter_Name: enable_load
Description: "enable load value (F)"
Data_Type: real

Default_Value: 1.0e-12

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

Description: The digital tristate is a simple tristate gate which can be configured to allow
for open-collector behavior, as well as standard tristate behavior. The state seen on the
input line is reflected in the output. The state seen on the enable line determines the
strength of the output. Thus, a ONE forces the output to its state with a STRONG
strength. A ZERO forces the output to go to a HI.IMPEDANCE strength. The delays
associated with an output state or strength change cannot be specified independently, nor
may they be specified independently for rise or fall conditions; other gate models may
be used to provide such delays if needed. The model posts input and enable load values
(in farads) based on the parameters input_load and enable.The output of this model does
NOT, however, respond to the total loading it sees on its output; it will always drive the
output with the specified delay. Note also that to maintain the technology-independence
of the model, any UNKNOWN input, or any floating input causes the output to also go
UNKNOWN. Likewise, any UNKNOWN input on the enable line causes the output to go
to an UNDETERMINED strength value.

Example SPICE Usage:
a9 1 2 8 tri7

.model tri7 d_tristate(delay = 0.5e-9 input_load = 0.5e-12
+ enable_load = 0.5e-12)

149

XSPICE Simulator

Software User's Manual

Execution Procedures

Predefined Code Models

3.5.3.10 Pullup

NAME_TABLE:

C_Function_Name: cm_d_pullup
Spice_Model_Name: d_pullup
Description: "digital pullup resistor"
PORT_TABLE:

Port Name: out
Description: "output"
Direction: out
Default_Type: d
Allowed_Types: [d]

Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: load
Description: "load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -

Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The digital pullup resistor is a device which emulates the behavior of an
analog resistance value tied to a high voltage level. The pullup may be used in conjunction
with tristate buffers to provide open-collector wired “or” constructs, or any other logical
constructs which rely on a resistive pullup common to many tristated output devices. The

2

model posts an input load value (in farads) based on the parameters “load”.

Example SPICE Usage:

a2 9 pullupil
.model pullupl d_pullup(load = 20.0e-12)

150

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

3.5.3.11 Pulldown

NAME_TABLE:

C_Function_Name: cm_d_pulldown
Spice_Model_Name: d_pulldown
Description: "digital pulldown resistor"
PORT_TABLE:

Port Name: out
Description: "output"
Direction: out
Default_Type: d
Allowed_Types: [d]

Vector: no

Vector_Bounds: -
Null_Allowed: no

PARAMETER_TABLE:

Parameter_Name: load
Description: "load value (F)"
Data_Type: real
Default_Value: 1.0e-12

Limits: -

Vector: no

Vector_Bounds: -
Null_Allowed: yes

Description: The digital pulldown resistor is a device which emulates the behavior of an
analog resistance value tied to a low voltage level. The pulldown may be used in conjunction
with tristate buffers to provide open-collector wired “or” constructs, or any other logical
constructs which rely on a resistive pulldown common to many tristated output devices.
The model posts an input load value (in farads) based on the parameters “load”.

Example SPICE Usage:

a4 9 pulldowni
.model pulldownl d_pulldown(load = 20.0e-12)

151

XSPICE Simulator

Software User's Manual

Execution Procedures

Predefined Code Models

3.5.3.12 D Flip Flop

NAME_TABLE:
C_Function_Name: cm_d_dff
Spice_Model_Name: d_dff

Description: "digital d-type flip flop"
PORT_TABLE:

Port Name: data clk
Description: "input data" "clock"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PORT_TABLE:

Port Name: set reset
Description: "asynch. set" "asynch. reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PORT_TABLE:

Port Name: out Nout
Description: "data output" "inverted data output"
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: clk_delay set_delay
Description: "delay from clk" "delay from set"
Data_Type: real real

152

XSPICE Simulator

Software User's Manual

Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:

Data_Type:
Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:

Execution Procedures

Predefined Code Models

1.0e-9 1.0e-9
[1.0e-12 -] [1.0e-12 -]
no no

yes yes
reset_delay ic

"delay from reset"

real

1.0
[1.0e-12 -]
no

yes

data_load
"data load value (F)"
real

1.0e-12
no

yes
set_load

"set load value (F)"

"output initial
state"

int

0

[0 2]

no

yes

clk_load

“clk load value (F)"
real

1.0e-12

no

yes

reset_load
"reset load (F)"

real real
1.0e-12 1.0e-12
no no

yes yes
rise_delay fall_delay
"rise delay" "fall delay"
real real

1.0e-9 1.0e-9

153

Execution Procedures

Predefined Code Models

Limits:
Vector:
Vector_Bounds:
Null_Allowed:

[1.0e-12 -]
no

yes

XSPICE Simulator

Software User's Manual

[1.0e-12 -]
no

yes

Description: The digital d-type flip flop is a one-bit, edge-triggered storage element which
will store data whenever the clk input line transitions from low to high (ZERO to ONE).
In addition, asynchronous set and reset signals exist, and each of the three methods of
changing the stored output of the d_dff have separate load values and delays associated
with them. Additionally, you may specify separate rise and fall delay values that are added
to those specified for the input lines; these allow for more faithful reproduction of the output
characteristics of different IC fabrication technologies.

Note that any UNKNOWN input on the set or reset lines immediately results in an UN-

KNOWN output.

Example SPICE Usage:

a7 1 2345 6 flopl
.model flopl d_dff(clk_delay = 13.0e-9 set_delay = 25.0e-9
reset_delay = 27.0e-9 ic = 2 rise_delay = 10.0e-9

fall_delay = 3e-9)

154

XSPICE Simulator

Software User's Manual

Execution Procedures

Predefined Code Models

3.5.3.13 JK Flip Flop

NAME_TABLE:

C_Function_Name: cm_d_jkff
Spice_Model_Name: d_jkff

Description: "digital jk-type flip flop"
PORT_TABLE:

Port Name: N k
Description: "j input" "k input"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes yes
Vector_Bounds: [2 -] j
Null_Allowed: no no
PORT_TABLE:

Port Name: clk

Description: "clock"

Direction: in

Default_Type: d

Allowed_Types: [d]

Vector: no

Vector_Bounds: -

Null_Allowed: no

PORT_TABLE:

Port Name: set reset
Description: "asynchronous set" ‘'asynchronous reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PORT_TABLE:

Port Name: out Nout

Description:
Direction:

"data output"
out

155

"inverted data output"

out

Execution Procedures

Predefined Code Models

Default_Type:
Allowed_Types:
Vector:
Vector_Bounds
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:

[d]

no

yes

clk_delay
"delay from clk"
real

1.0e-9

[1.0e-12 -]

no

yes

reset_delay
"delay from reset"
real

1.0

[1.0e-12 -]

no

yes

jk_load

"j,k load values (F)"

real
1.0e-12

no

yes

set_load

"set load value (F)"

real
1.0e-12

156

XSPICE Simulator

Software User's Manual

[d]

no

yes

set_delay
"delay from set"
real

1.0e-9

[1.0e-12 -]

no

yes

ic

"output initial state"

int
0

[0 2]
no

yes

clk_load

real
1.0e-12

no

yes

reset_load

"clk load value (F)"

"reset load (F)"

real
1.0e-12

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no

Vector_Bounds: - -
Null_Allowed: yes yes

Description: The digital jk-type flip flop is a one-bit, edge-triggered storage element which
will store data whenever the clk input line transitions from low to high (ZERO to ONE).
In addition, asynchronous set and reset signals exist, and each of the three methods of
changing the stored output of the d_jkff have separate load values and delays associated
with them. Additionally, you may specify separate rise and fall delay values that are added
to those specified for the input lines; these allow for more faithful reproduction of the output
characteristics of different IC fabrication technologies.

Note that any UNKNOWN inputs other than j or k cause the output to go UNKNOWN
automatically.

Example SPICE Usage:

a8 1 2345 6 7 flop2

.model flop2 d_jkff(clk_delay = 13.0e-9 set_delay = 25.0e-9
reset_delay = 27.0e-9 ic = 2 rise_delay = 10.0e-9
fall_delay = 3e-9)

157

XSPICE Simulator

Software User's Manual

Execution Procedures

Predefined Code Models

3.5.3.14 Toggle Flip Flop

NAME_TABLE:
C_Function_Name: cm_d_tff
Spice_Model_Name: d_tff

Description: "digital toggle flip flop"
PORT_TABLE:

Port Name: t clk
Description: "toggle input" "clock"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no
PORT_TABLE:

Port Name: set reset
Description: "set" "reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PORT_TABLE:

Port Name: out Nout
Description: "data output" "inverted data output"
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: clk_delay set_delay

Description:

"delay from clk"

158

"delay from set"

XSPICE Simulator

Software User's Manual

Data_Type:
Default_Value:
Limits:
Vector:
Vector_Bounds
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:

real
1.0e-9
[1.0e-12 -]
no

yes

reset_delay
"delay from reset"
real

1.0

[1.0e-12 -]

no

yes

t_load
"toggle load value (
real

1.0e-12
no

yes
set_load

"set load value (F)"
real
1.0e-12

no

yes

rise_delay
"rise delay"
real

1.0e-9

159

Execution Procedures

Predefined Code Models

real
1.0e-9
[1.0e-12 -]
no
yes
ic
"output initial state"
int
0
[0 2]
no
yes
clk_load
F)" ©"clk load value (F)"
real
1.0e-12
no
yes

fall_delay

reset_load
"reset load (F)"

real

1.0e-12

no

yes

"fall delay"

real

1.0e-

9

Execution Procedures XSPICE Simulator

Predefined Code Models Software User's Manual
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The digital toggle-type flip flop is a one-bit, edge-triggered storage element
which will toggle its current state whenever the clk input line transitions from low to high
(ZERO to ONE). In addition, asynchronous set and reset signals exist, and each of the three
methods of changing the stored output of the d_tfl have separate load values and delays
associated with them. Additionally, you may specify separate rise and fall delay values that
are added to those specified for the input lines; these allow for more faithful reproduction
of the output characteristics of different 1C fabrication technologies.

Note that any UNKNOWN inputs other than t immediately cause the output to go UN-
KNOWN.

Example SPICE Usage:

a8 2 12 45 6 3 flop3

.model flop3 d_tff(clk_delay = 13.0e-9 set_delay = 25.0e-9
reset_delay = 27.0e-9 ic = 2 rise_delay = 10.0e-9

+ fall_delay = 3e-9 t_load = 0.2e-12)

160

XSPICE Simulator

Software User's Manual

3.5.3.15 Set-Reset Flip Flop

NAME_TABLE:

C_Function_Name:
Spice_Model_Name:

Description:

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PORT_TABLE:
Port Name:
Description:
Direction:

cm_d_srff
d_srff

"digital set-reset flip flop"

s
"set input"
in

d

[d]

no

no

clk
"clock"

in

[d]

no

no

set

"asynchronous set"
in

d

[d]

no

yes

out
"data output"
out

161

r

Execution Procedures

Predefined Code Models

"reset input"

in
d
[d]

no

no

reset

"asynchronous reset"

in
d
[d]

no

yes

Nout

"inverted data output"

out

Execution Procedures

Predefined Code Models

Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:

[d]

no

yes

clk_delay
"delay from clk"
real

1.0e-9

[1.0e-12 -]

no

yes

reset_delay
"delay from reset"
real

1.0e-9

[1.0e-12 -]

no

yes

sr_load

"set/reset loads (F)"

real
1.0e-12

no

yes

set_load

"set load value (F)"

real
1.0e-12

162

XSPICE Simulator

Software User's Manual

[d]

no

yes

set_delay
"delay from set"
real

1.0e-9

[1.0e-12 -]

no

yes

ic

"output initial state"

int
0

[0 2]
no

yes

clk_load

real
1.0e-12

no

yes

reset_load

"clk load value (F)"

"reset load (F)"

real
1.0e-12

XSPICE Simulator Execution Procedures

Software User's Manual Predefined Code Models
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The digital sr-type flip flop is a one-bit, edge-triggered storage element which
will store data whenever the clk input line transitions from low to high (ZERO to ONE).
The value stored (i.e., the “out” value) will depend on the s and r input pin values, and

will be:

out=0NE if s=0NE and r=ZERO;
out=ZERD if s=ZERDO and r=0NE;
out=previous value 1f s=ZER0 and r=ZERO;
out=UNKNOWN if s=0NE and r=0NE;

In addition, asynchronous set and reset signals exist, and each of the three methods of
changing the stored output of the d_srff have separate load values and delays associated
with them. You may also specify separate rise and fall delay values that are added to
those specified for the input lines; these allow for more faithful reproduction of the output
characteristics of different IC fabrication technologies.

Note that any UNKNOWN inputs other than s and r immediately cause the output to go
UNKNOWN.

Example SPICE Usage:

a8 2 12 45 6 3 14 flop7

.model flop7 d_srff(clk_delay = 13.0e-9 set_delay = 25.0e-9

+ reset_delay = 27.0e-9 ic = 2 rise_delay = 10.0e-9
fall_delay = 3e-9)

163

Execution Procedures XSPICE Simulator
Predefined Code Models Software User's Manual

3.5.3.16 D Latch

NAME_TABLE:

C_Function_Name: cm_d_dlatch
Spice_Model_Name: d_dlatch

Description: "digital d-type latch"
PORT_TABLE:

Port Name: data enable
Description: "input data" "enable input"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no

Vector_Bounds: - -

Null_Allowed: no no
PORT_TABLE:

Port Name: set reset
Description: "set" "reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no

Vector_Bounds: - -

Null_Allowed: yes yes

PORT_TABLE:

Port Name: out Nout

Description: "data output" "inverter data output"
Direction: out out

Default_Type: d d

Allowed_Types: [d] [d]

Vector: no no

Vector_Bounds: - -
Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: data_delay
Description: "delay from data"
Data_Type: real

164

XSPICE Simulator

Software User's Manual

Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

1.0e-9
[1.0e-12 -]
no

yes

enable_delay

Execution Procedures

Predefined Code Models

set_delay

"delay from enable" "delay from SET"

real real
1.0e-9 1.0e-9
[1.0e-12 -] [1.0e-12 -]
no no

yes yes

reset_delay
"delay from RESET"
real

1.0e-9
[1.0e-12 -]
no

yes
data_load
"data load (F)"
real
1.0e-12

no

yes
set_load

"set load value (F)"
real
1.0e-12

165

ic

"output initial state"

boolean
0

no

yes

enable_load

"enable load value (F)"

real
1.0e-12

no

yes

reset_load
“reset load (F)"
real

1.0e-12

Execution Procedures

Predefined Code Models

XSPICE Simulator

Software User's Manual

Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The digital d-type latch is a one-bit, level-sensitive storage element which will
output the value on the data line whenever the enable input line is high (ONE). The value
on the data line is stored (i.e., held on the out line) whenever the enable line is low (ZERO).

In addition, asynchronous set and reset signals exist, and each of the four methods of
changing the stored output of the d_dlatch (i.e., data changing with enable=ONE, enable
changing to ONE from ZERO with a new value on data, raising set and raising reset) have
separate delays associated with them. You may also specify separate rise and fall delay
values that are added to those specified for the input lines; these allow for more faithful
reproduction of the output characteristics of different IC fabrication technologies.

Note that any UNKNOWN inputs other than on the data line when enable=7ZERO imme-
diately cause the output to go UNKNOWN.

Example SPICE Usage:

a4 12 4 5 6 3 14 latchil
.model latchl d_dlatch(data_delay = 13.0e-9 enable_delay = 22.0e-9
+ set_delay = 25.0e-9
+ reset_delay = 27.0e-9 ic = 2
rise_delay = 10.0e-9 fall_delay = 3e-9)

166

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

3.5.3.17 Set-Reset Latch

NAME_TABLE:

C_Function_Name: cm_d_srlatch
Spice_Model_Name: d_srlatch

Description: "digital sr-type latch"
PORT_TABLE:

Port Name: s r
Description: "set" "reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes yes
Vector_Bounds: [2 -] T
Null_Allowed: no no
PORT_TABLE:

Port Name: enable

Description: "enable"

Direction: in

Default_Type: d

Allowed_Types: [d]

Vector: no

Vector_Bounds: -

Null_Allowed: no

PORT_TABLE:

Port Name: set reset
Description: "set" "reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no

Vector_Bounds: - -

Null_Allowed: yes yes

PORT_TABLE:

Port Name: out Nout

Description: "data output" "inverted data output"
Direction: out out

167

Execution Procedures

Predefined Code Models

Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:

XSPICE Simulator

Software User's Manual

d d
[d] [d]
no no
no no
sr_delay

"delay from s or r input change"
real

1.0e-9

[1.0e-12 -]

no

yes

enable_delay

set_delay

"delay from enable" "delay from SET"

real real

1.0e-9 1.0e-9
[1.0e-12 -] [1.0e-12 -]
no no

yes yes

reset_delay
"delay from RESET"
real

1.0e-9

[1.0e-12 -]

no

yes

sr_load

"s & r input loads (F)"
real

1.0e-12

168

ic

"output initial state"
boolean

0

no

yes

enable_load

“enable load value (F)"
real

1.0e-12

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: set_load reset_load
Description: "set load value (F)" “"reset load (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12

Limits: - -

Vector: no no

Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no

Vector_Bounds: - -
Null_Allowed: yes yes

Description: The digital sr-type latch is a one-bit, level-sensitive storage element which will
output the value dictated by the state of the s and r pins whenever the enable input line is
high (ONE). This value is stored (i.e., held on the out line) whenever the enable line is low
(ZERO). The particular value chosen is as shown below:

s=ZER0O, r=ZERO => out=current value (i.e., not change in output)
s=ZERO, r=0NE => out=ZERO

s=0NE, r=ZERO => out=0NE

s=0NE, zr=0NE => out=UNKNOWN

Asynchronous set and reset signals exist, and each of the four methods of changing the
stored output of the d_srlatch (i.e., s/r combination changing with enable=ONE, enable
changing to ONE from ZERO with an output-changing combination of s and r, raising
set and raising reset) have separate delays associated with them. You may also specify
separate rise and fall delay values that are added to those specified for the input lines; these
allow for more faithful reproduction of the output characteristics of different IC fabrication
technologies.

169

Execution Procedures XSPICE Simulator
Predefined Code Models Software User's Manual

Note that any UNKNOWN inputs other than on the s and r lines when enable=7ZERO
immediately cause the output to go UNKNOWN.

Example SPICE Usage:

a4 12 4 5 6 3 14 16 latch2

.model latch2 d_srlatch(sr_delay = 13.0e-9 enable_delay = 22.0e-9
set_delay = 25.0e-9

+ reset_delay = 27.0e-9 ic = 2

+ rise_delay = 10.0e-9 fall_delay = 3e-9)

170

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

3.5.3.18 State Machine

NAME_TABLE:

C_Function_Name: cm_d_state
Spice_Model_Name: d_state

Description: "digital state machine"
PORT_TABLE:

Port Name: in clk
Description: "input" "clock"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: (1 -] -
Null_Allowed: yes no
PORT_TABLE:

Port Name: reset out

Description: "reset" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no yes
Vector_Bounds: - (1 -]
Null_Allowed: yes no

PARAMETER_TABLE:

Parameter_Name: clk_delay reset_delay
Description: "delay from CLK" "delay from RESET"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9

Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no

Vector_Bounds: - -

Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: state_file
Description: "state transition specification file name"
Data_Type: string

171

Execution Procedures

Predefined Code Models

Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

XSPICE Simulator

Software User's Manual

"state.txt"
no

no

reset_state

"default state on RESET & at DC"
int

0

no

no

input_load

"input loading capacitance (F)"
real

1.0e-12

no

yes

clk_load

"clock loading capacitance (F)"
real

1.0e-12

no

yes

reset_load

"reset loading capacitance (F)"
real

1.0e-12

172

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The digital state machine provides for straightforward descriptions of clocked
combinational logic blocks with a variable number of inputs and outputs and with an
unlimited number of possible states. The model can be configured to behave as virtually
any type of counter or clocked combinational logic block and can be used to replace very
large digital circuit schematics with an identically functional but faster representation.

The d_state model is configured through the use of a state definition file (state.in) which
resides in a directory of your choosing. The file defines all states to be understood by the
model, plus input bit combinations which trigger changes in state. An example state.in file
is shown below:

* This is an example state.in file. This file

* defines a simple 2-bit counter with one input. The

* value of this input determines whether the counter counts
* up (in = 1) or down (in = 0).

0O 0s 0s 0 ->
1 ->1

w

2 1z 0s 0 ->1

Several attributes of the above file structure should be noted. First, ALL LINES IN THE
FILE MUST BE ONE OF FOUR TYPES. These are:

Wk

1. A comment, beginning with a in the first column.

2. A header line, which is a complete description of the current state, the outputs
corresponding to that state, an input value, and the state that the model will

173

Execution Procedures XSPICE Simulator
Predefined Code Models Software User's Manual

assume should that input be encountered. The first line of a state definition

must ALWAYS be a header line.

3. A continuation line, which is a partial description of a state, consisting of an
input value and the state that the model will assume should that input be
encountered. Note that continuation lines may only be used after the initial
header line definition for a state.

4. A line containing nothing but whitespace (space, formfeed, newline, carriage
return, tab, vertical tab).

A line which is not one of the above will cause a file-loading error.

Note that in the example shown, whitespace (any combination of blanks, tabs, commas) is
used to separate values, and that the character “->” is used to underline the state transition
implied by the input preceding it. This particular character is not critical in of itself, and
can be replaced with any other character or non-broken combination of characters that you

prefer (e.g. “==>7"“>>7 «” “resolves_to”, etc.)

The order of the output and input bits in the file is important; the first column is always
interpreted to refer to the ”zeroth” bit of input and output. Thus, in the file above, the
output from state 1 sets out[0] to “0s”, and out[1] to “1z”.

The state numbers need not be in any particular order, but a state definition (which consists
of the sum total of all lines which define the state, its outputs, and all methods by which a
state can be exited) must be made on contiguous line numbers; a state definition cannot be
broken into sub-blocks and distributed randomly throughout the file. On the other hand,
the state definition can be broken up by as many comment lines as you desire.

Header files may be used throughout the state.in file, and continuation lines can be discarded
completely if you so choose: continuation lines are primarily provided as a convenience.

Example SPICE Usage:
a4 [2 3 4 5] 1 12 [22 23 24 25 26 27 28 29] statel

.model statel d_state(clk_delay = 13.0e-9 reset_delay = 27.0e-9
state_file = newstate.txt reset_state = 2)

174

XSPICE Simulator Execution Procedures
Software User's Manual Predefined Code Models

3.5.3.19 Frequency Divider

NAME_TABLE:

C_Function_Name: cm_d_fdiv

Spice_Model_Name: d_fdiv

Description: "digital frequency divider"
PORT_TABLE:

Port Name: freq_in freq_out
Description: "frequency input" "frequency output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no

Vector_Bounds: - -
Null_Allowed: no no

PARAMETER_TABLE:

Parameter_Name: div_factor high_cycles

Description: "divide factor" "# of cycles for high out"
Data_Type: int int

Default_Value: 2 1

Limits: [1 -] [1 div_factor-1]

Vector: no no

Vector_Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: i_count

Description: "divider initial count value"
Data_Type: int

Default_Value: 0]

Limits: -

Vector: no

Vector_Bounds: -
Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real

175

Execution Procedures XSPICE Simulator

Predefined Code Models Software User’s Manual
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: yes yes
Vector_Bounds: in in
Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: freq_in_load
Description: "freq_in load value (F)"
Data_Type: real

Default_Value: 1.0e-12

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

Description: The digital frequency divider is a programmable step-down divider which
accepts an arbitrary divisor (div_factor), a duty-cycle term (high_cycles), and an initial
count value (i_count). The generated output is synchronized to the rising edges of the input
signal. Rise delay and fall delay on the outputs may also be specified independently.

Example SPICE Usage:

a4 3 7 divider

.model divider d_fdiv(div_factor = 5 high_cycles = 3
i_count = 4 rise_delay = 23e-9

+ fall_delay = 9e-9)

176

Execution Procedures

Predefined Code Models

XSPICE Simulator

Software User's Manual

3.5.3.20 RAM
NAME_TABLE:
C_Function_Name: cm_d_ram
Spice_Model_Name: d_ram

Description: "digital random-access memory"
PORT_TABLE:

Port Name: data_in data_out
Description: "data input line(s)" "data output line(s)"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes yes
Vector_Bounds: (1 -] data_in
Null_Allowed: no no
PORT_TABLE:

Port Name: address write_en

Description: "address input line(s)'" ‘"write enable line"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: (1 -] -
Null_Allowed: no no
PORT_TABLE:

Port Name: select

Description: "chip select line(s)"
Direction: in

Default_Type: d

Allowed_Types: [d]

Vector: yes

Vector_Bounds: [1 16]

Null_Allowed: no

PARAMETER_TABLE:
Parameter_Name:
Description:

select_value

"decimal active value for select line comparison"

177

Execution Procedures

Predefined Code Models

Data_Type:
Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:

int

1

[0 32767]
no

yes

ic

"initial bit state @ dc"
int

2

[0 2]

no

yes

read_delay

XSPICE Simulator

Software User's Manual

"read delay from address/select/write_en active"

real
100.0e-9
[1.0e-12 -]
no

yes

data_load

“"data_in load value (F)"
real

1.0e-12

no

yes

select_load
"gselect load value (F)"

178

address_load

Y"addr. load value (F)"
real

1.0e-12

no

yes

XSPICE Simulator Execution Procedures

Software User's Manual Predefined Code Models
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no

Vector_Bounds: -
Null_Allowed: yes

PARAMETER_TABLE:

Parameter_Name: enable_load

Description: "enable line load value (F)"
Data_Type: real

Default_Value: 1.0e-12

Limits: -

Vector: no

Vector_Bounds: -
Null_Allowed: yes

Description: The digital RAM is an M-wide, N-deep random access memory element with
programmable select lines, tristated data_out lines, and a single write/fead line. The width
of the RAM words (M) is set through the use of the word_width parameter. The depth of
the RAM (N) is set by the number of address lines input to the device. The value of N is
related to the number of address input lines (P) by the following equation:

2w =N

There is no reset line into the device. However, an initial value for all bits may be specified
by setting the ic parameter to either 0 or 1. In reading a word from the ram, the read_delay
value is invoked, and output will not appear until that delay has been satisfied. Separate
rise and fall delays are not supported for this device.

Note that UNKNOWN inputs on the address lines are not allowed during a write. In
the event that an address line does indeed go unknown during a write, THE ENTIRE
CONTENTS OF THE RAM WILL BE SET TO UNKNOWN. This is in contrast to the
data_in lines being set to unknown during a write; in that case, only the selected word will
be corrupted, and this is corrected once the data lines settle back to a known value. Note
that protection is added to the write_en line such that extended UNKNOWN values on that
line are interpreted as ZERQO values. This is the equivalent of a read operation and will not
corrupt the contents of the RAM. A similar mechanism exists for the select lines. If they
are unknown, then it is assumed that the chip is not selected.

Detailed timing-checking routines are not provided in this model, other than for the en-
able_delay and select_delay restrictions on read operations. You are advised, therefore, to

179

Execution Procedures XSPICE Simulator
Predefined Code Models Software User's Manual

carefully check the timing into and out of the RAM for correct read and write cycle times,
setup and hold times, etc. for the particular device they are attempting to model.

Example SPICE Usage:

a4 [34586] [345 6] [12 13 14 15 16 17 18 19] 30 [22 23 24] ram2
.model ram2 d_ram(select_value = 2 ic = 2 read_delay = 80e-9)

180

Execution Procedures

Predefined Code Models

XSPICE Simulator

Software User's Manual

3.5.3.21 Digital Source

NAME_TABLE:
C_Function_Name:
Spice_Model_Name:

cm_d_source
d_source

Description: "digital signal source"
PORT_TABLE:

Port Name: out

Description: "output"

Direction: out

Default_Type: d

Allowed_Types: [d]

Vector: yes

Vector_Bounds: -

Null_Allowed: no

PARAMETER_TABLE:

Parameter_Name: input_file

Description: "digital input vector filename"
Data_Type: string

Default_Value:
Limits:

"source.txt"

Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: input_load
Description: "input loading capacitance (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -

Vector: no
Vector_Bounds: -
Null_Allowed: no

Description: The digital source provides for straightforward descriptions of digital signal
vectors in a tabular format. The model reads input from the input file and, at the times
specified in the file, generates the inputs along with the strengths listed.

181

Execution Procedures XSPICE Simulator
Predefined Code Models Software User's Manual

The format of the input file is as shown below. Note that comment lines are delineated
through the use of a single “*” character in the first column of a line. This is similar to the
way the SPICE program handles comments.

* T c n n n
* i 1 o o o
* m o d d d
* e c e e e
* k a b c
0.0000 Uu Uu Us Uu
1.234e-9 Os 1s 1s 0z
1.376e-9 Os Os 1s 0z
2.5e-7 1s Os 1s 0z
2.5006e-7 1s 1s 1s 0z
5.0e-7 Os 1s 1s 0z

Note that in the example shown, whitespace (any combination of blanks, tabs, commas)
is used to separate the time and strength/state tokens. The order of the input columns
is important; the first column is always interpreted to mean “time”. The second through
the N’th columns map to the out[0] through out[N-2] output nodes. A non-commented line
which does not contain enough tokens to completely define all outputs for the digital_source
will cause an error. Also, time values must increase monotonically or an error will result in
reading the source file.

Errors will also occur if a line exists in source.txt which is neither a comment nor vector
line. The only exception to this is in the case of a line that is completely blank; this is
treated as a comment (note that such lines often occur at the end of text within a file;
ignoring these in particular prevents nuisance errors on the part of the simulator).

Example SPICE Usage:

a3 [23456789 10 11 12 13 14 15 16 17] input_vector
.model input_vector d_source(input_file = source.simple.text)

182

XSPICE Simulator Execution Procedures
Software User’'s Manual Predefined Node Types

3.6 Predefined Node Types

The following prewritten node types are included with the XSPICE simulator. These,
along with the digital node type built into the simulator, should provide you not only with
valuable event-driven modeling capabilities, but also with examples to use for guidance in
creating new UDN types.

3.6.1 Real Node Type

The “real” node type provides for event-driven simulation with double-precision floating
point data. This type is useful for evaluating sampled-data filters and systems. The type
implements all optional functions for User-Defined Nodes, including inversion and node
resolution. For inversion, the sign of the value is reversed. For node resolution, the resultant
value at a node is the sum of all values output to that node.

3.6.2 Int Node Type

The “int” node type provides for event-driven simulation with integer data. This type is
useful for evaluating roundoff error effects in sampled-data systems. The type implements
all optional functions for User-Defined Nodes, including inversion and node resolution. For
inversion, the sign of the integer value is reversed. For node resolution, the resultant value
at a node is the sum of all values output to that node.

183

4 Error Messages

Error messages may be subdivided into three categories. These are:

1. Error messages generated during the development of a code model (Preprocessor
Error Messages).

2. Error messages generated by the simulator during a simulation run (Simulator
Error Messages).

3. Error messages generated by individual code models (Code Model Error Mes-
sages).

These messages will be explained in detail in the following subsections.

4.1 Preprocessor Error Messages

The following is a list of error messages that may be encountered when invoking the
directory-creation and code modeling preprocessor tools. These are listed individually,
and explanations follow the name/listing.

Usage: cmpp [-ifs] [-mod [<filename>]] [-1st]

The Code Model Preprocessor (cmpp) command was invoked incorrectly.

185

Error Messages XSPICE Simulator

Preprocessor Error Messages Software User’s Manual

ERROR - Too few arguments

The Code Model Preprocessor (cmpp) command was invoked with too few ar-
guments.

ERROR - Too many arguments

The Code Model Preprocessor (cmpp) command was invoked with too many
arguments.

ERROR - Unrecognized argument

The Code Model Preprocessor (cmpp) command was invoked with an invalid
argument.

ERROR - File not found: <filename>

The specified file was not found, or could not be opened for read access.
ERROR - Line <line number> of <filename> exceeds XX characters

The specified line was too long.

ERROR - Pathname on line <line number> of <filename> exceeds
XX characters

The specified line was too long.
ERROR - No pathnames found in file: <filename>

The indicated modpath.lst file does not have pathnames properly listed.
ERROR - Problems reading ifspec.ifs in directory <pathname>

The Interface Specification File (ifspec.ifs) for the code model could not be read.

186

XSPICE Simulator Error Messages

Software User’s Manual Preprocessor Error Messages

ERROR - Model name <model name> is same as internal SPICE model name

A model has been given the same name as an intrinsic SPICE device.

ERROR - Model name ’<model name>’ in directory: <pathname>
is same as
model name ’<model name>’ in directory: <pathname>

Two models in different directories have the same name.

ERROR - C function name ’<function name>’ in directory: <pathname>",
is same as
C function name ’<function name>’ in directory: <pathname>

Two C language functions in separate model directories have the same names;
these would cause a collision when linking the final executable.

ERROR - Problems opening CMextrn.h for write

The temporary file CMextern.h used in building the XSPICE simulator exe-
cutable could not be created or opened. Check permissions on directory.

ERROR - Problems opening CMinfo.h for write

The temporary file CMinfo.h used in building the XSPICE simulator executable
could not be created or opened. Check permissions on directory.

ERROR - Problems opening objects.inc file for write

The temporary file objects.inc used in building the XSPICE simulator executable
could not be created or opened. Check permissions on directory.

ERROR - Could not open input .mod file: <filename>

The Model Definition File that contains the definition of the Code Model’s
behavior (usually cfunc.mod) was not found or could not be read.

187

Error Messages XSPICE Simulator

Preprocessor Error Messages Software User’s Manual

ERROR - Could not open output .c: <filename>

The indicated C language file that the preprocessor creates could not be created
or opened. Check permissions on directory.

Error parsing .mod file: <filename>

Problems were encountered by the preprocessor in interpreting the indicated
Model Definition File.

ERROR - File not found: <filename>

The indicated file was not found or could not be opened.

Error parsing interface specification file

Problems were encountered by the preprocessor in interpreting the indicated
Interface Specification File.

ERROR - Can’t create file: <filename>

The indicated file could not be created or opened. Check permissions on direc-
tory.

ERROR - write_port_info() - Number of allowed types cannot be zero

There must be at least one port type specified in the list of allowed types.

illegal quoted character in string (expected ‘‘\’’ or ‘‘\\’’)

A string was found with an illegal quoted character in it.

unterminated string literal

A string was found that was not terminated.

188

XSPICE Simulator Error Messages

Software User’s Manual Preprocessor Error Messages

Unterminated comment

A comment was found that was not terminated.
Port ‘<port name>’ not found

The indicated port name was not found in the Interface Specification File.
Port type ‘vnam’ is only valid for ‘in’ ports

The port type ‘vnam’ was used for a port with direction ‘out’ or ‘inout’. This
type is only allowed on ‘in’ ports.

¢

Port types ‘g’, ‘gd’, ‘h’, ‘hd’ are only valid for ‘inout’ ports

Port type ‘g’, ‘ed’, ‘h’, or ‘hd’ was used for a port with direction ‘out’ or ‘in’.
These types are only allowed on ‘inout’ ports.

Invalid parameter type — POINTER type valid only for STATIC_VARs

The type POINTER was used in a section of the Interface Specification file other
than the STATIC_VAR section.

Port default type is not an allowed type
A default type was specified that is not one of the allowed types for the port.
Incompatible port types in ‘allowed_types’ clause

Port types listed under ‘Allowed_Types’ in the Interface Specification File must
all have the same underlying data type. It is illegal to mix analog and event-
driven types in a list of allowed types.

Invalid parameter type (saw <parameter type 1> - expected <parameter type 2>)

A parameter value was not compatible with the specified type for the parameter.

189

Error Messages XSPICE Simulator

Preprocessor Error Messages Software User’s Manual

Named range not allowed for limits
A name was found where numeric limits were expected.

Direction of port ‘<port number>’ in <port name>()
is not <IN or OUT> or INOUT

A problem exists with the direction of one of the elements of a port vector.
Port ‘<port name>’ is an array - subscript required

A port was referenced that is specified as an array (vector) in the Interface
Specification File. A subscript is required (e.g. myport[i])

Parameter ‘<parameter name>’ is an array - subscript required

A parameter was referenced that is specified as an array (vector) in the Interface
Specification File. A subscript is required (e.g. myparam[i])

Port ‘<port name>’ is not an array - subscript prohibited

A port was referenced that is not specified as an array (vector) in the Interface
Specification File. A subscript is not allowed.

Parameter ‘<parameter name>’ is not an array - subscript prohibited

A parameter was referenced that is not specified as an array (vector) in the
Interface Specification File. A subscript is not allowed.

Static variable ‘<static variable name>’ is not an array - subscript prohibited

Array static variables are not supported. Use a POINTER type for the static
variable.

Buffer overflow — try reducing the complexity of CM-macro array subscripts

The argument to a code model accessor macro was too long.
Unmatched)

An open (was found with no corresponding closing).

190

XSPICE Simulator Error Messages

Software User’s Manual Simulator Error Messages

Unmatched]

An open [was found with no corresponding closing |.

4.2 Simulator Error Messages

The following is a list of error messages that may be encountered while attempting to
run a simulation (with the exception of those error messages generated by individual code
models). Most of these errors are generated by the simulator while attempting to parse a
SPICE deck. These are listed individually, and explanations follow the name/listing.

ERROR - Scalar port expected, [found

A scalar connection was expected for a particular port on the code model, but
the symbol [which is used to begin a vector connection list was found.

ERROR - Unexpected]

A] was found where not expected. Most likely caused by a missing [.

ERROR - Unexpected [- Arrays of arrays not allowed

A [character was found within an array list already begun with another [char-
acter.

ERROR - Tilde not allowed on analog nodes

The tilde character Wwas found on an analog connection. This symbol, which
performs state inversion, is only allowed on digital nodes and on User-Defined
Nodes only if the node type definition allows it.

ERROR - Not enough ports

An insufficient number of node connections was supplied on the instance line.
Check the Interface Specification File for the model to determine the required
connections and their types.

191

Error Messages XSPICE Simulator

Simulator Error Messages Software User’s Manual

ERROR - Expected node/instance identifier

A special token (e.g. [1 < > ...) was found when not expected.
ERROR - Expected node identifier

A special token (e.g. [1 < > ...) was found when not expected.
ERROR - unable to find definition of model <name>

A .model line for the referenced model was not found.
ERROR - model: %s - Array parameter expected - No array delimiter found

An array (vector) parameter was expected on the .model card, but enclosing |]
characters were not found to delimit its values.

ERROR - model: %s - Unexpected end of model card

The end of the indicated .model line was reached before all required information
was supplied.

ERROR - model: %s - Array parameter must have at least one value
An array parameter was encountered that had no values.
ERROR - model: %s - Bad boolean value

A bad values was supplied for a Boolean. Value used must be TRUE, FALSE,
T, or F.

ERROR - model: %s — Bad integer, octal, or hex value

A badly formed integer value was found.

ERROR - model: %s - Bad real value

A badly formed real value was found.

ERROR - model: %s - Bad complex value

A badly formed complex number was found. Complex numbers must be enclosed
in < > delimiters.

192

XSPICE Simulator Error Messages
Software User’s Manual Code Model Error Messages

4.3 Code Model Error Messages

The following is a list of error messages that may be encountered while attempting to run
a simulation with certain code models. These are listed alphabetically based on the name
of the code model, and explanations follow the name and listing.

4.3.1 Code Model aswitch

cntl_error:
xkk ERRORk*k*

ASWITCH: CONTROL voltage delta less than 1.0e-12

This message occurs as a result of the cntl_off and cntl_on values being less than
1.0e-12 volts/amperes apart.

4.3.2 Code Model climit

climit_range_error:
*%%k% ERROR s*kk*
* CLIMIT function linear range less than zero. *

This message occurs whenever the difference between the upper and lower con-
trol input values are close enough that there is no effective room for proper
limiting to occur; this indicates an error in the control input values.

4.3.3 Code Model core

allocation_error:
ERROR
CORE: Allocation calloc failed!

This message is a generic message related to allocating sufficient storage for the
H and B array values.

193

Error Messages XSPICE Simulator
Code Model Error Messages Software User’s Manual

limit_error:
xxERROR*
CORE: Violation of 50% rule in breakpoints!

This message occurs whenever the input_domain value is an absolute value and
the H coordinate points are spaced too closely together (overlap of the smoothing
regions will occur unless the H values are redefined).

4.3.4 Code Model d_osc

d_osc_allocation_error:
*%k%% Error **kk*
D_0SC: Error allocating VCO block storage

Generic block storage allocation error.

d_osc_array_error:
*%k%% Error **kk*
D_0SC: Size of control array different than frequency array

Error occurs when there is a different number of control array members than

frequency array members.

d_osc_negative_freq_error:
**¥%% Error *k*x*
D_0SC: The extrapolated value for frequency
has been found to be negative..
Lower frequency level has been clamped to 0.0 Hz.

Occurs whenever a control voltage is input to a model which would ordinarily
(given the specified control/freq coordinate points) cause that model to attempt
to generate an output oscillating at zero frequency. In this case, the output
will be clamped to some DC value until the control voltage returns to a more

reasonable value.

194

XSPICE Simulator Error Messages

Software User’s Manual Code Model Error Messages

4.3.5 Code Model d_source

loading_error:
*%*ERROR***
D_SOURCE: source.txt file was not read successfully.

This message occurs whenever the d_source model has experienced any difficulty
in loading the source.txt (or user-specified) file. This will occur with any of the
following problems:

o Width of a vector line of the source file is incorrect.

e A Timepoint value is duplicated or is otherwise not monotonically
increasing.

e One of the output values was not a valid 12-State value (0s, 1s, Us,
Or, 1r, Ur, 0z, 1z, Uz, Ou, lu, Uu).

4.3.6 Code Model d_state

loading_error:
xxERROR*
D_STATE: state.in file was not read successfully.
The most common cause of this problem is a
trailing blank line in the state.in file

This error occurs when the state.in file (or user-named state machine input file)
has not been read successfully. This is due to one of the following;:

e The counted number of tokens in one of the file’s input lines does not
equal that required to define either a state header or a continuation
line (Note that all comment lines are ignored, so these will never cause
the error to occur).

¢ An output state value was defined using a symbol which was invalid
(i.e., it was not one of the following: 0s, 1s, Us, Or, 1r, Ur, 0z, 1z, Uz,
Ou, 1u, Uu).

e An input value was defined using a symbol which was invalid (i.e., it
was not one of the following: 0, 1, X, or x).

195

Error Messages XSPICE Simulator

Code Model Error Messages Software User’s Manual

index_error:
*%kERROR**%
D_STATE: An error exists in the ordering of states values

in the states->state[] array. This is usually caused
by non-contiguous state definitions in the state.in file

This error is caused by the different state definitions in the input file being
non-contiguous. In general, it will refer to the different states not being defined
uniquely, or being “broken up” in some fashion within the state.in file.

4.3.7 Code Model oneshot

oneshot_allocation_error:
*%k%% Error **kk*
ONESHOT: Error allocating oneshot block storage

Generic storage allocation error.

oneshot_array_error:
*%k%% Error **kk*
ONESHOT: Size of control array different than pulse-width array

This error indicates that the control array and pulse-width arrays are of different

sizes.

oneshot_pw_clamp:
kkkk Warning kkkk
ONESHOT: Extrapolated Pulse-Width Limited to zero

This error indicates that for the current control input, a pulse-width of less than
zero is indicated. The model will consequently limit the pulse width to zero until
the control input returns to a more reasonable value.

196

XSPICE Simulator Error Messages
Software User’s Manual Code Model Error Messages

4.3.8 Code Model pwl

allocation_error:
ERROR
PWL: Allocation calloc failed!

Generic storage allocation error.

limit_error:
xxERROR*
PWL: Violation of 50% rule in breakpoints!

This error message indicates that the pwl model has an absolute value for its
input_domain, and that the x_array coordinates are so close together that the
required smoothing regions would overlap. To fix the problem, you can either
spread the x_array coordinates out or make the input_domain value smaller.

4.3.9 Code Model s_xfer

num_size_error:
xxERROR*
S_XFER: Numerator coefficient array size greater than
denominator coefficient array size.

This error message indicates that the order of the numerator polynomial spec-
ified is greater than that of the denominator. For the s_xfer model, the orders
of numerator and denominator polynomials must be equal, or the order of the
denominator polynomial must be greater than that or the numerator.

4.3.10 Code Model sine

allocation_error:
*%k%% Error **kk*
SINE: Error allocating sine block storage

Generic storage allocation error.

197

Error Messages XSPICE Simulator

Code Model Error Messages Software User’s Manual

sine_freq_clamp:
kkkk Warning kkkk
SINE: Extrapolated frequency limited to 1e-16 Hz

This error occurs whenever the controlling input value is such that the output
frequency ordinarily would be set to a negative value. Consequently, the output
frequency has been clamped to a near-zero value.

array_error:
*%k%% Error **kk*

SINE: Size of control array different than frequency array

This error message normally occurs whenever the controlling input array and
the frequency array are different sizes.

4.3.11 Code Model square

square_allocation_error:
*%k%% Error **kk*

SQUARE: Error allocating square block storage

Generic storage allocation error.

square_freq_clamp:
*kkk WARNING skkskk
SQUARE: Frequency extrapolation limited to 1le-16

This error occurs whenever the controlling input value is such that the output
frequency ordinarily would be set to a negative value. Consequently, the output
frequency has been clamped to a near-zero value.

square_array_error:
*%k%% Error **kk*

SQUARE: Size of control array different than frequency array

This error message normally occurs whenever the controlling input array and
the frequency array are different sizes.

198

XSPICE Simulator Error Messages
Software User’s Manual Code Model Error Messages

4.3.12 Code Model triangle

triangle_allocation_error:
*%k%% Error **kk*
TRIANGLE: Error allocating triangle block storage

Generic storage allocation error.

triangle_freq_clamp:
kkkk Warning kkkk
TRIANGLE: Extrapolated Minimum Frequency Set to 1e-16 Hz

This error occurs whenever the controlling input value is such that the output
frequency ordinarily would be set to a negative value. Consequently, the output
frequency has been clamped to a near-zero value.

triangle_array_error:
*%k%% Error **kk*
TRIANGLE: Size of control array different than frequency array

This error message normally occurs whenever the controlling input array and

the frequency array are different sizes.

199

Notes

201

Notes XSPICE Simulator

Glossary Software User’'s Manual

5.1 Glossary

card A logical SPICE input line. A card may be extended through
the use of the 747 sign in SPICE, thereby allowing it to take
up multiple lines in a SPICE deck.

code model A model of a device, function, component, etc. which is
based solely on a C programming language-based function.
In addition to the code models included with the XSPICE
simulator, you can use code models that you develop for cir-
cuit modeling.

deck A collection of SPICE cards which together specify all in-
put information required in order to perform an analysis. A
”deck” of 7cards” will in fact be contained within a file on
the host computer system.

element card A single, logical line in an XSPICE circuit description deck
which describes a circuit element. Circuit elements are con-
nected to each other to form circuits (e.g., a logical card which
describes a resistor, such as R1 2 0 10K, is an element card).

instance A unique occurrence of a circuit element. See “element card”,
in which the instance “R1” is specified as a unique element
(instance) in a hypothetical circuit description.

macro A macro, in the context of this document, refers to a C-
language macro which supports the construction of user-
defined models by simplifying input/output and parameter-
passing operations within the Model Definition File.

.mod Refers to the Model Definition File. The file suffix reflects
the filename of the model definition file: cfunc.mod.

.model Refers to a model card associated with an element card in
XSPICE. A model card allows for data defining an instance
to be conveniently located in the XSPICE deck such that the
general layout of the elements is more readable.

202

XSPICE Simulator

Software User's Manual

Nutmeg

subcircuit

The SPICE3C1 default post-processor. This provides a sim-
ple stand-alone simulator interface which can be used with
the ATESSE simulator (see referenced documents section for
additional information on Nutmeg).

A “device” within an XSPICE deck which is defined in terms

of a group of element cards and which can be referenced in
other parts of the XSPICE deck through element cards.

203

Notes
Glossary

Notes

Acronyms and Abbreviations

XSPICE Simulator

Software User's Manual

5.2 Acronyms and Abbreviations

ATE

ATESSE

CAE

CCCS

CCVS

CSClI

FET

IDD

IFS

MNA

MOSFET

PWL

RAM

ROM

SDD

SI

SIM

Automatic Test Equipment
Automatic Test Equipment Software Support Environment
Computer-Aided Engineering

Current Controlled Current Source. In some cases, this is

abbreviated ICIS.

Current Controlled Voltage Source. Also abbreviated as

ICVS.

Computer Software Configuration Item

Field Effect Transistor

Interface Design Document

Refers to the Interface Specification File. The abbrevia-
tion reflects the filename of the Interface Specification File:
ifspec.ifs.

Modified Nodal Analysis

Metal Oxide Semiconductor Field Effect Transistor
Piece-Wise Linear

Random Access Memory

Read Only Memory

Software Design Document

Simulator Interface

The ATESSE Version 2.0 Simulator

204

XSPICE Simulator Notes

Software User’'s Manual Acronyms and Abbreviations

SPICE

SPICE3

SRS

SUM

UCB

UDN

VCCS

VCIS

VCVS

XSPICE

Simulation Program with Integrated Circuit Emphasis. This
program was developed at the University of California at
Berkeley.

Version 3 of SPICE.

Software Requirements Specification

Software User’s Manual

University of California at Berkeley

User-Defined Node(s)

Voltage Controlled Current Source. This is also sometimes

abbreviated as VCIS.
Voltage Controlled Current Source.
Voltage Controlled Voltage Source

Extended SPICE; synonymous with the ATESSE Version 2.0
Simulator.

205

XSPICE Simulator Notes

Software User’'s Manual Acronyms and Abbreviations

APPENDICES

207

A XSPICE System
Requirements

This appendix lists hardware and software requirements for installing and running XSPICE
at your site. It does not cover the actual installation process. Refer to the Release Notes
provided with your XSPICE distribution tape for installation instructions. Also, please
refer to the Release Notes for any addendums to the requirements specified here since later
releases may differ in some respects.

XSPICE was developed on HP /Apollo DN series and 400 series workstations under BSD 4.3
UNIX and X11R3. The software has also been successfully compiled on Sun workstations
that satisfied the following requirements:

e 32 bit processor.
e Approximately 50 Mbytes of free disk space.

e 4 Mbytes of random access memory.

¢ BSD 4.3 compatible UNIX operating system with Bourne shell and “sed” stream
editor installed.

¢ X Window System release 11, revision 3 or 4 with Athena Widgets.

e ANSI compatible C compiler.

A 32 bit processor is required to support 4 byte integers and pointer arithmetic. To date,
the code has been compiled only for Motorola 68000 based machines but should work with
other processors as well.

The distribution software is approximately 15 Mbytes in size before compilation. Allowing
for 50 Mbytes of free space should provide sufficient room for compiled object files and

209

XSPICE System Requirements XSPICE Simulator

Software User's Manual

linked executables. More disk space will be required if you intend to run large simulations
that generate large volumes of results data.

On HP/Apollo workstations running Domain OS 10.3, the linked XSPICE executable is
approximately 2 Mbytes in size with all predefined code models and node types included
and with no debugging information included (“-g” compile option not used). Allowing for 4
Mbytes of random access memory should provide sufficient room for the executable to run
and to allocate dynamic memory for results data without excessive paging. More memory
may be required on some machines depending on the space required by the machine’s
operating system.

Some of the header files used in the simulator code are BSD UNIX specific. Therefore,
you will need to compile the software in a BSD 4.3 compatible environment. Bourne shell
compatible scripts and the UNIX “sed” editor are used in parts of the Code Model Toolkit.

The Nutmeg user interface requires X11 X-Windows support for certain files/commands
including the help system and plotting of results data. The code has been successfully com-
piled under X11R3 and X11R4. The optional Athena Widget Set must be installed on your
machine. This may not be provided by default on some systems (e.g. Sun workstations).

Much of the code in XSPICE uses the type-checking features and generic (void) pointers
of ANSI C. Therefore, you must use an ANSI compatible C compiler to compile the code.
Certain workstations (e.g. Sun machines) do not provide an ANSI C compiler by default.
If you do not have an ANSI C compatible compiler, you may wish to acquire a copy of the
GNU C compiler (“gec”). XSPICE has been successfully compiled with gee version 1.59
and above. Earlier versions of gcc may not work due to problems with copying of structures
in assignment statements.

210

B Code Model Data Type
Definitions

There are three data types which you can incorporate into a model and which have already
been used extensively in the code model library included with the simulator. These are
detailed below:

Boolean_t

The Boolean type is an enumerated type which can take on values of FALSE (integer value
0) or TRUE (integer value 1). Alternative names for these enumerations are MIF_FALSE
and MIF_TRUE, respectively.

Complex_t

The Complex type is a structure composed of two double values. The first of these is the
.real type, and the second is the .imag type. Typically these values are accessed as shown:

For complex value “data”, the real portion is “data.real”, and the imaginary portion is
“data.imag”.

Digital State_t

The Digital State type is an enumerated value which can be either ZERO (integer value 0),
ONE (integer value 1), or UNKNOWN (integer value 2).

Digital Strength_t

The Digital Strength type is an enumerated value which can be either STRONG (integer
value 0), RESISTIVE (integer value 1), HILIMPEDANCE (integer value 2) or UNDETER-
MINED (integer value 3).

211

Code Model Data Type Definitions XSPICE Simulator

Software User's Manual

Digital _t

The Digital type is a composite of the Digital_State_t and Digital_Strength_t enumerated
datatypes. The actual variable names within the Digital type are .state and .strength and
are accessed as shown below:

For complex value “data”, the state portion is “data.state”, and the strength portion is
“data.strength”.

212

C XSPICE/Nutmeg
Simulation Examples

This section is designed to walk you through the basic features of XSPICE using the Nutmeg
user interface. The operation of XSPICE and Nutmeg will be illustrated through three
examples.

The first example uses the simple one-transistor amplifier circuit illustrated in Figure C.1.
This circuit is constructed entirely with SPICE3 compatible devices and is used to introduce
basic concepts, including:

Invoking the simulator

Running simulations in different analysis modes

Printing and plotting analog results
¢ Examining status, including executation time and memory usage

¢ Exiting the simulator

The second example circuit, shown in Figure C.2, models the circuit of Figure C.1 using the
XSPICE gain block code model to substitute for the more complex and computationally
expensive SPICE3 transistor model. This example illustrates one way in which XSPICE
code models can be used to raise the level of abstraction in circuit modeling to improve
simulation speed.

The third and final example, shown in Figure C.3, illustrates many of the more advanced
features offered by XSPICE. This circuit is a mixed-mode design incorporating digital data,
analog data, and User-Defined Node data together in the same simulation. Some of the
important features illustrated include:

213

XSPICE/Nutmeg Simulation Examples XSPICE Simulator

Software User's Manual

x
VCC o)
o
i
v L3 ¢ L2
vce ISP 5 20
— o ™ Q
12 & &
cOoLL
10U
1 % BASE
CCOUPLE ™
% EMT
VIN § %

2 i
u
=
X =
—]
"4

Figure C.1 Transistor Amplifier Simulation Example

Creating and compiling Code Models

Creating an XSPICE executable that incorporates these new models

e The use of “node bridge” models to translate data between the data types in
the simulation

Plotting analog and event-driven (digital and User-Defined Node) data

Using the “eprint” command to print event-driven data

Throughout these examples, we assume that XSPICE has already been installed on your
system and that your user account has been set up with the proper search path and envi-
ronment variable data. If you experience problems, please see your system administrator
for help.

The examples also assume that you are running under UNIX and will use standard UNIX
cp” for copying files, etc. If you are using a different set up, with
different operating system command names, you should be able to translate the commands

commands such as “

shown into those suitable for your installation.

214

XSPICE Simulator XSPICE/Nutmeg Simulation Examples

Software User’'s Manual Simulation Example 1
AAMP
1 10U AQUT 3.9K coLL
CCOUPLE RZOUT
g o0
I i

Figure C.2 Code Model Simulation Example

Finally, file system pathnames given in the examples assume that XSPICE has been installed
on your system in directory “/usr/local/xspice-1-0”. If your installation is different, you
should substitute the appropriate root pathname where appropriate.

C.1 Simulation Example 1

The circuit shown in Figure C.1 is a simple one-transistor amplifier. The input signal
is amplified with a gain of approximately -(Rc/Re) = -(3.9K/1K) = -3.9. The circuit
description file for this example is shown below.

Berkeley SPICE3 compatible circuit
This circuit contains only Berkeley SPICE3 components.
The circuit is an AC coupled transistor amplifier with

a sinewave input at node '"1'", a gain of approximately -3.9,
and output on node "coll".

* K K K X X ¥ =

.tran le-5 2e-3
*

vcc vece 0 12.0

vin 10 0.0 ac 1.0 sin(0 1 1k)
*

ccouple 1 base 10uF
*

rbiasl vcc base 100k

215

XSPICE/Nutmeg Simulation Examples XSPICE Simulator

Simulation Example 1 Software User’'s Manual

rbias2 base 0 24k
*

gl coll base emit generic

.model generic npn
*

rcollector vcc coll 3.9k

remitter emit 0 1k
*

.end

ENABLE

ADIV2 ADIV4 ADIV8
ABRIDGE1 | ACLK
1 b =D D
LK DI v2_olT] DI va_ot| ABRIDGE2
= = — | Dive_our
QN Qn Q
Vi = o
&~
FILT_IN
0.01U
CLPF
10K
RLPF2
ABRIDGE3
N CLK our 10K A MNUS
FILT_oUT A_ouT LPF_oUT
XFILTER RLPFL
%

Figure C.3 Mixed-Mode Simulation Example

To simulate this circuit, move into a directory under your user account and copy the file
spice3.deck from directory /usr/local/xspice-1-0/1ib/sim/examples.

$ cp /usr/local/xspice-1-0/1ib/sim/examples/spice3.deck spice3.deck
Now invoke the simulator on this circuit as follows:

$ xspice spice3.deck

216

XSPICE Simulator XSPICE/Nutmeg Simulation Examples

Software User’'s Manual Simulation Example 1

After a few moments, you should see the XSPICE prompt:

XSPICE 1 —>

At this point, the XSPICE simulator has read-in the circuit description and checked it for
errors. If any errors had been encountered, messages describing them would have been
output to your terminal. Since no messages were printed for this circuit, the syntax of the
circuit description was correct.

To see the circuit description read by the simulator you can issue the following command:

XSPICE 1 -> listing

The simulator shows you the circuit description currently in memory:

4 Berkeley SPICE3 compatible circuit

1 : A BERKELEY SPICE3 COMPATIBLE CIRCUIT
9 : .TRAN 1E-5 2E-3
11 : VCC VCC 0 12.0
12 : VIN 1 0 0.0 AC 1.0 SIN(O 1 1K)
14 : CCOUPLE 1 BASE 10UF
16 : RBIAS1 VCC BASE 100K
17 : RBIAS2 BASE 0 24K
19 : Q1 COLL BASE EMIT GENERIC
20 : .MODEL GENERIC NPN
22 : RCOLLECTOR VCC COLL 3.9K
23 : REMITTER EMIT 0 1K
26 : .end

The title of this circuit is “A Berkeley SPICE3 compatible circuit”. The circuit description
contains a transient analysis control command .TRAN 1E-5 2E-3 requesting a total simu-
lated time of 2ms with a maximum timestep of 10us. The remainder of the lines in the
circuit description describe the circuit of Figure C.1.

Before running this simulation, let’s issue the “rusage” command to check the CPU time
and memory used so far:

XSPICE 2 -> rusage

Total run time: 1.300 seconds.

Current data size = 237504,
Data limits: hard = 2147483647, soft = 2147483647.

Time since last call: 0.000 seconds.

217

XSPICE/Nutmeg Simulation Examples XSPICE Simulator

Simulation Example 1 Software User’'s Manual

From this output we notice that the simulator used 1.3 seconds while reading in and parsing
the circuit description and has used 237504 bytes of dynamically allocated memory so far
(numbers may be somewhat different on your system).

Now, execute the simulation by entering the “run” command:

XSPICE 3 -> run

The simulator will run the simulation and when execution is completed, will return with
the XSPICE prompt. When the prompt returns, issue the rusage command again to see
how much time and memory has been used now.

XSPICE 4 -> rusage

Total run time: 6.467 seconds.

Current data size = 270272,
Data limits: hard 2147483647, soft = 2147483647.

Time since last call: 0.033 seconds.

From this information, we can compute that the total run time for this analysis was ap-
proximately (6.5 - 1.3) = 4.2 seconds and that (270272 - 237504) = 32768 additional
bytes of dynamically allocated memory have been used.

To examine the results of this transient analysis, we can use the “plot” command. First we
will plot the nodes labeled “1” and “base”.

XSPICE 5 -> plot v(1) base

The simulator responds by displaying an X Window System plot similar to that shown in
Figure C.4.

Notice that we have named one of the nodes in the circuit description with a number (“17),
while the others are words (“base”). This was done to illustrate SPICE3’s special require-
ments for plotting nodes labeled with numbers. Numeric labels are allowed in SPICE3 for
backwards compatibility with SPICE2. However, they require special treatment in some
commands such as “plot”. The “plot” command is designed to allow expressions in its ar-
gument list in addition to names of results data to be plotted. For example, the expression
plot (base - 1) would plot the result of subtracting 1 from the value of node “base”.

If we had desired to plot the difference between the voltage at node “base” and node “17, we
would need to enclose the node name “1” in the construction v() producing a command
such as plot (base - v(1)).

218

XSPICE Simulator XSPICE/Nutmeg Simulation Examples

Software User’'s Manual Simulation Example 1
— E—
B e
Y

Figure C.4 Nutmeg Plot of Input and Base Voltages

Now, issue the following command to examine the voltages on two of the internal nodes of
the transistor amplifier circuit:

XSPICE 6 —> plot vcc coll

The plot shown in Figure C.5 should appear.

Notice in the circuit description that the power supply voltage source and the node it is
connected to both have the name “vcc”. The plot command above has plotted the node
voltage “vee”. However, it is also possible to plot branch currents through voltage sources
in a circuit. SPICE3 always adds the special suffix “#branch” to voltage source names.
Hence, to plot the current into the voltage source named “vcc”, we would use a command
such as plot vcc#branch.

Now let’s run a simple DC simulation of this circuit and examine the bias voltages with the
“print” command. One way to do this is to quit the simulator using the “quit” command,
edit the input file to change the “.tran” line to “.op” (for ’operating point analysis’), re-
invoke the simulator, and then issue the “run” command. However, Nutmeg allows analysis
mode changes directly from the XSPICE prompt. All that is required is to enter the control

219

XSPICE/Nutmeg Simulation Examples XSPICE Simulator

Simulation Example 1 Software User’'s Manual
— \GCC
211 TP RSSO
¥

mS time

Figure C.5 Nutmeg Plot of VCC, Collector, and Emitter Voltages

line (without the leading “.”). XSPICE will interpret the information on the line and start
the new analysis run immediately, without the need to enter a new “run” command.

To run the DC simulation of the transistor amplifier, issue the following command:

XSPICE 7 -> op

After a moment the XSPICE prompt returns. Now issue the “print” command to examine
the emitter, base, and collector DC bias voltages.

XSPICE 8 -> print emit base coll

XSPICE responds with:

emit = 1.293993e+00
base = 2.074610e+00
coll = 7.003393e+00

220

XSPICE Simulator XSPICE/Nutmeg Simulation Examples

Software User’'s Manual Simulation Example 1

To run an AC analysis, enter the following command:

XSPICE 9 —-> ac dec 10 0.01 100

This command runs a small-signal swept AC analysis of the circuit to compute the magni-
tude and phase responses. In this example, the sweep is logarithmic with “decade” scaling,
10 points per decade, and lower and upper frequencies of 0.01 Hz and 100 Hz. Since the
command sweeps through a range of frequencies, the results are vectors of values and are
examined with the plot command. Issue to the following command to plot the response
curve at node “coll”:

XSPICE 10 -> plot coll

This plot shows the AC gain from input to the collector. (Note that our input source in
the circuit description “vin” contained parameters of the form “AC 1.0” designating that a
unit-amplitude AC signal was applied at this point.)

To produce a more traditional “Bode” gain phase plot with logarithmic scaling on the
frequency axis, we use the expression capability of the “plot” command and the built-in
Nutmeg functions db(), log(), and ph() together with the vs keyword:

XSPICE 11 -> plot db(coll) ph(coll) vs log(frequency)

The last analysis supported by XSPICE is a swept DC analysis. To perform this analysis,
issue the following command:

XSPICE 12 -> dc vcc 0 15 0.1

This command sweeps the supply voltage “vee” from 0 to 15 volts in 0.1 volt increments.
To plot the results, issue the command:

XSPICE 13 -> plot emit base coll

Finally, to exit the simulator, use the “quit” command, and you will be returned to the
operating system prompt.

XSPICE 14 -> quit

So long.
$

221

XSPICE/Nutmeg Simulation Examples XSPICE Simulator

Simulation Example 2 Software User’'s Manual

C.2 Simulation Example 2

The circuit shown in Figure C.2 is an abstract model of the circuit shown in Figure C.1,
constructed using the XSPICE code model “gain”. The XSPICE circuit description for this
circuit is shown below.

simple XSPICE amplifier circuit

A
*
* This uses an XSPICE '"gain" code model to substitute for
* the transistor amplifier circuit in spice3.deck.

*

.tran le-5 2e-3
*

vin 10 0.0 ac 1.0 sin(0 1 1k)
*

ccouple 1 in 10uF
*
*

rzin 1in 0 19.35k
*

aamp 1in aout gain_block

.model gain_block gain (gain = -3.9 out_offset = 7.003)
*

rzout aout coll 3.9k
rbig coll 0 1lel2
*

*

.end

Notice the component “aamp”. This is an XSPICE code model device. All XSPICE code
model devices begin with the letter “a” to distinguish them from other SPICI3 devices. The
actual code model used is referenced through a user-defined identifier at the end of the line
- in this case“gain_block”. The type of code model used and its parameters appear on the
associated .model card. In this example, the gain has been specified as -3.9 to approximate
the gain of the transistor amplifier, and the output offset (out_offset) has been set to 7.003
according to the DC bias point information obtained from the DC analysis in Example 1.

Notice also that input and output impedances of the one-transistor amplifier circuit are
modeled with the resistors “rzin” and “rzout”, since the “gain” code model defaults to an
ideal voltage-input, voltage-output device with infinite input impedance and zero output
impedance.

Lastly, note that a special resistor “rbig” with value “1e12” has been included at the opposite
side of the output impedance resistor “rzout”. This resistor is required by SPICE3’s matrix
solution formula. Without it, the resistor “rzout” would have only one connection to the

222

XSPICE Simulator XSPICE/Nutmeg Simulation Examples

Software User’'s Manual Simulation Example 2

circuit, and an ill-formed matrix could result. One way to avoid such problems without
adding resistors explicitly is to use the XSPICE “rshunt” option described in this document
under XSPICE Syntax Extensions/General Enhancements.

To simulate this circuit, copy the file =xspice.deck from the directory
/usr/local/xspice-1-0/1ib/sim/examples into a directory in your account.

$ cp /usr/local/xspice-1-0/1ib/sim/examples/xspice.deck xspice.deck
Invoke the simulator on this circuit:
$ xspice xspice.deck

After a few moments, you should see the XSPICE prompt:

XSPICE 1 —>

Now issue the “run” command and when the prompt returns, issue the “plot” command to
examine the voltage at the node “coll”.

XSPICE 1 -> run
XSPICE 2 -> plot coll

The resulting waveform closely matches that from the original transistor amplifier circuit
simulated in Example 1.

When you are done, enter the “quit” command to leave the simulator and return to the
command line.

XSPICE 3 -> quit

So long.
$

Using the “rusage” command, you can verify that this abstract model of the transistor
amplfier runs somewhat faster than the full circuit of Example 1. This is because the code
model is less complex computationally. This demonstrates one important use of XSPICE
code models - to reduce run time by modeling circuits at a higher level of abstraction. Speed
improvements vary and are most pronounced when a large amount of low-level circuitry can
be replaced by a small number of code models and additional components.

223

XSPICE/Nutmeg Simulation Examples XSPICE Simulator

Simulation Example 3 Software User’'s Manual

An equally important use of code models is in creating models for circuits and systems that
do not easily lend themselves to synthesis using standard SPICE3 primitives (resistors,
capacitors, diodes, transistors, etc.). This occurs often when trying to create models of ICs
for use in simulating board-level designs. Creating models of operational amplfiers such as
an LM741 or timer ICs such as an LM555 is greatly simplified through the use of XSPICE
code models. Another example of code model use is shown in the next example where a
complete sampled-data system is simulated using XSPICE analog, digital, and User-Defined
Node types simultaneously.

C.3 Simulation Example 3

The circuit shown in Figure C.3 is designed to demonstrate several of the more advanced
features of XSPICE. In this example, you will be introduced to the process of creating
code models and linking them into a new version of the XSPICE simulator. You will also
learn how to print and plot the results of event-driven analysis data. The XSPICE circuit
description for this example is shown below.

Mixed IO types

This circuit contains a mixture of IO types, including
analog, digital, user-defined (real), and ’null’.

The circuit demonstrates the use of the digital and
user—defined node capability to model system-level designs
such as sampled-data filters. The simulated circuit
contains a digital oscillator enabled after 100us. The
square wave oscillator output is divided by 8 with a
ripple counter. The result is passed through a digital
filter to convert it to a sine wave.

¥ O K K K K K K X X K ¥

.tran le-5 1e-3

*

vi 1 0 0.0 pulse(0 1 1le-4 1e-6)

ri 10 1k

*

abridgel [1] [enable] atod

.model atod adc_bridge

*

aclk [enable clk] clk nand

.model nand d_nand (rise_delay=1e-5 fall_delay=1e-5)
*

adiv2 div2_out clk NULL NULL NULL div2_out dff
adiv4 div4_out div2_out NULL NULL NULL divé4_out dff

224

XSPICE Simulator

Software User's Manual

XSPICE/Nutmeg Simulation Examples
Simulation Example 3

adiv8 div8_out div4_out NULL NULL NULL div8_out dff
.model dff d_dff

*

abridge2 div8_out enable filt_in node_bridge2
.model node_bridge2 d_to_real (zero=-1 one=1)

*

xfilter filt_in clk filt_out dig_filter

*

abridge3 filt_out a_out node_bridge3
.model node_bridge3 real_to_v

*

rlpfl a_out oa_minus 10k

*

xlpf O oa_minus lpf_out opamp

*

rlpf2 oa_minus 1lpf_out 10k
clpf 1pf_out oa_minus 0.01uF

*
*

.subckt dig_filter

*
.model nO
.model ni
.model n2
.model g1

*
anOa filt
anla filt
an2a filt
*

az0a x0a
azla xla
*

adOa x2a
adla x2a
*

az2a x2a

*

real_gain
real_gain
real_gain
real_gain
.model zml real_delay

.model d0a real_gain (gain=-0.75)
.model dia real_gain (gain=0.5625)
.model dOb real_gain (gain=-0.3438)
.model dib real_gain (gain=1.0)

_in
_in
_in

clk
clk

x0a
xla

x0a
xla
x2a

xla
x2a

dOa
dila

n0
nl
n2

zml
zml

filt_in clk filt_out

(gain=1.0)
(gain=2.0)
(gain=1.0)
(gain=0.125)

filti_out gi
az3a filtl_out clk filt2_in zml

anOb filt2_in x0b nO
anlb filt2_in x1b ni
an2b filt2_in x2b n2

*

225

XSPICE/Nutmeg Simulation Examples XSPICE Simulator

Simulation Example 3 Software User’'s Manual

az0b x0b clk x1b zmil
azlb x1b clk x2b zmil
*

ad0 x2b x0b d40b

adl x2b x1b dib
*

az2b x2b clk filt_out zml
*

.ends dig_filter
*
*

.subckt opamp plus minus out
*

r1 plus minus 300k

al %vd (plus minus) outint lim

.model lim limit (out_lower_limit = -12 out_upper_limit = 12
+ fraction = true limit_range = 0.2 gain=300e3)
r3 outint out 50.0

r2 out 0 lel2

*

.ends opamp
*
*

.end

This circuit is a high-level design of a sampled-data filter. An analog step waveform (created
from a SPICE3 “pulse” waveform) is introduced as “v1” and converted to digital by code
model instance “abridge”. This digital data is used to enable a Nand-Gate oscillator (“aclk”)
after a short delay. The Nand-Gate oscillator generates a squarewave clock signal with a
period of approximately two times the gate delay, which is specified as le-5 seconds. This
50 KHz clock is divided by a series of D Flip Flops (“adiv2”, “adiv4”, “adiv8”) to produce
a squarewave at approximately 6.25 KHz. Note particularly the use of the reserved word
“NULL” for certain nodes on the D Flip Flops. This tells the code model that there is no
node connected to these ports of the flip flop.

The divide-by-8 and enable waveforms are converted by the instance “abridge2” to the
format required by the User-Defined Node type “real”, which expected real-valued data.
The output of this instance on node “filt_in” is a real valued square wave which oscillates
between values of -1 and 1. Note that the associated code model “d_to_real” is not part of
the standard XSPICE code model library but will be built later in this example.

This signal is then passed through subcircuit “xfilter” which contains a digital lowpass filter
clocked by node “clk”. The result of passing this squarewave through the digital lowpass
filter is the production of a sampled sine wave (the filter passes only the fundamental of the
squarewave input) on node “filt_out”. This signal is then converted back to SPICE analog
data on node “a_out” by node bridge instance “abridge3”.

226

XSPICE Simulator XSPICE/Nutmeg Simulation Examples

Software User’'s Manual Simulation Example 3

The resulting analog waveform is then passed through an opamp-based lowpass analog filter
constructed around subcircuit “xlpf” to produce the final output at analog node “lpf_out”.

Before this circuit can be simulated, we need to construct four code models used in it:

e d_to_real
e real tov
e real gain
e real_delay
To construct these models, we will use the XSPICE Code Model Toolkit. However, to avoid

typing in all of the model code, we will be copying files from the “examples” directory once
the model directories have been created.

First, create the code model “d_to_real”. To do so, move into a directory under your user

account and invoke the Code Model Toolkit’s “mkmoddir” command:

$ mkmoddir d_to_real

SPICE model name [d_to_real]:
C function name [ucm_d_to_reall:

Model Directory '"d_to_real" created.

Edit files "ifspec.ifs" and '"cfunc.mod"
to define your model. Then run "make'" to
preprocess and compile it.

and press RETURN to accept the defaults when prompted for data. This creates a model
directory named “d_to_real” and installs three files in it - a “Makefile”, an Interface Speci-
fication File, and a Model Definition File.

Now move into this new directory:
$ cd d_to_real

and examine the Interface Specification and Model Definition files (ifspec.ifs and cfunc.mod).
As explained in Chapter 3 of this document, these files are used to specify the model’s inputs,
output, and parameters, and to code the models behavior in the C programming language
with help from the Code Model Toolkit’s “accessor macros” and function library.

To save time in this example, we will copy these files from the directory
/usr/local/xspice-1-0/1ib/sim/examples/d_to_real.

227

XSPICE/Nutmeg Simulation Examples XSPICE Simulator

Simulation Example 3 Software User’'s Manual

$ cp /usr/local/xspice-1-0/1ib/sim/examples/d_to_real/ifspec.ifs ifspec.ifs
$ cp /usr/local/xspice-1-0/1ib/sim/examples/d_to_real/cfunc.mod cfunc.mod

You may wish to examine these files once you have copied them. When you are done, issue
the UNIX “make” command to send them through the XSPICE Code Model Preprocessor
utility (“cmpp”) and then through the C compiler to create the necessary object files to be
bound in with the simulator.

$ make

/usr/local/xspice-1-0/bin/cmpp -ifs

cc —g -I. -I/usr/local/xspice-1-0/include/sim —c ifspec.c
/usr/local/xspice-1-0/bin/cmpp -mod cfunc.mod

cc —g -I. -I/usr/local/xspice-1-0/include/sim -c cfunc.c

Now move back up to the parent directory:

$ cd ..

and repeat this process for the three remaining code models required for the simulation
(real_to_v, real_gain, and real_delay). Note that the process of compiling code models is
automated by the XSPICE Code Model Toolkit and the associated UNIX “make” command.
Once the interface specifications and model definitions for the models are developed, the
process of compiling the models is reduced to three easy-to-remember steps:

o Create the model with the “mkmoddir” command.

e Ldit the template files “ifspec.ifs” and “cfunc.mod” to specify the model’s in-
terface and it’s behavior.

e Build the model by typing “make”.

The body of this document tells you how to go about designing and coding a model’s
interface and behavior. In addition, numerous examples can be found in the form of the
models in the XSPICE code model library.

Now that our models are ready, the remaining step is to link them with the XSPICE “core”
to create a new XSPICE executable. For this, we use the Code Model Toolkit’s “mksimdir”
command. Move to the directory in which all the models were created if you are not already
there. Then enter the command:

228

XSPICE Simulator XSPICE/Nutmeg Simulation Examples

Software User’'s Manual Simulation Example 3

$ mksimdir mysim
Simulator directory "mysim'" created.

Edit files "modpath.lst" and "udnpath.lst'" to
specify desired models and node types respectively.
Then run "make" to build the simulator executable.

When the operating system prompt returns, move into this new directory, and edit the file
“modpath.lst”. This file holds the pathnames to model directories containing models to be
included in the simulator. The file initially includes all the models in the XSPICE Code
Model Library. You may add and/or delete files from the list according to your anticipated
needs. For this example, we will simply add the four models we have just compiled at the
bottom of the file, with one pathname per line.

Add the following lines at the bottom of the file:

../d_to_real
../real_to_v
../real_gain
../real_delay

Save this edited file, return to the operating system prompt, and enter the UNIX “make”
command (Note: Making the simulator may take a couple of minutes depending on the
number of models included).

$ make

Running preprocessor on modpath.lst and udnpath.lst ...
/usr/local/xspice-1-0/bin/cmpp -1lst

Compiling list of models and node types...
cc -o temp.o -g -I. -I/usr/local/xspice-1-0/include/sim ...

Linking XSPICE simulator ...

cc -o xspice temp.o \
/usr/local/xspice-1-0/1lib/sim/object/core.o -L/usr/X11/1ib ...
/usr/local/xspice-1-0/src/cml/aswitch/*.0 \
/usr/local/xspice-1-0/src/cml/climit/*.0 \
/usr/local/xspice-1-0/src/cml/d_dt/*.0 \
/usr/local/xspice-1-0/src/cml/divide/*.0 \
/usr/local/xspice-1-0/src/cml/gain/*.0 \
/usr/local/xspice-1-0/src/cml/hyst/*.0 \
/usr/local/xspice-1-0/src/cml/ilimit/*.0 \

229

XSPICE/Nutmeg Simulation Examples XSPICE Simulator

Simulation Example 3 Software User’'s Manual

/usr/local/xspice-1-0/src/cml/d_dff/*.0 \
/usr/local/xspice-1-0/src/cml/d_jkff/*.0 \
/usr/local/xspice-1-0/src/cml/d_tff/*.0 \
/usr/local/xspice-1-0/src/cml/d_srff/*.0 \
/usr/local/xspice-1-0/src/cml/d_dlatch/*.0 \
/usr/local/xspice-1-0/src/cml/d_srlatch/*.0 \
/usr/local/xspice-1-0/src/cml/d_state/*.0 \
/usr/local/xspice-1-0/src/cml/d_osc/*.0 \
../d_to_real/*.0 \

../real_to_v/*.0 \

../real_gain/*.0 \

../real_delay/*.0 \
/usr/local/xspice-1-0/src/udnl/real/*.0 \
/usr/local/xspice-1-0/src/udnl/int/*.o0

Deleting temporary files ...

XSPICE simulator created.

Type: "xspice <input deck>" to run.

Now copy the file “mixed _mode.deck” from directory /usr/local/xspice-1-0/1ib/sim/examples
into the “mysim” directory:

$ cp /usr/local/xspice-1-0/1ib/sim/examples/mixed_mode.deck mixed_mode.deck
and invoke the new simulator executable as you did in the previous examples.

$ xspice mixed_mode.deck
Execute the simulation with the “run” command.

XSPICE 1 -> run

After several seconds, the XSPICE prompt should return.

Results of this simulation are examined in the manner illustrated in the previous two ex-
amples. You can use the “plot” command to plot either analog nodes, event-driven nodes,
or both. For example, you can plot the values of the sampled-data filter input node and
the analog lowpass filter output node as follows:

230

XSPICE Simulator XSPICE/Nutmeg Simulation Examples

Software User’'s Manual Simulation Example 3

Figure C.6 Nutmeg Plot of Filter Input and Output

XSPICE 2 -> plot filt_in 1lpf_out

The plot shown in Figure C.6 should appear.

You can also plot data from nodes inside a subcircuit. For example, to plot the data on
node “xla” in subcircuit “xfilter”, create a pathname to this node in reverse order with a
colon separator.

XSPICE 3 -> plot xla:xfilter

The output from this command is shown in Figure C.7. Note that the waveform contains
vertical segments. These segments are caused by the non-zero delays in the “real_gain”
models used within the subcircuit. Fach vertical segment is actually a step with a width
equal to the model delay (1le-9 seconds).

Plotting nodes internal to subcircuits works for both analog and event-driven nodes. The
reverse order format arises because instance names are expanded similarly when processing
subcircuits and SPICE uses the first character of a name to determine the device type.

231

XSPICE/Nutmeg Simulation Examples

Simulation Example 3

XSPICE Simulator

Software User's Manual

— xlaixfilter

L0 feeeeeeeeeeneeens R PR e P e .

Figure C.7 Nutmeg Plot of Subcircuit Internal Node

Hence, by building the name in reverse order, the first character of the instance in the
subcircuit is unchanged in the expanded name.

To examine data such as the closely spaced events inside the subcircuit at node “xla:xfilter”,
it is often convenient to use the “eprint” command to produce a tabular listing of events.
Try this by entering the following command:

XSPICE 4 -> eprint xla:xfilter

***% Results Data ***x*

Time or Step
xla:xfilter

(e = = =)

.000000000e+00
.010030000e-04
.010040000e-04
.210020000e-04
.210030000e-04

=N NN O

.000000e+00
.000000e+00
.562500e+00
.812500e+00
.253906e+00

232

XSPICE Simulator

Software User's Manual

1.410020000e-04 2.332031e+00
1.410030000e-04 3.283447e+00
1.610020000e-04 2.014893e+00
1.610030000e-04 1.469009e+00
1.810020000e-04 2.196854e+00
1.810030000e-04 1.176232e+00
1.810090000e-04 -2.823768e+00
1.810100000e-04 —-3.948768e+00
2.010020000e-04 -3.087939e+00
2.010030000e-04 -6.135439e+00
2.210020000e-04 -2.072106e+00
2.210030000e-04 -3.302109e+00
9.010090000e-04 3.049473e+00
9.010100000e-04 4.174473e+00
9.210020000e-04 2.867375e+00
9.210030000e-04 5.380142e+00
9.410020000e-04 2.029786e+00
9.410030000e-04 2.707975e+00
9.610020000e-04 1.803723e+00
9.610030000e-04 3.006294e-01
9.810020000e-04 2.304755e+00
9.810030000e-04 9.506230e-01
9.810090000e-04 -3.049377e+00
9.810100000e-04 -4.174377e+00

XSPICE/Nutmeg Simulation Examples
Simulation Example 3

kkkk Messages kkkk

**kk*k Statistics F*k*k*

Operating point analog/event alternations: 1

Operating point load calls: 37
Operating point event passes: 2
Transient analysis load calls: 4299
Transient analysis timestep backups: 87

This command produces a tabular listing of event-times in the first column and node values
in the second column. The 1 ns delays can be clearly seen in the fifth decimal place of the
event times.

Note that the eprint command also gives statistics from the event-driven algorithm portion
of XSPICE. For this example, the simulator alternated between the analog solution algo-

233

XSPICE/Nutmeg Simulation Examples XSPICE Simulator

Simulation Example 3 Software User’'s Manual

rithm and the event-driven algorithm one time while performing the initial DC operating
point solution prior to the start of the transient analysis. During this operating point anal-
ysis, 37 total calls were made to event-driven code model functions, and two separate event
passes or iterations were required before the event nodes obtained stable values. Once the
transient analysis commenced, there were 4299 total calls to event-driven code model func-
tions. Lastly, the analog simulation algorithm performed 87 timestep backups that forced
the event-driven simulator to backup its state data and its event queues.

A similar output is obtained when printing the values of digital nodes. For example, print
the values of the node “div8_out” as follows:

XSPICE 5 -> eprint div8_out

***% Results Data ***x*

Time or Step

div8_out

0.000000000e+00 1s
1.810070000e-04 Os
2.610070000e-04 is
3.410070000e-04 Os
4.210070000e-04 is
5.010070000e-04 Os
5.810070000e-04 is
6.610070000e-04 Os
7.410070000e-04 is
8.210070000e-04 Os
9.010070000e-04 is
9.810070000e-04 Os

kkkk Messages kkkk

**kk*k Statistics F*k*k*

Operating point analog/event alternations: 1

Operating point load calls: 37
Operating point event passes: 2
Transient analysis load calls: 4299
Transient analysis timestep backups: 87

234

XSPICE Simulator Index

Software User's Manual

From this printout, we see that digital node values are composed of a two character string.
The first character (0, 1, or U) gives the state of the node (logic zero, logic one, or unknown
logic state). The second character (s, r, z, u) gives the “strength” of the logic state (strong,
resistive, hi-impedance, or undetermined).

If you wish, examine other nodes in this circuit with either the plot or eprint commands.
When you are done, enter the “quit” command to exit the simulator and return to the
operating system prompt:

XSPICE 6 -> quit

So long.
$

235

Index

AC analysis, 48, 51, 73, 77, 102
ac analysis, 97
AC_GAIN(), 46, 51
adc_bridge, 127, 128
allowed types, 39, 188
analog models, 69

analog switch, 86
ANALYSIS, 46-48
analysis, 19

analysis modes, 17

and gate, 136

arbitrary phase, 29
arbitrary phase sources, 29
ARGS, 44, 46, 47

aswitch, 27, 86, 87
ATESSE Version 1.0, 28

breakpoint, 59
breakpoints, 59
buffer, 95, 132

C function name, 38
CALL_TYPE, 46-48
capacitance, 60
capacitance meter, 122
capacitor, 19, 29

CCCS, 28, 205

CCVS, 28, 205

cfunc.mod, 33, 44

circuit description, 18
climit, 80, 81
cm_adc_bridge, 127, 128
cm_analog_alloc, 52, 56
cm_analog_auto_partial, 51, 52, 57
cm_analog_converge, 52, 57

cm_analog_get_ptr, 52, 56
cm_analog_integrate, 52, 57
cm_analog not_converged, 52, 57
cm_analog_set_perm_bkpt, 52, 59
cm_analog_set_temp_bkpt, 52, 59
cm_aswitch, 86, 87

cm _climit, 80, 81

cm _climit_fen, 52, 60
cm_cmeter, 122
cm_complex_add, 52, 61
cm_complex_div, 52, 61
cm_complex_mult, 52, 61
cm_complex set, 52, 61
cm_complex_sub, 52, 61
cm_core, 108, 110-112
cm_d_and, 136, 137
cm_d_buffer, 132, 133
cm_d_dff; 152, 154
cm_d_dlatch, 164, 166
cm_d_dt, 96, 97

cm_d_fdiv, 175, 176
cm_d_inverter, 134, 135
cm_d_jkff, 155, 157
cm_d_nand, 138, 139
cm_d_nor, 142, 143
cm_d_or, 140, 141
cm_d_osc, 129, 130
cm_d_pulldown, 151, 152
cm_d_pullup, 150, 151
cm_d_ram, 177, 179, 180
cm_d_source, 181, 182
cm_d_srff, 161, 163
cm_d_srlatch, 167, 170
cm_d_state, 171, 173, 174

XSPICE Simulator

Software User's Manual

cm_d_tff, 158, 160

cm_d_tristate, 148, 149

cm_d_xnor, 146, 147

cm_d_xor, 144, 145

cm_dac_bridge, 125, 126

cm_divide, 75, 77

cm_event_alloc, 52, 56

cm_event_get_ptr, 52, 56

cm_event_queue, 52, 59

cm_gain, 70

cm_hyst, 94, 95

cm_ilimit, 90, 92

cm_nt, 98, 99

cm_lcouple, 106, 107

cm _limit, 78, 79

cm _Imeter, 123

cm_message_get_errmsg, 52, 58

cm_message_send, 52

cm_mult, 73, 74

cm _netlist_get_c, 52, 60

cm _netlist_get_1, 52, 60

cm_oneshot, 119, 121

cm_pwl, 83-85

cm_ramp_factor, 52

cm_s_xfer, 100-103

cm_sine, 113

cm _slew, 104, 105

cm_smooth_corner, 52, 54

cm_smooth_discontinuity, 52, 54

cm_smooth_pwl, 52, 54

cm_square, 117, 118

cm_summer, 71

cm _triangle, 115, 116

cm _zener, 88, 89

cmeter, 122

code model, 35, 38, 39, 41, 42, 44, 48-51,
55, 60,69, 101, 111, 112, 185, 191,
193

code models, 23, 27, 32-34

control cards, 20

controlled digital oscillator, 129

controlled limiter, 80, 81

237

INDEX

controlled one-shot, 59, 119

controlled oscillators, 59

controlled sine wave oscillator, 113

controlled triangle wave oscillator, 115

convergence, 18,31, 32, 55, 57, 84, 88, 97,
99

convergence debugging, 32

convergence functions, 57
core, 108, 110-112

d flip flop, 152

d latch, 164

d-type flip flop, 152
d-type latch, 164
d_and, 136, 137
d_buffer, 132, 133
d_dff, 152, 154
d_dlatch, 164, 166
d_dt, 96, 97

d fdiv, 175, 176
d_inverter, 134, 135
d_jkff, 155, 157
dnand, 138, 139
dmor, 142, 143
d_or, 140, 141

d_osc, 129, 130
d_pulldown, 151, 152
d_pullup, 150, 151
d_ram, 177, 179, 180
d_source, 181, 182
d_srff, 161, 163
d_srlatch, 167, 170
d_state, 171, 174
d_tff, 158, 160
d_tristate, 148, 149
d xnor, 146, 147

d xor, 144, 145
dac_bridge, 125, 126
data type, 41, 43
data_type, 41, 43
DC analysis, 19

dc convergence options, 31
default type, 26, 27, 39

INDEX

default value, 34, 41

default_type, 39

default_value, 41

delay, 49, 50, 128, 130, 132, 134, 137, 139,
141, 143, 144, 146, 149, 154, 157,
160, 163, 166, 169, 176, 179

dependent polynomial source, 28

differentiator, 96, 97

digital inversion, 25

digital model, 49

digital models, 32, 131

digital node, 32, 49

direction, 39

divide, 75, 77

divider, 75, 77

error, 34, 38,40, 41, 50, 58, 62, 82, 97, 99,
102, 174, 182, 185

error message, 58, 185, 191, 193

error messages, 185

errors, 97, 99, 182, 191

filter, 101, 102
FIRST_TIMEPOINT, 46-48
flip flop, 152, 154, 157, 160, 163
frequency divider, 175, 176

gain, 27, 48, 49, 51, 60, 70, 71, 73, 75, 78~
80, 84, 90, 92, 97-100, 102, 122,
123

gain block, 70

hybrid models, 124
hyst, 94, 95

ifspec.ifs, 33

ilimit, 90, 92

inductance, 60

inductance meter, 123
inductive coupling, 106, 110
inductor, 19, 29, 106

INIT, 43, 46-48

initial condition, 98

initial conditions, 29, 30, 100

238

XSPICE Simulator

Software User's Manual

input deck, 20, 23

input format, 19

INPUT(), 46, 49
INPUT_STATE(), 46, 49
INPUTSTRENGTH, 49

INPUT _STRENGTHY(), 46, 49
int, 98, 99

integer models, 32

integration and convergence functions, 57
integrator, 57, 98-100

Interface Specification File, 33, 34
inverter, 134

jk flip flop, 155

latch, 164, 166, 167, 169

lcouple, 106, 107

library functions, 44

limit, 78, 79

limiter, 78

limits, 42, 79, 81, 92, 97, 99, 102, 105
Imeter, 123

LOAD, 46, 49

magnetic core, 106, 108
Makefile, 33, 35, 36

matrix conditioning, 30
message handling functions, 58
MESSAGE(), 46

mkmoddir, 33

mksimdir, 36

mkudndir, 35

Model Definition File, 33, 34, 38, 44, 52
model directory, 33

model list, 36

model-list, 36

MOSFET, 20, 205

mult, 73, 74

multiplier, 73

name table, 38

nand gate, 138

node bridge, 125-128
nor gate, 142

XSPICE Simulator

Software User's Manual

null, 25
null allowed, 40, 41
null_allowed, 40, 41

oneshot, 119, 121

or gate, 140

OUTPUT(), 46, 50
OUTPUT_CHANGED(), 46, 50
OUTPUT_DELAY(), 46, 50
OUTPUT_STATE(), 46, 50
OUTPUT_STRENGTHY(), 46, 50

PARAMY(), 46, 48
PARAM_NULL(), 46, 48
PARAM_SIZE(), 46, 48
parameter name, 27, 34, 41
parameter table, 41
parameters, 24

partial derivatives, 51, 60, 105
PARTIAL(), 46, 51

phase, 29

polynomial source, 28

port name, 39

port table, 39

port_name, 37, 39
PORT_NULL(), 46
PORT_SIZE(), 46

port_table, 37, 39

predefined code model, 27, 69
predefined code models, 4, 32
predefined models, 23
predefined node types, 4
preprocess, 3336, 185

pwl, 83-85

pwl controlled source, 83-85

RAD_FREQ, 46-48
RAM, 177

ramp factor, 57
real models, 32
rshunt, 30

s-domain transfer function, 100-102

s_xfer, 100-103

INDEX

set-reset flip flop, 161

set-reset latch, 167

signal inversion, 25

simulator directory, 36

sine, 113

slew, 104, 105

slew rate block, 104, 105

smoothing functions, 54

SPICE, 4, 5, 18-21, 23, 29, 34, 38, 39, 41,
48, 49, 58, 89, 182, 191, 205

SPICE model name, 38

SPICE2GS6, 28

SPICIE3, 18, 205

SPICE3C1, 18-21, 23

square, 117, 118

sr latch, 167

SRS, 205

stand-alone simulator, 36

state machine, 171, 173

state storage functions, 56

static variable table, 42

static variables, 42, 43, 52

STATIC_VAR(), 46, 52

STATIC_VAR_SIZE(), 46

strength, 49

string, 48

subcircuit, 23

SUBCKT, 23

summer, 71

supply ramping, 30

swept DC analysis, 19

T(), 46-48, 56

TEMPERATURE, 46-48

tilde, 25

TIME, 46-48

toggle flip flop, 158, 160

TOTAL_LOAD, 46

transient analysis, 19, 30, 48, 70, 71, 73,
77,79, 81

triangle, 115, 116

UDN Definition File, 34, 35, 61, 62

INDEX

UDN-list, 36

user-defined hybrid models, 124
user-defined models, 32
User-Defined Nodes, 32, 34-36, 61

VCCS, 25, 28, 205

VCVS, 28, 205

vector, 25, 26, 39, 40, 42, 49, 50, 52, 55
vector bounds, 40, 42

vector port, 26, 42

vector ports, 40

vectors, 84

XSPICE, 18, 19, 23, 25, 28, 33, 34, 205

zener, 88, 89
zener diode, 88

240

XSPICE Simulator

Software User's Manual

