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Chapter 1

Introduction

1.1 Features at a glance

Gretl is an econometrics package, including a shared library, a command-line client program
and a graphical user interface.

User-friendly Gretl offers an intuitive user interface; it is very easy to get up and running with
econometric analysis. Thanks to its association with the econometrics textbooks by Ramu
Ramanathan, Jeffrey Wooldridge, and James Stock and Mark Watson, the package offers
many practice data files and command scripts. These are well annotated and accessible.
Two other useful resources for gretl users are the available documentation and the gretl-
users mailing list.

Flexible You can choose your preferred point on the spectrum from interactive point-and-click
to batch processing, and can easily combine these approaches.

Cross-platform Gretl’s “home” platform is Linux but it is also available for MS Windows and Mac
0OS X, and should work on any unix-like system that has the appropriate basic libraries (see
Appendix C).

Open source The full source code for gretl is available to anyone who wants to critique it, patch
it, or extend it. See Appendix C.

Sophisticated Gretl offers a full range of least-squares based estimators, either for single equa-
tions and for systems, including vector autoregressions and vector error correction mod-
els. Several specific maximum likelihood estimators (e.g. probit, ARIMA, GARCH) are also
provided natively; more advanced estimation methods can be implemented by the user
via generic maximum likelihood or nonlinear GMM.

Extensible Users can enhance gretl by writing their own functions and procedures in gretl’s
scripting language, which includes a wide range of matrix functions.

Accurate Gretl has been thoroughly tested on several benchmarks, among which the NIST ref-
erence datasets. See Appendix D.

Internet ready Gretl can access and fetch databases from a server at Wake Forest University.
The MS Windows version comes with an updater program which will detect when a new
version is available and offer the option of auto-updating.

International Gretl will produce its output in English, French, Italian, Spanish, Polish, Por-
tuguese, German, Basque, Turkish or Russian depending on your computer’s native lan-
guage setting.

1.2 Acknowledgements

The gretl code base originally derived from the program ESL (“Econometrics Software Library”),
written by Professor Ramu Ramanathan of the University of California, San Diego. We are much
in debt to Professor Ramanathan for making this code available under the GNU General Public
Licence and for helping to steer gretl’s early development.

We are also grateful to the authors of several econometrics textbooks for permission to package
for gretl various datasets associated with their texts. This list currently includes William Greene,
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author of Econometric Analysis; Jeffrey Wooldridge (Introductory Econometrics: A Modern Ap-
proach); James Stock and Mark Watson (Introduction to Econometrics); Damodar Gujarati (Basic
Econometrics); Russell Davidson and James MacKinnon (Econometric Theory and Methods); and
Marno Verbeek (A Guide to Modern Econometrics).

GARCH estimation in gretl is based on code deposited in the archive of the journal of Applied
Econometrics by Professors Fiorentini, Calzolari and Panattoni, and the code to generate p-
values for Dickey-Fuller tests is due to James MacKinnon. In each case we are grateful to the
authors for permission to use their work.

With regard to the internationalization of gretl, thanks go to Ignacio Diaz-Emparanza (Spanish),
Michel Robitaille and Florent Bresson (French), Cristian Rigamonti (Italian), Tadeusz Kufel and
Pawel Kufel (Polish), Markus Hahn and Sven Schreiber (German), Hélio Guilherme and Henrique
Andrade (Portuguese), Susan Orbe (Basque), Talha Yalta (Turkish) and Alexander Gedranovich
(Russian).

Gretl has benefitted greatly from the work of numerous developers of free, open-source soft-
ware: for specifics please see Appendix C. Our thanks are due to Richard Stallman of the Free
Software Foundation, for his support of free software in general and for agreeing to “adopt”
gretl as a GNU program in particular.

Many users of gretl have submitted useful suggestions and bug reports. In this connection
particular thanks are due to Ignacio Diaz-Emparanza, Tadeusz Kufel, Pawel Kufel, Alan Isaac,
Cri Rigamonti, Sven Schreiber, Talha Yalta, Andreas Rosenblad, and Dirk Eddelbuettel, who
maintains the gretl package for Debian GNU/Linux.

1.3 Installing the programs

Linux

On the Linux! platform you have the choice of compiling the gretl code yourself or making use
of a pre-built package. Building gretl from the source is necessary if you want to access the

development version or customize gretl to your needs, but this takes quite a few skills; most
users will want to go for a pre-built package.

Some Linux distributions feature gretl as part of their standard offering: Debian, for example,
or Ubuntu (in the universe repository). If this is the case, all you need to do is install gretl
through your package manager of choice (e.g. synaptic).

Ready-to-run packages are available in rpm format (suitable for Red Hat Linux and related sys-
tems) on the gretl webpage http://gretl.sourceforge.net.

However, we're hopeful that some users with coding skills may consider gretl sufficiently in-
teresting to be worth improving and extending. The documentation of the libgretl API is by no
means complete, but you can find some details by following the link “Libgretl API docs” on the
gretl homepage. People interested in the gretl development are welcome to subscribe to the
gretl-devel mailing list.

If you prefer to compile your own (or are using a unix system for which pre-built packages are
not available), instructions on building gretl can be found in Appendix C.

MS Windows

The MS Windows version comes as a self-extracting executable. Installation is just a matter
of downloading gretT1_install.exe and running this program. You will be prompted for a
location to install the package.

Updating

If your computer is connected to the Internet, then on start-up gretl can query its home website
at Wake Forest University to see if any program updates are available; if so, a window will open

IIn this manual we use “Linux” as shorthand to refer to the GNU/Linux operating system. What is said herein
about Linux mostly applies to other unix-type systems too, though some local modifications may be needed.
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up informing you of that fact. If you want to activate this feature, check the box marked “Tell
me about gretl updates” under gretl’s “Tools, Preferences, General” menu.

The MS Windows version of the program goes a step further: it tells you that you can update
gretl automatically if you wish. To do this, follow the instructions in the popup window: close
gretl then run the program titled “gretl updater” (you should find this along with the main gretl
program item, under the Programs heading in the Windows Start menu). Once the updater has
completed its work you may restart gretl.



Part I

Running the program



Chapter 2

Getting started

2.1 Let’s run a regression

This introduction is mostly angled towards the graphical client program; please see Chapter 38
below and the Gretl Command Reference for details on the command-line program, gretlcli.

You can supply the name of a data file to open as an argument to gretl, but for the moment
let’s not do that: just fire up the program.! You should see a main window (which will hold
information on the data set but which is at first blank) and various menus, some of them
disabled at first.

What can you do at this point? You can browse the supplied data files (or databases), open a
data file, create a new data file, read the help items, or open a command script. For now let’s
browse the supplied data files. Under the File menu choose “Open data, Sample file”. A second
notebook-type window will open, presenting the sets of data files supplied with the package
(see Figure 2.1). Select the first tab, “Ramanathan”. The numbering of the files in this section
corresponds to the chapter organization of Ramanathan (2002), which contains discussion of
the analysis of these data. The data will be useful for practice purposes even without the text.

gretl: data files

Q0N

4 Em | Greene | Gujarati I Penn World Table Ramanathan | Stock-Watson |’

File |Summary | —
data2-1 SAT scores

data2-2 College and high school GPAs

data2-3  Unemployment, inflation and wages

data3-1 House prices and sqgft

data3-2 Income and health care spending

data3-3 Patents and R&D expenditures

data3-4 Gross Income and Taxes by States

data3-5 Sealing compound shipment data

data3-7 Toyota station wagon repairs

data3-8 Tuition and salary gain for MBAs

data3-9 Return on equity and assets =

Figure 2.1: Practice data files window

If you select a row in this window and click on “Info” this opens a window showing information
on the data set in question (for example, on the sources and definitions of the variables). If you
find a file that is of interest, you may open it by clicking on “Open”, or just double-clicking on
the file name. For the moment let’s open data3-6.

== |n gretl windows containing lists, double-clicking on a line launches a default action for the associated
list entry: e.g. displaying the values of a data series, opening a file.

This file contains data pertaining to a classic econometric “chestnut”, the consumption function.
The data window should now display the name of the current data file, the overall data range

IFor convenience we refer to the graphical client program simply as gretl in this manual. Note, however, that the
specific name of the program differs according to the computer platform. On Linux it is called gret1_x11 while on
MS Windows it is gret1w32.exe. On Linux systems a wrapper script named gret] is also installed — see also the
Gretl Command Reference.
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and sample range, and the names of the variables along with brief descriptive tags — see
Figure 2.2.

File Tools Data View Add Sample Variable Model ﬂelp|
data3-6.gdt

ID # |Variab|e name |De5criptive label |

0 const auto-generated constant
Personal consumption expenditures (1992 dollars)
2 Yt Per capita disposable personal income (1992 dollars)

Annual: Full range 1959 - 1994

W Z I EaxeBEL § B

Figure 2.2: Main window, with a practice data file open

OK, what can we do now? Hopefully the various menu options should be fairly self explanatory.
For now we’ll dip into the Model menu; a brief tour of all the main window menus is given in
Section 2.3 below.

gretl’s Model menu offers numerous various econometric estimation routines. The simplest and
most standard is Ordinary Least Squares (OLS). Selecting OLS pops up a dialog box calling for a
model specification — see Figure 2.3.

gretl: specify model

oLs

Dependent variable

_® |

Set as default

Independent variables

E> const
Yt

[] Robust standard errors configure

lags...

Huep | & gear

ok |

%gancel

Figure 2.3: Model specification dialog

To select the dependent variable, highlight the variable you want in the list on the left and
click the arrow that points to the Dependent variable slot. If you check the “Set as default”
box this variable will be pre-selected as dependent when you next open the model dialog box.
Shortcut: double-clicking on a variable on the left selects it as dependent and also sets it as the
default. To select independent variables, highlight them on the left and click the green arrow
(or right-click the highlighted variable); to remove variables from the selected list, use the rad
arrow. To select several variable in the list box, drag the mouse over them; to select several
non-contiguous variables, hold down the Ctr1 key and click on the variables you want. To run
a regression with consumption as the dependent variable and income as independent, click Ct
into the Dependent slot and add Yt to the Independent variables list.
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2.2 Estimation output

Once you've specified a model, a window displaying the regression output will appear. The
output is reasonably comprehensive and in a standard format (Figure 2.4).

(=] gretl: model 1

File Edit Tests Sawe Graphs Analysis LaTeX |

Model 1: OLS, using observations 1959-1984 (T = 36)
Dependent variable: Ct

coefficient std. error t-ratio p-value
const —384.105 151.330 —2.538 0.0159 ok
Yt 0.932738 0.0106966  87.20 1.44e-4]1 *+**

Mean dependent var  12490.89 S.D. dependent var 2940,028

Sum squared resid 1346750 S.E. of regression 199.0234
R-squared 0.995548 Adjusted R-squared ©.995417
F(1, 34) 7603.702 P-value(F) 1.44e-41
Log- likelihood -240.6161 Akaike criterion 485.2323
Schwarz criterion 488.3993 Hannan-Quinn 486.3377
rho 0.768301 Durbin-Watson B.513696

Figure 2.4: Model output window

The output window contains menus that allow you to inspect or graph the residuals and fitted
values, and to run various diagnostic tests on the model.

For most models there is also an option to print the regression output in BIgX format. See
Chapter 33 for details.

To import gretl output into a word processor, you may copy and paste from an output window,
using its Edit menu (or Copy button, in some contexts) to the target program. Many (not all) gretl
windows offer the option of copying in RTF (Microsoft’s “Rich Text Format”) or as KIgX. If you
are pasting into a word processor, RTF may be a good option because the tabular formatting of
the output is preserved.? Alternatively, you can save the output to a (plain text) file then import
the file into the target program. When you finish a gretl session you are given the option of
saving all the output from the session to a single file.

Note that on the gnome desktop and under MS Windows, the File menu includes a command to
send the output directly to a printer.

= When pasting or importing plain text gretl output into a word processor, select a monospaced or
typewriter-style font (e.g. Courier) to preserve the output’s tabular formatting. Select a small font (10-
point Courier should do) to prevent the output lines from being broken in the wrong place.

2.3 The main window menus

Reading left to right along the main window’s menu bar, we find the File, Tools, Data, View,
Add, Sample, Variable, Model and Help menus.

File Tools Data View Add Sample Mariable Model Help

¢ File menu

- Open data: Open a native gretl data file or import from other formats. See Chapter 4.

- Append data: Add data to the current working data set, from a gretl data file, a
comma-separated values file or a spreadsheet file.

2Note that when you copy as RTF under MS Windows, Windows will only allow you to paste the material into
applications that “understand” RTF. Thus you will be able to paste into MS Word, but not into notepad. Note also
that there appears to be a bug in some versions of Windows, whereby the paste will not work properly unless the
“target” application (e.g. MS Word) is already running prior to copying the material in question.
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Save data: Save the currently open native gretl data file.

Save data as: Write out the current data set in native format, with the option of using
gzip data compression. See Chapter 4.

Export data: Write out the current data set in Comma Separated Values (CSV) format,
or the formats of GNU R or GNU Octave. See Chapter 4 and also Appendix E.

Send to: Send the current data set as an e-mail attachment.

New data set: Allows you to create a blank data set, ready for typing in values or for
importing series from a database. See below for more on databases.

Clear data set: Clear the current data set out of memory. Generally you don’t have to
do this (since opening a new data file automatically clears the old one) but sometimes
it's useful.

Script files: A “script” is a file containing a sequence of gretl commands. This item
contains entries that let you open a script you have created previously (“User file”),
open a sample script, or open an editor window in which you can create a new script.

Session files: A “session” file contains a snapshot of a previous gretl session, includ-
ing the data set used and any models or graphs that you saved. Under this item you
can open a saved session or save the current session.

Databases: Allows you to browse various large databases, either on your own com-
puter or, if you are connected to the internet, on the gretl database server. See Sec-
tion 4.2 for details.

Function files: Handles “function packages” (see Section 10.5), which allow you to
access functions written by other users and share the ones written by you.

Exit: Quit the program. You'll be prompted to save any unsaved work.

e Tools menu

Statistical tables: Look up critical values for commonly used distributions (normal or
Gaussian, t, chi-square, F and Durbin-Watson).

P-value finder: Look up p-values from the Gaussian, t, chi-square, F, gamma, bino-
mial or Poisson distributions. See also the pvalue command in the Gretl Command
Reference.

Distribution graphs: Produce graphs of various probability distributions. In the re-
sulting graph window, the pop-up menu includes an item “Add another curve”, which
enables you to superimpose a further plot (for example, you can draw the t distribu-
tion with various different degrees of freedom).

Test statistic calculator: Calculate test statistics and p-values for a range of common
hypothesis tests (population mean, variance and proportion; difference of means,
variances and proportions).

Nonparametric tests: Calculate test statistics for various nonparametric tests (Sign
test, Wilcoxon rank sum test, Wilcoxon signed rank test, Runs test).

Seed for random numbers: Set the seed for the random number generator (by default
this is set based on the system time when the program is started).

Command log: Open a window containing a record of the commands executed so far.

Gretl console: Open a “console” window into which you can type commands as you
would using the command-line program, gretlcli (as opposed to using point-and-
click).

Start Gnu R: Start R (if it is installed on your system), and load a copy of the data set
currently open in gretl. See Appendix E.

Sort variables: Rearrange the listing of variables in the main window, either by ID
number or alphabetically by name.

NIST test suite: Check the numerical accuracy of gretl against the reference results
for linear regression made available by the (US) National Institute of Standards and
Technology.
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- Preferences: Set the paths to various files gretl needs to access. Choose the font in
which gretl displays text output. Activate or suppress gretl’s messaging about the
availability of program updates, and so on. See the Gretl Command Reference for
further details.

e Data menu

- Select all: Several menu items act upon those variables that are currently selected in
the main window. This item lets you select all the variables.

- Display values: Pops up a window with a simple (not editable) printout of the values
of the selected variable or variables.

- Edit values: Opens a spreadsheet window where you can edit the values of the selected
variables.

- Add observations: Gives a dialog box in which you can choose a number of observa-
tions to add at the end of the current dataset; for use with forecasting.

- Remove extra observations: Active only if extra observations have been added auto-
matically in the process of forecasting; deletes these extra observations.

- Read info, Edit info: “Read info” just displays the summary information for the cur-
rent data file; “Edit info” allows you to make changes to it (if you have permission to
do so).

- Print description: Opens a window containing a full account of the current dataset,
including the summary information and any specific information on each of the vari-
ables.

- Add case markers: Prompts for the name of a text file containing “case markers”
(short strings identifying the individual observations) and adds this information to
the data set. See Chapter 4.

- Remove case markers: Active only if the dataset has case markers identifying the
observations; removes these case markers.

- Dataset structure: invokes a series of dialog boxes which allow you to change the
structural interpretation of the current dataset. For example, if data were read in as a
cross section you can get the program to interpret them as time series or as a panel.
See also section 4.4.

- Compact data: For time-series data of higher than annual frequency, gives you the
option of compacting the data to a lower frequency, using one of four compaction
methods (average, sum, start of period or end of period).

- Expand data: For time-series data, gives you the option of expanding the data to a
higher frequency.

- Transpose data: Turn each observation into a variable and vice versa (or in other
words, each row of the data matrix becomes a column in the modified data matrix);
can be useful with imported data that have been read in “sideways”.

e View menu

- lcon view: Opens a window showing the content of the current session as a set of
icons; see section 3.4.

- Graph specified vars: Gives a choice between a time series plot, a regular X-Y scatter
plot, an X-Y plot using impulses (vertical bars), an X-Y plot “with factor separation”
(i.e. with the points colored differently depending to the value of a given dummy
variable), boxplots, and a 3-D graph. Serves up a dialog box where you specify the
variables to graph. See Chapter 7 for details.

- Multiple graphs: Allows you to compose a set of up to six small graphs, either pair-
wise scatter-plots or time-series graphs. These are displayed together in a single
window.

- Summary statistics: Shows a full set of descriptive statistics for the variables selected
in the main window.
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- Correlation matrix: Shows the pairwise correlation coefficients for the selected vari-
ables.

- Cross Tabulation: Shows a cross-tabulation of the selected variables. This works only
if at least two variables in the data set have been marked as discrete (see Chapter 8).

- Principal components: Produces a Principal Components Analysis for the selected
variables.

- Mahalanobis distances: Computes the Mahalanobis distance of each observation from
the centroid of the selected set of variables.

- Cross-correlogram: Computes and graphs the cross-correlogram for two selected
variables.

e Add menu Offers various standard transformations of variables (logs, lags, squares, etc.)
that you may wish to add to the data set. Also gives the option of adding random vari-
ables, and (for time-series data) adding seasonal dummy variables (e.g. quarterly dummy
variables for quarterly data).

e Sample menu

- Set range: Select a different starting and/or ending point for the current sample,
within the range of data available.

- Restore full range: self-explanatory.

- Define, based on dummy: Given a dummy (indicator) variable with values O or 1, this
drops from the current sample all observations for which the dummy variable has
value 0.

- Restrict, based on criterion: Similar to the item above, except that you don’t need
a pre-defined variable: you supply a Boolean expression (e.g. sqft > 1400) and the
sample is restricted to observations satisfying that condition. See the entry for genr
in the Gretl Command Reference for details on the Boolean operators that can be
used.

- Random sub-sample: Draw a random sample from the full dataset.

- Drop all obs with missing values: Drop from the current sample all observations for
which at least one variable has a missing value (see Section 4.6).

- Count missing values: Give a report on observations where data values are missing.
May be useful in examining a panel data set, where it’s quite common to encounter
missing values.

- Set missing value code: Set a numerical value that will be interpreted as “missing”
or “not available”. This is intended for use with imported data, when gretl has not
recognized the missing-value code used.

e Variable menu Most items under here operate on a single variable at a time. The “active”
variable is set by highlighting it (clicking on its row) in the main data window. Most
options will be self-explanatory. Note that you can rename a variable and can edit its
descriptive label under “Edit attributes”. You can also “Define a new variable” via a formula
(e.g. involving some function of one or more existing variables). For the syntax of such
formulae, look at the online help for “Generate variable syntax” or see the genr command
in the Gretl Command Reference. One simple example:

foo = x1 * x2

will create a new variable foo as the product of the existing variables x1 and x2. In these
formulae, variables must be referenced by name, not number.

e Model menu For details on the various estimators offered under this menu please consult
the Gretl Command Reference. Also see Chapter 18 regarding the estimation of nonlinear
models.

e Help menu Please use this as needed! It gives details on the syntax required in various
dialog entries.
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2.4

Keyboard shortcuts

When working in the main gretl window, some common operations may be performed using the
keyboard, as shown in the table below.

Return Opens a window displaying the values of the currently selected variables: it is

the same as selecting “Data, Display Values”.

Delete Pressing this key has the effect of deleting the selected variables. A confirma-

tion is required, to prevent accidental deletions.

e Has the same effect as selecting “Edit attributes” from the “Variable” menu.

F2 Same as “e”. Included for compatibility with other programs.

g Has the same effect as selecting “Define new variable” from the “Variable”
menu (which maps onto the genr command).

h Opens a help window for gretl commands.

F1 Same as “h”. Included for compatibility with other programs.

r Refreshes the variable list in the main window.

t Graphs the selected variable; a line graph is used for time-series datasets,
whereas a distribution plot is used for cross-sectional data.

2.5 The gretl toolbar

At the bottom left of the main window sits the toolbar.

m 2B EL B

The icons have the following functions, reading from left to right:

ook W

10.

. Launch a calculator program. A convenience function in case you want quick access to

a calculator when you're working in gretl. The default program is calc.exe under MS
Windows, or xcalc under the X window system. You can change the program under the
“Tools, Preferences, General” menu, “Programs” tab.

Start a new script. Opens an editor window in which you can type a series of commands
to be sent to the program as a batch.

Open the gretl console. A shortcut to the “Gretl console” menu item (Section 2.3 above).
Open the gretl session icon window.

Open a window displaying available gretl function packages.

Open this manual in PDF format.

Open the help item for script commands syntax (i.e. a listing with details of all available
commands).

Open the dialog box for defining a graph.
Open the dialog box for estimating a model using ordinary least squares.

Open a window listing the sample datasets supplied with gretl, and any other data file
collections that have been installed.



Chapter 3

Modes of working

3.1 Command scripts

As you execute commands in gretl, using the GUI and filling in dialog entries, those commands
are recorded in the form of a “script” or batch file. Such scripts can be edited and re-run, using
either gretl or the command-line client, gretlcli.

To view the current state of the script at any point in a gretl session, choose “Command log”
under the Tools menu. This log file is called session.inp and it is overwritten whenever you
start a new session. To preserve it, save the script under a different name. Script files will be
found most easily, using the GUI file selector, if you name them with the extension “.inp”.

To open a script you have written independently, use the “File, Script files” menu item; to create
a script from scratch use the “File, Script files, New script” item or the “new script” toolbar
button. In either case a script window will open (see Figure 3.1).

Béf0A@H X

# Replicate Table 1, "Estimation of the Textbook 1=
# Solow model," in Mankiw, Romer and Weil, 0QJE 1992
open mrw.gdt

genr lny = log(gdp85)

genr ngd = 0.05 + (popgrow/100.0)

genr lngd = log(ngd)

genr linv = log(inv/100.0)

# generate variable for testing Solow restriction
genr x3 = linv - lngd

# set sample to non-oil producing countries

supl nonoil --dummy

modell =- ols lny const linw lngd =
genr essu = §ess

genr dful = &df

# restricted regression
ols lny const x3

genr F1 = ($ess - essu)/(essu/dful)

# set sample to the "better data" countries

supl intermed --dummy --replace

model2 =- ols lny const linwv lngd

genr essu = §ess

genr dfu2 = $df Ad|

Figure 3.1: Script window, editing a command file

The toolbar at the top of the script window offers the following functions (left to right): (1) Save
the file; (2) Save the file under a specified name; (3) Print the file (this option is not available on
all platforms); (4) Execute the commands in the file; (5) Copy selected text; (6) Paste the selected
text; (7) Find and replace text; (8) Undo the last Paste or Replace action; (9) Help (if you place the
cursor in a command word and press the question mark you will get help on that command);
(10) Close the window.

When you execute the script, by clicking on the Execute icon or by pressing Ctrl-r, all output
is directed to a single window, where it can be edited, saved or copied to the clipboard. To
learn more about the possibilities of scripting, take a look at the gretl Help item “Command
reference,” or start up the command-line program gretlcli and consult its help, or consult the
Gretl Command Reference.

If you run the script when part of it is highlighted, gretl will only run that portion. Moreover, if

12
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you want to run just the current line, you can do so by pressing Ctrl-Enter.!

Clicking the right mouse button in the script editor window produces a pop-up menu. This
gives you the option of executing either the line on which the cursor is located, or the selected
region of the script if there’s a selection in place. If the script is editable, this menu also gives
the option of adding or removing comment markers from the start of the line or lines.

The gretl package includes over 70 “practice” scripts. Most of these relate to Ramanathan
(2002), but they may also be used as a free-standing introduction to scripting in gretl and to
various points of econometric theory. You can explore the practice files under “File, Script files,
Practice file” There you will find a listing of the files along with a brief description of the points
they illustrate and the data they employ. Open any file and run it to see the output. Note
that long commands in a script can be broken over two or more lines, using backslash as a
continuation character.

You can, if you wish, use the GUI controls and the scripting approach in tandem, exploiting
each method where it offers greater convenience. Here are two suggestions.

e Open a data file in the GUI Explore the data — generate graphs, run regressions, perform
tests. Then open the Command log, edit out any redundant commands, and save it under
a specific name. Run the script to generate a single file containing a concise record of your
work.

e Start by establishing a new script file. Type in any commands that may be required to set
up transformations of the data (see the genr command in the Gretl Command Reference).
Typically this sort of thing can be accomplished more efficiently via commands assembled
with forethought rather than point-and-click. Then save and run the script: the GUI data
window will be updated accordingly. Now you can carry out further exploration of the
data via the GUIL To revisit the data at a later point, open and rerun the “preparatory”
script first.

Scripts and data files

One common way of doing econometric research with gretl is as follows: compose a script;
execute the script; inspect the output; modify the script; run it again — with the last three
steps repeated as many times as necessary. In this context, note that when you open a data file
this clears out most of gretl’s internal state. It’s therefore probably a good idea to have your
script start with an open command: the data file will be re-opened each time, and you can be
confident you're getting “fresh” results.

One further point should be noted. When you go to open a new data file via the graphical
interface, you are always prompted: opening a new data file will lose any unsaved work, do you
really want to do this? When you execute a script that opens a data file, however, you are not
prompted. The assumption is that in this case you're not going to lose any work, because the
work is embodied in the script itself (and it would be annoying to be prompted at each iteration
of the work cycle described above).

This means you should be careful if you've done work using the graphical interface and then
decide to run a script: the current data file will be replaced without any questions asked, and
it’s your responsibility to save any changes to your data first.

3.2 Saving script objects

When you estimate a model using point-and-click, the model results are displayed in a sep-
arate window, offering menus which let you perform tests, draw graphs, save data from the
model, and so on. Ordinarily, when you estimate a model using a script you just get a non-
interactive printout of the results. You can, however, arrange for models estimated in a script

LThis feature is not unique to gretl; other econometric packages offer the same facility. However, experience
shows that while this can be remarkably useful, it can also lead to writing dinosaur scripts that are never meant to
be executed all at once, but rather used as a chaotic repository to cherry-pick snippets from. Since gretl allows you
to have several script windows open at the same time, you may want to keep your scripts tidy and reasonably small.
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to be “captured”, so that you can examine them interactively when the script is finished. Here
is an example of the syntax for achieving this effect:

Modell <- ols Ct 0 Yt

That is, you type a name for the model to be saved under, then a back-pointing “assignment
arrow”, then the model command. The assignment arrow is composed of the less-than sign
followed by a dash; it must be separated by spaces from both the preceding name and the
following command. The name for a saved object may include spaces, but in that case it must
be wrapped in double quotes:

"Model 1" <- ols Ct 0 Yt

Models saved in this way will appear as icons in the gretl icon view window (see Section 3.4)
after the script is executed. In addition, you can arrange to have a named model displayed (in
its own window) automatically as follows:

Model11.show

Again, if the name contains spaces it must be quoted:

"Model 1".show

The same facility can be used for graphs. For example the following will create a plot of Ct
against Yt, save it under the name “CrossPlot” (it will appear under this name in the icon view
window), and have it displayed:

CrossPlot <- gnuplot Ct Yt
CrossPlot.show

You can also save the output from selected commands as named pieces of text (again, these
will appear in the session icon window, from where you can open them later). For example
this command sends the output from an augmented Dickey-Fuller test to a “text object” named
ADF1 and displays it in a window:

ADF1 <- adf 2 x1
ADF1.show

Objects saved in this way (whether models, graphs or pieces of text output) can be destroyed
using the command . free appended to the name of the object, as in ADF1. free.

3.3 The gretl console

A further option is available for your computing convenience. Under gretl’s “Tools” menu you
will find the item “Gretl console” (there is also an “open gretl console” button on the toolbar in
the main window). This opens up a window in which you can type commands and execute them
one by one (by pressing the Enter key) interactively. This is essentially the same as gretlcli’s
mode of operation, except that the GUI is updated based on commands executed from the
console, enabling you to work back and forth as you wish.

In the console, you have “command history”; that is, you can use the up and down arrow keys to
navigate the list of command you have entered to date. You can retrieve, edit and then re-enter
a previous command.

In console mode, you can create, display and free objects (models, graphs or text) aa described
above for script mode.
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3.4 The Session concept

gretl offers the idea of a “session” as a way of keeping track of your work and revisiting it
later. The basic idea is to provide an iconic space containing various objects pertaining to your
current working session (see Figure 3.2). You can add objects (represented by icons) to this
space as you go along. If you save the session, these added objects should be available again if
you re-open the session later.

gretl: current session

1] Ko
Data info Data set Notes summary
&N E L
[P
Correlations Model table Graph page Session
R
Model 1 Graph 1

Figure 3.2: Icon view: one model and one graph have been added to the default icons

If you start gretl and open a data set, then select “Icon view” from the View menu, you should
see the basic default set of icons: these give you quick access to information on the data set
(if any), correlation matrix (“Correlations”) and descriptive summary statistics (“Summary”). All
of these are activated by double-clicking the relevant icon. The “Data set” icon is a little more
complex: double-clicking opens up the data in the built-in spreadsheet, but you can also right-
click on the icon for a menu of other actions.

To add a model to the Icon view, first estimate it using the Model menu. Then pull down the File
menu in the model window and select “Save to session as icon...” or “Save as icon and close”.
Simply hitting the S key over the model window is a shortcut to the latter action.

To add a graph, first create it (under the View menu, “Graph specified vars”, or via one of gretl’s
other graph-generating commands). Click on the graph window to bring up the graph menu,
and select “Save to session as icon”.

Once a model or graph is added its icon will appear in the Icon view window. Double-clicking
on the icon redisplays the object, while right-clicking brings up a menu which lets you display
or delete the object. This popup menu also gives you the option of editing graphs.

The model table

In econometric research it is common to estimate several models with a common dependent
variable — the models differing in respect of which independent variables are included, or per-
haps in respect of the estimator used. In this situation it is convenient to present the regression
results in the form of a table, where each column contains the results (coefficient estimates and
standard errors) for a given model, and each row contains the estimates for a given variable
across the models.

In the Icon view window gretl provides a means of constructing such a table (and copying it in
plain text, BIgX or Rich Text Format). The procedure is outlined below. (The model table can
also be built non-interactively, in script mode. For details, see the entry for modeltab in the
Gretl Command Reference.)

1. Estimate a model which you wish to include in the table, and in the model display window,
under the File menu, select “Save to session as icon” or “Save as icon and close”.

2. Repeat step 1 for the other models to be included in the table (up to a total of six models).
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3. When you are done estimating the models, open the icon view of your gretl session, by
selecting “Icon view” under the View menu in the main gretl window, or by clicking the
“session icon view” icon on the gretl toolbar.

4. In the Icon view, there is an icon labeled “Model table”. Decide which model you wish
to appear in the left-most column of the model table and add it to the table, either by
dragging its icon onto the Model table icon, or by right-clicking on the model icon and
selecting “Add to model table” from the pop-up menu.

5. Repeat step 4 for the other models you wish to include in the table. The second model
selected will appear in the second column from the left, and so on.

6. When you are finished composing the model table, display it by double-clicking on its
icon. Under the Edit menu in the window which appears, you have the option of copying
the table to the clipboard in various formats.

7. If the ordering of the models in the table is not what you wanted, right-click on the model
table icon and select “Clear table”. Then go back to step 4 above and try again.

A simple instance of gretl’s model table is shown in Figure 3.3.

gretl: model table

B & B ™ x

OLS estimates z
Dependent variable: price
Model 1 Model 2 Model 3
const 129.1 121.2 52.35
(88.30) (80.18) (37.29)
sgft 0,1545%* 0,1453%* 0,1358%*
(8.03194) (8.82121) (8.81873)
bedrms -21.59 -23.91
(27.03) (24.64)
baths -12.19
(43.25)
n 14 14 14
Adj . R**2 0,7868 0. 8048 0,8056
Standard errors in parentheses
* jpdicates sighificance at the 1@ percent level
** jndicates significance at the 5 percent level ]
-

Close |

Figure 3.3: Example of model table

The graph page

The “graph page” icon in the session window offers a means of putting together several graphs
for printing on a single page. This facility will work only if you have the KIgX typesetting
system installed, and are able to generate and view either PDF or PostScript output. The output
format is controlled by your choice of program for compiling TiX files, which can be found
under the “Programs” tab in the Preferences dialog box (under the “Tools” menu in the main
window). Usually this should be pdflatex for PDF output or latex for PostScript. In the latter
case you must have a working set-up for handling PostScript, which will usually include dvips,
ghostscript and a viewer such as gv, ggv or kghostview.

In the Icon view window, you can drag up to eight graphs onto the graph page icon. When
you double-click on the icon (or right-click and select “Display”), a page containing the selected
graphs (in PDF or EPS format) will be composed and opened in your viewer. From there you
should be able to print the page.

To clear the graph page, right-click on its icon and select “Clear”.
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As with the model table, it is also possible to manipulate the graph page via commands in script
or console mode — see the entry for the graphpg command in the Gretl Command Reference.

Saving and re-opening sessions

If you create models or graphs that you think you may wish to re-examine later, then before
quitting gretl select “Session files, Save session” from the File menu and give a name under
which to save the session. To re-open the session later, either

o Start gretl then re-open the session file by going to the “File, Session files, Open session”,
or

e From the command line, type gret1 -r sessionfile, where sessionfile is the name under
which the session was saved, or

e Drag the icon representing a gretl session file onto gretl.



Chapter 4

Data files

4.1 Data file formats

gretl has its own format for data files. Most users will probably not want to read or write such
files outside of gretl itself, but occasionally this may be useful and full details on the file formats
are given in Appendix A.

gretl will read various other data formats.
¢ Plain text (ASCII) files. These can be brought in using gretl’s “File, Open Data, Import

ASCIL ..” menu item, or the import script command. For details on what gretl expects of
such files, see Section 4.3.

e Comma-Separated Values (CSV) files. These can be imported using gretl’s “File, Open Data,
Import CSV...” menu item, or the import script command. See also Section 4.3.

e Spreadsheets: MS Excel, Ghumeric and Open Document (ODS). These are also brought in
using gretl’s “File, Open Data, Import” menu. The requirements for such files are given in
Section 4.3.

e Stata data files (.dta).
e SPSS data files (. sav).
o Eviews workfiles (.wf1).1

JMulTi data files.

When you import data from the ASCII or CSV formats, gretl opens a “diagnostic” window, re-
porting on its progress in reading the data. If you encounter a problem with ill-formatted data,
the messages in this window should give you a handle on fixing the problem.

Note that gretl has a facility for writing out data in the native formats of GNU R, Octave, JMulTi
and PcGive (see Appendix E). In the GUI client this option is found under the “File, Export data”
menu; in the command-line client use the store command with the appropriate option flag.

4.2 Databases

For working with large amounts of data gretl is supplied with a database-handling routine.
A database, as opposed to a data file, is not read directly into the program’s workspace. A
database can contain series of mixed frequencies and sample ranges. You open the database
and select series to import into the working dataset. You can then save those series in a native
format data file if you wish. Databases can be accessed via gretl’s menu item “File, Databases”.

For details on the format of gretl databases, see Appendix A.

Online access to databases

As of version 0.40, gretl is able to access databases via the internet. Several databases are
available from Wake Forest University. Your computer must be connected to the internet for
this option to work. Please see the description of the “data” command under gretl’s Help menu.

= Visit the gretl data page for details and updates on available data.

1See http://www.ecn.wfu.edu/eviews_format/.
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Foreign database formats

Thanks to Thomas Doan of Estima, who made available the specification of the database format
used by RATS 4 (Regression Analysis of Time Series), gretl can handle such databases — or at
least, a subset of same, namely time-series databases containing monthly and quarterly series.

gretl can also import data from PcGive databases. These take the form of a pair of files, one
containing the actual data (with suffix .bn7) and one containing supplementary information
(.in7).

In addition, gretl offers ODBC connectivity. Be warned: this feature is meant for somewhat
advanced users; there is currently no GUI interface. Interested readers will find more info in
appendix B.

4.3 Creating a dataset from scratch

There are several ways of doing this:

1. Find, or create using a text editor, a plain text data file and open it with gretl’s “Import
ASCII” option.

2. Use your favorite spreadsheet to establish the data file, save it in Comma Separated Values
format if necessary (this should not be necessary if the spreadsheet format is MS Excel,
Gnumeric or Open Document), then use one of gretl’s “Import” options.

3. Use gretl’s built-in spreadsheet.
4. Select data series from a suitable database.

5. Use your favorite text editor or other software tools to a create data file in gretl format
independently.

Here are a few comments and details on these methods.

Common points on imported data

Options (1) and (2) involve using gretl’s “import” mechanism. For gretl to read such data suc-
cessfully, certain general conditions must be satisfied:

¢ The first row must contain valid variable names. A valid variable name is of 15 charac-
ters maximum,; starts with a letter; and contains nothing but letters, numbers and the
underscore character, _. (Longer variable names will be truncated to 15 characters.) Qual-
ifications to the above: First, in the case of an ASCII or CSV import, if the file contains
no row with variable names the program will automatically add names, v1, v2 and so on.
Second, by “the first row” is meant the first relevant row. In the case of ASCII and CSV
imports, blank rows and rows beginning with a hash mark, #, are ignored. In the case of
Excel and Gnumeric imports, you are presented with a dialog box where you can select an
offset into the spreadsheet, so that gretl will ignore a specified number of rows and/or
columns.

e Data values: these should constitute a rectangular block, with one variable per column
(and one observation per row). The number of variables (data columns) must match the
number of variable names given. See also section 4.6. Numeric data are expected, but in
the case of importing from ASCII/CSV, the program offers limited handling of character
(string) data: if a given column contains character data only, consecutive numeric codes
are substituted for the strings, and once the import is complete a table is printed showing
the correspondence between the strings and the codes.

e Dates (or observation labels): Optionally, the first column may contain strings such as
dates, or labels for cross-sectional observations. Such strings have a maximum of 8 char-
acters (as with variable names, longer strings will be truncated). A column of this sort
should be headed with the string obs or date, or the first row entry may be left blank.
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For dates to be recognized as such, the date strings must adhere to one or other of a set
of specific formats, as follows. For annual data: 4-digit years. For quarterly data: a 4-digit
year, followed by a separator (either a period, a colon, or the letter Q), followed by a 1-digit
quarter. Examples: 1997.1, 2002: 3, 1947Q1. For monthly data: a 4-digit year, followed by
a period or a colon, followed by a two-digit month. Examples: 1997.01, 2002:10.

CSV files can use comma, space or tab as the column separator. When you use the “Import
CSV” menu item you are prompted to specify the separator. In the case of “Import ASCII” the
program attempts to auto-detect the separator that was used.

If you use a spreadsheet to prepare your data you are able to carry out various transformations
of the “raw” data with ease (adding things up, taking percentages or whatever): note, however,
that you can also do this sort of thing easily — perhaps more easily — within gretl, by using
the tools under the “Add” menu.

Appending imported data

You may wish to establish a gretl dataset piece by piece, by incremental importation of data
from other sources. This is supported via the “File, Append data” menu items: gretl will check
the new data for conformability with the existing dataset and, if everything seems OK, will
merge the data. You can add new variables in this way, provided the data frequency matches
that of the existing dataset. Or you can append new observations for data series that are already
present; in this case the variable names must match up correctly. Note that by default (that is, if
you choose “Open data” rather than “Append data”), opening a new data file closes the current
one.

Using the built-in spreadsheet

Under gretl’s “File, New data set” menu you can choose the sort of dataset you want to establish
(e.g. quarterly time series, cross-sectional). You will then be prompted for starting and ending
dates (or observation numbers) and the name of the first variable to add to the dataset. After
supplying this information you will be faced with a simple spreadsheet into which you can type
data values. In the spreadsheet window, clicking the right mouse button will invoke a popup
menu which enables you to add a new variable (column), to add an observation (append a row
at the foot of the sheet), or to insert an observation at the selected point (move the data down
and insert a blank row.)

Once you have entered data into the spreadsheet you import these into gretl’s workspace using
the spreadsheet’s “Apply changes” button.

Please note that gretl’s spreadsheet is quite basic and has no support for functions or formulas.
Data transformations are done via the “Add” or “Variable” menus in the main gretl window.

Selecting from a database
Another alternative is to establish your dataset by selecting variables from a database.

Begin with gretl’s “File, Databases” menu item. This has four forks: “Gretl native”, “RATS 4”,
“PcGive” and “On database server”. You should be able to find the file fedst1.bin in the file
selector that opens if you choose the “Gretl native” option — this file, which contains a large
collection of US macroeconomic time series, is supplied with the distribution.

You won’t find anything under “RATS 4” unless you have purchased RATS data.? If you do
possess RATS data you should go into gretl’s “Tools, Preferences, General” dialog, select the
Databases tab, and fill in the correct path to your RATS files.

If your computer is connected to the internet you should find several databases (at Wake Forest
University) under “On database server”. You can browse these remotely; you also have the
option of installing them onto your own computer. The initial remote databases window has an

2See www.estima.com
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item showing, for each file, whether it is already installed locally (and if so, if the local version
is up to date with the version at Wake Forest).

Assuming you have managed to open a database you can import selected series into gretl’s
workspace by using the “Series, Import” menu item in the database window, or via the popup
menu that appears if you click the right mouse button, or by dragging the series into the pro-
gram’s main window.

Creating a gretl data file independently

It is possible to create a data file in one or other of gretl’s own formats using a text editor or
software tools such as awk, sed or perl. This may be a good choice if you have large amounts of
data already in machine readable form. You will, of course, need to study the gretl data formats
(XML format or “traditional” format) as described in Appendix A.

4.4 Structuring a dataset

Once your data are read by gretl, it may be necessary to supply some information on the nature
of the data. We distinguish between three kinds of datasets:

1. Cross section
2. Time series

3. Panel data

The primary tool for doing this is the “Data, Dataset structure” menu entry in the graphical
interface, or the setobs command for scripts and the command-line interface.

Cross sectional data

By a cross section we mean observations on a set of “units” (which may be firms, countries,
individuals, or whatever) at a common point in time. This is the default interpretation for a data
file: if gretl does not have sufficient information to interpret data as time-series or panel data,
they are automatically interpreted as a cross section. In the unlikely event that cross-sectional
data are wrongly interpreted as time series, you can correct this by selecting the “Data, Dataset
structure” menu item. Click the “cross-sectional” radio button in the dialog box that appears,
then click “Forward”. Click “OK” to confirm your selection.

Time series data

When you import data from a spreadsheet or plain text file, gretl will make fairly strenuous
efforts to glean time-series information from the first column of the data, if it looks at all
plausible that such information may be present. If time-series structure is present but not
recognized, again you can use the “Data, Dataset structure” menu item. Select “Time series”
and click “Forward”; select the appropriate data frequency and click “Forward” again; then
select or enter the starting observation and click “Forward” once more. Finally, click “OK” to
confirm the time-series interpretation if it is correct (or click “Back” to make adjustments if
need be).

Besides the basic business of getting a data set interpreted as time series, further issues may
arise relating to the frequency of time-series data. In a gretl time-series data set, all the series
must have the same frequency. Suppose you wish to make a combined dataset using series that,
in their original state, are not all of the same frequency. For example, some series are monthly
and some are quarterly.

Your first step is to formulate a strategy: Do you want to end up with a quarterly or a monthly
data set? A basic point to note here is that “compacting” data from a higher frequency (e.g.
monthly) to a lower frequency (e.g. quarterly) is usually unproblematic. You lose information
in doing so, but in general it is perfectly legitimate to take (say) the average of three monthly
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observations to create a quarterly observation. On the other hand, “expanding” data from a
lower to a higher frequency is not, in general, a valid operation.

In most cases, then, the best strategy is to start by creating a data set of the lower frequency,
and then to compact the higher frequency data to match. When you import higher-frequency
data from a database into the current data set, you are given a choice of compaction method
(average, sum, start of period, or end of period). In most instances “average” is likely to be
appropriate.

You can also import lower-frequency data into a high-frequency data set, but this is generally
not recommended. What gretl does in this case is simply replicate the values of the lower-
frequency series as many times as required. For example, suppose we have a quarterly series
with the value 35.5 in 1990:1, the first quarter of 1990. On expansion to monthly, the value 35.5
will be assigned to the observations for January, February and March of 1990. The expanded
variable is therefore useless for fine-grained time-series analysis, outside of the special case
where you know that the variable in question does in fact remain constant over the sub-periods.

When the current data frequency is appropriate, gretl offers both “Compact data” and “Expand
data” options under the “Data” menu. These options operate on the whole data set, compacting
or exanding all series. They should be considered “expert” options and should be used with
caution.

Panel data

Panel data are inherently three dimensional — the dimensions being variable, cross-sectional
unit, and time-period. For example, a particular number in a panel data set might be identified
as the observation on capital stock for General Motors in 1980. (A note on terminology: we
use the terms “cross-sectional unit”, “unit” and “group” interchangeably below to refer to the
entities that compose the cross-sectional dimension of the panel. These might, for instance, be

firms, countries or persons.)

For representation in a textual computer file (and also for gretl’s internal calculations) the three
dimensions must somehow be flattened into two. This “flattening” involves taking layers of
the data that would naturally stack in a third dimension, and stacking them in the vertical
dimension.

Gretl always expects data to be arranged “by observation”, that is, such that each row represents
an observation (and each variable occupies one and only one column). In this context the
flattening of a panel data set can be done in either of two ways:

e Stacked time series: the successive vertical blocks each comprise a time series for a given
unit.

o Stacked cross sections: the successive vertical blocks each comprise a cross-section for a
given period.

You may input data in whichever arrangement is more convenient. Internally, however, gretl
always stores panel data in the form of stacked time series.

4.5 Panel data specifics

When you import panel data into gretl from a spreadsheet or comma separated format, the
panel nature of the data will not be recognized automatically (most likely the data will be treated
as “undated”). A panel interpretation can be imposed on the data using the graphical interface
or via the setobs command.

In the graphical interface, use the menu item “Data, Dataset structure”. In the first dialog box
that appears, select “Panel”. In the next dialog you have a three-way choice. The first two
options, “Stacked time series” and “Stacked cross sections” are applicable if the data set is
already organized in one of these two ways. If you select either of these options, the next
step is to specify the number of cross-sectional units in the data set. The third option, “Use



Chapter 4. Data files 23

index variables”, is applicable if the data set contains two variables that index the units and the
time periods respectively; the next step is then to select those variables. For example, a data file
might contain a country code variable and a variable representing the year of the observation. In
that case gretl can reconstruct the panel structure of the data regardless of how the observation
rows are organized.

The setobs command has options that parallel those in the graphical interface. If suitable
index variables are available you can do, for example

setobs unitvar timevar --panel-vars

where unitvar is a variable that indexes the units and timevar is a variable indexing the
periods. Alternatively you can use the form setobs freq 1:1 structure, where freq is replaced
by the “block size” of the data (that is, the number of periods in the case of stacked time
series, or the number of units in the case of stacked cross-sections) and structure is either
--stacked-time-series or --stacked-cross-section. Two examples are given below: the
first is suitable for a panel in the form of stacked time series with observations from 20 periods;
the second for stacked cross sections with 5 units.

setobs 20 1:1 --stacked-time-series
setobs 5 1:1 --stacked-cross-section

Panel data arranged by variable

Publicly available panel data sometimes come arranged “by variable.” Suppose we have data
on two variables, x1 and x2, for each of 50 states in each of 5 years (giving a total of 250
observations per variable). One textual representation of such a data set would start with a
block for x1, with 50 rows corresponding to the states and 5 columns corresponding to the
years. This would be followed, vertically, by a block with the same structure for variable x2.
A fragment of such a data file is shown below, with quinquennial observations 1965-1985.
Imagine the table continued for 48 more states, followed by another 50 rows for variable x2.

x1

1965 1970 1975 1980 1985
AR 100.0 110.5 118.7 131.2 160.4
AZ 100.0 104.3 113.8 120.9 140.6

If a datafile with this sort of structure is read into gretl,3 the program will interpret the columns
as distinct variables, so the data will not be usable “as is.” But there is a mechanism for correct-
ing the situation, namely the stack function within the genr command.

Consider the first data column in the fragment above: the first 50 rows of this column constitute
a cross-section for the variable x1 in the year 1965. If we could create a new variable by stacking
the first 50 entries in the second column underneath the first 50 entries in the first, we would
be on the way to making a data set “by observation” (in the first of the two forms mentioned
above, stacked cross-sections). That is, we’d have a column comprising a cross-section for x1
in 1965, followed by a cross-section for the same variable in 1970.

The following gretl script illustrates how we can accomplish the stacking, for both x1 and x2.
We assume that the original data file is called panel. txt, and that in this file the columns are
headed with “variable names” p1l, p2, ..., p5. (The columns are not really variables, but in the
first instance we “pretend” that they are.)

open panel.txt
genr x1 = stack(pl..p5) --Tength=50
genr x2 = stack(pl..p5) --offset=50 --Tength=50

3Note that you will have to modify such a datafile slightly before it can be read at all. The line containing the
variable name (in this example x1) will have to be removed, and so will the initial row containing the years, otherwise
they will be taken as numerical data.
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setobs 50 1:1 --stacked-cross-section
store panel.gdt x1 x2

The second line illustrates the syntax of the stack function. The double dots within the paren-
theses indicate a range of variables to be stacked: here we want to stack all 5 columns (for all 5
years).* The full data set contains 100 rows; in the stacking of variable x1 we wish to read only
the first 50 rows from each column: we achieve this by adding --1ength=50. Note that if you
want to stack a non-contiguous set of columns you can give a comma-separated list of variable
names, as in

genr x = stack(pl,p3,p5)

or you can provide within the parentheses the name of a previously created list (see chapter 12).

On line 3 we do the stacking for variable x2. Again we want a Tength of 50 for the components
of the stacked series, but this time we want gretl to start reading from the 50th row of the
original data, and we specify --offset=50. Line 4 imposes a panel interpretation on the data;
finally, we save the data in gretl format, with the panel interpretation, discarding the original
“variables” p1 through p5.

The illustrative script above is appropriate when the number of variable to be processed is
small. When then are many variables in the data set it will be more efficient to use a command
loop to accomplish the stacking, as shown in the following script. The setup is presumed to be
the same as in the previous section (50 units, 5 periods), but with 20 variables rather than 2.

open panel.txt
Toop i=1..20
genr k = ($i - 1) * 50
genr x$i = stack(pl..p5) --offset=k --Tength=50
endloop
setobs 50 1.01 --stacked-cross-section
store panel.gdt x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 \
x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

Panel data marker strings

It can be helpful with panel data to have the observations identified by mnemonic markers. A
special function in the genr command is available for this purpose.

In the example above, suppose all the states are identified by two-letter codes in the left-most
column of the original datafile. When the stacking operation is performed, these codes will be
stacked along with the data values. If the first row is marked AR for Arkansas, then the marker
AR will end up being shown on each row containing an observation for Arkansas. That’s all very
well, but these markers don’t tell us anything about the date of the observation. To rectify this
we could do:

genr time
genr year = 1960 + (5 * time)
genr markers = "%s:%d", marker, year

The first line generates a 1-based index representing the period of each observation, and the
second line uses the time variable to generate a variable representing the year of the observa-
tion. The third line contains this special feature: if (and only if) the name of the new “variable”
to generate is markers, the portion of the command following the equals sign is taken as C-
style format string (which must be wrapped in double quotes), followed by a comma-separated
list of arguments. The arguments will be printed according to the given format to create a new
set of observation markers. Valid arguments are either the names of variables in the dataset,
or the string marker which denotes the pre-existing observation marker. The format specifiers

4You can also specify a list of series using the wildcard “*’; for example stack(p*) would stack all series whose
names begin with ‘p’.
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which are likely to be useful in this context are %s for a string and %d for an integer. Strings can
be truncated: for example %.3s will use just the first three characters of the string. To chop
initial characters off an existing observation marker when constructing a new one, you can use
the syntax marker + n, where n is a positive integer: in the case the first n characters will be
skipped.

After the commands above are processed, then, the observation markers will look like, for
example, AR:1965, where the two-letter state code and the year of the observation are spliced
together with a colon.

Panel dummy variables

In a panel study you may wish to construct dummy variables of one or both of the following
sorts: (a) dummies as unique identifiers for the units or groups, and (b) dummies as unique
identifiers for the time periods. The former may be used to allow the intercept of the regression
to differ across the units, the latter to allow the intercept to differ across periods.

Two special functions are available to create such dummies. These are found under the “Add”
menu in the GUI, or under the genr command in script mode or gretlcli.

1. “unit dummies” (script command genr unitdum). This command creates a set of dummy
variables identifying the cross-sectional units. The variable du_1 will have value 1 in each
row corresponding to a unit 1 observation, O otherwise; du_2 will have value 1 in each row
corresponding to a unit 2 observation, 0 otherwise; and so on.

2. “time dummies” (script command genr timedum). This command creates a set of dummy
variables identifying the periods. The variable dt_1 will have value 1 in each row cor-
responding to a period 1 observation, 0 otherwise; dt_2 will have value 1 in each row
corresponding to a period 2 observation, 0 otherwise; and so on.

If a panel data set has the YEAR of the observation entered as one of the variables you can
create a periodic dummy to pick out a particular year, e.g. genr dum = (YEAR=1960). You can
also create periodic dummy variables using the modulus operator, %. For instance, to create
a dummy with value 1 for the first observation and every thirtieth observation thereafter, 0
otherwise, do

genr index
genr dum = ((index-1) % 30) =0

Lags, differences, trends

If the time periods are evenly spaced you may want to use lagged values of variables in a panel
regression (but see also chapter 17); you may also wish to construct first differences of variables
of interest.

Once a dataset is identified as a panel, gretl will handle the generation of such variables cor-
rectly. For example the command genr x1_1 = x1(-1) will create a variable that contains the
first lag of x1 where available, and the missing value code where the lag is not available (e.g. at
the start of the time series for each group). When you run a regression using such variables, the
program will automatically skip the missing observations.

When a panel data set has a fairly substantial time dimension, you may wish to include a trend
in the analysis. The command genr time creates a variable named time which runs from 1 to
T for each unit, where T is the length of the time-series dimension of the panel. If you want to
create an index that runs consecutively from 1 to m x T, where m is the number of units in the
panel, use genr index.

Basic statistics by unit

Gretl contains functions which can be used to generate basic descriptive statistics for a given
variable, on a per-unit basis; these are pnobs() (number of valid cases), pmin() and pmax()
(minimum and maximum) and pmean () and psd() (mean and standard deviation).
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As a brief illustration, suppose we have a panel data set comprising 8 time-series observations
on each of N units or groups. Then the command

genr pmx = pmean(x)

creates a series of this form: the first 8 values (corresponding to unit 1) contain the mean of x
for unit 1, the next 8 values contain the mean for unit 2, and so on. The psd() function works
in a similar manner. The sample standard deviation for group i is computed as

§i =
i T; —

where T; denotes the number of valid observations on x for the given unit, X; denotes the group
mean, and the summation is across valid observations for the group. If T; < 2, however, the
standard deviation is recorded as 0.

One particular use of psd() may be worth noting. If you want to form a sub-sample of a panel
that contains only those units for which the variable x is time-varying, you can either use

smpl (pmin(x) < pmax(x)) --restrict
or

smpl (psd(x) > 0) --restrict

4.6 Missing data values
Representation and handling

Missing values are represented internally as DBL_MAX, the largest floating-point number that
can be represented on the system (which is likely to be at least 10 to the power 300, and so
should not be confused with legitimate data values). In a native-format data file they should be
represented as NA. When importing CSV data gretl accepts several common representations of
missing values including —999, the string NA (in upper or lower case), a single dot, or simply a
blank cell. Blank cells should, of course, be properly delimited, e.g. 120.6,,5.38, in which the
middle value is presumed missing.

As for handling of missing values in the course of statistical analysis, gretl does the following:

e In calculating descriptive statistics (mean, standard deviation, etc.) under the summary
command, missing values are simply skipped and the sample size adjusted appropriately.

¢ In running regressions gretl first adjusts the beginning and end of the sample range, trun-
cating the sample if need be. Missing values at the beginning of the sample are common in
time series work due to the inclusion of lags, first differences and so on; missing values at
the end of the range are not uncommon due to differential updating of series and possibly
the inclusion of leads.

If gretl detects any missing values “inside” the (possibly truncated) sample range for a regres-
sion, the result depends on the character of the dataset and the estimator chosen. In many
cases, the program will automatically skip the missing observations when calculating the re-
gression results. In this situation a message is printed stating how many observations were
dropped. On the other hand, the skipping of missing observations is not supported for all
procedures: exceptions include all autoregressive estimators, system estimators such as SUR,
and nonlinear least squares. In the case of panel data, the skipping of missing observations
is supported only if their omission leaves a balanced panel. If missing observations are found
in cases where they are not supported, gretl gives an error message and refuses to produce
estimates.
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Manipulating missing values

Some special functions are available for the handling of missing values. The boolean function
missing() takes the name of a variable as its single argument; it returns a series with value
1 for each observation at which the given variable has a missing value, and value 0 otherwise
(that is, if the given variable has a valid value at that observation). The function ok () is comple-
mentary to missing; it is just a shorthand for !missing (where ! is the boolean NOT operator).
For example, one can count the missing values for variable x using

scalar nmiss_x = sum(missing(x))

The function zeromiss(), which again takes a single series as its argument, returns a series
where all zero values are set to the missing code. This should be used with caution — one does
not want to confuse missing values and zeros — but it can be useful in some contexts. For
example, one can determine the first valid observation for a variable x using

genr time
scalar x0 = min(zeromiss(time * ok(x)))

The function misszero() does the opposite of zeromiss, that is, it converts all missing values
to zero.

It may be worth commenting on the propagation of missing values within genr formulae. The
general rule is that in arithmetical operations involving two variables, if either of the variables
has a missing value at observation t then the resulting series will also have a missing value at
t. The one exception to this rule is multiplication by zero: zero times a missing value produces
zero (since this is mathematically valid regardless of the unknown value).

4.7 Maximum size of data sets

Basically, the size of data sets (both the number of variables and the number of observations
per variable) is limited only by the characteristics of your computer. Gretl allocates memory
dynamically, and will ask the operating system for as much memory as your data require.
Obviously, then, you are ultimately limited by the size of RAM.

Aside from the multiple-precision OLS option, gretl uses double-precision floating-point num-
bers throughout. The size of such numbers in bytes depends on the computer platform, but is
typically eight. To give a rough notion of magnitudes, suppose we have a data set with 10,000
observations on 500 variables. That’s 5 million floating-point numbers or 40 million bytes. If we
define the megabyte (MB) as 1024 x 1024 bytes, as is standard in talking about RAM, it’s slightly
over 38 MB. The program needs additional memory for workspace, but even so, handling a data
set of this size should be quite feasible on a current PC, which at the time of writing is likely to
have at least 256 MB of RAM.

If RAM is not an issue, there is one further limitation on data size (though it's very unlikely to
be a binding constraint). That is, variables and observations are indexed by signed integers, and
on a typical PC these will be 32-bit values, capable of representing a maximum positive value of
231 — 1 =2,147,483,647.

The limits mentioned above apply to gretl’s “native” functionality. There are tighter limits
with regard to two third-party programs that are available as add-ons to gretl for certain sorts
of time-series analysis including seasonal adjustment, namely TRAMO/SEATS and X-12-ARIMA.
These programs employ a fixed-size memory allocation, and can’t handle series of more than
600 observations.

4.8 Data file collections

If you're using gretl in a teaching context you may be interested in adding a collection of data
files and/or scripts that relate specifically to your course, in such a way that students can
browse and access them easily.
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There are three ways to access such collections of files:

e For data files: select the menu item “File, Open data, Sample file”, or click on the folder
icon on the gretl toolbar.

e For script files: select the menu item “File, Script files, Practice file”.
When a user selects one of the items:

e The data or script files included in the gretl distribution are automatically shown (this in-
cludes files relating to Ramanathan’s Introductory Econometrics and Greene’s Econometric
Analysis).

e The program looks for certain known collections of data files available as optional extras,
for instance the datafiles from various econometrics textbooks (Davidson and MacKin-
non, Gujarati, Stock and Watson, Verbeek, Wooldridge) and the Penn World Table (PWT
5.6). (See the data page at the gretl website for information on these collections.) If the
additional files are found, they are added to the selection windows.

e The program then searches for valid file collections (not necessarily known in advance) in
these places: the “system” data directory, the system script directory, the user directory,
and all first-level subdirectories of these. For reference, typical values for these directories
are shown in Table 4.1. (Note that PERSONAL is a placeholder that is expanded by Windows,
corresponding to “My Documents” on English-language systems.)

Linux MS Windows
system data dir /usr/share/gretl/data c:\Program Files\gretl\data
system script dir /usr/share/gretl/scripts c:\Program Files\gretl\scripts
user dir $HOME/gret] PERSONAL\gret1

Table 4.1: Typical locations for file collections

Any valid collections will be added to the selection windows. So what constitutes a valid file
collection? This comprises either a set of data files in gretl XML format (with the .gdt suffix)
or a set of script files containing gretl commands (with .1inp suffix), in each case accompanied
by a “master file” or catalog. The gretl distribution contains several example catalog files,
for instance the file descriptions in the misc sub-directory of the gretl data directory and
ps_descriptions in the misc sub-directory of the scripts directory.

If you are adding your own collection, data catalogs should be named descriptions and script
catalogs should be be named ps_descriptions. In each case the catalog should be placed
(along with the associated data or script files) in its own specific sub-directory (e.g. /usr/share/
gretl/data/mydata or c:\userdata\gretl\data\mydata).

The catalog files are plain text; if they contain non-ASCII characters they must be encoded as
UTF-8. The syntax of such files is straightforward. Here, for example, are the first few lines of
gretl’s “misc” data catalog:

# Gretl: various illustrative datafiles
"arma","artificial data for ARMA script example"
"ects_nls","Nonlinear least squares example"

"hamilton","Prices and exchange rate, U.S. and Italy"

The first line, which must start with a hash mark, contains a short name, here “Gretl”, which
will appear as the label for this collection’s tab in the data browser window, followed by a colon,
followed by an optional short description of the collection.

Subsequent lines contain two elements, separated by a comma and wrapped in double quotation
marks. The first is a datafile name (leave off the .gdt suffix here) and the second is a short


http://gretl.sourceforge.net/gretl_data.html
/usr/share/gretl/data/mydata
/usr/share/gretl/data/mydata
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description of the content of that datafile. There should be one such line for each datafile in
the collection.

A script catalog file looks very similar, except that there are three fields in the file lines: a
filename (without its .1inp suffix), a brief description of the econometric point illustrated in the
script, and a brief indication of the nature of the data used. Again, here are the first few lines
of the supplied “misc” script catalog:

# Gretl: various sample scripts
"arma","ARMA modeling","artificial data"
"ects_nls","Nonlinear least squares (Davidson)","artificial data"

non non

"leverage","Influential observations","artificial data"

non non

"longley","Multicollinearity"”,"US employment"
If you want to make your own data collection available to users, these are the steps:

1. Assemble the data, in whatever format is convenient.

2. Convert the data to gretl format and save as gdt files. It is probably easiest to convert the
data by importing them into the program from plain text, CSV, or a spreadsheet format (MS
Excel or Gnumeric) then saving them. You may wish to add descriptions of the individual
variables (the “Variable, Edit attributes” menu item), and add information on the source
of the data (the “Data, Edit info” menu item).

3. Write a descriptions file for the collection using a text editor.

4. Put the datafiles plus the descriptions file in a subdirectory of the gretl data directory (or
user directory).

5. If the collection is to be distributed to other people, package the data files and catalog in
some suitable manner, e.g. as a zipfile.

If you assemble such a collection, and the data are not proprietary, we would encourage you to
submit the collection for packaging as a gretl optional extra.
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Special functions in genr

5.1 Introduction

The genr command provides a flexible means of defining new variables. It is documented in
the Gretl Command Reference. This chapter offers a more expansive discussion of some of the
special functions available via genr and some of the finer points of the command.

5.2 Long-run variance

As is well known, the variance of the average of T random variables x1, xo,..., Xt with equal
variance o equals o2/ T if the data are uncorrelated. In this case, the sample variance of x;
over the sample size provides a consistent estimator.

If, however, there is serial correlation among the x;s, the variance of X = T~! Zthl X¢ must be
estimated differently. One of the most widely used statistics for this purpose is a nonparametric
kernel estimator with the Bartlett kernel defined as

T—k k
@*(k) =T > [Z wi(xe — X) (xe—i = X) |, (5.1)
t=k |i=—k

where the integer k is known as the window size and the w; terms are the so-called Bartlett
weights, defined as w; = 1 — % It can be shown that, for k large enough, @?(k)/T vyields a

consistent estimator of the variance of X.

Gretl implements this estimator by means of the function 1rvar (), which takes two arguments:
the series whose long-run variance must be estimated and the scalar k. If k is negative, the
popular choice T1/3 is used.

5.3 Cumulative densities and p-values

The two functions cdf and pvalue provide complementary means of examining values from
several probability distributions: the standard normal, Student’s t, x2, F, gamma, and binomial.
The syntax of these functions is set out in the Gretl Command Reference; here we expand on
some subtleties.

The cumulative density function or CDF for a random variable is the integral of the variable’s
density from its lower limit (typically either —oo or 0) to any specified value x. The p-value (at
least the one-tailed, right-hand p-value as returned by the pvalue function) is the complemen-
tary probability, the integral from x to the upper limit of the distribution, typically +oo.

In principle, therefore, there is no need for two distinct functions: given a CDF value py you
could easily find the corresponding p-value as 1 — pg (or vice versa). In practice, with finite-
precision computer arithmetic, the two functions are not redundant. This requires a little ex-
planation. In gretl, as in most statistical programs, floating point numbers are represented as
“doubles” — double-precision values that typically have a storage size of eight bytes or 64 bits.
Since there are only so many bits available, only so many floating-point numbers can be repre-
sented: doubles do not model the real line. Typically doubles can represent numbers over the
range (roughly) +1.7977 x 103%8 but only to about 15 digits of precision.

Suppose you're interested in the left tail of the x? distribution with 50 degrees of freedom:
you’d like to know the CDF value for x = 0.9. Take a look at the following interactive session:

30
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? genr pl = cdf(X, 50, 0.9)

Generated scalar pl (ID 2) = 8.94977e-35
? genr p2 = pvalue(X, 50, 0.9)

Generated scalar p2 (ID 3) =1

? genr test =1 - p2

Generated scalar test (ID 4) = 0

The cdf function has produced an accurate value, but the pvalue function gives an answer of
1, from which it is not possible to retrieve the answer to the CDF question. This may seem
surprising at first, but consider: if the value of pl above is correct, then the correct value for
p2 is 1 — 8.94977 x 103>, But there’s no way that value can be represented as a double: that
would require over 30 digits of precision.

Of course this is an extreme example. If the x in question is not too far off into one or other tail
of the distribution, the cdf and pvalue functions will in fact produce complementary answers,
as shown below:

? genr pl = cdf(X, 50, 30)

Generated scalar pl (ID 2) = 0.0111648

? genr p2 = pvalue(X, 50, 30)

Generated scalar p2 (ID 3) = 0.988835

? genr test = 1 - p2

Generated scalar test (ID 4) = 0.0111648

But the moral is that if you want to examine extreme values you should be careful in selecting
the function you need, in the knowledge that values very close to zero can be represented as
doubles while values very close to 1 cannot.

5.4 Retrieving internal variables

The genr command provides a means of retrieving various values calculated by the program in
the course of estimating models or testing hypotheses. The variables that can be retrieved in
this way are listed in the Gretl Command Reference; here we say a bit more about the special
variables $test and $pvalue.

These variables hold, respectively, the value of the last test statistic calculated using an explicit
testing command and the p-value for that test statistic. If no such test has been performed
at the time when these variables are referenced, they will produce the missing value code.
The “explicit testing commands” that work in this way are as follows: add (joint test for the
significance of variables added to a model); adf (Augmented Dickey-Fuller test, see below);
arch (test for ARCH); chow (Chow test for a structural break); coeffsum (test for the sum of
specified coefficients); cusum (the Harvey-Collier t-statistic); kpss (KPSS stationarity test, no p-
value available); Tmtest (see below); meantest (test for difference of means); omit (joint test for
the significance of variables omitted from a model); reset (Ramsey’s RESET); restrict (general
linear restriction); runs (runs test for randomness); testuhat (test for normality of residual);
and vartest (test for difference of variances). In most cases both a $test and a $pvalue are
stored; the exception is the KPSS test, for which a p-value is not currently available.

An important point to notice about this mechanism is that the internal variables $test and
$pvalue are over-written each time one of the tests listed above is performed. If you want to
reference these values, you must do so at the correct point in the sequence of gretl commands.

A related point is that some of the test commands generate, by default, more than one test
statistic and p-value; in these cases only the last values are stored. To get proper control over
the retrieval of values via $test and $pvalue you should formulate the test command in such a
way that the result is unambiguous. This comment applies in particular to the adf and Tmtest
commands.

e By default, the adf command generates three variants of the Dickey-Fuller test: one based
on a regression including a constant, one using a constant and linear trend, and one using
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a constant and a quadratic trend. When you wish to reference $test or $pvalue in con-
nection with this command, you can control the variant that is recorded by using one of
the flags --nc, --c, --ct or --ctt with adf.

e By default, the Tmtest command (which must follow an OLS regression) performs several
diagnostic tests on the regression in question. To control what is recorded in $test and
$pvalue you should limit the test using one of the flags --1ogs, --autocorr, --squares
or --whiite.

As an aid in working with values retrieved using $test and $pvalue, the nature of the test to
which these values relate is written into the descriptive label for the generated variable. You can
read the label for the variable using the Tabel command (with just one argument, the name of
the variable), to check that you have retrieved the right value. The following interactive session
illustrates this point.

? adf 4 x1 --c
Augmented Dickey-Fuller tests, order 4, for x1
sample size 59
unit-root null hypothesis: a = 1
test with constant
model: (1 - L)y = b0 + (a-D*y(-1) + ... + e
estimated value of (a - 1): -0.216889
test statistic: t = -1.83491
asymptotic p-value 0.3638
P-values based on MacKinnon (JAE, 1996)
? genr pv = $pvalue
Generated scalar pv (ID 13) = 0.363844
? label pv
pv=Dickey-Fuller pvalue (scalar)

5.5 The discrete Fourier transform

The discrete Fourier transform can be best thought of as a linear, invertible transform of a
complex vector. Hence, if x is an n-dimensional vector whose k-th element is xx = ay + iby,
then the output of the discrete Fourier transform is a vector f = F(x) whose k-th element is

n-1 ] )
fi = Z e—lw(J,k)xj
j=0

where w(j, k) = Zﬂi%. Since the transformation is invertible, the vector x can be recovered
from f via the so-called inverse transform

S|

Xk =

n-1 ) )
Z etw(],k)fj_
j=0

The Fourier transform is used in many diverse situations on account of this key property: the
convolution of two vectors can be performed efficiently by multiplying the elements of their
Fourier transforms and inverting the result. If

n

Zk = Z XjVk—j»
j=1

then
F(z) = F(x) o F(y).
Thatis, F(z)x = F (X F (YV)k.

For computing the Fourier transform, gretl uses the external library fftw3: see Frigo and John-
son (2005). This guarantees extreme speed and accuracy. In fact, the CPU time needed to
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perform the transform is O(nlogn) for any n. This is why the array of numerical techniques
employed in fftw3 is commonly known as the Fast Fourier Transform.

Gretl provides two matrix functions! for performing the Fourier transform and its inverse: fft
and ffti. In fact, gretl’s implementation of the Fourier transform is somewhat more special-
ized: the input to the fft function is understood to be real. Conversely, ffti takes a complex
argument and delivers a real result. For example:

x1={1;2; 3%}
# perform the transform
.F

= fft(a)
# perform the inverse transform
x2 = ffti(f)
yields
1 6 0 1
x1=1] 2 f=1| -1.5 0.866 xX>=1] 2
3 -1.5 -0.866 3

where the first column of f holds the real part and the second holds the complex part. In
general, if the input to fft has n columns, the output has 2n columns, where the real parts
are stored in the odd columns and the complex parts in the even ones. Should it be necessary
to compute the Fourier transform on several vectors with the same number of elements, it is
numerically more efficient to group them into a matrix rather than invoking fft for each vector
separately.

As an example, consider the multiplication of two polynomials:

a(x) = 1+0.5x
b(x) = 1+0.3x —0.8x2
c(x)=a(x)-b(x) = 1+0.8x—0.65x%—0.4x3

The coefficients of the polynomial c (x) are the convolution of the coefficients of a(x) and b(x);
the following gretl code fragment illustrates how to compute the coefficients of c(x):

# define the two polynomials

a=4{1, 0.5,0, 0%

b={1, 0.3, -0.8, 0 }’

# perform the transforms

fa = fft(a)

fb = fft(b)

# complex-multiply the two transforms

fc = ecmult(fa, fb)

# compute the coefficients of c via the inverse transform
c = ffti(fo)

Maximum efficiency would have been achieved by grouping a and b into a matrix. The com-
putational advantage is so little in this case that the exercise is a bit silly, but the following
alternative may be preferable for a large number of rows/columns:

define the two polynomials

={1; 0.5;0; 01}

={1;0.3; -0.8; 01}

perform the transforms jointly

= fft(a ~ b)

complex-multiply the two transforms

fc = emult(f[,1:2], f[,3:4])

# compute the coefficients of c via the inverse transform
c = ffti(fo)

H HhH T O R

1See chapter 13.
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Traditionally, the Fourier transform in econometrics has been mostly used in time-series analy-
sis, the periodogram being the best known example. Example script 5.1 shows how to compute
the periodogram of a time series via the fft function.

Example 5.1: Periodogram via the Fourier transform

nulldata 50

# generate an AR(1l) process
series e = normal()

series x = 0

X = 0.9%*x(-1) + e

# compute the periodogram
scale = 2*pi*$nobs

X=9{x1}

F = fft(X)

S = sumr(F.A2)

S = S[2:($nobs/2)+1]/scale

omega = seq(l, ($nobs/2))’ .* (2*pi/$nobs)

omega = omega ~ S

# compare the built-in command
pergm x

print omega
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Sub-sampling a dataset

6.1 Introduction

Some subtle issues can arise here. This chapter attempts to explain the issues.

A sub-sample may be defined in relation to a full data set in two different ways: we will refer
to these as “setting” the sample and “restricting” the sample; these methods are discussed in
sections 6.2 and 6.3 respectively. In addition section 6.4 discusses resampling with replacement,
which is useful in the context of bootstrapping test statistics.

The following discussion focuses on the command-line approach. But you can also invoke the
methods outlined here via the items under the Sample menu in the GUI program.

6.2 Setting the sample

By “setting” the sample we mean defining a sub-sample simply by means of adjusting the start-
ing and/or ending point of the current sample range. This is likely to be most relevant for
time-series data. For example, one has quarterly data from 1960:1 to 2003:4, and one wants to
run a regression using only data from the 1970s. A suitable command is then

smpl 1970:1 1979:4

Or one wishes to set aside a block of observations at the end of the data period for out-of-sample
forecasting. In that case one might do

smp1 ; 2000:4

where the semicolon is shorthand for “leave the starting observation unchanged”. (The semi-
colon may also be used in place of the second parameter, to mean that the ending observation
should be unchanged.) By “unchanged” here, we mean unchanged relative to the last smpl
setting, or relative to the full dataset if no sub-sample has been defined up to this point. For
example, after

smpl 1970:1 2003:4
smp1 ; 2000:4
the sample range will be 1970:1 to 2000:4.

An incremental or relative form of setting the sample range is also supported. In this case a
relative offset should be given, in the form of a signed integer (or a semicolon to indicate no
change), for both the starting and ending point. For example

smpl +1 ;
will advance the starting observation by one while preserving the ending observation, and
smpl +2 -1

will both advance the starting observation by two and retard the ending observation by one.

An important feature of “setting” the sample as described above is that it necessarily results in
the selection of a subset of observations that are contiguous in the full dataset. The structure
of the dataset is therefore unaffected (for example, if it is a quarterly time series before setting
the sample, it remains a quarterly time series afterwards).

35
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6.3 Restricting the sample

By “restricting” the sample we mean selecting observations on the basis of some Boolean (logi-
cal) criterion, or by means of a random number generator. This is likely to be most relevant for
cross-sectional or panel data.

Suppose we have data on a cross-section of individuals, recording their gender, income and
other characteristics. We wish to select for analysis only the women. If we have a gender
dummy variable with value 1 for men and 0 for women we could do

smp1 gender=0 --restrict

to this effect. Or suppose we want to restrict the sample to respondents with incomes over
$50,000. Then we could use

smp1l income>50000 --restrict

A question arises here. If we issue the two commands above in sequence, what do we end up
with in our sub-sample: all cases with income over 50000, or just women with income over
500007 By default, in a gretl script, the answer is the latter: women with income over 50000.
The second restriction augments the first, or in other words the final restriction is the logical
product of the new restriction and any restriction that is already in place. If you want a new
restriction to replace any existing restrictions you can first recreate the full dataset using

smpl --full
Alternatively, you can add the replace option to the smp1 command:

smp1l income>50000 --restrict --replace

This option has the effect of automatically re-establishing the full dataset before applying the
new restriction.

Unlike a simple “setting” of the sample, “restricting” the sample may result in selection of non-
contiguous observations from the full data set. It may also change the structure of the data
set.

This can be seen in the case of panel data. Say we have a panel of five firms (indexed by the
variable firm) observed in each of several years (identified by the variable year). Then the
restriction

smpl year=1995 --restrict
produces a dataset that is not a panel, but a cross-section for the year 1995. Similarly
smpl firm=3 --restrict

produces a time-series dataset for firm number 3.

For these reasons (possible non-contiguity in the observations, possible change in the structure
of the data), gretl acts differently when you “restrict” the sample as opposed to simply “setting”
it. In the case of setting, the program merely records the starting and ending observations and
uses these as parameters to the various commands calling for the estimation of models, the
computation of statistics, and so on. In the case of restriction, the program makes a reduced
copy of the dataset and by default treats this reduced copy as a simple, undated cross-section.!

If you wish to re-impose a time-series or panel interpretation of the reduced dataset you can do
so using the setobs command, or the GUI menu item “Data, Dataset structure”.

lwith one exception: if you start with a balanced panel dataset and the restriction is such that it preserves a
balanced panel — for example, it results in the deletion of all the observations for one cross-sectional unit — then
the reduced dataset is still, by default, treated as a panel.
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The fact that “restricting” the sample results in the creation of a reduced copy of the original
dataset may raise an issue when the dataset is very large (say, several thousands of observa-
tions). With such a dataset in memory, the creation of a copy may lead to a situation where the
computer runs low on memory for calculating regression results. You can work around this as
follows:

1. Open the full data set, and impose the sample restriction.
2. Save a copy of the reduced data set to disk.
3. Close the full dataset and open the reduced one.

4. Proceed with your analysis.

Random sub-sampling

Besides restricting the sample on some deterministic criterion, it may sometimes be useful
(when working with very large datasets, or perhaps to study the properties of an estimator) to
draw a random sub-sample from the full dataset. This can be done using, for example,

smpl 100 --random

to select 100 cases. If you want the sample to be reproducible, you should set the seed for the
random number generator first, using set. This sort of sampling falls under the “restriction”
category: a reduced copy of the dataset is made.

6.4 Resampling and bootstrapping

Given an original data series x, the command
series xr = resample(x)

creates a new series each of whose elements is drawn at random from the elements of x. If
the original series has 100 observations, each element of x is selected with probability 1/100 at
each drawing. Thus the effect is to “shuffle” the elements of x, with the twist that each element
of x may appear more than once, or not at all, in xr.

The primary use of this function is in the construction of bootstrap confidence intervals or p-
values. Here is a simple example. Suppose we estimate a simple regression of y on x via OLS
and find that the slope coefficient has a reported t-ratio of 2.5 with 40 degrees of freedom. The
two-tailed p-value for the null hypothesis that the slope parameter equals zero is then 0.0166,
using the t(40) distribution. Depending on the context, however, we may doubt whether the
ratio of coefficient to standard error truly follows the t(40) distribution. In that case we could
derive a bootstrap p-value as shown in Example 6.1.

Under the null hypothesis that the slope with respect to x is zero, y is simply equal to its mean
plus an error term. We simulate y by resampling the residuals from the initial OLS and re-
estimate the model. We repeat this procedure a large number of times, and record the number
of cases where the absolute value of the t-ratio is greater than 2.5: the proportion of such cases
is our bootstrap p-value. For a good discussion of simulation-based tests and bootstrapping,
see Davidson and MacKinnon (2004, chapter 4).
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Example 6.1: Calculation of bootstrap p-value

ols y 0 x
# save the residuals
genr ui = $uhat
scalar ybar = mean(y)
# number of replications for bootstrap
scalar replics = 10000
scalar tcount = 0
series ysim = 0
loop replics --quiet
# generate simulated y by resampling
ysim = ybar + resample(ui)
ols ysim 0 x
scalar tsim = abs($coeff(x) / $stderr(x))
tcount += (tsim > 2.5)
endloop

printf "proportion of cases with [t| > 2.5 = %g\n"

, tcount / replics

38



Chapter 7

Graphs and plots

7.1 Gnuplot graphs

A separate program, gnuplot, is called to generate graphs. Gnuplot is a very full-featured graph-
ing program with myriad options. It is available from www.gnuplot.info (but note that a suitable
copy of gnuplot is bundled with the packaged versions of gretl for MS Windows and Mac OS X).
gretl gives you direct access, via a graphical interface, to a subset of gnuplot’s options and it
tries to choose sensible values for you; it also allows you to take complete control over graph
details if you wish.

With a graph displayed, you can click on the graph window for a pop-up menu with the following
options.

e Save as PNG: Save the graph in Portable Network Graphics format (the same format that
you see on screen).

e Save as postscript: Save in encapsulated postscript (EPS) format.
¢ Save as Windows metafile: Save in Enhanced Metafile (EMF) format.

e Save to session as icon: The graph will appear in iconic form when you select “Icon view”
from the View menu.

e Zoom: Lets you select an area within the graph for closer inspection (not available for all
graphs).

e Print: (Current GTK or MS Windows only) lets you print the graph directly.

e Copy to clipboard: MS Windows only, lets you paste the graph into Windows applications
such as MS Word.

¢ Edit: Opens a controller for the plot which lets you adjust many aspects of its appearance.

e Close: Closes the graph window.

Displaying data labels

For simple X-Y scatter plots, some further options are available if the dataset includes “case
markers” (that is, labels identifying each observation).! With a scatter plot displayed, when you
move the mouse pointer over a data point its label is shown on the graph. By default these
labels are transient: they do not appear in the printed or copied version of the graph. They can
be removed by selecting “Clear data labels” from the graph pop-up menu. If you want the labels
to be affixed permanently (so they will show up when the graph is printed or copied), select the
option “Freeze data labels” from the pop-up menu; “Clear data labels” cancels this operation.
The other label-related option, “All data labels”, requests that case markers be shown for all
observations. At present the display of case markers is disabled for graphs containing more
than 250 data points.

LFor an example of such a dataset, see the Ramanathan file data4-10: this contains data on private school enroll-
ment for the 50 states of the USA plus Washington, DC; the case markers are the two-letter codes for the states.
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GUI plot editor

Selecting the Edit option in the graph popup menu opens an editing dialog box, shown in Fig-
ure 7.1. Notice that there are several tabs, allowing you to adjust many aspects of a graph’s
appearance: font, title, axis scaling, line colors and types, and so on. You can also add lines or
descriptive labels to a graph (under the Lines and Labels tabs). The “Apply” button applies your
changes without closing the editor; “OK” applies the changes and closes the dialog.

X-axis | Y-axis | Lines | Labels | Palette |

Title of plot |price versus sqft (with least squares 1
key position left top - ‘
fitted line linear: y = a + b*x - ‘

Show full border

font: Sans 8 ‘

[ set as default

I{Help </ Apply Jok ‘ € Close

Figure 7.1: gretl’s gnuplot controller

Publication-quality graphics: advanced options

The GUI plot editor has two limitations. First, it cannot represent all the myriad options that
gnuplot offers. Users who are sufficiently familiar with gnuplot to know what they’re missing in
the plot editor presumably don’t need much help from gretl, so long as they can get hold of the
gnuplot command file that gretl has put together. Second, even if the plot editor meets your
needs, in terms of fine-tuning the graph you see on screen, a few details may need further work
in order to get optimal results for publication.

Either way, the first step in advanced tweaking of a graph is to get access to the graph command
file.

e In the graph display window, right-click and choose “Save to session as icon”.

¢ If it’s not already open, open the icon view window — either via the menu item View/Icon
view, or by clicking the “session icon view” button on the main-window toolbar.

e Right-click on the icon representing the newly added graph and select “Edit plot com-
mands” from the pop-up menu.

e You get a window displaying the plot file (Figure 7.2).

Here are the basic things you can do in this window. Obviously, you can edit the file you just
opened. You can also send it for processing by gnuplot, by clicking the “Execute” (cogwheel)
icon in the toolbar. Or you can use the “Save as” button to save a copy for editing and processing
as you wish.

Unless you're a gnuplot expert, most likely you’ll only need to edit a couple of lines at the top
of the file, specifying a driver (plus options) and an output file. We offer here a brief summary
of some points that may be useful.

First, gnuplot’s output mode is set via the command set term followed by the name of a
supported driver (“terminal” in gnuplot parlance) plus various possible options. (The top line
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Qe EMARME X
B set term pngcairo font "vera,g" =
set encoding utfg

set style line 1 lec rgb "#ffoooo"

set style line 2 lc rgb "#ooooff"

set style line 3 lc rgb "#50caso"

set style line 4 Llc rgb "#bfzshz"

set style line 5 lc rgb "#8faab3"

set style line 6 Lc rgb "#ffasoo"

set style increment user

# X ="'23" (4)

#¥ =y (1)

set xlabel 'z3

set xzeroaxis

set datafile missing "7"

# plot includes automatic fit: OLS

set title "Y versus Z3 (with least squares fit)"
set ylabel 'v!

set key left top

set xrange [0:15.371875]

plot

ot neian 1 {E@2) titla "0 s mAdnte A -

4 3

Figure 7.2: Plot commands editor

in the plot commands window shows the set term line that gretl used to make a PNG file,
commented out.) The graphic formats that are most suitable for publication are PDF and EPS.
These are supported by the gnuplot term types pdf, pdfcairo and postscript (with the eps
option). The pdfcairo driver has the virtue that is behaves in a very similar manner to the PNG
one, the output of which you see on screen. This is provided by the version of gnuplot that is
included in the gretl packages for MS Windows and Mac OS X; if you're on Linux it may or may
be supported. If pdfcairo is not available, the pdf terminal may be available; the postscript
terminal is almost certainly available.

Besides selecting a term type, if you want to get gnuplot to write the actual output file you need
to append a set output line giving a filename. Here are a few examples of the first two lines
you might type in the window editing your plot commands. We’ll make these more “realistic”
shortly.

set term pdfcairo
set output ’'mygraph.pdf’

set term pdf
set output ’'mygraph.pdf’

set term postscript eps
set output ’mygraph.eps’

There are a couple of things worth remarking here. First, you may want to adjust the size of
the graph, and second you may want to change the font. The default sizes produced by the
above drivers are 5 inches by 3 inches for pdfcairo and pdf, and 5 inches by 3.5 inches for
postscript eps. In each case you can change this by giving a size specification, which takes
the form XX, YY (examples below).

You may ask, why bother changing the size in the gnuplot command file? After all, PDF and
EPS are both vector formats, so the graphs can be scaled at will. True, but a uniform scaling
will also affect the font size, which may end looking wrong. You can get optimal results by
experimenting with the font and size options to gnuplot’s set term command. Here are
some examples (comments follow below).
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# pdfcairo, regular size, slightly amended
set term pdfcairo font "Sans,6" size 5in,3.51in
# or small size

set term pdfcairo font "Sans,5" size 3in,2in

# pdf, regular size, slightly amended

set term pdf font "Helvetica,8" size 5in,3.5in
# or small

set term pdf font "Helvetica,6" size 3in,2in

# postscript, regular

set term post eps solid font "Helvetica,1l6"

# or small

set term post eps solid font "Helvetica,12" size 3in,2in

On the first line we set a sans serif font for pdfcairo at a suitable size for a 5 x 3.5 inch plot
(which you may find looks better than the rather “letterboxy” default of 5 x 3). And on the
second we illustrate what you might do to get a smaller 3 x 2 inch plot. You can specify the
plot size in centimeters if you prefer, as in

set term pdfcairo font "Sans,6" size 6cm,4cm

We then repeat the exercise for the pdf terminal. Notice that here we're specifying one of the 35
standard PostScript fonts, namely Helvetica. Unlike pdfcairo, the plain pdf driver is unlikely
to be able to find fonts other than these.

In the third pair of lines we illustrate options for the postscript driver (which, as you see, can
be abbreviated as post). Note that here we have added the option soTlid. Unlike most other
drivers, this one uses dashed lines unless you specify the solid option. Also note that we’ve
(apparently) specified a much larger font in this case. That’s because the eps option in effect
tells the postscript driver to work at half-size (among other things), so we need to double the
font size.

Table 7.1 summarizes the basics for the three drivers we have mentioned.

Terminal  default size (inches) suggested font

pdfcairo 5X%X3 Sans,6
pdf 5x3 Helvetica,8
post eps 5% 3.5 Helvetica,16

Table 7.1: Drivers for publication-quality graphics

To find out more about gnuplot visit www.gnuplot.info. This site has documentation for the
current version of the program in various formats.

Additional tips

To be written. Line widths, enhanced text. Show a “before and after” example.

7.2 Boxplots

These plots (after Tukey and Chambers) display the distribution of a variable. The central box
encloses the middle 50 percent of the data, i.e. it is bounded by the first and third quartiles.
The “whiskers” extend to the minimum and maximum values. A line is drawn across the box at
the median and a “+” sign identifies the mean — see Figure 7.3.

In the case of boxplots with confidence intervals, dotted lines show the limits of an approximate
90 percent confidence interval for the median. This is obtained by the bootstrap method, which
can take a while if the data series is very long.
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0.25 + B
0.2 -
0.15 +
Q3
01 L mean
median
0.05 - Ql

ENROLL

Figure 7.3: Sample boxplot

After each variable specified in the boxplot command, a parenthesized boolean expression may
be added, to limit the sample for the variable in question. A space must be inserted between
the variable name or number and the expression. Suppose you have salary figures for men and
women, and you have a dummy variable GENDER with value 1 for men and 0 for women. In that
case you could draw comparative boxplots with the following line in the boxplots dialog:

salary (GENDER=1) salary (GENDER=0)
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Discrete variables

When a variable can take only a finite, typically small, number of values, then the variable is
said to be discrete. Some gretl commands act in a slightly different way when applied to dis-
crete variables; moreover, gretl provides a few commands that only apply to discrete variables.
Specifically, the dummify and xtab commands (see below) are available only for discrete vari-
ables, while the freq (frequency distribution) command produces different output for discrete
variables.

8.1 Declaring variables as discrete

Gretl uses a simple heuristic to judge whether a given variable should be treated as discrete, but
you also have the option of explicitly marking a variable as discrete, in which case the heuristic
check is bypassed.

The heuristic is as follows: First, are all the values of the variable “reasonably round”, where
this is taken to mean that they are all integer multiples of 0.25? If this criterion is met, we then
ask whether the variable takes on a “fairly small” set of distinct values, where “fairly small” is
defined as less than or equal to 8. If both conditions are satisfied, the variable is automatically
considered discrete.

To mark a variable as discrete you have two options.

1. From the graphical interface, select “Variable, Edit Attributes” from the menu. A dialog
box will appear and, if the variable seems suitable, you will see a tick box labeled “Treat
this variable as discrete”. This dialog box can also be invoked via the context menu (right-
click on a variable) or by pressing the F2 key.

2. From the command-line interface, via the discrete command. The command takes one
or more arguments, which can be either variables or list of variables. For example:

Tist x1list = x1 x2 x3
discrete zl xTlist z2

This syntax makes it possible to declare as discrete many variables at once, which cannot
presently be done via the graphical interface. The switch --reverse reverses the declara-
tion of a variable as discrete, or in other words marks it as continuous. For example:

discrete foo

# now foo is discrete
discrete foo --reverse
# now foo is continuous

The command-line variant is more powerful, in that you can mark a variable as discrete even if
it does not seem to be suitable for this treatment.

Note that marking a variable as discrete does not affect its content. It is the user’s responsibility
to make sure that marking a variable as discrete is a sensible thing to do. Note that if you want
to recode a continuous variable into classes, you can use the genr command and its arithmetic
functions, as in the following example:

nulldata 100
# generate a variable with mean 2 and variance 1
genr x = normal() + 2

44
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# split into 4 classes

genr z = (x>0) + (x>2) + (x>4)
# now declare z as discrete
discrete z

Once a variable is marked as discrete, this setting is remembered when you save the file.

8.2 Commands for discrete variables

The dummify command

The dummify command takes as argument a series x and creates dummy variables for each
distinct value present in x, which must have already been declared as discrete. Example:

open greene22_2
discrete Z5 # mark Z5 as discrete
dummify Z5

The effect of the above command is to generate 5 new dummy variables, labeled DZ5_1 through
DZ5_5, which correspond to the different values in Z5. Hence, the variable DZ5_4 is 1 if Z5
equals 4 and 0 otherwise. This functionality is also available through the graphical interface by
selecting the menu item “Add, Dummies for selected discrete variables”.

The dummify command can also be used with the following syntax:
Tist dlist = dummify(x)

This not only creates the dummy variables, but also a named list (see section 12.1) that can
be used afterwards. The following example computes summary statistics for the variable Y for
each value of Z5:

open greene22_2

discrete Z5 # mark Z5 as discrete

Tist foo = dummify(Z5)

loop foreach i foo
smpl $i --restrict --replace
summary Y

endTloop

smp1 --full

Since dummify generates a list, it can be used directly in commands that call for a list as input,
such as ols. For example:

open greene22_2
discrete Z5 # mark Z5 as discrete
ols Y 0 dummify(Z5)

The freq command

The freq command displays absolute and relative frequencies for a given variable. The way fre-
quencies are counted depends on whether the variable is continuous or discrete. This command
is also available via the graphical interface by selecting the “Variable, Frequency distribution”
menu entry.

For discrete variables, frequencies are counted for each distinct value that the variable takes.
For continuous variables, values are grouped into “bins” and then the frequencies are counted
for each bin. The number of bins, by default, is computed as a function of the number of valid
observations in the currently selected sample via the rule shown in Table 8.1. However, when
the command is invoked through the menu item “Variable, Frequency Plot”, this default can be
overridden by the user.

For example, the following code
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Observations  Bins
8<n<16 5
16 < <50 7

50<n <850 [ /n]

n > 850 29

Table 8.1: Number of bins for various sample sizes

open greenel9_1

freq TUCE

discrete TUCE # mark TUCE as discrete
freq TUCE

yields

Read datafile /usr/local/share/gretl/data/greene/greenel9_1.gdt
periodicity: 1, maxobs: 32,
observations range: 1-32

Listing 5 variables:
0) const 1) GPA 2) TUCE 3) PSI 4) GRADE

? freq TUCE

Frequency distribution for TUCE, obs 1-32
number of bins = 7, mean = 21.9375, sd = 3.90151

interval midpt  frequency rel. cum.

< 13.417 12.000 1 3.12% 3.12% *
13.417 - 16.250 14.833 1 3.12% 6.25% *
16.250 - 19.083 17.667 6 18.75%
19.083 - 21.917 20.500 6 18.75%
21.917 - 24.750 23.333 9 28.12%
24.750 - 27.583 26.167 7 21.88%

>= 27.583 29.000 2 6.25%

Test for null hypothesis of normal distribution:
Chi-square(2) = 1.872 with p-value 0.39211

? discrete TUCE # mark TUCE as discrete

? freq TUCE

Frequency distribution for TUCE, obs 1-32

frequency rel. cum.
12 1 3.12% 3.12% *
14 1 3.12% 6.25% *
17 3 9.38%  15.62% ***
19 3 9.38%  25.00% ***
20 2 6.25%  31.25% *
21 4 12.50%  43.75% #¥**
22 2 6.25%  50.00% **
23 4 12.50%  62.50% #****
24 3 9.38% 71.88% *
25 4 12.50%  84.38% w¥¥*
26 2 6.25%  90.62% **
27 1 3.12%  93.75% *
28 1 3.12%  96.88% *
29 1 3.12% 100.00% *
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Test for null hypothesis of normal distribution:
Chi-square(2) = 1.872 with p-value 0.39211

As can be seen from the sample output, a Doornik-Hansen test for normality is computed
automatically. This test is suppressed for discrete variables where the number of distinct values
is less than 10.

This command accepts two options: --quiet, to avoid generation of the histogram when in-
voked from the command line and --gamma, for replacing the normality test with Locke’s non-
parametric test, whose null hypothesis is that the data follow a Gamma distribution.

If the distinct values of a discrete variable need to be saved, the values () matrix construct can
be used (see chapter 13).

The xtab command

The xtab command cab be invoked in either of the following ways. First,
xtab ylist ; xlist

where yTist and x11 st are lists of discrete variables. This produces cross-tabulations (two-way
frequencies) of each of the variables in y1ist (by row) against each of the variables in x1ist
(by column). Or second,

xtab x1ist

In the second case a full set of cross-tabulations is generated; that is, each variable in x1ist
is tabulated against each other variable in the list. In the graphical interface, this command is
represented by the “Cross Tabulation” item under the View menu, which is active if at least two
variables are selected.

Here is an example of use:

open greene22_2
discrete Z* # mark Z1-Z8 as discrete
xtab 71 74 ; 7Z5 76

which produces

Cross-tabulation of Z1 (rows) against Z5 (columns)
[ 110 21C 31[ 41C 51 ToOT.

[ 0] 20 91 75 93 36 315
[ 1] 28 73 54 97 34 286

TOTAL 48 164 129 190 70 601
Pearson chi-square test = 5.48233 (4 df, p-value = 0.241287)
Cross-tabulation of Z1 (rows) against Z6 (columns)

[ 9Il 12][ 141[ 1e6l[ 17][ 18][ 20] TOT.

[ 0] 4 36 106 70 52 45 2 315
[ 1] 3 8 48 45 37 67 78 286
TOTAL 7 44 154 115 89 112 80 601

Pearson chi-square test = 123.177 (6 df, p-value = 3.50375e-24)

Cross-tabulation of Z4 (rows) against Z5 (columns)
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C 1I1f 2I1C 31C 41[ 5] TOT.

[ 0] 17 60 35 45 14 171
[ 1] 31 104 94 145 56 430

TOTAL 48 164 129 190 70 601
Pearson chi-square test = 11.1615 (4 df, p-value = 0.0248074)
Cross-tabulation of Z4 (rows) against Z6 (columns)

[ oIl 12][ 141[ 1el[ 17][ 18][ 20] TOT.

[ 0] 1 8 39 47 30 32 14 171
[ 1] 6 36 115 68 59 80 66 430
TOTAL 7 44 154 115 89 112 80 601

Pearson chi-square test = 18.3426 (6 df, p-value = 0.0054306)

Pearson’s x? test for independence is automatically displayed, provided that all cells have ex-
pected frequencies under independence greater than 10~7. However, a common rule of thumb
states that this statistic is valid only if the expected frequency is 5 or greater for at least 80
percent of the cells. If this condition is not met a warning is printed.

Additionally, the --row or --column options can be given: in this case, the output displays row
or column percentages, respectively.

If you want to cut and paste the output of xtab to some other program, e.g. a spreadsheet, you
may want to use the --zeros option; this option causes cells with zero frequency to display
the number 0 instead of being empty.
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Loop constructs

9.1 Introduction

The command Toop opens a special mode in which gretl accepts a block of commands to be
repeated zero or more times. This feature may be useful for, among other things, Monte Carlo
simulations, bootstrapping of test statistics and iterative estimation procedures. The general
form of a loop is:

loop control-expression [ --progressive | --verbose | --quiet ]
Toop body
endloop

Five forms of control-expression are available, as explained in section 9.2.

Not all gretl commands are available within loops. The commands that are not presently ac-
cepted in this context are shown in Table 9.1.

Table 9.1: Commands not usable in loops

corrgm  cusum data eqnprint function hurst include leverage
nulldata open rmplot run scatters setmiss setobs  tabprint
vif Xcorrgm

By default, the genr command operates quietly in the context of a loop (without printing in-
formation on the variable generated). To force the printing of feedback from genr you may
specify the --verbose option to Toop. The --quiet option suppresses the usual printout of
the number of iterations performed, which may be desirable when loops are nested.

The --progressive option to Toop modifies the behavior of the commands print and store,
and certain estimation commands, in a manner that may be useful with Monte Carlo analyses
(see Section 9.3).

The following sections explain the various forms of the loop control expression and provide
some examples of use of loops.

= |f you are carrying out a substantial Monte Carlo analysis with many thousands of repetitions, memory
capacity and processing time may be an issue. To minimize the use of computer resources, run your
script using the command-line program, gretlcli, with output redirected to a file.

9.2 Loop control variants

Count loop

The simplest form of loop control is a direct specification of the number of times the loop
should be repeated. We refer to this as a “count loop”. The number of repetitions may be a nu-
merical constant, as in Toop 1000, or may be read from a scalar variable, as in Toop repTics.

In the case where the loop count is given by a variable, say replics, in concept replics is
an integer; if the value is not integral, it is converted to an integer by truncation. Note that
replics is evaluated only once, when the loop is initially compiled.

49
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While loop

A second sort of control expression takes the form of the keyword whiTe followed by a boolean
expression. For example,

Toop while essdiff > .00001

Execution of the commands within the loop will continue so long as (a) the specified condition
evaluates as true and (b) the number of iterations does not exceed the value of the internal
variable Toop_maxiter. By default this equals 250, but you can specify a different value via the
set command (see the Gretl Command Reference).

Index loop

A third form of loop control uses an index variable, for example i.! In this case you specify
starting and ending values for the index, which is incremented by one each time round the loop.
The syntax looks like this: Toop 1i=1..20.

The index variable may be a pre-existing scalar; if this is not the case, the variable is created
automatically and is destroyed on exit from the loop.

The index may be used within the loop body in either of two ways: you can access the integer
value of i (see Example 9.4) or you can use its string representation, $i (see Example 9.5).

The starting and ending values for the index can be given in numerical form, by reference to
predefined scalar variables, or as expressions that evaluate to scalars. In the latter two cases
the variables are evaluated once, at the start of the loop. In addition, with time series data you
can give the starting and ending values in the form of dates, as in Toop i=1950:1..1999:4.

This form of loop control is intended to be quick and easy, and as such it is subject to certain
limitations. In particular, the index variable is always incremented by one at each iteration. If,
for example, you have

Toop i=m..n

where m and n are scalar variables with values m > n at the time of execution, the index will not
be decremented; rather, the loop will simply be bypassed.

If you need more complex loop control, see the “for” form below.

The index loop is particularly useful in conjunction with the values() matrix function when
some operation must be carried out for each value of some discrete variable (see chapter 8).
Consider the following example:

open greene22_2
discrete Z8
v8 = values(Z8)
Toop i=1..rows(v8)
scalar xi = v8[i]
smpl (Z8=xi) --restrict --replace
printf "mean(Y | Z8 = %g) = %8.5f, sd(Y | Z8 = %g) = %g\n", \
xi, mean(Y), xi, sd(Y)
endTloop

In this case, we evaluate the conditional mean and standard deviation of the variable Y for each
value of Z8.

11t is common programming practice to use simple, one-character names for such variables. However, you may use
any name that is acceptable by gretl: up to 15 characters, starting with a letter, and containing nothing but letters,
numerals and the underscore character.
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Foreach loop

The fourth form of loop control also uses an index variable, in this case to index a specified
list of strings. The loop is executed once for each string in the list. This can be useful for
performing repetitive operations on a list of variables. Here is an example of the syntax:

loop foreach i peach pear plum
print "$i"
endTloop

This loop will execute three times, printing out “peach”, “pear” and “plum” on the respective
iterations. The numerical value of the index starts at 1 and is incremented by 1 at each iteration.

If you wish to loop across a list of variables that are contiguous in the dataset, you can give the
names of the first and last variables in the list, separated by “. .”, rather than having to type all
the names. For example, say we have 50 variables AK, AL, ..., WY, containing income levels for
the states of the US. To run a regression of income on time for each of the states we could do:

genr time

loop foreach i AL..WY
ols $i const time

endloop

This loop variant can also be used for looping across the elements in a named list (see chap-
ter 12). For example:

Tist ylist = yl y2 y3
loop foreach i ylist

ols $i const x1 x2
endloop

Note that if you use this idiom inside a function (see chapter 10), looping across a list that
has been supplied to the function as an argument, it is necessary to use the syntax listname.$1
to reference the list-member variables. In the context of the example above, this would mean
replacing the third line with

ols ylist.$i const x1 x2

For loop

The final form of loop control emulates the for statement in the C programming language.
The sytax is Toop for, followed by three component expressions, separated by semicolons and
surrounded by parentheses. The three components are as follows:

1. Initialization: This is evaluated only once, at the start of the loop. Common example:
setting a scalar control variable to some starting value.

2. Continuation condition: this is evaluated at the top of each iteration (including the first). If
the expression evaluates as true (non-zero), iteration continues, otherwise it stops. Com-
mon example: an inequality expressing a bound on a control variable.

3. Modifier: an expression which modifies the value of some variable. This is evaluated prior
to checking the continuation condition, on each iteration after the first. Common example:
a control variable is incremented or decremented.

Here’s a simple example:

Toop for (r=0.01; r<.991; r+=.01)
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In this example the variable r will take on the values 0.01, 0.02, ..., 0.99 across the 99 iter-
ations. Note that due to the finite precision of floating point arithmetic on computers it may
be necessary to use a continuation condition such as the above, r<.991, rather than the more
“natural” r<=.99. (Using double-precision numbers on an x86 processor, at the point where
you would expect r to equal 0.99 it may in fact have value 0.990000000000001.)

Any or all of the three expressions governing a for loop may be omitted — the minimal form is
(; ;). If the continuation test is omitted it is implicitly true, so you have an infinite loop unless
you arrange for some other way out, such as a break statement.

If the initialization expression in a for loop takes the common form of setting a scalar variable
to a given value, the string representation of that scalar’s value is made available within the
loop via the accessor $varname.

9.3 Progressive mode

If the --progressive option is given for a command loop, special behavior is invoked for
certain commands, namely, print, store and simple estimation commands. By “simple” here
we mean commands which (a) estimate a single equation (as opposed to a system of equations)
and (b) do so by means of a single command statement (as opposed to a block of statements,
as with n1s and m1e). The paradigm is o1s; other possibilities include ts1s, wls, Togit and so
on.

The special behavior is as follows.

Estimators: The results from each individual iteration of the estimator are not printed. Instead,
after the loop is completed you get a printout of (a) the mean value of each estimated coefficient
across all the repetitions, (b) the standard deviation of those coefficient estimates, (c) the mean
value of the estimated standard error for each coefficient, and (d) the standard deviation of the
estimated standard errors. This makes sense only if there is some random input at each step.

print: When this command is used to print the value of a variable, you do not get a print each
time round the loop. Instead, when the loop is terminated you get a printout of the mean and
standard deviation of the variable, across the repetitions of the loop. This mode is intended
for use with variables that have a scalar value at each iteration, for example the error sum of
squares from a regression. Data series cannot be printed in this way, and neither can matrices.

store: This command writes out the values of the specified scalars, from each time round
the loop, to a specified file. Thus it keeps a complete record of their values across the itera-
tions. For example, coefficient estimates could be saved in this way so as to permit subsequent
examination of their frequency distribution. Only one such store can be used in a given loop.

9.4 Loop examples

Monte Carlo example
A simple example of a Monte Carlo loop in “progressive” mode is shown in Example 9.1.

This loop will print out summary statistics for the ‘a’ and ‘b’ estimates and R? across the 100
repetitions. After running the loop, coeffs.gdt, which contains the individual coefficient es-
timates from all the runs, can be opened in gretl to examine the frequency distribution of the
estimates in detail.

The command nulldata is useful for Monte Carlo work. Instead of opening a “real” data set,
nulldata 50 (for instance) opens a dummy data set, containing just a constant and an index
variable, with a series length of 50. Constructed variables can then be added using the genr
command. See the set command for information on generating repeatable pseudo-random
series.

Iterated least squares

Example 9.2 uses a “while” loop to replicate the estimation of a nonlinear consumption function
of the form



Chapter 9. Loop constructs 53

Example 9.1: Simple Monte Carlo loop

nulldata 50
set seed 547
genr x = 100 * uniform()
# open a "progressive" loop, to be repeated 100 times
Toop 100 --progressive
genr u = 10 * normal()
# construct the dependent variable
genr y = 10*x + u
# run OLS regression
ols y const x
# grab the coefficient estimates and R-squared
genr a = $coeff(const)
genr b = $coeff(x)
genr r2 = $rsq
# arrange for printing of stats on these
print a b r2
# and save the coefficients to file
store coeffs.gdt a b
endloop

C=x+pYY +e€

as presented in Greene (2000), Example 11.3. This script is included in the gretl distribution
under the name greenell_3.1inp; you can find it in gretl under the menu item “File, Script files,
Practice file, Greene...”.

The option --print-final for the ols command arranges matters so that the regression re-
sults will not be printed each time round the loop, but the results from the regression on the
last iteration will be printed when the loop terminates.

Example 9.3 shows how a loop can be used to estimate an ARMA model, exploiting the “outer
product of the gradient” (OPG) regression discussed by Davidson and MacKinnon in their Esti-
mation and Inference in Econometrics.

Indexed loop examples

Example 9.4 shows an indexed loop in which the smp1 is keyed to the index variable i. Suppose
we have a panel dataset with observations on a number of hospitals for the years 1991 to 2000
(where the year of the observation is indicated by a variable named year). We restrict the
sample to each of these years in turn and print cross-sectional summary statistics for variables
1 through 4.

Example 9.5 illustrates string substitution in an indexed loop.

The first time round this loop the variable V will be set to equal COMP1987 and the dependent
variable for the ols will be PBT1987. The next time round V will be redefined as equal to
COMP1988 and the dependent variable in the regression will be PBT1988. And so on.
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Example 9.2: Nonlinear consumption function

open greenell_3.gdt
# run initial OLS

ols CO

Y

genr essbhak = $ess
genr essdiff =1
genr beta = $coeff(Y)
genr gamma = 1
# iterate OLS till the error sum of squares converges
Toop while essdiff > .00001
# form the Tlinearized variables

genr CO = C + gamma * beta * YAgamma * log(Y)
genr x1 = YAgamma

genr x2 = beta * YAgamma * Tog(Y)

# run OLS

ols CO 0 x1 x2 --print-final --no-df-corr --vcv

genr beta = $coeff(x1)
genr gamma = $coeff(x2)
genr ess = $ess
genr essdiff = abs(ess - essbak)/essbhak
genr essbak = ess
endloop
# print parameter estimates using their "proper names"
set echo off
printf "alpha = %g\n", $coeff(0)
printf "beta = %g\n", beta
printf "gamma = %g\n", gamma
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Example 9.3: ARMA 1, 1

open armaloop.gdt

genr c = 0

genr a = 0.1
genr m = 0.1
series e = 1.0
genr de_c = e
genr de_a = e

genr de_m = e

genr crit =1
Toop while crit > 1.0e-9

# one-step forecast errors
genr e =y - c - a*y(-1) - m*e(-1)

# log-TikeTihood
genr loglik = -0.5 * sum(eA2)
print loglik

# partials of forecast errors wrt c, a, and m
genr de_c = -1 - m * de_c(-1)

genr de_a -y(-1) -m * de_a(-1)

genr de_m = -e(-1) -m * de_m(-1)

# partials of T wrt c, a and m

genr sc_c = -de_c * e
genr sc_a = -de_a * e
genr sc_m = -de_m * e

# OPG regression
ols const sc_c sc_a sc_m --print-final --no-df-corr --vcv

# Update the parameters
genr dc = $coeff(sc_c)
genr ¢ = c + dc

genr da = $coeff(sc_a)
genr a = a + da

genr dm = $coeff(sc_m)
genr m = m + dm

printf " constant %.8g (gradient = %#.6g)\n", c, dc
printf " arl coefficient %.89 (gradient %#.6g)\n", a, da
printf " mal coefficient = %.8g (gradient = %#.6g)\n", m, dm

genr crit = $T - S$ess
print crit

endloop

genr se_c = $stderr(sc_c)
genr se_a = $stderr(sc_a)
genr se_m = $stderr(sc_m)

set echo off
printf "\n"

printf "constant = %.8g (se = %#.6g, t = %.4f)\n", c, se_c, c/se_c
printf "arl term = %.8g (se = %#.6g, t = %.4f)\n", a, se_a, a/se_a
printf "mal term = %.8g (se = %#.6g, t = %.4f)\n", m, se_m, m/se_m
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Example 9.4: Panel statistics

open hospitals.gdt

Toop i=1991..2000
smp1l (year=i) --restrict --replace
summary 1 2 3 4

endloop

Example 9.5: String substitution

open bea.dat
Toop i1=1987..2001
genr V = COMPS$i
genr TC = GOC$i - PBTSi
genr C = TC - V
ols PBT$i const TC V
endloop
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User-defined functions

10.1 Defining a function

Gretl offers a mechanism for defining functions, which may be called via the command line,
in the context of a script, or (if packaged appropriately, see section 10.5) via the program’s
graphical interface.

The syntax for defining a function looks like this:!

function return-type function-name (parameters)
function body
end function

The opening line of a function definition contains these elements, in strict order:

1. The keyword function.

2. return-type, which states the type of value returned by the function, if any. This must be
one of void (if the function does not return anything), scalar, series, matrix, 1ist or
string.

3. function-name, the unique identifier for the function. Names must start with a letter. They
have a maximum length of 31 characters; if you type a longer name it will be truncated.
Function names cannot contain spaces. You will get an error if you try to define a function
having the same name as an existing gretl command.

4. The functions’s parameters, in the form of a comma-separated list enclosed in parenthe-
ses. This may be run into the function name, or separated by white space as shown.

Function parameters can be of any of the types shown below.2

Type Description
bool scalar variable acting as a Boolean switch
int scalar variable acting as an integer

scalar scalar variable

series data series

Tist named list of series

matrix matrix or vector

string string variable or string literal

bundle all-purpose container (see section 11.7)

Each element in the listing of parameters must include two terms: a type specifier, and the
name by which the parameter shall be known within the function. An example follows:

function scalar myfunc (series y, list xvars, bool verbose)

LThe syntax given here differs from the standard prior to gretl version 1.8.4. For reasons of backward compatibility
the old syntax is still supported; see section 10.6 for details.

2An additional parameter type is available for GUI use, namely obs; this is equivalent to int except for the way it
is represented in the graphical interface for calling a function.
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Each of the type-specifiers, with the exception of 1ist and string, may be modified by prepend-
ing an asterisk to the associated parameter name, as in

function scalar myfunc (series *y, scalar *b)

The meaning of this modification is explained below (see section 10.4); it is related to the use
of pointer arguments in the C programming language.

Function parameters: optional refinements

Besides the required elements mentioned above, the specification of a function parameter may
include some additional fields, as follows:

¢ The const modifier.

e For scalar or int parameters: minimum, maximum and default values; or for boo1 para-
meters, just a default value.

o For optional pointer and list arguments (see section 10.4), the special default value nulT.
e For all parameters, a descriptive string.

e For int parameters with minimum and maximum values specified, a set of strings to
associate with the allowed numerical values (value labels).

The first two of these options may be useful in many contexts; the last two may be helpful if a
function is to be packaged for use in the gretl GUI (but probably not otherwise). We now expand
on each of the options.

e The const modifier: must be given as a prefix to the basic parameter specification, as in

const matrix M

This constitutes a promise that the corresponding argument will not be modified within
the function; gretl will flag an error if the function attempts to modify the argument.

e Minimum, maximum and default values for scalar or int types: These values should
directly follow the name of the parameter, enclosed in square brackets and with the indi-
vidual elements separated by colons. For example, suppose we have an integer parameter
order for which we wish to specify a minimum of 1, a maximum of 12, and a default of 4.
We can write

int order[1:12:4]

If you wish to omit any of the three specifiers, leave the corresponding field empty. For
example [1::4] would specify a minimum of 1 and a default of 4 while leaving the maxi-
mum unlimited.

For a parameter of type bool1 (whose values are just zero or non-zero), you can specify a
default of 1 (true) or O (false), as in

bool verbose[0]

e Descriptive string: This will show up as an aid to the user if the function is packaged
(see section 10.5 below) and called via gretl’s graphical interface. The string should be
enclosed in double quotes and separated from the preceding elements of the parameter
specification with a space, as in

series y "dependent variable"
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e Value labels: These may be used only with int parameters for which minimum and max-
imum values have been specified, so there is a fixed number of admissible values, and
the number of labels must match the number of values. They will show up in the graph-
ical interface in the form of a drop-down list, making the function writer’s intent clearer
when an integer argument represents a categorical selection. A set of value labels must
be enclosed in braces, and the individual labels must be enclosed in double quotes and
separated by commas or spaces. For example:

int case[1l:3:1] {"Fixed effects", "Between model"”, "Random effects"}

If two or more of the trailing optional fields are given in a parameter specification, they must be
given in the order shown above: min-max-default, description, value labels. Note that there is
no facility for “escaping” characters within descriptive strings or value labels; these may contain
spaces but they cannot contain the double-quote character.

Here is an example of a well-formed function specification using all the elements mentioned
above:

function matrix myfunc (series y "dependent variable",
Tist X "regressors",
int p[0::1] "lag order",
int c[1:2:1] "criterion" {"AIC", "BIC"},
bool quiet[0])

One advantage of specifying default values for parameters, where applicable, is that in script
or command-line mode users may omit trailing arguments that have defaults. For example,
myfunc above could be invoked with just two arguments, corresponding to y and X; implicitly
p=1,c=1and quiet is false.

Functions taking no parameters

You may define a function that has no parameters (these are called “routines” in some program-
ming languages). In this case, use the keyword void in place of the listing of parameters:

function matrix myfunc2 (void)

The function body

The function body is composed of gretl commands, or calls to user-defined functions (that is,
function calls may be nested). A function may call itself (that is, functions may be recursive).
While the function body may contain function calls, it may not contain function definitions.
That is, you cannot define a function inside another function. For further details, see sec-
tion 10.4.

10.2 Calling a function

A user function is called by typing its name followed by zero or more arguments enclosed in
parentheses. If there are two or more arguments these should be separated by commas.

There are automatic checks in place to ensure that the number of arguments given in a function
call matches the number of parameters, and that the types of the given arguments match the
types specified in the definition of the function. An error is flagged if either of these conditions
is violated. One qualification: allowance is made for omitting arguments at the end of the list,
provided that default values are specified in the function definition. To be precise, the check is
that the number of arguments is at least equal to the number of required parameters, and is no
greater than the total number of parameters.

A scalar, series or matrix argument to a function may be given either as the name of a pre-
existing variable or as an expression which evaluates to a variable of the appropriate type.
Scalar arguments may also be given as numerical values. List arguments must be specified by
name.
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The following trivial example illustrates a function call that correctly matches the function
definition.

# function definition
function scalar ols_ess(series y, list xvars)
ols y 0 xvars --quiet
scalar myess = $ess
printf "ESS = %g\n", myess
return myess
end function
# main script
open data4-1
Tist xlist = 2 3 4
# function call (the return value is ignored here)
ols_ess(price, xlist)

The function call gives two arguments: the first is a data series specified by name and the
second is a named list of regressors. Note that while the function offers the variable myess as
a return value, it is ignored by the caller in this instance. (As a side note here, if you want a
function to calculate some value having to do with a regression, but are not interested in the full
results of the regression, you may wish to use the --quiet flag with the estimation command
as shown above.)

A second example shows how to write a function call that assigns a return value to a variable
in the caller:

# function definition

function series get_uhat(series y, Tist xvars)
ols y 0 xvars --quiet
series uh = $uhat
return uh

end function

# main script

open data4-1

Tist xlist = 2 3 4

# function call

series resid = get_uhat(price, xlist)

10.3 Deleting a function
If you have defined a function and subsequently wish to clear it out of memory, you can do so
using the keywords delete or clear, as in

function myfunc delete
function get_uhat clear

Note, however, that if myfunc is already a defined function, providing a new definition automat-
ically overwrites the previous one, so it should rarely be necessary to delete functions explicitly.

10.4 Function programming details

Variables versus pointers

Series, scalar, and matrix arguments to functions can be passed in two ways: “as they are”, or
as pointers. For example, consider the following:

function series triplel(series x)
return 3*x
end function
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function series triple2(series *x)
return 3*x
end function

These two functions are nearly identical (and yield the same result); the only difference is that
you need to feed a series into triplel, as in triplel(myseries), while triple2 must be
supplied a pointer to a series, as in triple2 (&myseries).

Why make the distinction? There are two main reasons for doing so: modularity and perfor-
mance.

By modularity we mean the insulation of a function from the rest of the script which calls it.
Omne of the many benefits of this approach is that your functions are easily reusable in other
contexts. To achieve modularity, variables created within a function are local to that function,
and are destroyed when the function exits, unless they are made available as return values and
these values are “picked up” or assigned by the caller.

In addition, functions do not have access to variables in “outer scope” (that is, variables that
exist in the script from which the function is called) except insofar as these are explicitly passed
to the function as arguments.

By default, when a variable is passed to a function as an argument, what the function actually
“gets” is a copy of the outer variable, which means that the value of the outer variable is not
modified by anything that goes on inside the function. But the use of pointers allows a function
and its caller to cooperate such that an outer variable can be modified by the function. In
effect, this allows a function to “return” more than one value (although only one variable can be
returned directly — see below). The parameter in question is marked with a prefix of * in the
function definition, and the corresponding argument is marked with the complementary prefix
& in the caller. For example,

function series get_uhat_and_ess(series y, list xvars, scalar *ess)
ols y 0 xvars --quiet
ess = $ess
series uh = $uhat
return uh
end function
# main script
open data4-1
Tist x1list = 2 3 4
# function call
scalar SSR
series resid = get_uhat_and_ess(price, xlist, &SSR)

In the above, we may say that the function is given the address of the scalar variable SSR, and it
assigns a value to that variable (under the local name ess). (For anyone used to programming
in C: note that it is not necessary, or even possible, to “dereference” the variable in question
within the function using the * operator. Unadorned use of the name of the variable is sufficient
to access the variable in outer scope.)

An “address” parameter of this sort can be used as a means of offering optional information
to the caller. (That is, the corresponding argument is not strictly needed, but will be used
if present). In that case the parameter should be given a default value of null and the the
function should test to see if the caller supplied a corresponding argument or not, using the
built-in function isnul1(). For example, here is the simple function shown above, modified to
make the filling out of the ess value optional.

function series get_uhat_and_ess(series y, list xvars, scalar *ess[null])
ols y 0 xvars --quiet
if lisnull(ess)
ess = $ess
endif
return $uhat
end function
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If the caller does not care to get the ess value, it can use nul1 in place of a real argument:
series resid = get_uhat_and_ess(price, xlist, null)

Alternatively, trailing function arguments that have default values may be omitted, so the fol-
lowing would also be a valid call:

series resid = get_uhat_and_ess(price, x1list)

Pointer arguments may also be useful for optimizing performance: even if a variable is not
modified inside the function, it may be a good idea to pass it as a pointer if it occupies a lot
of memory. Otherwise, the time gretl spends transcribing the value of the variable to the local
copy may be non-negligible, compared to the time the function spends doing the job it was
written for.

Example 10.1 takes this to the extreme. We define two functions which return the number of
rows of a matrix (a pretty fast operation). One function gets a matrix as argument, the other one
a pointer to a matrix. The two functions are evaluated on a matrix with 2000 rows and 2000
columns; on a typical system, floating-point numbers take 8 bytes of memory, so the space
occupied by the matrix is roughly 32 megabytes.

Running the code in example 10.1 will produce output similar to the following (the actual num-
bers depend on the machine you’re running the example on):

ETapsed time:
without pointers (copy)
with pointers (no copy)

3.66 seconds,
0.01 seconds.

If a pointer argument is used for this sort of purpose — and the object to which the pointer
points is not modified by the function — it is a good idea to signal this to the user by adding the
const qualifier, as shown for function b in Example 10.1. When a pointer argument is qualified
in this way, any attempt to modify the object within the function will generate an error.

One limitation on the use of pointer-type arguments should be noted: you cannot supply a
given variable as a pointer argument more than once in any given function call. For example,
suppose we have a function that takes two matrix-pointer arguments,

function scalar pointfunc (matrix *a, matrix *b)

And suppose we have two matrices, x and vy, at the caller level. The call
pointfunc(&x, &y)

is OK, but the call
pointfunc(&x, &) # will not work

will generate an error.

List arguments

The use of a named list as an argument to a function gives a means of supplying a function
with a set of variables whose number is unknown when the function is written — for example,
sets of regressors or instruments. Within the function, the list can be passed on to commands
such as ols.

A list argument can also be “unpacked” using a foreach loop construct, but this requires some
care. For example, suppose you have a list X and want to calculate the standard deviation of
each variable in the list. You can do:

loop foreach i X
scalar sd_$i = sd(X.$1)
endloop
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Example 10.1: Performance comparison: values versus pointer

function scalar a(matrix X)
return rows(X)
end function

function scalar b(const matrix *X)
return rows(X)
end function

nulldata 10

set echo off

set messages off

X = zeros(2000,2000)
r=20

set stopwatch

Toop 100
r=aX)

endTloop

fa = $stopwatch

set stopwatch
Toop 100

r = b(&X)
endTloop
fb = $stopwatch

printf "Elapsed time:\n\
\twithout pointers (copy)
\twith pointers (no copy)

%g seconds,\n\
%g seconds.\n", fa, fb
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Please note: a special piece of syntax is needed in this context. If we wanted to perform the
above task on a list in a regular script (not inside a function), we could do

loop foreach i X
scalar sd_$i = sd($i)
endloop

where $i gets the name of the variable at position i in the list, and sd($i) gets its standard
deviation. But inside a function, working on a list supplied as an argument, if we want to
reference an individual variable in the list we must use the syntax listname.varname. Hence in
the example above we write sd(X. $1).

This is necessary to avoid possible collisions between the name-space of the function and the
name-space of the caller script. For example, suppose we have a function that takes a list
argument, and that defines a local variable called y. Now suppose that this function is passed a
list containing a variable named y. If the two name-spaces were not separated either we’d get an
error, or the external variable y would be silently over-written by the local one. It is important,
therefore, that list-argument variables should not be “visible” by name within functions. To “get
hold of” such variables you need to use the form of identification just mentioned: the name of
the list, followed by a dot, followed by the name of the variable.

Constancy of list arguments When a named list of variables is passed to a function, the
function is actually provided with a copy of the list. The function may modify this copy (for
instance, adding or removing members), but the original list at the level of the caller is not
modified.

Optional list arguments If a list argument to a function is optional, this should be indicated
by appending a default value of nul11, as in

function scalar myfunc (scalar y, Tist X[null])

In that case, if the caller gives null as the list argument (or simply omits the last argument)
the named list X inside the function will be empty. This possibility can be detected using the
nelem() function, which returns 0 for an empty list.

String arguments

String arguments can be used, for example, to provide flexibility in the naming of variables
created within a function. In the following example the function mavg returns a list containing
two moving averages constructed from an input series, with the names of the newly created
variables governed by the string argument.

function Tist mavg (series y, string vname)
series @vname_2 = (y+y(-1)) / 2
series @vname_4 = (y+y(-D+y(-2)+y(-3)) / 4
Tist retlist = @vname_2 @vnhame_4
return retlist

end function

open data9-9
Tist malist = mavg(nocars, "nocars")
print malist --byobs

The last line of the script will print two variables named nocars_2 and nocars_4. For details
on the handling of named strings, see chapter 12.

If a string argument is considered optional, it may be given a nul1 default value, as in

function scalar foo (series y, string vname[null])
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Retrieving the names of arguments

The variables given as arguments to a function are known inside the function by the names of
the corresponding parameters. For example, within the function whose signature is

function void somefun (series y)

we have the series known as y. It may be useful, however, to be able to determine the names
of the variables provided as arguments. This can be done using the function argname, which
takes the name of a function parameter as its single argument and returns a string. Here is a
simple illustration:

function void namefun (series y)
printf "the series given as 'y’ was named %s\n", argname(y)
end function

open data9-7
namefun (QNC)

This produces the output

the series given as 'y’ was named QNC

Please note that this will not always work: the arguments given to functions may be anonymous
variables, created on the fly, as in somefun(1og(QNC)) or somefun(CPI/100). In that case the
argname function fails to return a string. Function writers who wish to make use of this facility
should check the return from argname using the isstring() function, which returns 1 when
given the name of a string variable, 0 otherwise.

Return values

Functions can return nothing (just printing a result, perhaps), or they can return a single vari-
able — a scalar, series, list, matrix, string, or bundle (see section 11.7). The return value, if
any, is specified via a statement within the function body beginning with the keyword return,
followed by either the name of a variable (which must be of the type announced on the first line
of the function definition) or an expression which produces a value of the correct type.

Having a function return a list or bundle is a way of permitting the “return” of more than one
variable. For example, you can define several series inside a function and package them as a
list; in this case they are not destroyed when the function exits. Here is a simple example,
which also illustrates the possibility of setting the descriptive labels for variables generated in
a function.

function Tist make_cubes (list xTlist)
Tist cubes = null
loop foreach i xlist --quiet
series $i3 = (x1list.$i)A3
setinfo $i3 -d "cube of $i"
Tist cubes += $i3
endToop
return cubes
end function

open data4-1

Tist x1list = price sqft

Tist cubelist = make_cubes(xTist)
print x1ist cubelist --byobs
Tlabels

A return statement causes the function to return (exit) at the point where it appears within
the body of the function. A function may also exit when (a) the end of the function code is
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reached (in the case of a function with no return value), (b) a gretl error occurs, or (c) a funcerr
statement is reached.

The funcerr keyword, which may be followed by a string enclosed in double quotes, causes a
function to exit with an error flagged. If a string is provided, this is printed on exit, otherwise
a generic error message is printed. This mechanism enables the author of a function to pre-
empt an ordinary execution error and/or offer a more specific and helpful error message. For
example,

if nelem(x1ist) = 0
funcerr "x1list must not be empty"
endif

A function may contain more than one return statement, as in

function scalar multi (bool s)
if s
return 1000
else
return 10
endif
end function

However, it is recommended programming practice to have a single return point from a function
unless this is very inconvenient. The simple example above would be better written as

function scalar multi (bool s)
return s 7 1000 : 10
end function

Error checking

When gretl first reads and “compiles” a function definition there is minimal error-checking: the
only checks are that the function name is acceptable, and, so far as the body is concerned, that
you are not trying to define a function inside a function (see Section 10.1). Otherwise, if the
function body contains invalid commands this will become apparent only when the function is
called and its commands are executed.

Debugging

The usual mechanism whereby gretl echoes commands and reports on the creation of new
variables is by default suppressed when a function is being executed. If you want more verbose
output from a particular function you can use either or both of the following commands within
the function:

set echo on
set messages on

Alternatively, you can achieve this effect for all functions via the command set debug 1. Usu-
ally when you set the value of a state variable using the set command, the effect applies only to
the current level of function execution. For instance, if you do set messages on within func-
tion f1, which in turn calls function f2, then messages will be printed for f1 but not f2. The
debug variable, however, acts globally; all functions become verbose regardless of their level.

Further, you can do set debug 2: in addition to command echo and the printing of messages,
this is equivalent to setting max_verbose (which produces verbose output from the BFGS max-
imizer) at all levels of function execution.

10.5 Function packages

Since gretl 1.6.0 there has been a mechanism to package functions and make them available to
other users of gretl. Here is a walk-through of the process.
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Load a function in memory

There are several ways to load a function:

e If you have a script file containing function definitions, open that file and run it.

e Create a script file from scratch. Include at least one function definition, and run the
script.

e Open the GUI console and type a function definition interactively. This method is not par-
ticularly recommended; you are probably better composing a function non-interactively.

For example, suppose you decide to package a function that returns the percentage change of a
time series. Open a script file and type

function series pc(series y "Series to process")
return 100 * diff(y)/y(-1)
end function

In this case, we have appended a string to the function argument, as explained in section 10.1,
so as to make our interface more informative. This is not obligatory: if you omit the descriptive
string, gretl will supply a predefined one.

... gretl console

Bem s

gretl console: type 'help' for a list of commands
7 genr x = uniform()
Replaced series x (ID 2)
7 genr dpcx = peix)
Generated series dpcx (ID 3)
? print x dpcx --byobs
Obs x dpcx
1 0, 8024579
2 0, 6330880 -0.21106
3 0., 4343051 -0,31389
4 0.1351594 -0, 67558
5 0. 3507580 1.52055
3] 0.5807393 0. 685567
7 0. 2800963 -0.517689
g8 0.8875319 2,16867
=1 0. 4181660 -0.52884
10 0.5418941 0, 29588
11 0, 05245 -0.90321
1z 0.52168106 8,94459
13 0. 9040759 0,73325
14 0.1171185 -0.87046
15 0.5927462 4, 06108
16 0. 4445166 -0, 25007 E‘

Close |

Figure 10.1: Output of function check

Now run your function. You may want to make sure it works properly by running a few tests.
For example, you may open the console and type

genr x = uniform(Q)
genr dpcx = pc(x)
print x dpcx --byobs

You should see something similar to figure 10.1. The function seems to work ok. Once your
function is debugged, you may proceed to the next stage.

Create a package

We first present the mechanism for creating a function package via gretl’s graphical interface.
This can also be done via the command line, which offers some additional functionality for
package authors; an explanation is given later in this section.
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Start the GUI program and take a look at the “File, Function files” menu. This menu contains
four items: “On local machine”, “On server”, “Edit package”, “New package”.

Select “New package”. (This will produce an error message unless at least one user-defined
function is currently loaded in memory — see the previous point.) In the first dialog you get to
select:

e A public function to package.

e Zero or more “private” helper functions.

Public functions are directly available to users; private functions are part of the “behind the
scenes” mechanism in a function package.

gretl: function package editor

Package description
Minimum gretl version

Data requirement

Author |A. U. Thor
Version |1.0
Date (YYYY-MM-DD) |2008—0?-29

|Percentage change

ERE

Time-series data

ERCENE

M |

Help text for pc:

Usage:
peix)
- X(t-1))/x(t-1)|

¥ must be a time series. Returns (x(t)

Edit function code Save as script

Edit sample script

[] Upload package to server on save

Eéave | W Close

Figure 10.2: The package editor window

On clicking “OK” a second dialog should appear (see Figure 10.2), where you get to enter the
package information (author, version, date, and a short description). You can also enter help
text for the public interface. You have a further chance to edit the code of the function(s) to be
packaged, by clicking on “Edit function code”. (If the package contains more than one function,
a drop-down selector will be shown.) And you get to add a sample script that exercises your
package. This will be helpful for potential users, and also for testing. A sample script is required
if you want to upload the package to the gretl server (for which a check-box is supplied).

You won’t need it right now, but the button labeled “Save as script” allows you to “reverse engi-
neer” a function package, writing out a script that contains all the relevant function definitions.

Clicking “Save” in this dialog leads you to a File Save dialog. All being well, this should be
pointing towards a directory named functions, either under the gretl system directory (if you
have write permission on that) or the gretl user directory. This is the recommended place to
save function package files, since that is where the program will look in the special routine for
opening such files (see below).

Needless to say, the menu command “File, Function files, Edit package” allows you to make
changes to a local function package.

A word on the file you just saved. By default, it will have a .gfn extension. This is a “function
package” file: unlike an ordinary gretl script file, it is an XML file containing both the function
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code and the extra information entered in the packager. Hackers might wish to write such
a file from scratch rather than using the GUI packager, but most people are likely to find it
awkward. Note that XML-special characters in the function code have to be escaped, e.g. &
must be represented as &amp;. Also, some elements of the function syntax differ from the
standard script representation: the parameters and return values (if any) are represented in
XML. Basically, the function is pre-parsed, and ready for fast loading using libxml.

Load a package

Why package functions in this way? To see what’s on offer so far, try the next phase of the
walk-through.

Close gretl, then re-open it. Now go to “File, Function files, On local machine”. If the previous
stage above has gone OK, you should see the file you packaged and saved, with its short descrip-
tion. If you click on “Info” you get a window with all the information gretl has gleaned from
the function package. If you click on the “View code” icon in the toolbar of this new window,
you get a script view window showing the actual function code. Now, back to the “Function
packages” window, if you click on the package’s name, the relevant functions are loaded into
gretl’s workspace, ready to be called by clicking on the “Call” button.

After loading the function(s) from the package, open the GUI console. Try typing help foo,
replacing foo with the name of the public interface from the loaded function package: if any
help text was provided for the function, it should be presented.

In a similar way, you can browse and load the function packages available on the gretl server,
by selecting “File, Function files, On server”.

Once your package is installed on your local machine, you can use the function it contains via
the graphical interface as described above, or by using the CLI, namely in a script or through
the console. In the latter case, you load the function via the include command, specifying the
package file as the argument, complete with the .gfn extension.

nction ca

Call to function pc
Arguments:

selection

Series to process |iprod E|

Assign return value (optional):

type selection (or new variable)

series foo E|
| [ telp | |Ogance||l ok l

Figure 10.3: Using your package

To continue with our example, load the file np.gdt (supplied with gretl among the sample
datasets). Suppose you want to compute the rate of change for the variable iprod via your new
function and store the result in a series named foo.

Go to “File, Function files, On local machine”. You will be shown a list of the installed packages,
including the one you have just created. If you select it and click on “Execute” (or double-
click on the name of the function package), a window similar to the one shown in figure 10.3
will appear. Notice that the description string “Series to process”, supplied with the function
definition, appears to the left of the top series chooser.

Click “Ok” and the series foo will be generated (see figure 10.4). Under some circumstances you
might have to press the “r” key (refresh) to have your new variable show up the main window
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variable list.

0.2 1
01 1
g o
01 1
0.2 7
-0.3 ' ' ' . ' '
1860 1880 1900 1920 1940 1960
|| Click on graph for pop-up menu

Figure 10.4: Percent change in industrial production

Alternatively, the same could have been accomplished by the script

include pc.gfn
open np
foo = pc(iprod)

Creating a package via the command line

The mechanism described above, for creating function packages using the GUI, is likely to be
convenient for small to medium-sized packages but may be too cumbersome for ambitious
packages that include a large hierarchy of private functions. To facilitate the building of such
packages gretl offers the makepkg command.

To use makepkg you create three files: a driver script that loads all the functions you want to
package and invokes makepkg; a small, plain-text specification file that contains the required
package details (author, version, etc.); and (in the simplest case) a plain text help file. You run
the driver script and gretl writes the package (.gfn) file.

We first illustrate with a simple notional package. We have a gretl script file named foo.inp
that contains a function, foo, that we want to package. Our driver script would then look like
this

include foo.inp
makepkg foo.gfn

Note that the makepkg command takes one argument, the name of the package file to be created.
The package specification file should have the same basename but the extension .spec. In this
case gretl will therefore look for foo. spec. It should look something like this:

# foo.spec

author = A. U. Thor
version = 1.0

date = 2011-02-01
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description = Does something with time series
public = foo

help = foohelp.txt

sample-script = example.inp

min-version = 1.9.3

data-requirement = needs-time-series-data

As you can see, the format of each line in this file is key = value, with two qualifications:
blank lines are permitted (and ignored, as are comment lines that start with #).

All the fields included in the above example are required, with the exception of data-requirement,
though the order in which they appear is immaterial. Here’s a run-down of the basic fields:

e author: the name(s) of the author(s). Accented or other non-ASCII characters should be
given as UTF-8.

e version: the version number of the package, which should be limited to two integers
separated by a period.

e date: the release date of the current verson of the package, in ISO 8601 format: YYYY-
MM-DD.

e description: a brief description of the functionality offered by the package. This will be
displayed in the GUI function packages window so it should be just one short line.

e pubTic: the listing of public functions.
e help: the name of a plain text (UTF-8) file containing help; all packages must provide help.

e sample-script: the name of a sample script that illustrates use of the package; all pack-
ages must supply a sample script.

e min-version: the minimum version of gretl required for the package to work correctly.
If you’re unsure about this, the conservative thing is to give the current gretl version.

The pubTic field indicates which function or functions are to be made directly available to users
(as opposed to private “helper” functions). In the example above there is just one public func-
tion. Note that any functions in memory when makepkg is invoked, other than those designated
as public, are assumed to be private functions that should also be included in the package. That
is, the list of private functions (if any) is implicit.

The data-requirement field should be specified if the package requires time-series or panel
data, or alternatively if no dataset is required. If the data-requirement field is omitted, the
assumption is that the package needs a dataset in place, but it doesn’t matter what kind; if
the packaged functions do not use any series or lists this requirement can be explicitly relaxed.
Valid values for this field are:

needs-time-series-data (any time-series data OK)

needs-gm-data (must be quarterly or monthly)
needs-panel-data (must be a panel)
no-data-ok (no dataset is needed)

For a more complex example, let’s look at the gig (GARCH-in-gretl) package. The driver script
for building gig looks something like this:

set echo off

set messages off

include gig_mle.inp
include gig_setup.inp
include gig_estimate.inp
include gig_printout.inp
include gig_plot.inp
makepkg gig.gfn
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In this case the functions to be packaged (of which there are many) are distributed across several
script files, each of which is the target of an inclTude command. The set commands at the top
are included to cut down on the verbosity of the output.

The content of gig.spec is as follows:

author = Riccardo "Jack"™ Lucchetti and Stefano Balietti
version = 2.0
date = 2010-12-21
description = An assortment of univariate GARCH models
public = GUI_gig \
gig_setup gig_set_dist gig_set_pq gig_set_vQR \
gig_print gig_estimate \
gig_plot gig_dplot \
gig_bundle_print GUI_gig_plot

gui-main = GUI_gig

bundle-print = gig_bundle_print
bundle-plot = GUI_gig_plot

help = gig.pdf

sample-script = examples/examplel.inp
min-version = 1.9.3

data-requirement = needs-time-series-data

Note that backslash continuation can be used for the elements of the public function listing.

In addition to the fields shown in the simple example above, gig. spec includes three optional
fields: gui-main, bundle-print and bundle-plot. These keywords are used to designate
certain functions as playing a special role in the gretl graphical interface. A function picked out
in this way must be in the publi c list and must satisfy certain further requirements.

e gui-main: this specifies a function as the one which will be presented automatically to
GUI users (instead of users’ being faced with a choice of interfaces). This makes sense
only for packages that have multiple public functions. In addition, the gui-main function
must return a bundle (see section 11.7).

e bundle-print: this picks out a function that should be used to print the contents of a
bundle returned by the gui-main function. It must take a pointer-to-bundle as its first
argument. The second argument, if present, should be an int switch, with two or more
valid values, that controls the printing in some way. Any further arguments must have
default values specified so that they can be omitted.

e bundle-plot: selects a function for the role of producing a plot or graph based on the
contents of a returned bundle. The requirements on this function are as for bundle-print.

The “GUI special” tags support a user-friendly mode of operation. On a successful call to
gui-main, gretl opens a window displaying the contents of the returned bundle (formatted
via bundle-print). Menus in this window give the user the option of saving the entire bundle
(in which case it’s represented as an icon in the “icon view” window) or of extracting specific
elements from the bundle (series or matrices, for example).

If the package has a bundle-pTot function, the bundle window also has a Graph menu. In gig,
for example, the bundTe-plot function has this signature:

function void GUI_gig_plot(bundle *model, int ptype[0:1:0] \
"Plot type" {"Time series", "Density"})

The ptype switch is used to choose between a time-series plot of the residual and its conditional
variance, and a kernel density plot of the innovation against the theoretical distribution it is
supposed to follow. The use of the value-labels Time series and Density means that the
Graph menu will display these two choices.

Omne other feature of the gig spec file is noteworthy: the help field specifies gig.pdf, docu-
mentation in PDF format. Unlike plain-text help, this cannot be rolled into the gfn (XML) file
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produced by the makepkg command; rather, both gig.gfn and gig.pdf are packaged into a
zip archive for distribution. This represents a form of package which is new in gretl 1.9.4. More
details will be made available before long.

10.6 Memo: updating old-style functions

As mentioned at the start of this chapter, different rules were in force for defining functions
prior to gretl 1.8.4. While the old syntax is still supported to date, this may not always be the
case. But it is straightforward to convert a function to the new style. The only thing that must
be changed for compatibility with the new syntax is the declaration of the function’s return
type. Previously this was placed inline in the return statement, whereas now it is placed right
after the function keyword. For example:

# old style
function triple (series x)

y = 3*x

return series y # note the "series" here
end function

# new style

function series triple (series Xx)
y = 3*x
return y

end function

Note also that the role of the return statement has changed (and its use has become more
flexible):

e The return statement now causes the function to return directly, and you can have more
than one such statement, wrapped in conditionals. Before there could only be one return
statement, and its role was just to specify the type available for assignment by the caller.

e The final element in the return statement can now be an expression that evaluates to a
value of the advertised return type; before, it had to be the name of a pre-defined variable.
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Gretl data types

11.1 Introduction

Gretl offers the following data types:

scalar holds a single numerical value

series holds n numerical values, where n is the number of observations in the
current dataset

matrix holds a rectangular array of numerical values, of any dimensions
Tist holds the ID numbers of a set of series

string holds an array of characters

bundle holds a variable number of objects of various types

The “numerical values” mentioned above are all double-precision floating point numbers.

In this chapter we give a run-down of the basic characteristics of each of these types and also
explain their “life cycle” (creation, modification and destruction). The list and matrix types,
whose uses are relatively complex, are discussed at greater length in the following two chapters.

11.2 Series

We begin with the series type, which is the oldest and in a sense the most basic type in gretl.
When you open a data file in the gretl GUI, what you see in the main window are the ID numbers,
names (and descriptions, if available) of the series read from the file. All the series existing at
any point in a gretl session are of the same length, although some may have missing values.
The variables that can be added via the items under the Add menu in the main window (logs,
squares and so on) are also series.

For a gretl session to contain any series, a common series length must be established. This is
usually achieved by opening a data file, or importing a series from a database, in which case the
length is set by the first import. But one can also use the nulldata command, which takes as
it single argument the desired length, a positive integer.

Each series has these basic attributes: an ID number, a name, and of course n numerical val-
ues. In addition a series may have a description (which is shown in the main window and is
also accessible via the Tabels command), a “display name” for use in graphs, a record of the
compaction method used in reducing the variable’s frequency (for time-series data only) and
a flag marking the variable as discrete. These attributes can be edited in the GUI by choosing
Edit Attributes (either under the Variable menu or via right-click), or by means of the setinfo
command.

In the context of most commands you are able to reference series by name or by ID number as
you wish. The main exception is the definition or modification of variables via a formula; here
you must use names since ID numbers would get confused with numerical constants.

Note that series ID numbers are always consecutive, and the ID number for a given series will
change if you delete a lower-numbered series. In some contexts, where gretl is liable to get
confused by such changes, deletion of low-numbered series is disallowed.

74
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11.3 Scalars

The scalar type is relatively simple: just a convenient named holder for a single numerical
value. Scalars have none of the additional attributes pertaining to series, do not have public ID
numbers, and must be referenced by name. A common use of scalar variables is to record infor-
mation made available by gretl commands for further processing, asin scalar s2 = $sigma”2
to record the square of the standard error of the regression following an estimation command
such as ols.

You can define and work with scalars in gretl without having any dataset in place.

In the gretl GUI, scalar variables can be inspected and their values edited via the “Icon view”
(see the View menu in the main window).

11.4 Matrices

Matrices in gretl work much as in other mathematical software (e.g. MATLAB, Octave). Like
scalars they have no public ID numbers and must be referenced by name, and they can be used
without any dataset in place. Matrix indexing is 1-based: the top-left element of matrix A is
A[1,1]. Matrices are discussed at length in chapter 13; advanced users of gretl will want to
study this chapter in detail.

Matrices have one optional attribute beyond their numerical content: they may have column
names attached, which are displayed when the matrix is printed. See the colnames function for
details.

In the gretl GUI, matrices can be inspected, analysed and edited via the Icon view item under
the View menu in the main window: each currently defined matrix is represented by an icon.

11.5 Lists

As with matrices, lists merit an explication of their own (see chapter 12). Briefly, named lists
can (and should!) be used to make commands scripts less verbose and repetitious, and more
easily modifiable. Since lists are in fact lists of series ID numbers they can be used only when a
dataset is in place.

In the gretl GUI, named lists can be inspected and edited under the Data menu in the main
window, via the item Define or edit list.

11.6 Strings

String variables may be used for labeling, or for constructing commands. They are discussed in
chapter 12. They must be referenced by name; they can be defined in the absence of a dataset.

Such variables can be created and modified via the command-line in the gretl console or via
script; there is no means of editing them via the gretl GUI.

11.7 Bundles

A bundle is a container or wrapper for various sorts of objects — specifically, scalars, series,
matrices, strings and bundles. (Yes, a bundle can contain other bundles). A bundle takes the
form of a hash table or associative array: each item placed in the bundle is associated with a
key string which can used to retrieve it subsequently. We begin by explaining the mechanics of
bundles then offer some thoughts on what they are good for.

To use a bundle you must first “declare” it, as in
bundle foo

To add an object to a bundle you assign to a compound left-hand value: the name of the bundle
followed by the key string in square brackets. For example, the statement
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foo["matrix1"] =m

adds an object called m (presumably a matrix) to bundle foo under the key matrix1. To get an
item out of a bundle, again use the name of the bundle followed by the bracketed key, as in

matrix bm = foo["matrixl1l"]

A bundle key may be given as a double-quoted string literal, as shown above, or as the name of
a pre-defined string variable. Key strings have a maximum length of 15 characters and cannot
contain spaces.

Note that the key identifying an object within a given bundle is necessarily unique. If you reuse
an existing key in a new assignment, the effect is to replace the object which was previously
stored under the given key. It is not required that the type of the replacement object is the
same as that of the original.

Also note that when you add an object to a bundle, what in fact happens is that the bundle
acquires a copy of the object. The external object retains its own identity and is unaffected if
the bundled object is replaced by another. Consider the following script fragment:

bundle foo
matrix m = I(3)
foo["mykey"] = m
scalar x = 20
foo["mykey"] = x

After the above commands are completed bundle foo does not contain a matrix under mykey,
but the original matrix m is still in good health.

To delete an object from a bundle use the delete command, as in
delete foo["mykey"]

This destroys the object associated with the key and removes the key from the hash table.

Besides adding, accessing, replacing and deleting individual items, the other operations that are
supported for bundles are union, printing and deletion. As regards union, if bundles b1l and b2
are defined you can say

bundle b3 = bl + b2

to create a new bundle that is the union of the two others. The algorithm is: create a new bundle
that is a copy of b1, then add any items from b2 whose keys are not already present in the new
bundle. (This means that bundle union is not commutative if the bundles have one or more key
strings in common.)

If b is a bundle and you say print b, you get a listing of the bundle’s keys along with the types
of the corresponding objects, as in

? print b
bundle b:

x (scalar)

mat (matrix)
inside (bundle)

What are bundles good for?

Bundles are unlikely to be of interest in the context of standalone gretl scripts, but they can
be very useful in the context of complex function packages where a good deal of information
has to be passed around between the component functions. Instead of using a lengthy list of
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individual arguments, function A can bundle up the required data and pass it to functions B
and C, where relevant information can be extracted via a mnemonic key.

In this context bundles should be passed in “pointer” form (see chapter 10) as illustrated in the
following trivial example, where a bundle is created at one level then filled out by a separate
function.

# modification of bundle (pointer) by user function

function void fill_out_bundle (bundle *b)
b["mat"] = I(3)
b["stl""] = llfooll
b["x"] = 32

end function

bundle my_bundle
fill_out_bundle(&my_bundle)

The bundle type can also be used to advantage as the return value from a packaged function, in
cases where a package writer wants to give the user the option of accessing various results. In
the gretl GUI, function packages that return a bundle are treated specially: the output window
that displays the printed results acquires a menu showing the bundled items (their names and
types), from which the user can save items of interest. For example, a function package that
estimates a model might return a bundle containing a vector of parameter estimates, a residual
series and a covariance matrix for the parameter estimates, among other possibilities.

As a refinement to support the use of bundles as a function return type, the setnote function
can be used to add a brief explanatory note to a bundled item — such notes will then be shown
in the GUI menu. This function takes three arguments: the name of a bundle, a key string, and
the note. For example

n "

setnote(b, "vcv'", "covariance matrix")

After this, the object under the key vcv in bundle b will be shown as “covariance matrix” in a
GUI menu.

11.8 The life cycle of gretl objects
Creation

The most basic way to create a new variable of any type is by declaration, where one states the
type followed by the name of the variable to create, as in

scalar x
series y
matrix A

and so forth. In that case the object in question is given a default initialization, as follows: a
new scalar has value NA (missing); a new series is filled with NAs; a new matrix is null (zero rows
and columns); a new string is empty; a new list has no members, and a new bundle is empty.

Declaration can be supplemented by a definite initialization, as in
scalar x = pi

series y = Tog(x)
matrix A zeros(10,4)

With the exception of bundles (as noted above), new variables in gretl do not have to be declared
by type. The traditional way of creating a new variable in gretl was via the genr command (which
is still supported), as in
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genr x = y/100

Here the type of x is left implicit and will be determined automatically depending on the context:
if y is a scalar, a series or a matrix x will inherit y’s type (otherwise an error will be generated,
since division is applicable to these types only). Moreover, the type of a new variable can be left
implicit without use of genr:

X = y/100

In “modern” gretl scripting we recommend that you state the type of a new variable explicitly.
This makes the intent clearer to a reader of the script and also guards against errors that might
otherwise be difficult to understand (i.e. a certain variable turns out to be of the wrong type
for some subsequent calculation, but you don’t notice at first because you didn’t say what type
you needed). An exception to this rule might reasonably be granted for clear and simple cases
where there’s little possibility of confusion.

Modification

Typically, the values of variables of all types are modified by assignment, using the = operator
with the name of the variable on the left and a suitable value or formula on the right:

z = normal ()
x =100 * Tog(y) - log(y(-1))
M = gform(a, X)

By a “suitable” value we mean one that is conformable for the type in question. A gretl variable
acquires its type when it is first created and this cannot be changed via assignment; for example,
if you have a matrix A and later want a string A, you will have to delete the matrix first.

= One point to watch out for in gretl scripting is type conflicts having to do with the names of series
brought in from a data file. For example, in setting up a command loop (see chapter 9) it is very common
to call the loop index i. Now a loop index is a scalar (typically incremented each time round the loop).
If you open a data file that happens to contain a series named i you will get a type error (“Types not
conformable for operation”) when you try to use i as a loop index.

Although the type of an existing variable cannot be changed on the fly, gretl nonetheless tries
to be as “understanding” as possible. For example if x is a series and you say

x = 100

gretl will give the series a constant value of 100 rather than complaining that you are trying
to assign a scalar to a series. This issue is particularly relevant for the matrix type — see
chapter 13 for details.

Besides using the regular assignment operator you also have the option of using an “inflected”
equals sign, as in the C programming language. This is shorthand for the case where the new
value of the variable is a function of the old value. For example,

x += 100 # in Tonghand: x = x + 100
x *= 100 # in longhand: x = x * 100

For scalar variables you can use a more condensed shorthand for simple increment or decre-
ment by 1, namely trailing ++ or -- respectively:

x = 100
X-- # x now equals 99
X++ # x now equals 100
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In the case of objects holding more than one value — series, matrices and bundles — you can
modify particular values within the object using an expression within square brackets to iden-
tify the elements to access. We have discussed this above for the bundle type and chapter 13
goes into details for matrices. As for series, there are two ways to specify particular values for
modification: you can use a simple 1-based index, or if the dataset is a time series or panel (or
if it has marker strings that identify the observations) you can use an appropriate observation
string. Such strings are displayed by gretl when you print data with the --byobs flag. Examples:

x[13] = 100 # simple index: the 13th observation
x[1995:4] 100 # date: quarterly time series

x[2003:08] = 100 # date: monthly time series
x["AZ"] = 100 # the observation with marker string "AZ"
x[3:15] = 100 # panel: the 15th observation for the 3rd unit

Note that with quarterly or monthly time series there is no ambiguity between a simple index
number and a date, since dates always contain a colon. With annual time-series data, however,
such ambiguity exists and it is resolved by the rule that a number in brackets is always read as a
simple index: x[1905] means the nineteen-hundred and fifth observation, not the observation
for the year 1905. You can specify a year by quotation, as in x["1905"].

Destruction

Objects of the types discussed above, with the important exception of named lists, are all de-
stroyed using the deTete command: delete objectname.

Lists are an exception for this reason: in the context of gretl commands, a named list expands
to the ID numbers of the member series, so if you say

delete L

for L a list, the effect is to delete all the series in L; the list itself is not destroyed, but ends
up empty. To delete the list itself (without deleting the member series) you must invert the
command and use the 11ist keyword:

Tist L delete
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Named lists and strings

12.1 Named lists

Many gretl commands take one or more lists of series as arguments. To make this easier to
handle in the context of command scripts, and in particular within user-defined functions, gretl
offers the possibility of named lists.

Creating and modifying named lists

A named list is created using the keyword 11 st, followed by the name of the list, an equals sign,
and an expression that forms a list. The most basic sort of expression that works in this context
is a space-separated list of variables, given either by name or by ID number. For example,

Tist xlist =12 3 4
1ist reglist = income price

Note that the variables in question must be of the series type: you cannot include scalars in a
named list.

Two abbreviations are available in defining lists:

(1%

¢ You can use the wildcard character, , to create a list of variables by name. For example,
dum* can be used to indicate all variables whose names begin with dum.

e You can use two dots to indicate a range of variables. For example income. .price indi-
cates the set of variables whose ID numbers are greater than or equal to that of income
and less than or equal to that of price.

In addition there are two special forms:

e If you use the keyword nulT1 on the right-hand side, you get an empty list.

o If you use the keyword dataset on the right, you get a list containing all the series in the
current dataset (except the pre-defined const).

The name of the list must start with a letter, and must be composed entirely of letters, numbers
or the underscore character. The maximum length of the name is 15 characters; list names
cannot contain spaces.

Once a named list has been created, it will be “remembered” for the duration of the gretl session
(unless you delete it), and can be used in the context of any gretl command where a list of
variables is expected. One simple example is the specification of a list of regressors:

Tist x1list = x1 x2 x3 x4
ols y 0 xTist

To get rid of a list, you use the following syntax:
Tist x1list delete
Be careful: delete x1ist will delete the variables contained in the list, so it implies data

loss (which may not be what you want). On the other hand, Tist xTist delete will simply
“undefine” the x11 st identifier and the variables themselves will not be affected.

80



Chapter 12. Named lists and strings 81

Similarly, to print the names of the variables in a list you have to invert the usual print com-
mand, as in

Tist x1ist print

If you just say print xTist the list will be expanded and the values of all the member variables
will be printed.

Lists can be modified in various ways. To redefine an existing list altogether, use the same
syntax as for creating a list. For example

Tist xlist =1 2 3
xlist =4 56

After the second assignment, x11st contains just variables 4, 5 and 6.

To append or prepend variables to an existing list, we can make use of the fact that a named
list stands in for a “longhand” list. For example, we can do

Tist xlist = xlist 5 6 7
xTist = 9 10 xTist 11 12

Another option for appending a term (or a list) to an existing list is to use +=, as in
xlist += cpi

To drop a variable from a list, use -=:
xlist -= cpi

In most contexts where lists are used in gretl, it is expected that they do not contain any
duplicated elements. If you form a new list by simple concatenation, as in Tist L3 = L1 L2
(where L1 and L2 are existing lists), it’s possible that the result may contain duplicates. To
guard against this you can form a new list as the union of two existing ones:

Tist L3 = L1 || L2

The result is a list that contains all the members of L1, plus any members of L2 that are not
already in L1.

In the same vein, you can construct a new list as the intersection of two existing ones:
Tist L3 = L1 && L2

Here L3 contains all the elements that are present in both L1 and L2.

You can also subtract one list from another:
Tist L3 = L1 - L2

The result contains all the elements of L1 that are not present in L2.

Lists and matrices

Another way of forming a list is by assignment from a matrix. The matrix in question must be
interpretable as a vector containing ID numbers of (series) variables. It may be either a row or
a column vector, and each of its elements must have an integer part that is no greater than the
number of variables in the data set. For example:

matrix m = {1,2,3,4}
Tist L =m

The above is OK provided the data set contains at least 4 variables.
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Querying a list

You can determine whether an unknown variable actually represents a list using the function
islist().

series x11 = log(x1)
series x12 = log(x2)
Tist xlogs = x11 x12
genr isl = islist(xTogs)
genr is2 = islist(x11)

The first genr command above will assign a value of 1 to isl since xlogs is in fact a named
list. The second genr will assign O to is2 since x11 is a data series, not a list.

You can also determine the number of variables or elements in a list using the function neTem().
Tist xlist =1 2 3
nl = nelem(xTist)
The (scalar) variable n1 will be assigned a value of 3 since x11 st contains 3 members.
You can determine whether a given series is a member of a specified list using the function
inlist(), as in

scalar k = inlist(L, y)

where L is a list and y a series. The series may be specified by name or ID number. The return
value is the (1-based) position of the series in the list, or zero if the series is not present in the
list.

Generating lists of transformed variables
Given a named list of variables, you are able to generate lists of transformations of these vari-
ables using the functions log, lags, diff, 1diff, sdiff or dummify. For example

Tist x1list = x1 x2 x3
Tist Ix1list = Tog(xTist)
Tist difflist = diff(x1ist)

When generating a list of lags in this way, you specify the maximum lag order inside the paren-
theses, before the list name and separated by a comma. For example

Tist x1list = x1 x2 x3
Tist laglist = lags(2, xTist)

or

4
lags(order, xlist)

scalar order
Tist laglist

These commands will populate Taglist with the specified number of lags of the variables in
x1ist. You can give the name of a single series in place of a list as the second argument to
Tags: this is equivalent to giving a list with just one member.

The dummify function creates a set of dummy variables coding for all but one of the distinct
values taken on by the original variable, which should be discrete. (The smallest value is taken
as the omitted catgory.) Like lags, this function returns a list even if the input is a single series.
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YpcFR  YpcGE YpclT NEFR NGE NIT
1997 1149 1246 119.3 59830.635 82034.771 56890.372
1998 115.3 122.7 120.0 60046.709 82047.195 56906.744
1999 115.0 1224 117.8 60348.255 82100.243 56916.317
2000 115.6 118.8 117.2 60750.876 82211.508 56942.108
2001 116.0 1169 118.1 61181.560 82349.925 56977.217
2002 116.3 1155 112.2 61615.562 82488.495 57157.406
2003 1121 1169 111.0 62041.798 82534.176 57604.658
2004 1103 116.6 1069 62444.707 82516.260 58175.310
2005 1124 115.1 105.1 62818.185 82469.422 58607.043
2006 1119 114.2 103.3 63195.457 82376.451 58941.499

Table 12.1: GDP per capita and population in 3 European countries (Source: Eurostat)

Generating series from lists

Once a list is defined, gretl offers several functions that apply to the list and return a series. In
most cases, these functions also apply to single series and behave as natural extensions when
applied to a list, but this is not always the case.

For recognizing and handling missing values, Gretl offers several functions (see the Gretl Com-
mand Reference for details). In this context, it is worth remarking that the ok () function can
be used with a list argument. For example,

Tist x1list = x1 x2 x3
series xok = ok(x1list)

After these commands, the series xok will have value 1 for observations where none of x1, x2,
or x3 has a missing value, and value 0 for any observations where this condition is not met.

The functions max, min, mean, sd, sum and var behave horizontally rather than vertically when
their argument is a list. For instance, the following commands

Tist X1ist = x1 x2 x3
series m = mean(Xlist)

produce a series m whose i-th element is the average of x i, x2,; and x3 ;; missing values, if any,
are implicitly discarded.

In addition, gretl provides three functions for weighted operations: wmean, wsd and wvar. Con-
sider as an illustration Table 12.1: the first three columns are GDP per capita for France, Ger-
many and Italy; columns 4 to 6 contain the population for each country. If we want to compute
an aggregate indicator of per capita GDP, all we have to do is

Tist Ypc = YpcFR YpcGE YpcIT
Tist N = NFR NGE NIT
y = wmean(Ypc, N)

so for example

114.9 x 59830.635 + 124.6 x 82034.771 + 119.3 x 56890.372
59830.635 + 82034.771 + 56890.372

See the Gretl Command Reference for more details.

Y1996 = =120.163

12.2 Named strings

For some purposes it may be useful to save a string (that is, a sequence of characters) as a
named variable that can be reused. Versions of gretl higher than 1.6.0 offer this facility, but
some of the refinements noted below are available only in gretl 1.7.2 and higher.
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To define a string variable, you can use either of two commands, string or sprintf. The
string command is simpler: you can type, for example,

string sl = "some stuff I want to save"
string s2 = getenv("HOME")
string s3 = s1 + 11

The first field after string is the name under which the string should be saved, then comes an
equals sign, then comes a specification of the string to be saved. This can be the keyword nul1,
to produce an empty string, or may take any of the following forms:

¢ a string literal (enclosed in double quotes); or

o the name of an existing string variable; or

¢ a function that returns a string (see below); or

e any of the above followed by + and an integer offset.
The role of the integer offset is to use a substring of the preceding element, starting at the given

character offset. An empty string is returned if the offset is greater than the length of the string
in question.

To add to the end of an existing string you can use the operator +=, as in

string sl = "some stuff I want to
string sl += "save"

or you can use the ~ operator to join two or more strings, as in

string sl = "sweet"
string s2 = "Home,

~ sl ~ " home."

Note that when you define a string variable using a string literal, no characters are treated as
“special” (other than the double quotes that delimit the string). Specifically, the backslash is
not used as an escape character. So, for example,

string s = "\"

is a valid assignment, producing a string that contains a single backslash character. If you wish
to use backslash-escapes to denote newlines, tabs, embedded double-quotes and so on, use
sprintf instead.

The sprintf command is more flexible. It works exactly as gretl’s printf command except
that the “format” string must be preceded by the name of a string variable. For example,

scalar x = 8
sprintf foo "var%d", x

To use the value of a string variable in a command, give the name of the variable preceded by
the “at” sign, @. This notation is treated as a “macro”. That is, if a sequence of characters in a
gretl command following the symbol @ is recognized as the name of a string variable, the value
of that variable is sustituted literally into the command line before the regular parsing of the
command is carried out. This is illustrated in the following interactive session:

? scalar x = 8

scalar x = 8
Generated scalar x (ID 2) = 8
? sprintf foo "var%d", x
Saved string as ’'foo’

? print "@foo"
var8
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Note the effect of the quotation marks in the line print "@foo". The line
? print @foo

would not print a literal “var8” as above. After pre-processing the line would read
print var8

It would therefore print the value(s) of the variable vars, if such a variable exists, or would
generate an error otherwise.

In some contexts, however, one wants to treat string variables as variables in their own right: to
do this, give the name of the variable without the leading @ symbol. This is the way to handle
such variables in the following contexts:

e When they appear among the arguments to the commands printf and sprintf.
e On the right-hand side of a string assignment.

e When they appear as an argument to the function taking a string argument.

Here is an illustration of the use of named string arguments with printf:

string vstr = "variance"
Generated string vstr
printf "vstr: %12s\n", vstr
vstr: variance

Note that vstr should not be put in quotes in this context. Similarly with

? string vstr_copy = vstr

Built-in strings

Apart from any strings that the user may define, some string variables are defined by gretl
itself. These may be useful for people writing functions that include shell commands. The
built-in strings are as shown in Table 12.2.

gretldir the gretl installation directory
workdir  user’s current gretl working directory

dotdir the directory gretl uses for temporary files
gnuplot  path to, or name of, the gnuplot executable
tramo path to, or name of, the tramo executable
x12a path to, or name of, the x-12-arima executable

tramodir tramo data directory
x12adir x-12-arima data directory

Table 12.2: Built-in string variables

Reading strings from the environment

In addition, it is possible to read into gretl’s named strings, values that are defined in the
external environment. To do this you use the function getenv, which takes the name of an
environment variable as its argument. For example:

? string user = getenv("USER")

Saved string as ’user’

? string home = getenv("HOME")

Saved string as ’“home’

? print "@user’s home directory is @home"
cottrell’s home directory is /home/cottrell
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To check whether you got a non-empty value from a given call to getenv, you can use the
function strlen, which retrieves the length of the string, as in

? string temp = getenv("TEMP")
Saved empty string as ’'temp’

? scalar x = strlen(temp)
Generated scalar x (ID 2) = 0

The function isstring returns 1 if its argument is the name of a string variable, 0 otherwise.
However, if the return is 1 the string may still be empty.

At present the getenv function can only be used on the right-hand side of a string assignment,
as in the above illustrations.

Capturing strings via the shell

If shell commands are enabled in gretl, you can capture the output from such commands using
the syntax

string stringname = $ (shellcommand)

That is, you enclose a shell command in parentheses, preceded by a dollar sign.

Reading from a file into a string
You can read the content of a file into a string variable using the syntax
string stringname = readfile(filename)

The filename field may be given as a string variable. For example

? sprintf fname "%s/QNC.rts", xl2adir
Generated string fname

? string foo = readfile(fname)
Generated string foo

The above could also be accomplished using the “macro” variant of a string variable, provided
it is placed in quotation marks:

string foo = readfile("@x12adir/QNC.rts")

The strstr function
Invocation of this function takes the form
string stringname = strstr(sl, s2)

The effect is to search s1 for the first occurrence of s2. If no such occurrence is found, an empty
string is returned; otherwise the portion of sI starting with s2 is returned. For example:

? string hw = "hello world"
Saved string as 'hw’

? string w = strstr(hw, "o")
Saved string as ’'w’
? print "@w"

o world
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Matrix manipulation

Together with the other two basic types of data (series and scalars), gretl offers a quite com-
prehensive array of matrix methods. This chapter illustrates the peculiarities of matrix syntax
and discusses briefly some of the more complex matrix functions. For a full listing of matrix
functions and a comprehensive account of their syntax, please refer to the Gretl Command
Reference.

13.1 Creating matrices

Matrices can be created using any of these methods:

1. By direct specification of the scalar values that compose the matrix — in numerical form,
by reference to pre-existing scalar variables, or using computed values.

2. By providing a list of data series.
3. By providing a named list of series.

4. Using a formula of the same general type that is used with the genr command, whereby
a new matrix is defined in terms of existing matrices and/or scalars, or via some special
functions.

To specify a matrix directly in terms of scalars, the syntax is, for example:
matrix A= {1, 2, 3 ; 4, 5, 6}

The matrix is defined by rows; the elements on each row are separated by commas and the rows
are separated by semi-colons. The whole expression must be wrapped in braces. Spaces within
the braces are not significant. The above expression defines a 2 x 3 matrix. Each element should
be a numerical value, the name of a scalar variable, or an expression that evaluates to a scalar.
Directly after the closing brace you can append a single quote (’) to obtain the transpose.

To specify a matrix in terms of data series the syntax is, for example,
matrix A = { x1, x2, x3 }

where the names of the variables are separated by commas. Besides names of existing variables,
you can use expressions that evaluate to a series. For example, given a series x you could do

matrix A = { x, xA2 }

Each variable occupies a column (and there can only be one variable per column). You cannot
use the semicolon as a row separator in this case: if you want the series arranged in rows,
append the transpose symbol. The range of data values included in the matrix depends on the
current setting of the sample range.

Instead of giving an explicit list of variables, you may instead provide the name of a saved list
(see Chapter 12), as in

Tist xlist = x1 x2 x3
matrix A = { x1ist }

87
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When you provide a named list, the data series are by default placed in columns, as is natural
in an econometric context: if you want them in rows, append the transpose symbol.

As a special case of constructing a matrix from a list of variables, you can say
matrix A = { dataset }

This builds a matrix using all the series in the current dataset, apart from the constant (variable
0). When this dummy list is used, it must be the sole element in the matrix definition {...}.
You can, however, create a matrix that includes the constant along with all other variables using
horizontal concatenation (see below), as in

matrix A = {const}~{dataset}

By default, when you build a matrix from series that include missing values the data rows that
contain NAs are skipped. But you can modify this behavior via the command set skip_missing
off. In that case NAs are converted to NaN (“Not a Number”). In the IEEE floating-point standard,
arithmetic operations involving NaN always produce NaN. Alternatively, you can take greater
control over the observations (data rows) that are included in the matrix using the “set” variable
matrix_mask, as in

set matrix_mask msk

where msk is the name of a series. Subsequent commands that form matrices from series or
lists will include only observations for which msk has non-zero (and non-missing) values. You
can remove this mask via the command set matrix_mask null.

= Names of matrices must satisfy the same requirements as names of gretl variables in general: the
name can be no longer than 15 characters, must start with a letter, and must be composed of nothing
but letters, numbers and the underscore character.

13.2 Empty matrices
The syntax

matrix A = {}

creates an empty matrix — a matrix with zero rows and zero columns.

The main purpose of the concept of an empty matrix is to enable the user to define a starting
point for subsequent concatenation operations. For instance, if X is an already defined matrix
of any size, the commands

matrix A {}
matrix B = A ~ X

result in a matrix B identical to X.

From an algebraic point of view, one can make sense of the idea of an empty matrix in terms
of vector spaces: if a matrix is an ordered set of vectors, then A={} is the empty set. As a
consequence, operations involving addition and multiplications don’t have any clear meaning
(arguably, they have none at all), but operations involving the cardinality of this set (that is, the
dimension of the space spanned by A) are meaningful.

Legal operations on empty matrices are listed in Table 13.1. (All other matrix operations gen-
erate an error when an empty matrix is given as an argument.) In line with the above inter-
pretation, some matrix functions return an empty matrix under certain conditions: the func-
tions diag, vec, vech, unvech when the arguments is an empty matrix; the functions I,
ones, zeros, mnormal, muniformwhen one or more of the arguments is 0; and the function
nullspace when its argument has full column rank.
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Function Return value
A’, transp(A) A
rows (A) 0
cols(A) 0
rank (A) 0
det(A) NA
Tdet(A) NA
tr(A) NA
onenorm(A) NA
infnorm(A) NA
rcond(A) NA

Table 13.1: Valid functions on an empty matrix, A

13.3 Selecting sub-matrices

You can select sub-matrices of a given matrix using the syntax
A[rows,cols]

where rows can take any of these forms:

1. empty selects all rows

2. asingle integer selects the single specified row
3. two integers separated by a colon selects a range of rows

4., the name of a matrix selects the specified rows

With regard to option 2, the integer value can be given numerically, as the name of an existing
scalar variable, or as an expression that evaluates to a scalar. With option 4, the index matrix
given in the rows field must be either p x 1 or 1 X p, and should contain integer values in the
range 1 to n, where n is the number of rows in the matrix from which the selection is to be
made.

The cols specification works in the same way, mutatis mutandis. Here are some examples.

matrix B = A[1,]

matrix B = A[2:3,3:5]
matrix B = A[2,2]

matrix idx = { 1, 2, 6 }
matrix B = A[idx,]

The first example selects row 1 from matrix A; the second selects a 2 x 3 submatrix; the third
selects a scalar; and the fourth selects rows 1, 2, and 6 from matrix A.

If the matrix in question is n x 1 or 1 x m, it is OK to give just one index specifier and omit
the comma. For example, A[2] selects the second element of A if A is a vector. Otherwise the
comma is mandatory.

In addition there is a pre-defined index specification, diag, which selects the principal diagonal
of a square matrix, as in B[diag], where B is square.

You can use selections of this sort on either the right-hand side of a matrix-generating formula
or the left. Here is an example of use of a selection on the right, to extract a 2 x 2 submatrix B
from a 3 X 3 matrix A:

matrix A
matrix B = A[1:2,2:3]

]
~
H
N
w
IS

5, 6; 7, 8,91}

And here are examples of selection on the left. The second line below writes a 2 x 2 identity
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matrix into the bottom right corner of the 3 x 3 matrix A. The fourth line replaces the diagonal
of A with 1s.

’ ’ 3; 4’ 5’ 6; 7! 8’ 9 }

matrix A= {1, 2

3,2:3] = I(2)
1, 1
]

matrix A[2:
matrix d = {
matrix A[diag

, 1}
- d

13.4 Matrix operators

The following binary operators are available for matrices:

+ addition

- subtraction

* ordinary matrix multiplication

pre-multiplication by transpose

\  matrix “left division” (see below)

/  matrix “right division” (see below)

~ column-wise concatenation

| row-wise concatenation
Kronecker product

=  test for equality

In addition, the following operators (“dot” operators) apply on an element-by-element basis:
4= N = > <

Here are explanations of the less obvious cases.

For matrix addition and subtraction, in general the two matrices have to be of the same di-
mensions but an exception to this rule is granted if one of the operands is a 1 X 1 matrix or
scalar. The scalar is implicitly promoted to the status of a matrix of the correct dimensions, all
of whose elements are equal to the given scalar value. For example, if A is an m X n matrix and
k a scalar, then the commands

A+ k
A -k

matrix C
matrix D

both produce m x n matrices, with elements ¢;; = a;; + k and d;j = a;j — k respectively.

By “pre-multiplication by transpose” we mean, for example, that
matrix C = X'Y

produces the product of X-transpose and Y. In effect, the expression X’Y is shorthand for X’ *Y
(which is also valid).

In matrix “left division”, the statement
matrix X = A \ B

is interpreted as a request to find the matrix X that solves AX = B. If B is a square matrix, this
is in principle equivalent to A~!B, which fails if A is singular; the numerical method employed
here is the LU decomposition. If A is a T X k matrix with T > k, then X is the least-squares
solution, X = (A’A)~'A’B, which fails if A’A is singular; the numerical method employed here
is the QR decomposition. Otherwise, the operation necessarily fails.
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For matrix “right division”, as in X = A / B, X is the matrix that solves XB = A, in principle
equivalent to AB~L.

In “dot” operations a binary operation is applied element by element; the result of this operation
is obvious if the matrices are of the same size. However, there are several other cases where
such operators may be applied. For example, if we write

matrix C = A .- B

then the result C depends on the dimensions of A and B. Let A be an m X n matrix and let B be
p X q; the result is as follows:

Case Result

Dimensions match (m = p and n = q) cij = aij — bij
A is a column vector; rows match (m = p; n = 1) ¢ij = ai — bij
B is a column vector; rows match (m = p; g = 1) ¢ij = aij — b;
A is a row vector; columns match (m = 1; n = q) Cij = aj — by
B is a row vector; columns match (m = p; q = 1) Cij = aij — b;j

A s a column vector; Bisarow vector(n = 1;p = 1) c¢ij = ai — bj
A is arow vector; B is a column vector(im =1; g =1) c¢ij=aj—b;
Aisascalar(m=1andn =1) Cij = a— byj
Bisascalar(p =1and g =1) cij=aij—b

If none of the above conditions are satisfied the result is undefined and an error is flagged.

Note that this convention makes it unnecessary, in most cases, to use diagonal matrices to
perform transformations by means of ordinary matrix multiplication: if Y = XV, where V is
diagonal, it is computationally much more convenient to obtain Y via the instruction

matrix Y = X .* v

where v is a row vector containing the diagonal of V.

In column-wise concatenation of an m X n matrix A and an m X p matrix B, the result is an
m X (n + p) matrix. That is,

matrix C = A ~ B

produces C = [ A B ]

Row-wise concatenation of an m X n matrix A and an p X n matrix B produces an (m + p) X n
matrix. That is,

matrix C = A | B

A
produces C = [ }
B

13.5 Matrix-scalar operators

For matrix A and scalar k, the operators shown in Table 13.2 are available. (Addition and
subtraction were discussed in section 13.4 but we include them in the table for completeness.)
In addition, for square A and integer k > 0, B = AAk produces a matrix B which is A raised to
the power k.

13.6 Matrix functions

Most of the gretl functions available for scalars and series also apply to matrices in an element-
by-element fashion, and as such their behavior should be pretty obvious. This is the case for
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Expression Effect
matrix = * bl’j = k&lij
matrix B = A / bi; = a;j/k
matrix = / bij = k/aij
matrix + bij :aij+k

matrix
matrix
matrix

bij =aij — k
bl’j = k—aij
bij = Aij modulo k

%

o~Bv-Bv - B v~ B v - B v ~ B v
Il

> x> > X > >

~ > XX >~ =~

Table 13.2: Matrix-scalar operators

functions such as 1og, exp, sin, etc. These functions have the effects documented in relation
to the genr command. For example, if a matrix A is already defined, then

matrix B = sqrt(A)

generates a matrix such that b;; = ,/a;;. All such functions require a single matrix as argument,
or an expression which evaluates to a single matrix.!

In this section, we review some aspects of genr functions that apply specifically to matrices. A
full account of each function is available in the Gretl Command Reference.

Matrix reshaping

In addition to the methods discussed in sections 13.1 and 13.3, a matrix can also be created
by re-arranging the elements of a pre-existing matrix. This is accomplished via the mshape
function. It takes three arguments: the input matrix, A, and the rows and columns of the target
matrix, ¥ and c¢ respectively. Elements are read from A and written to the target in column-
major order. If A contains fewer elements than n = r X ¢, they are repeated cyclically; if A has
more elements, only the first n are used.

For example:

matrix a = mnormal(2,3)

fr:atr'ix b = mshape(a,3,1)
r:atr'ix b = mshape(a,5,2)
b

produces
? a

1.2323 0.99714 -0.39078
0.54363 0.43928 -0.48467

? matrix b = mshape(a,3,1)
Generated matrix b

? b
b
1.2323
0.54363
0.99714

INote that to find the “matrix square root” you need the cholesky function (see below); moreover, the exp function
computes the exponential element by element, and therefore does not return the matrix exponential unless the matrix
is diagonal — to get the matrix exponential, use mexp.
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Creation and I/0

93

colnames diag diagcat I Tower mnormal
mread muniform mwrite ones rownames seq
unvech upper vec vech zeros

Shape/size/arrangement
cols dsort mreverse mshape msortby  rows
selifc selifr sort trimr

Matrix algebra
cdiv cholesky cmult det eigengen eigensym
eigsolve fft ffti ginv hdprod infnorm
inv invpd Tdet mexp nullspace onenorm
polroots psdroot qgform grdecomp rank rcond
svd toepsolv tr transp varsimul

Statistics/transformations
cdemean corr corrgm cov fcstats  imaxc
imaxr iminc iminr irf kdensity maxc
maxr mcorr mcov mcovg meanc meanr
minc minr mlag mols mpols mrls
mxtab pergm princomp quantile ranking resample
sdc sumc sumr uniq values

Data utilities
isconst ok pshrink replace

Filters
filter kfilTter ksimul ksmooth  T1rvar

Numerical methods
BFGSmax  fdjac NRmax simann

Strings
colname

Transformations
chowlin  cum Tincomb

Table 13.3: Matrix functions by category
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? matrix b = mshape(a,5,2)
Replaced matrix b

? b
b
1.2323 -0.48467
0.54363 1.2323
0.99714 0.54363
0.43928 0.99714
-0.39078 0.43928

Complex multiplication and division

Gretl has no native provision for complex numbers. However, basic operations can be per-
formed on vectors of complex numbers by using the convention that a vector of n complex
numbers is represented as a 1 X 2 matrix, where the first column contains the real part and the
second the imaginary part.

Addition and subtraction are trivial; the functions cmult and cdiv compute the complex prod-
uct and division, respectively, of two input matrices, A and B, representing complex numbers.
These matrices must have the same number of rows, n, and either one or two columns. The
first column contains the real part and the second (if present) the imaginary part. The return
value is an n x 2 matrix, or, if the result has no imaginary part, an n-vector.

For example, suppose you have z; = [1 + 2i,3 + 4i]’ and z» = [1,1]":

? z1 = {1,2;3,4}
z1l = {1,2;3,4}
Generated matrix zl
?z2 =1C2)
z2 = I(2)
Generated matrix z2
? conj_zl = z1 .* {1,-1}
conj_zl = z1 .* {1,-1}
Generated matrix conj_zl
? eval cmult(zl,z2)
eval cmult(zl,z2)
1 2
-4 3

? eval cmult(zl,conj_zl)
eval cmult(zl,conj_z1)
5
25

Multiple returns and the null keyword
Some functions take one or more matrices as arguments and compute one or more matrices;
these are:

eigensym Eigen-analysis of symmetric matrix
eigengen Eigen-analysis of general matrix

mols Matrix OLS
grdecomp QR decomposition
svd Singular value decomposition (SVD)

The general rule is: the “main” result of the function is always returned as the result proper.
Auxiliary returns, if needed, are retrieved using pre-existing matrices, which are passed to the
function as pointers (see 10.4). If such values are not needed, the pointer may be substituted
with the keyword nul1.
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The syntax for qrdecomp, eigensym and eigengen is of the form
matrix B = func(A, &OC)

The first argument, A, represents the input data, that is, the matrix whose decomposition or
analysis is required. The second argument must be either the name of an existing matrix pre-
ceded by & (to indicate the “address” of the matrix in question), in which case an auxiliary result
is written to that matrix, or the keyword nul1, in which case the auxiliary result is not produced,
or is discarded.

In case a non-null second argument is given, the specified matrix will be over-written with the
auxiliary result. (It is not required that the existing matrix be of the right dimensions to receive
the result.)

The function eigensym computes the eigenvalues, and optionally the right eigenvectors, of a
symmetric n X n matrix. The eigenvalues are returned directly in a column vector of length n;
if the eigenvectors are required, they are returned in an n X n matrix. For example:

matrix V
matrix E eigensym(M, &V)
matrix E = eigensym(M, null)

In the first case E holds the eigenvalues of M and V holds the eigenvectors. In the second, E
holds the eigenvalues but the eigenvectors are not computed.

The function eigengen computes the eigenvalues, and optionally the eigenvectors, of a general
n X n matrix. The eigenvalues are returned directly in an n X 2 matrix, the first column holding
the real components and the second column the imaginary components.

If the eigenvectors are required (that is, if the second argument to eigengen is not nul1), they
are returned in an n X n matrix. The column arrangement of this matrix is somewhat non-trivial:
the eigenvectors are stored in the same order as the eigenvalues, but the real eigenvectors
occupy one column, whereas complex eigenvectors take two (the real part comes first); the
total number of columns is still n, because the conjugate eigenvector is skipped. Example 13.1
provides a (hopefully) clarifying example (see also subsection 13.6).

The grdecomp function computes the QR decomposition of an m X n matrix A: A = QR, where
Q is an m X n orthogonal matrix and R is an n X n upper triangular matrix. The matrix Q is
returned directly, while R can be retrieved via the second argument. Here are two examples:

matrix R
matrix Q = qrdecomp(M, &R)
matrix Q = qrdecomp(M, null)

In the first example, the triangular R is saved as R; in the second, R is discarded. The first line
above shows an example of a “simple declaration” of a matrix: R is declared to be a matrix
variable but is not given any explicit value. In this case the variable is initialized as a 1 X 1
matrix whose single element equals zero.

The syntax for svd is
matrix B = func(A, &C, &D)

The function svd computes all or part of the singular value decomposition of the real m x n
matrix A. Let k = min(m, n). The decomposition is

A=UzV'

where U is an m x k orthogonal matrix, 3. is an k x k diagonal matrix, and V is an kxXn orthogonal
matrix.> The diagonal elements of ¥ are the singular values of A; they are real and non-negative,

2This is not the only definition of the SVD: some writers define U as m x m, = as m x n (with k non-zero diagonal
elements) and V as n x n.
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Example 13.1: Complex eigenvalues and eigenvectors

set seed 34756

matrix v
A = mnormal(3,3)

/* do the eigen-analysis */

1 = eigengen(A,&v)

/* eigenvalue 1 is real, 2 and 3 are complex conjugates */
print 1

print v

/:“:
column 1 contains the first eigenvector (real)

:‘:/

B = A*v[,1]

c=1[1,1] * v[,1]

/* B should equal c */
print B

print c

/3‘:
columns 2:3 contain the real and imaginary parts
of eigenvector 2

:':/

B = A*v[,2:3]

c = cmultCones(3,1)*(1[2,1),v[,2:3])
/* B should equal c */

print B

print c

96
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and are returned in descending order. The first k columns of U and V are the left and right
singular vectors of A.

The svd function returns the singular values, in a vector of length k. The left and/or right
singular vectors may be obtained by supplying non-null values for the second and/or third
arguments respectively. For example:

matrix s = svd(A, &U, &VY)
matrix s svd(A, null, null)
matrix s = svd(A, null, &V)

In the first case both sets of singular vectors are obtained, in the second case only the singular
values are obtained; and in the third, the right singular vectors are obtained but U is not com-
puted. Please note: when the third argument is non-null, it is actually V' that is provided. To
reconstitute the original matrix from its SVD, one can do:

matrix s = svd(A, &U, &VY)
matrix B = (U.*s)*V

Finally, the syntax for mols is
matrix B = mols(Y, X, &U)

This function returns the OLS estimates obtained by regressing the T X n matrix Y on the T X k
matrix X, that is, a k x n matrix holding (X’ X)~1X’Y. The Cholesky decomposition is used. The
matrix U, if not nuTT, is used to store the residuals.

Reading and writing matrices from/to text files

The two functions mread and mwrite can be used for basic matrix input/output. This can be
useful to enable gretl to exchange data with other programs.

The mread function accepts one string parameter: the name of the (plain text) file from which
the matrix is to be read. The file in question must conform to the following rules:

1. The columns must be separated by spaces or tab characters.

2. The decimal separator must be the dot “.” character.

3. The first line in the file must contain two integers, separated by a space or a tab, indicating
the number of rows and columns, respectively.

Should an error occur (such as the file being badly formatted or inaccessible), an empty matrix
(see section 13.2) is returned.

The complementary function mwrite produces text files formatted as described above. The
column separator is the tab character, so import into spreadsheets should be straightforward.
Usage is illustrated in example 13.2. Matrices stored via the mwrite command can be easily read
by other programs; the following table summarizes the appropriate commands for reading a
matrix A from a file called a.mat in some widely-used programs.?

Program Sample code
GAUSS tmp[] = load a.mat;
A = reshape(tmp[3:rows(tmp)],tmp[1],tmp[2]);
Octave fd = fopen("a.mat");
[r,c] = fscanf(fd, "%d %d", "C");
A = reshape(fscanf(fd, "%g", r*c),c,r)’;
fclose(fd);
Ox decl A = Toadmat("a.mat");
R A <- as.matrix(read.table("a.mat", skip=1))

3Matlab users may find the Octave example helpful, since the two programs are mostly compatible with one
another.
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nulldata 64
scalar n =
string fl
string f2 =

matrix a
matrix b

err = mwrit

if err 1= 0
fprintf "
else
err = mwr
endif

if err 1= 0
fprintf "

else
C mread
d = mread
a = c*d
printf "T
print a

endif
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Example 13.2: Matrix input/output via text files

3
"a.csv"
"b.csv"

mnormal(n,n)
inv(a)

e(a, f1)

Failed to write %s\n", f1l

ite(b, f2)

Failed to write %s\n", f2

(fD
(f2)

he following matrix should be an identity matrix\n"

13.7 Matrix accessors

In addition to the matrix functions discussed above, various “accessor” strings allow you to
create copies of internal matrices associated with models previously estimated. These are set

out in Table

$coeff
$compan
$jalpha
$jbeta
$jvbeta
$rho
$sigma
$stderr
$uhat
$vev
$vma
$yhat

Many of the

13.4.

matrix of estimated coefficients

companion matrix (after VAR or VECM estimation)

matrix « (loadings) from Johansen’s procedure

matrix B (cointegration vectors) from Johansen’s procedure

covariance matrix for the unrestricted elements of S from Johansen’s procedure
autoregressive coefficients for error process

residual covariance matrix

matrix of estimated standard errors

matrix of residuals

covariance matrix of parameter estimates

VMA matrices in stacked form — see section 24.2 (after VAR or VECM estimation)
matrix of fitted values

Table 13.4: Matrix accessors for model data

accessors in Table 13.4 behave somewhat differently depending on the sort of

model that is referenced, as follows:

¢ Single-equation models: $sigma gets a scalar (the standard error of the regression); $coeff
and $stderr get column vectors; $uhat and $yhat get series.
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o System estimators: $sigma gets the cross-equation residual covariance matrix; $uhat and
$yhat get matrices with one column per equation. The format of $coeff and $stderr
depends on the nature of the system: for VARs and VECMs (where the matrix of regressors
is the same for all equations) these return matrices with one column per equation, but for
other system estimators they return a big column vector.

e VARs and VECMs: $vcv is not available, but X’ X! (where X is the common matrix of
regressors) is available as $xtxinv.

If the accessors are given without any prefix, they retrieve results from the last model estimated,
if any. Alternatively, they may be prefixed with the name of a saved model plus a period (.), in
which case they retrieve results from the specified model. Here are some examples:

matrix u = $uhat
matrix b = ml.$coeff
matrix v2 = ml.$vcv[1:2,1:2]

The first command grabs the residuals from the last model; the second grabs the coefficient vec-
tor from model m1; and the third (which uses the mechanism of sub-matrix selection described
above) grabs a portion of the covariance matrix from model m1.

If the model in question a VAR or VECM (only) $compan and $vma return the companion matrix
and the VMA matrices in stacked form, respectively (see section 24.2 for details). After a vector
error correction model is estimated via Johansen’s procedure, the matrices $jalpha and $jbeta
are also available. These have a number of columns equal to the chosen cointegration rank;
therefore, the product

matrix Pi = $jalpha * $jbeta’

returns the reduced-rank estimate of A(1). Since B is automatically identified via the Phillips
normalization (see section 25.5), its unrestricted elements do have a proper covariance matrix,
which can be retrieved through the $jvbeta accessor.

13.8 Namespace issues

Matrices share a common namespace with data series and scalar variables. In other words, no
two objects of any of these types can have the same name. It is an error to attempt to change
the type of an existing variable, for example:

scalar x = 3
matrix X ones(2,2) # wrong!

It is possible, however, to delete or rename an existing variable then reuse the name for a
variable of a different type:

scalar x = 3
delete x
matrix X = ones(2,2) # OK

13.9 Creating a data series from a matrix

Section 13.1 above describes how to create a matrix from a data series or set of series. You
may sometimes wish to go in the opposite direction, that is, to copy values from a matrix into
a regular data series. The syntax for this operation is

series sname = mspec

where sname is the name of the series to create and mspec is the name of the matrix to copy
from, possibly followed by a matrix selection expression. Here are two examples.
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series s = X
series ul = U[,1]

It is assumed that x and U are pre-existing matrices. In the second example the series ul is
formed from the first column of the matrix U.

For this operation to work, the matrix (or matrix selection) must be a vector with length equal
to either the full length of the current dataset, n, or the length of the current sample range,
n'. If n’ < n then only n’ elements are drawn from the matrix; if the matrix or selection
comprises n elements, the n’ values starting at element t; are used, where t; represents the
starting observation of the sample range. Any values in the series that are not assigned from

the matrix are set to the missing code.

13.10 Matrices and lists

To facilitate the manipulation of named lists of variables (see Chapter 12), it is possible to
convert between matrices and lists. In section 13.1 above we mentioned the facility for creating
a matrix from a list of variables, as in

matrix M = { Tistname }

That formulation, with the name of the list enclosed in braces, builds a matrix whose columns
hold the variables referenced in the list. What we are now describing is a different matter: if we
say

matrix M = listname

(without the braces), we get a row vector whose elements are the ID numbers of the variables in
the list. This special case of matrix generation cannot be embedded in a compound expression.
The syntax must be as shown above, namely simple assignment of a list to a matrix.

To go in the other direction, you can include a matrix on the right-hand side of an expression
that defines a list, as in

Tist X1 =M

where M is a matrix. The matrix must be suitable for conversion; that is, it must be a row or
column vector containing non-negative whole-number values, none of which exceeds the highest
ID number of a variable (series or scalar) in the current dataset.

Example 13.3 illustrates the use of this sort of conversion to “normalize” a list, moving the
constant (variable 0) to first position.

13.11 Deleting a matrix

To delete a matrix, just write
delete M

where M is the name of the matrix to be deleted.

13.12 Printing a matrix

To print a matrix, the easiest way is to give the name of the matrix in question on a line by
itself, which is equivalent to using the print command:

matrix M = mnormal(100,2)
M

print M
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Example 13.3: Manipulating a list

function void normalize_list (matrix *x)
# If the matrix (representing a list) contains var 0,
# but not in first position, move it to first position

if (x[1] !'= 0)
scalar k = cols(x)
Toop for (i=2; i<=k; i++) --quiet

if (x[i] = 0)
x[i] = x[1]
x[1] =0
break
endif
endloop

endif
end function

open data9-7

Tist X1 =230 4
matrix x = X]
normalize_1ist(&x)
Tist X1 = x

You can get finer control on the formatting of output by using the printf command, as illus-
trated in the interactive session below:

? matrix Id = I(2)
matrix Id = I(2)
Generated matrix Id
? print Id
print Id
Id (2 x 2)

1 0
0 1

? printf "%10.3f", Id
1.000 0.000
0.000 1.000

For presentation purposes you may wish to give titles to the columns of a matrix. For this
you can use the colnames function: the first argument is a matrix and the second is either a
named list of variables, whose names will be used as headings, or a string that contains as many
space-separated substrings as the matrix has columns. For example,

? matrix M = mnormal(3,3)
? colnames(M, "foo bar baz'")

? print M
M (3 x 3)
foo bar baz
1.7102 -0.76072 0.089406
-0.99780 -1.9003 -0.25123

-0.91762 -0.39237 -1.6114
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13.13 Example: OLS using matrices

Example 13.4 shows how matrix methods can be used to replicate gretl’s built-in OLS function-
ality.

Example 13.4: OLS via matrix methods

open data4-1

matrix X = { const, sqft }

matrix y = { price }

matrix b = invpd(X’X) * X’y

print "estimated coefficient vector"
b

matrix u =y - X*b

scalar SSR = u’u

scalar s2 = SSR / (rows(X) - rows(b))
matrix V = s2 * inv(X’X)

V

matrix se = sqrt(diag(V))

print "estimated standard errors"

se

# compare with built-in function

ols price const sqft --vcv
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Cheat sheet

This chapter explains how to perform some common — and some not so common — tasks
in gretl’s scripting language. Some but not all of the techniques listed here are also available
through the graphical interface. Although the graphical interface may be more intuitive and
less intimidating at first, we encourage users to take advantage of the power of gretl’s scripting
language as soon as they feel comfortable with the program.

14.1 Dataset handling
“Weird” periodicities

Problem: You have data sampled each 3 minutes from 9am onwards; you’ll probably want to
specify the hour as 20 periods.

Solution:
setobs 20 9:1 --special

Comment: Now functions like sdiff() (“seasonal” difference) or estimation methods like sea-
sonal ARIMA will work as expected.

Help, my data are backwards!

Problem: Gretl expects time series data to be in chronological order (most recent observation
last), but you have imported third-party data that are in reverse order (most recent first).

Solution:

setobs 1 1 --cross-section
genr sortkey = -obs
dataset sortby sortkey
setobs 1 1950 --time-series

Comment: The first line is required only if the data currently have a time series interpretation: it
removes that interpretation, because (for fairly obvious reasons) the dataset sortby operation
is not allowed for time series data. The following two lines reverse the data, using the negative
of the built-in index variable obs. The last line is just illustrative: it establishes the data as
annual time series, starting in 1950.

If you have a dataset that is mostly the right way round, but a particular variable is wrong, you
can reverse that variable as follows:

genr x = sortby(-obs, x)
Dropping missing observations selectively

Problem: You have a dataset with many variables and want to restrict the sample to those
observations for which there are no missing observations for the variables x1, x2 and x3.

103
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Solution:

Tist X = x1 x2 x3
smpl --no missing X

Comment: You can now save the file via a store command to preserve a subsampled version
of the dataset. Alternative solution based on the ok function, such as

Tist X = x1 x2 x3
genr sel = ok(X)
smpl sel --restrict

are perhaps less obvious, but more flexible. Pick your poison.

“By” operations

Problem: You have a discrete variable d and you want to run some commands (for example,
estimate a model) by splitting the sample according to the values of d.

Solution:

matrix vd = values(d)

m = rows(vd)

Toop i=1..m
scalar sel = vd[i]
smp1 (d=sel) --restrict --replace
ols y const x

endTloop

smp1 --full

Comment: The main ingredient here is a loop. You can have gretl perform as many instructions
as you want for each value of d, as long as they are allowed inside a loop. Note, however, that if
all you want is descriptive statistics, the summary command does have a --by option.

Adding a time series to a panel

Problem: You have a panel dataset (comprising observations of n indidivuals in each of T
periods) and you want to add a variable which is available in straight time-series form. For
example, you want to add annual CPI data to a panel in order to deflate nominal income figures.

In gretl a panel is represented in stacked time-series format, so in effect the task is to create
a new variable which holds n stacked copies of the original time series. Let’s say the panel
comprises 500 individuals observed in the years 1990, 1995 and 2000 (n = 500, T = 3), and we
have these CPI data in the ASCII file cpi . txt:

date cpi

1990 130.658
1995 152.383
2000 172.192

What we need is for the CPI variable in the panel to repeat these three values 500 times.

Solution: Simple! With the panel dataset open in gretl,
append cpi.txt

Comment: If the length of the time series is the same as the length of the time dimension in
the panel (3 in this example), gretl will perform the stacking automatically. Rather than using
the append command you could use the “Append data” item under the File menu in the GUI
program. For this to work, your main dataset must be recognized as a panel. This can be
arranged via the setobs command or the “Dataset structure” item under the Data menu.
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14.2 Creating/modifying variables

Generating a dummy variable for a specific observation
Problem: Generate d; = 0 for all observation but one, for which d; = 1.

Solution:
genr d = (t="1984:2")

Comment: The internal variable t is used to refer to observations in string form, so if you have a
cross-section sample you may justuse d = (t="123"); of course, if the dataset has data labels,
use the corresponding label. For example, if you open the dataset mrw.gdt, supplied with gretl
among the examples, a dummy variable for Italy could be generated via

genr DIta = (t="Italy")

Note that this method does not require scripting at all. In fact, you might as well use the GUI
Menu “Add/Define new variable” for the same purpose, with the same syntax.

Generating an ARMA(1,1)
Problem: Generate y; = 0.9y;_1 + & — 0.5&1, with & ~ NIID (0, 1).

Recommended solution:

alpha = 0.9
theta = -0.5
series y = filter(normal(), {1, theta}, alpha)

“Bread and butter” solution:

alpha = 0.9

theta = -0.5

series e = normal()

series y = 0

series y = alpha * y(-1) + e + theta * e(-1)

Comment: The fiTter function is specifically designed for this purpose so in most cases you’ll
want to take advantage of its speed and flexibility. That said, in some cases you may want to
generate the series in a manner which is more transparent (maybe for teaching purposes).

In the second solution, the statement series y = 0 is necessary because the next statement
evaluates y recursively, so y[1] must be set. Note that you must use the keyword series here
instead of writing genr y = 0 or simply y = 0, to ensure that y is a series and not a scalar.

Recoding a variable

Problem: You want to recode a variable by classes. For example, you have the age of a sample
of individuals (x;) and you need to compute age classes (y;) as

yvi=1 for x;<18

yi=2 for 18 <x; <65

vi=3 for x;=65

Solution:
series y =1 + (x >= 18) + (x >= 65)

Comment: True and false expressions are evaluated as 1 and O respectively, so they can be
manipulated algebraically as any other number. The same result could also be achieved by
using the conditional assignment operator (see below), but in most cases it would probably lead
to more convoluted constructs.
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Conditional assignment
Problem: Generate y; via the following rule:

X for di>a
e = zy for di<a

Solution:
series y = (d>a) ? x : z

Comment: There are several alternatives to the one presented above. One is a brute force
solution using loops. Another one, more efficient but still suboptimal, would be

series y = (d>a)*x + (d<=a)*z

However, the ternary conditional assignment operator is not only the most numerically efficient
way to accomplish what we want, it is also remarkably transparent to read when one gets used
to it. Some readers may find it helpful to note that the conditional assignment operator works
exactly the same way as the =IF() function in spreadsheets.

Generating a time index for panel datasets
Problem: Gretl has a $unit accessor, but not the equivalent for time. What should I use?

Solution:
series x = time

Comment: The special construct genr time and its variants are aware of whether a dataset is
a panel.

14.3 Neat tricks
Interaction dummies

Problem: You want to estimate the model v; = x;81 + z;B> + diB3 + (d; - Z;) B4 + &, where d; is
a dummy variable while x; and z; are vectors of explanatory variables.

Solution:

Tist X = x1 x2 x3

list Z = z1 z2

Tist dZ = null

loop foreach i Z
series d$i = d * $i
Tist dZ = dZ d$i

endloop

ols y X Z d dz

Comment: It's amazing what string substitution can do for you, isn’t it?

Realized volatility

Problem: Given data by the minute, you want to compute the “realized volatility” for the hour
as RV; = 61—0 Z(Tm:l yi.z:T. Imagine your sample starts at time 1:1.

Solution:
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smp1 --full

genr time

genr minute = int(time/60) + 1
genr second = time % 60

setobs minute second --panel
genr rv = psd(y)A2

setobs 1 1

smp1 second=1 --restrict

store foo rv

Comment: Here we trick gretl into thinking that our dataset is a panel dataset, where the
minutes are the “units” and the seconds are the “time”; this way, we can take advantage of
the special function psd(), panel standard deviation. Then we simply drop all observations
but one per minute and save the resulting data (store foo rv translates as “store in the gretl
datafile foo.gdt the series rv”).

Looping over two paired lists

Problem: Suppose you have two lists with the same number of elements, and you want to apply
some command to corresponding elements over a loop.

Solution:

Tist L1
Tist L2

abc
Xy z

kil =1
loop foreach i L1 --quiet
k2 =1
Toop foreach j L2 --quiet
if kl=k2
ols $i 0 $3
endif
k2++
endTloop
k1++
endloop

Comment: The simplest way to achieve the result is to loop over all possible combinations and
filter out the unneeded ones via an if condition, as above. That said, in some cases variable
names can help. For example, if

x1 x2 x3
yl y2 y3

Tist Lx
Tist Ly

looping over the integers is quite intuitive and certainly more elegant:

Toop i=1..3
ols y$i const x$i
endloop
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Chapter 15

Robust covariance matrix estimation

15.1 Introduction
Consider (once again) the linear regression model
y=XB+u (15.1)

where y and u are T-vectors, X is a T X k matrix of regressors, and S is a k-vector of parameters.
As is well known, the estimator of 8 given by Ordinary Least Squares (OLS) is

B=XX)"'Xy (15.2)

If the condition E(u|X) = 0 is satisfied, this is an unbiased estimator; under somewhat weaker
conditions the estimator is biased but consistent. It is straightforward to show that when the
OLS estimator is unbiased (that is, when E(S — B) = 0), its variance is

var(f) =E((B-B(B-P)) = (X'X) X' QX (X'X)"! (15.3)

where Q = E(uu’) is the covariance matrix of the error terms.

Under the assumption that the error terms are independently and identically distributed (iid)
we can write Q = 021, where o2 is the (common) variance of the errors (and the covariances are
zero). In that case (15.3) simplifies to the “classical” formula,

Var(B) = o2(X'X)! (15.4)

If the iid assumption is not satisfied, two things follow. First, it is possible in principle to
construct a more efficient estimator than OLS — for instance some sort of Feasible Generalized
Least Squares (FGLS). Second, the simple “classical” formula for the variance of the least squares
estimator is no longer correct, and hence the conventional OLS standard errors — which are
just the square roots of the diagonal elements of the matrix defined by (15.4) — do not provide
valid means of statistical inference.

In the recent history of econometrics there are broadly two approaches to the problem of non-
iid errors. The “traditional” approach is to use an FGLS estimator. For example, if the departure
from the iid condition takes the form of time-series dependence, and if one believes that this
could be modeled as a case of first-order autocorrelation, one might employ an AR(1) estimation
method such as Cochrane-Orcutt, Hildreth-Lu, or Prais-Winsten. If the problem is that the error
variance is non-constant across observations, one might estimate the variance as a function
of the independent variables and then perform weighted least squares, using as weights the
reciprocals of the estimated variances.

While these methods are still in use, an alternative approach has found increasing favor: that is,
use OLS but compute standard errors (or more generally, covariance matrices) that are robust
with respect to deviations from the iid assumption. This is typically combined with an emphasis
on using large datasets — large enough that the researcher can place some reliance on the
(asymptotic) consistency property of OLS. This approach has been enabled by the availability
of cheap computing power. The computation of robust standard errors and the handling of
very large datasets were daunting tasks at one time, but now they are unproblematic. The
other point favoring the newer methodology is that while FGLS offers an efficiency advantage
in principle, it often involves making additional statistical assumptions which may or may not
be justified, which may not be easy to test rigorously, and which may threaten the consistency
of the estimator — for example, the “common factor restriction” that is implied by traditional
FGLS “corrections” for autocorrelated errors.
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James Stock and Mark Watson’s Introduction to Econometrics illustrates this approach at the
level of undergraduate instruction: many of the datasets they use comprise thousands or
tens of thousands of observations; FGLS is downplayed; and robust standard errors are re-
ported as a matter of course. In fact, the discussion of the classical standard errors (labeled
“homoskedasticity-only”) is confined to an Appendix.

Against this background it may be useful to set out and discuss all the various options offered
by gretl in respect of robust covariance matrix estimation. The first point to notice is that gretl
produces “classical” standard errors by default (in all cases apart from GMM estimation). In
script mode you can get robust standard errors by appending the --robust flag to estima-
tion commands. In the GUI program the model specification dialog usually contains a “Robust
standard errors” check box, along with a “configure” button that is activated when the box is
checked. The configure button takes you to a configuration dialog (which can also be reached
from the main menu bar: Tools — Preferences — General — HCCME). There you can select from
a set of possible robust estimation variants, and can also choose to make robust estimation the
default.

The specifics of the available options depend on the nature of the data under consideration
— cross-sectional, time series or panel — and also to some extent the choice of estimator.
(Although we introduced robust standard errors in the context of OLS above, they may be used
in conjunction with other estimators too.) The following three sections of this chapter deal with
matters that are specific to the three sorts of data just mentioned. Note that additional details
regarding covariance matrix estimation in the context of GMM are given in chapter 20.

We close this introduction with a brief statement of what “robust standard errors” can and
cannot achieve. They can provide for asymptotically valid statistical inference in models that
are basically correctly specified, but in which the errors are not iid. The “asymptotic” part
means that they may be of little use in small samples. The “correct specification” part means
that they are not a magic bullet: if the error term is correlated with the regressors, so that the
parameter estimates themselves are biased and inconsistent, robust standard errors will not
save the day.

15.2 Cross-sectional data and the HCCME

With cross-sectional data, the most likely departure from iid errors is heteroskedasticity (non-
constant variance).! In some cases one may be able to arrive at a judgment regarding the likely
form of the heteroskedasticity, and hence to apply a specific correction. The more common
case, however, is where the heteroskedasticity is of unknown form. We seek an estimator of the
covariance matrix of the parameter estimates that retains its validity, at least asymptotically, in
face of unspecified heteroskedasticity. It is not obvious, a priori, that this should be possible,
but White (1980) showed that

Varp(B) = (X' X) X' QOX (X' X) ! (15.5)

does the trick. (As usual in statistics, we need to say “under certain conditions”, but the condi-
tions are not very restrictive.) ) is in this context a diagonal matrix, whose non-zero elements
may be estimated using squared OLS residuals. White referred to (15.5) as a heteroskedasticity-
consistent covariance matrix estimator (HCCME).

Davidson and MacKinnon (2004, chapter 5) offer a useful discussion of several variants on
White’s HCCME theme. They refer to the original variant of (15.5) — in which the diagonal ele-
ments of Q) are estimated directly by the squared OLS residuals, ﬁ? — as HCy. (The associated
standard errors are often called “White’s standard errors”.) The various refinements of White’s
proposal share a common point of departure, namely the idea that the squared OLS residu-
als are likely to be “too small” on average. This point is quite intuitive. The OLS parameter
estimates, f3, satisfy by design the criterion that the sum of squared residuals,

Sat=3 (v~ XB)

lIn some specialized contexts spatial autocorrelation may be an issue. Gretl does not have any built-in methods
to handle this and we will not discuss it here.
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is minimized for given X and y. Suppose that 3 #+ B. This is almost certain to be the case:
even if OLS is not biased, it would be a miracle if the B calculated from any finite sample
were exactly equal to B. But in that case the sum of squares of the true, unobserved errors,
Su? = (v — X¢B)? is bound to be greater than Y #12. The elaborated variants on HCy take

this point on board as follows:

e HC;: Applies a degrees-of-freedom correction, multiplying the HCy matrix by T/(T — k).

e HC,: Instead of using ﬁ% for the diagonal elements of ), uses 02/(1 — hy), where h; =
X¢ (X' X)~1X{, the t'h diagonal element of the projection matrix, P, which has the property
that P-y = . The relevance of h; is that if the variance of all the u; is o2, the expectation
of 7?2 is o2(1 — hy), or in other words, the ratio #?/(1 — h;) has expectation o2. As
Davidson and MacKinnon show, 0 < h; < 1 for all £, so this adjustment cannot reduce the
the diagonal elements of Q and in general revises them upward.

e HC3: Uses 6y /(1 — h:)2. The additional factor of (1 — h;) in the denominator, relative to
HC>, may be justified on the grounds that observations with large variances tend to exert
a lot of influence on the OLS estimates, so that the corresponding residuals tend to be
under-estimated. See Davidson and MacKinnon for a fuller explanation.

The relative merits of these variants have been explored by means of both simulations and the-
oretical analysis. Unfortunately there is not a clear consensus on which is “best”. Davidson and
MacKinnon argue that the original HCy is likely to perform worse than the others; nonetheless,
“White’s standard errors” are reported more often than the more sophisticated variants and
therefore, for reasons of comparability, HCg is the default HCCME in gretl.

If you wish to use HC;, HC, or HC3 you can arrange for this in either of two ways. In script
mode, you can do, for example,

set hc_version 2

In the GUI program you can go to the HCCME configuration dialog, as noted above, and choose
any of these variants to be the default.

15.3 Time series data and HAC covariance matrices

Heteroskedasticity may be an issue with time series data too, but it is unlikely to be the only, or
even the primary, concern.

One form of heteroskedasticity is common in macroeconomic time series, but is fairly easily
dealt with. That is, in the case of strongly trending series such as Gross Domestic Product, ag-
gregate consumption, aggregate investment, and so on, higher levels of the variable in question
are likely to be associated with higher variability in absolute terms. The obvious “fix”, employed
in many macroeconometric studies, is to use the logs of such series rather than the raw levels.
Provided the proportional variability of such series remains roughly constant over time, the log
transformation is effective.

Other forms of heteroskedasticity may resist the log transformation, but may demand a special
treatment distinct from the calculation of robust standard errors. We have in mind here autore-
gressive conditional heteroskedasticity, for example in the behavior of asset prices, where large
disturbances to the market may usher in periods of increased volatility. Such phenomena call
for specific estimation strategies, such as GARCH (see chapter 23).

Despite the points made above, some residual degree of heteroskedasticity may be present in
time series data: the key point is that in most cases it is likely to be combined with serial
correlation (autocorrelation), hence demanding a special treatment. In White’s approach, Q, the
estimated covariance matrix of the 1, remains conveniently diagonal: the variances, E (u? ), may
differ by t but the covariances, E(u:u;), are all zero. Autocorrelation in time series data means
that at least some of the the off-diagonal elements of Q) should be non-zero. This introduces a
substantial complication and requires another piece of terminology; estimates of the covariance
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matrix that are asymptotically valid in face of both heteroskedasticity and autocorrelation of
the error process are termed HAC (heteroskedasticity and autocorrelation consistent).

The issue of HAC estimation is treated in more technical terms in chapter 20. Here we try to
convey some of the intuition at a more basic level. We begin with a general comment: residual
autocorrelation is not so much a property of the data, as a symptom of an inadequate model.
Data may be persistent though time, and if we fit a model that does not take this aspect into
account properly, we end up with a model with autocorrelated disturbances. Conversely, it is
often possible to mitigate or even eliminate the problem of autocorrelation by including relevant
lagged variables in a time series model, or in other words, by specifying the dynamics of the
model more fully. HAC estimation should not be seen as the first resort in dealing with an
autocorrelated error process.

That said, the “obvious” extension of White’s HCCME to the case of autocorrelated errors would
seem to be this: estimate the off-diagonal elements of ) (that is, the autocovariances, E (u;us))
using, once again, the appropriate OLS residuals: ;s = Ti;lis. This is basically right, but
demands an important amendment. We seek a consistent estimator, one that converges towards
the true Q as the sample size tends towards infinity. This can’t work if we allow unbounded
serial dependence. Bigger samples will enable us to estimate more of the true wy; elements (that
is, for t and s more widely separated in time) but will not contribute ever-increasing information
regarding the maximally separated w;; pairs, since the maximal separation itself grows with the
sample size. To ensure consistency, we have to confine our attention to processes exhibiting
temporally limited dependence, or in other words cut off the computation of the @, values at
some maximum value of p = t — s (where p is treated as an increasing function of the sample
size, T, although it cannot increase in proportion to T).

The simplest variant of this idea is to truncate the computation at some finite lag order p, where
p grows as, say, T1/4. The trouble with this is that the resulting Q may not be a positive definite
matrix. In practical terms, we may end up with negative estimated variances. One solution to
this problem is offered by The Newey-West estimator (Newey and West, 1987), which assigns
declining weights to the sample autocovariances as the temporal separation increases.

To understand this point it is helpful to look more closely at the covariance matrix given in
(15.5), namely, X

X' X)L x'Ox) (X' x)7!
This is known as a “sandwich” estimator. The bread, which appears on both sides, is (X’'X)"!.

This is a k x k matrix, and is also the key ingredient in the computation of the classical covari-
ance matrix. The filling in the sandwich is

. ¢ 0) X
(kxk) (kxT) (TxT) (Txk)
Since Q = E(uu’), the matrix being estimated here can also be written as
S=EX'uuX)

which expresses 3. as the long-run covariance of the random k-vector X u.

From a computational point of view, it is not necessary or desirable to store the (potentially
very large) T x T matrix Q as such. Rather, one computes the sandwich filling by summation as

1
S =10+ Y w; (F() +17()
j=1
where the k x k sample autocovariance matrix I'(j), for j = 0, is given by
. 1 &
I'(j) = T Z Wty j X[ Xy j
t=j+1

and w; is the weight given to the autocovariance at lag j > 0.
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This leaves two questions. How exactly do we determine the maximum lag length or “band-
width”, p, of the HAC estimator? And how exactly are the weights w; to be determined? We
will return to the (difficult) question of the bandwidth shortly. As regards the weights, Gretl
offers three variants. The default is the Bartlett kernel, as used by Newey and West. This sets

w1 isp
’ 0 Jj>p

so the weights decline linearly as j increases. The other two options are the Parzen kernel and
the Quadratic Spectral (QS) kernel. For the Parzen kernel,

1-6a5+6a; 0<a;=<0.5
wj = 21-a;j)® 05<a;j=<1
0 aj>1

where a; = j/(p + 1), and for the QS kernel,

25 (sinmj

wi= — COSm;
T 12m2as \ omy J)

where d; = j/p and m;j = 611d;/5.
Figure 15.1 shows the weights generated by these kernels, for p =4 and j =1 to 9.

Figure 15.1: Three HAC kernels

VANV INVAY

Bartlett Parzen

In gretl you select the kernel using the set command with the hac_kernel parameter:

set hac_kernel parzen
set hac_kernel gs
set hac_kernel bartlett

Selecting the HAC bandwidth

The asymptotic theory developed by Newey, West and others tells us in general terms how the
HAC bandwidth, p, should grow with the sample size, T — that is, p should grow in proportion
to some fractional power of T. Unfortunately this is of little help to the applied econometrician,
working with a given dataset of fixed size. Various rules of thumb have been suggested, and
gretl implements two such. The defaultis p = 0.75T1/3, as recommended by Stock and Watson
(2003). An alternative is p = 4(T/100)?/?, as in Wooldridge (2002b). In each case one takes the
integer part of the result. These variants are labeled nwl and nw2 respectively, in the context of
the set command with the hac_lag parameter. That is, you can switch to the version given by
Wooldridge with

set hac_lag nw2

As shown in Table 15.1 the choice between nwl and nw2 does not make a great deal of difference.

You also have the option of specifying a fixed numerical value for p, as in

set hac_lag 6
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T p (nwl) p (nw2)

50 2 3
100 3 4
150 3 4
200 4 4
300 5 5
400 S5 5

Table 15.1: HAC bandwidth: two rules of thumb

In addition you can set a distinct bandwidth for use with the Quadratic Spectral kernel (since
this need not be an integer). For example,

set gqs_bandwidth 3.5

Prewhitening and data-based bandwidth selection

An alternative approach is to deal with residual autocorrelation by attacking the problem from
two sides. The intuition behind the technique known as VAR prewhitening (Andrews and Mon-
ahan, 1992) can be illustrated by a simple example. Let x; be a sequence of first-order autocor-
related random variables

Xt = pXt-1 + Ut

The long-run variance of x; can be shown to be

Vir(ue)
(1-p)2

In most cases, u; is likely to be less autocorrelated than x;, so a smaller bandwidth should
suffice. Estimation of Vg (x;) can therefore proceed in three steps: (1) estimate p; (2) obtain a
HAC estimate of 1i; = x; — px¢—1; and (3) divide the result by (1 — p)Z2.

Vir(xt) =

The application of the above concept to our problem implies estimating a finite-order Vector
Autoregression (VAR) on the vector variables & = X;1i;. In general, the VAR can be of any order,
but in most cases 1 is sufficient; the aim is not to build a watertight model for &, but just to
“mop up” a substantial part of the autocorrelation. Hence, the following VAR is estimated

E=A&1+&
Then an estimate of the matrix X' QX can be recovered via
(I-A)18.(1-A)!
where 3 is any HAC estimator, applied to the VAR residuals.
You can ask for prewhitening in gretl using

set hac_prewhiten on

There is at present no mechanism for specifying an order other than 1 for the initial VAR.

A further refinement is available in this context, namely data-based bandwidth selection. It
makes intuitive sense that the HAC bandwidth should not simply be based on the size of the
sample, but should somehow take into account the time-series properties of the data (and also
the kernel chosen). A nonparametric method for doing this was proposed by Newey and West
(1994); a good concise account of the method is given in Hall (2005). This option can be invoked
in gretl via

set hac_lag nw3
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This option is the default when prewhitening is selected, but you can override it by giving a
specific numerical value for hac_1lag.

Even the Newey-West data-based method does not fully pin down the bandwidth for any par-
ticular sample. The first step involves calculating a series of residual covariances. The length
of this series is given as a function of the sample size, but only up to a scalar multiple — for
example, it is given as O(T?/?) for the Bartlett kernel. Gretl uses an implied multiple of 1.

VARS: a special case

A well-specified vector autoregression (VAR) will generally include enough lags of the dependent
variables to obviate the problem of residual autocorrelation, in which case HAC estimation is
redundant — although there may still be a need to correct for heteroskedasticity. For that
reason plain HCCME, and not HAC, is the default when the --robust flag is given in the context
of the var command. However, if for some reason you need HAC you can force the issue by
giving the option --robust-hac.

15.4 Special issues with panel data

Since panel data have both a time-series and a cross-sectional dimension one might expect
that, in general, robust estimation of the covariance matrix would require handling both het-
eroskedasticity and autocorrelation (the HAC approach). In addition, some special features of
panel data require attention.

e The variance of the error term may differ across the cross-sectional units.
e The covariance of the errors across the units may be non-zero in each time period.

o If the “between” variation is not removed, the errors may exhibit autocorrelation, not in
the usual time-series sense but in the sense that the mean error for unit i may differ from
that of unit j. (This is particularly relevant when estimation is by pooled OLS.)

Gretl currently offers two robust covariance matrix estimators specifically for panel data. These
are available for models estimated via fixed effects, pooled OLS, and pooled two-stage least
squares. The default robust estimator is that suggested by Arellano (2003), which is HAC pro-
vided the panel is of the “large n, small T” variety (that is, many units are observed in relatively
few periods). The Arellano estimator is

Sa=(X'X)" (Z X/ a’xl) (x'x)!

where X is the matrix of regressors (with the group means subtracted, in the case of fixed
effects) 11; denotes the vector of residuals for unit i, and »n is the number of cross-sectional
units. Cameron and Trivedi (2005) make a strong case for using this estimator; they note that
the ordinary White HCCME can produce misleadingly small standard errors in the panel context
because it fails to take autocorrelation into account.

In cases where autocorrelation is not an issue, however, the estimator proposed by Beck and
Katz (1995) and discussed by Greene (2003, chapter 13) may be appropriate. This estimator,
which takes into account contemporaneous correlation across the units and heteroskedasticity
by unit, is

1

S

Spk = (X'X)7! (i i

The covariances &;; are estimated via

inle1> (X'X)~

where T is the length of the time series for each unit. Beck and Katz call the associated standard
errors “Panel-Corrected Standard Errors” (PCSE). This estimator can be invoked in gretl via the
command



Chapter 15. Robust covariance matrix estimation 116

set pcse on
The Arellano default can be re-established via
set pcse off

(Note that regardless of the pcse setting, the robust estimator is not used unless the --robust
flag is given, or the “Robust” box is checked in the GUI program.)
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Panel data

16.1 Estimation of panel models

Pooled Ordinary Least Squares

The simplest estimator for panel data is pooled OLS. In most cases this is unlikely to be ade-
quate, but it provides a baseline for comparison with more complex estimators.

If you estimate a model on panel data using OLS an additional test item becomes available. In
the GUI model window this is the item “panel diagnostics” under the Tests menu; the script
counterpart is the hausman command.

To take advantage of this test, you should specify a model without any dummy variables repre-
senting cross-sectional units. The test compares pooled OLS against the principal alternatives,
the fixed effects and random effects models. These alternatives are explained in the following
section.

The fixed and random effects models

In gretl version 1.6.0 and higher, the fixed and random effects models for panel data can be
estimated in their own right. In the graphical interface these options are found under the menu
item “Model/Panel/Fixed and random effects”. In the command-line interface one uses the
panel command, with or without the --random-effects option.

This section explains the nature of these models and comments on their estimation via gretl.

The pooled OLS specification may be written as
Vit = XieB + Uit (16.1)

where y;; is the observation on the dependent variable for cross-sectional unit i in period t, Xj;
is a 1 x k vector of independent variables observed for unit i in period ¢, 8 is a k x 1 vector of
parameters, and u;; is an error or disturbance term specific to unit i in period t.

The fixed and random effects models have in common that they decompose the unitary pooled
error term, ui;. For the fixed effects model we write uj; = o; + €z, yielding

Vit = XuB + & + €t (16.2)

That is, we decompose 1+ into a unit-specific and time-invariant component, «;, and an observation-
specific error, £;;.! The «;s are then treated as fixed parameters (in effect, unit-specific y-
intercepts), which are to be estimated. This can be done by including a dummy variable for
each cross-sectional unit (and suppressing the global constant). This is sometimes called the
Least Squares Dummy Variables (LSDV) method. Alternatively, one can subtract the group mean
from each of variables and estimate a model without a constant. In the latter case the dependent
variable may be written as

Vit = Yit — Vi
The “group mean”, y;, is defined as
T.
_ 1 <
Yi= T Z Yit

i1

1t is possible to break a third component out of u;;, namely w;, a shock that is time-specific but common to all
the units in a given period. In the interest of simplicity we do not pursue that option here.
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where T; is the number of observations for unit i. An exactly analogous formulation applies to
the independent variables. Given parameter estimates, 8, obtained using such de-meaned data
we can recover estimates of the ;s using

=

l (yit - XitB)
1

| —

& =

=

t

These two methods (LSDV, and using de-meaned data) are numerically equivalent. Gretl takes
the approach of de-meaning the data. If you have a small number of cross-sectional units, a
large number of time-series observations per unit, and a large number of regressors, it is more
economical in terms of computer memory to use LSDV. If need be you can easily implement this
manually. For example,

genr unitdum
ols y x du_¥*

(See Chapter 5 for details on unitdum).

The &; estimates are not printed as part of the standard model output in gretl (there may be a
large number of these, and typically they are not of much inherent interest). However you can
retrieve them after estimation of the fixed effects model if you wish. In the graphical interface,
g0 to the “Save” menu in the model window and select “per-unit constants”. In command-line
mode, you can do genr newname = $ahat, where newname is the name you want to give the
series.

For the random effects model we write u;; = v; + &;;, so the model becomes
Yit = XuB + Vi + &ir (16.3)

In contrast to the fixed effects model, the v;s are not treated as fixed parameters, but as random
drawings from a given probability distribution.

The celebrated Gauss-Markov theorem, according to which OLS is the best linear unbiased esti-
mator (BLUE), depends on the assumption that the error term is independently and identically
distributed (IID). In the panel context, the IID assumption means that E (uft), in relation to equa-
tion 16.1, equals a constant, o2, for all i and ¢, while the covariance E(u;su;) equals zero for
all s # t and the covariance E(u ;i u;) equals zero for all j # 1.

If these assumptions are not met — and they are unlikely to be met in the context of panel data
— OLS is not the most efficient estimator. Greater efficiency may be gained using generalized
least squares (GLS), taking into account the covariance structure of the error term.

Consider observations on a given unit i at two different times s and t. From the hypotheses
above it can be worked out that Var(uis) = Var(u;;) = 07 + 2, while the covariance between
u;s and uy is given by E(uisui) = o2.
In matrix notation, we may group all the T; observations for unit i into the vector y; and write
it as

yi=XiB+u; (16.4)
The vector u;, which includes all the disturbances for individual i, has a variance-covariance

matrix given by
Var(u;) =3; = O'EZI + 0'5J (16.5)

where J is a square matrix with all elements equal to 1. It can be shown that the matrix

2
where 6; =1 — ./ p fi-o&’ has the property

Ki3K! = oI
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It follows that the transformed system
Kiyi = KiXiB + Kiu; (16.6)

satisfies the Gauss-Markov conditions, and OLS estimation of (16.6) provides efficient inference.
But since
Kiyi =yi - 0iyi

GLS estimation is equivalent to OLS using “quasi-demeaned” variables; that is, variables from
which we subtract a fraction @ of their average.” Notice that for ¢? — 0, & — 1, while for
02 — 0, 0 — 0. This means that if all the variance is attributable to the individual effects, then
the fixed effects estimator is optimal; if, on the other hand, individual effects are negligible,
then pooled OLS turns out, unsurprisingly, to be the optimal estimator.

To implement the GLS approach we need to calculate 6, which in turn requires estimates of
the variances o7 and 0. (These are often referred to as the “within” and “between” variances
respectively, since the former refers to variation within each cross-sectional unit and the lat-
ter to variation between the units). Several means of estimating these magnitudes have been
suggested in the literature (see Baltagi, 1995); by default gretl uses the method of Swamy and
Arora (1972): o7 is estimated by the residual variance from the fixed effects model, and the
sum o7 + T;0? is estimated as T; times the residual variance from the “between” estimator,

yi=XiB+ei

The latter regression is implemented by constructing a data set consisting of the group means
of all the relevant variables. Alternatively, if the --nerTove option is given, gretl uses the
method suggested by Nerlove (1971). In this case o7 is estimated as the sample variance of the
fixed effects,

1 n
. <12
Ezmi;(o‘i_(x)

where n is the number of individuals and & is the mean of the fixed effects.

Choice of estimator
Which panel method should one use, fixed effects or random effects?

One way of answering this question is in relation to the nature of the data set. If the panel
comprises observations on a fixed and relatively small set of units of interest (say, the member
states of the European Union), there is a presumption in favor of fixed effects. If it comprises
observations on a large number of randomly selected individuals (as in many epidemiological
and other longitudinal studies), there is a presumption in favor of random effects.

Besides this general heuristic, however, various statistical issues must be taken into account.

1. Some panel data sets contain variables whose values are specific to the cross-sectional
unit but which do not vary over time. If you want to include such variables in the model,
the fixed effects option is simply not available. When the fixed effects approach is im-
plemented using dummy variables, the problem is that the time-invariant variables are
perfectly collinear with the per-unit dummies. When using the approach of subtracting
the group means, the issue is that after de-meaning these variables are nothing but zeros.

2. A somewhat analogous prohibition applies to the random effects estimator. This estimator
is in effect a matrix-weighted average of pooled OLS and the “between” estimator. Suppose
we have observations on n units or individuals and there are k independent variables of
interest. If k > n, the “between” estimator is undefined — since we have only n effective
observations — and hence so is the random effects estimator.

If one does not fall foul of one or other of the prohibitions mentioned above, the choice between
fixed effects and random effects may be expressed in terms of the two econometric desiderata,
efficiency and consistency.

2In a balanced panel, the value of 6 is common to all individuals, otherwise it differs depending on the value of T;.



Chapter 16. Panel data 120

From a purely statistical viewpoint, we could say that there is a tradeoff between robustness and
efficiency. In the fixed effects approach, we do not make any hypotheses on the “group effects”
(that is, the time-invariant differences in mean between the groups) beyond the fact that they
exist — and that can be tested; see below. As a consequence, once these effects are swept out
by taking deviations from the group means, the remaining parameters can be estimated.

On the other hand, the random effects approach attempts to model the group effects as draw-
ings from a probability distribution instead of removing them. This requires that individual
effects are representable as a legitimate part of the disturbance term, that is, zero-mean ran-
dom variables, uncorrelated with the regressors.

As a consequence, the fixed-effects estimator “always works”, but at the cost of not being able
to estimate the effect of time-invariant regressors. The richer hypothesis set of the random-
effects estimator ensures that parameters for time-invariant regressors can be estimated, and
that estimation of the parameters for time-varying regressors is carried out more efficiently.
These advantages, though, are tied to the validity of the additional hypotheses. If, for example,
there is reason to think that individual effects may be correlated with some of the explanatory
variables, then the random-effects estimator would be inconsistent, while fixed-effects estimates
would still be valid. It is precisely on this principle that the Hausman test is built (see below):
if the fixed- and random-effects estimates agree, to within the usual statistical margin of error,
there is no reason to think the additional hypotheses invalid, and as a consequence, no reason
not to use the more efficient RE estimator.

Testing panel models

If you estimate a fixed effects or random effects model in the graphical interface, you may notice
that the number of items available under the “Tests” menu in the model window is relatively
limited. Panel models carry certain complications that make it difficult to implement all of the
tests one expects to see for models estimated on straight time-series or cross-sectional data.

Nonetheless, various panel-specific tests are printed along with the parameter estimates as a
matter of course, as follows.

When you estimate a model using fixed effects, you automatically get an F-test for the null
hypothesis that the cross-sectional units all have a common intercept. That is to say that all
the «;s are equal, in which case the pooled model (16.1), with a column of 1s included in the X
matrix, is adequate.

When you estimate using random effects, the Breusch-Pagan and Hausman tests are presented
automatically.

The Breusch-Pagan test is the counterpart to the F-test mentioned above. The null hypothesis
is that the variance of v; in equation (16.3) equals zero; if this hypothesis is not rejected, then
again we conclude that the simple pooled model is adequate.

The Hausman test probes the consistency of the GLS estimates. The null hypothesis is that these
estimates are consistent — that is, that the requirement of orthogonality of the v; and the X;
is satisfied. The test is based on a measure, H, of the “distance” between the fixed-effects and
random-effects estimates, constructed such that under the null it follows the x? distribution
with degrees of freedom equal to the number of time-varying regressors in the matrix X. If the
value of H is “large” this suggests that the random effects estimator is not consistent and the
fixed-effects model is preferable.

There are two ways of calculating H, the matrix-difference method and the regression method.
The procedure for the matrix-difference method is this:

o Collect the fixed-effects estimates in a vector Bi and the corresponding random-effects
estimates in 3, then form the difference vector (8 — ).

 Form the covariance matrix of the difference vector as Var(B — [§’) = Var(B) — Var(ﬁ’) =Y,
where Var(f) and Var(f) are estimated by the sample variance matrices of the fixed- and
random-effects models respectively.3

3Hausman (1978) showed that the covariance of the difference takes this simple form when B is an efficient
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e Compute H = (B - B)l‘lf‘l (B - B)

Given the relative efficiencies of  and ﬁ, the matrix ¥ “should be” positive definite, in which
case H is positive, but in finite samples this is not guaranteed and of course a negative x2 value
is not admissible. The regression method avoids this potential problem. The procedure is:

e Treat the random-effects model as the restricted model, and record its sum of squared
residuals as SSR,..

e Estimate via OLS an unrestricted model in which the dependent variable is quasi-demeaned
y and the regressors include both quasi-demeaned X (as in the RE model) and the de-
meaned variants of all the time-varying variables (i.e. the fixed-effects regressors); record
the sum of squared residuals from this model as SSR,,.

e Compute H = n (SSR, — SSRy,) /SSR,,, where n is the total number of observations used.
On this variant H cannot be negative, since adding additional regressors to the RE model
cannot raise the SSR.

By default gretl computes the Hausman test via the regression method, but it uses the matrix-
difference method if you pass the option --matrix-diff to the panel command.

Robust standard errors

For most estimators, gretl offers the option of computing an estimate of the covariance matrix
that is robust with respect to heteroskedasticity and/or autocorrelation (and hence also robust
standard errors). In the case of panel data, robust covariance matrix estimators are available for
the pooled and fixed effects model but not currently for random effects. Please see section 15.4
for details.

16.2 Autoregressive panel models

Special problems arise when a lag of the dependent variable is included among the regressors
in a panel model. Consider a dynamic variant of the pooled model (16.1):

Yit = XitB + pYit-1 + Ui (16.7)

First, if the error u;; includes a group effect, v;, then y;;_; is bound to be correlated with the
error, since the value of v; affects y; at all t. That means that OLS applied to (16.7) will be
inconsistent as well as inefficient. The fixed-effects model sweeps out the group effects and so
overcomes this particular problem, but a subtler issue remains, which applies to both fixed and
random effects estimation. Consider the de-meaned representation of fixed effects, as applied
to the dynamic model, 3
Vit = XitB + pYir-1 + &t

where ¥y = yi — ¥; and & = uy — u; (or uy — «;, using the notation of equation 16.2).
The trouble is that y; ;-1 will be correlated with &;; via the group mean, y;. The disturbance
&+ influences y;; directly, which influences y;, which, by construction, affects the value of y;;
for all t. The same issue arises in relation to the quasi-demeaning used for random effects.
Estimators which ignore this correlation will be consistent only as T — oo (in which case the
marginal effect of €;; on the group mean of y tends to vanish).

One strategy for handling this problem, and producing consistent estimates of S and p, was
proposed by Anderson and Hsiao (1981). Instead of de-meaning the data, they suggest taking
the first difference of (16.7), an alternative tactic for sweeping out the group effects:

Ayit = AXit B+ pAYit-1 + Nit (16.8)

where ni; = Augy = A(v; + €it) = &ir — &t—1. We're not in the clear yet, given the structure of
the error n;;: the disturbance ¢;;—; is an influence on both n;s and Ay; -1 = Yit — ¥it-1.- The

estimator and p is inefficient.
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next step is then to find an instrument for the “contaminated” Ay;;-1. Anderson and Hsiao
suggest using either y;;_» or Ay;:_», both of which will be uncorrelated with n;; provided that
the underlying errors, &;;, are not themselves serially correlated.

The Anderson-Hsiao estimator is not provided as a built-in function in gretl, since gretl’s sensi-
ble handling of lags and differences for panel data makes it a simple application of regression
with instrumental variables — see Example 16.1, which is based on a study of country growth
rates by Nerlove (1999).4

Example 16.1: The Anderson-Hsiao estimator for a dynamic panel model

# Penn World Table data as used by Nerlove
open penngrow.gdt

# Fixed effects (for comparison)

panel Y 0 Y(-1) X

# Random effects (for comparison)

panel Y 0 Y(-1) X --random-effects

# take differences of all variables

diff Y X

# Anderson-Hsiao, using Y(-2) as instrument
tsls d_Y d_Y(-1) d_X ; 0 d_X Y(-2)

# Anderson-Hsiao, using d_Y(-2) as instrument
tsls d_Y d_Y(-1) d_X ; 0 d_X d_Y(-2)

Although the Anderson-Hsiao estimator is consistent, it is not most efficient: it does not make
the fullest use of the available instruments for Ay;;_;, nor does it take into account the dif-
ferenced structure of the error n;;. It is improved upon by the methods of Arellano and Bond
(1991) and Blundell and Bond (1998). These methods are taken up in the next chapter.

4Also see Clint Cummins’ benchmarks page, http://www.stanford.edu/~clint/bench/.
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Chapter 17

Dynamic panel models

As of gretl version 1.9.2, the primary command for estimating dynamic panel models is dpanel.
The closely related arbond command has been available for some time, and is still present, but
whereas arbond only supports the so-called “difference” estimator (Arellano and Bond, 1991),
dpanel is addition offers the “system” estimator (Blundell and Bond, 1998), which has become
the method of choice in the applied literature.

17.1 Introduction

Notation

A dynamic linear panel data model can be represented as follows (in notation based on Arellano
(2003)):
Yit = &Yit-1+ B Xit + Ni + Vit (17.1)

The main idea on which the difference estimator is based is to get rid of the individual effect
via differencing:1 first-differencing eq. (17.1) yields

Ayit = XAy -1 + B Axir + Avir = y' Wi + Avyg, (17.2)

in obvious notation. The error term of (17.2) is, by construction, autocorrelated and also corre-
lated with the lagged dependent variable, so an estimator that takes both issues into account is
needed. The endogeneity issue is solved by noting that all values of y;: k, with k > 1 can be
used as instruments for Ay;;_1: unobserved values of y;;_x (because they could be missing,
or pre-sample) can safely be substituted with 0. In the language of GMM, this amounts to using
the relation

E(Avit - Yig-k) =0, k>1 (17.3)

as an orthogonality condition.

Autocorrelation is dealt with by noting that, if v;; is a white noise, then the covariance matrix
of the vector whose typical element is Av;; is proportional to a matrix H that has 2 on the main
diagonal, —1 on the first subdiagonals and 0 elsewhere. In practice, one-step GMM estimation
of equation (17.2) amounts to computing

-1

y = (i w’izi) (% Z;HZi) h (% z;wi) X

i=1 i=1
N N -1 /N
x| > WiZi || X ZiHZ; (Z Z.Ay; (17.4)
i=1 i=1 i=1

L An alternative is “orthogonal deviations”: this is implemented in arbond, but not in dpanel, since it was a lot of
work and OD is very rarely seen in the wild.

123
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where

Ay; = [ Ayiz -+ Ayir ]

W, = [ Ayip -+ AyiTa

Axi,g e Axi,T
[ ya O 0 - 0  Axiz
0 ya i 0 Axi4

Z;, = .

0 0 0 - yire2 Axr

Once the 1-step estimator is computed, the sample covariance matrix of the estimated residuals
can be used instead of H to obtain 2-step estimates, which are not only consistent but asymp-
totically efficient.? Standard GMM theory applies, except for one thing: Windmeijer (2005)
has computed finite-sample corrections to the asymptotic covariance matrix of the parameters,
which are nowadays almost universally used.

The difference estimator is consistent, but has been shown to have poor properties in finite
samples when « is near one. People these days prefer the so-called “system” estimator, which
complements the differenced data (with lagged levels used as instruments) with data in levels
(using lagged differences as instruments). The system estimator relies on an extra orthogonality
condition which has to do with the earliest value of the dependent variable y; ;. The interested
reader is referred to Blundell and Bond (1998, pp. 124-125) for details, but here it suffices to
say that this condition is satisfied in mean-stationary models and brings about efficiency that
may be substantial in many cases.

The set of orthogonality conditions exploited in the system approach is not very much larger
than with the difference estimator, the reason being that most of the possible orthogonality
conditions associated with the equations in levels are redundant, given those already used for
the equations in differences.

The key equations of the system estimator can be written as

i=1 i=1 i=1
N N 1/N
X (Z W’Z) (Z Z’H*Z) (Z Z’Ai’/i) (17.5)
i=1 i=1 i=1
where
Ay = [ Ayiz -+ AYir Y3 0 ViT ]
~ [ Ayio o0 AyiTo1 Yie o YiT-1 ]
W, =
| Axiz -0 AxiT Xi3 0t XiT
[ yii 0 0 -+ 0 0o .- 0  Axis |
0 v Yie --- 0 o .- 0 A4
B 0 0 0 e YiT-2 0 <o 0 AXiT
Z; = )
0 0 0 0 AYio 0 Xi3
| O 0 o --- 0 0 o AyiTo1r Xir |

2In theory, the process may be iterated, but nobody seems to be interested.
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In this case choosing a precise form for the matrix H* for the first step is no trivial matter. Its
north-west block should be as similar as possible to the covariance matrix of the vector Avj;,
so the same choice as the “difference” estimator is appropriate. Ideally, the south-east block
should be proportional to the covariance matrix of the vector tn; + v, that is o2l + U,?u’; but
since a,? is unknown and any positive definite matrix renders the estimator consistent, people
just use I. The off-diagonal blocks should, in principle, contain the covariances between Avj;
and vj;, which would be an identity matrix if v;; is white noise. However, since the south-east
block is typically given a conventional value anyway, the benefit in making this choice is not
obvious. Some packages use I; others use a zero matrix. Asymptotically, it should not matter,
but on real datasets the difference between the resulting estimates can be noticeable.

Rank deficiency

Both the difference estimator (17.4) and the system estimator (17.5) depend, for their existence,
on the invertibility of A = >N, Z’/H*Z. This matrix may turn out to be singular for several
reasons. However, this does not mean that the estimator is not computable: in some cases,
adjustments are possible such that the estimator does exist, but the user must be aware that
in these cases not all software packages use the same strategy and replication of results may
prove difficult or even impossible.

A first reason why A may be singular could be the unavailability of instruments, chiefly because
of missing observations. This case is easy to handle. If a particular row of Z; is zero for
all units, the corresponding orthogonality condition (or the corresponding instrument if you
prefer) is automatically dropped; of course, the overidentification rank is adjusted for testing
purposes.

Even if no instruments are zero, however, A could be rank deficient. A trivial case occurs if
there are collinear instruments, but a less trivial case may arise when T (the total number of
time periods available) is not much smaller than N (the number of units), as, for example, in
some macro datasets where the units are countries. The total number of potentially usable
orthogonality conditions is O(T?), which may well exceed N in some cases. Of course A is the
sum of N matrices which have, at most, rank 2T — 3 and therefore it could well happen that A
is singular.

In all these cases, what we consider the “proper” way to go is to substitute the pseudo-inverse
of A (Moore-Penrose) for its regular inverse. Again, our choice is shared by some software
packages, but not all, so replication may be hard.

Treatment of missing values

Textbooks seldom bother with missing values, but in some cases their treatment may be far
from obvious. This is especially true if missing values are interspersed between valid observa-
tions. For example, consider the plain difference estimator with one lag, so

Y =O&Yt-1tN+e€

where the i index is omitted for clarity. Suppose you have an individual with ¢t = 1...5, for
which y3 is missing. It may seem that the data for this individual are unusable, because differ-
encing vy would produce something like

t |1 23 4 5
Ve |k x o k %
Ayt o %k o o %k

where * = nonmissing and o = missing. Estimation seems to be unfeasible, since there are no
periods in which Ay; and Ay;_; are both observable.

However, we can use a k-difference operator and get

Apye = A1 + A€
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where Ay = 1 — L¥ and past levels of y; are perfectly valid instruments. In this example, we can
choose k = 3 and use y; as an instrument, so this unit is in fact perfectly usable.

Not all software packages seem to be aware of this possibility, so replicating published results
may prove tricky if your dataset contains individuals with “gaps” between valid observations.

17.2 Usage

One of the concepts underlying the syntax of dpanel is that you get default values for several
choices you may want to make, so that in a “standard” situation the command itself is very
short to write (and read). The simplest case of the model (17.1) is a plain AR(1) process:

Vit = XYit-1+nNi+ Vig. (17.6)

If you give the command
dpanel 1 ; vy

gretl assumes that you want to estimate (17.6) via the difference estimator (17.4), using as many
orthogonality conditions as possible. The scalar 1 between dpanel and the semicolon indicates
that only one lag of y is included as an explanatory variable; using 2 would give an AR(2) model.
The syntax that gretl uses for the non-seasonal AR and MA lags in an ARMA model is also
supported in this context.? For example, if you want the first and third lags of y (but not the
second) included as explanatory variables you can say

dpanel {1 3} ; vy
or you can use a pre-defined matrix for this purpose:

matrix ylags = {1, 3}
dpanel ylags ; vy

To use a single lag of y other than the first you need to employ this mechanism:

dpanel {3} ; y # only lag 3 is included
dpanel 3 ; y  # compare: lags 1, 2 and 3 are used

To use the system estimator instead, you add the --system option, as in
dpanel 1 ; y --system

The level orthogonality conditions and the corresponding instrument are appended automati-
cally (see eq. 17.5).

Regressors

If we want to introduce additional regressors, we list them after the dependent variable in the
same way as other gret] commands, such as ols.

For the difference orthogonality relations, dpanel takes care of transforming the regressors
in parallel with the dependent variable. Note that this differs from gretl’s arbond command,
where only the dependent variable is differenced automatically; it brings us more in line with
other software.

One case of potential ambiguity is when an intercept is specified but the difference-only esti-
mator is selected, as in

dpanel 1 ; y const

3This represents an enhancement over the arbond command.
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In this case the default dpanel behavior, which agrees with Stata’s xtabond2, is to drop the
constant (since differencing reduces it to nothing but zeros). However, for compatibility with
the DPD package for Ox, you can give the option --dpdstyle, in which case the constant is
retained (equivalent to including a linear trend in equation 17.1). A similar point applies to
the period-specific dummy variables which can be added in dpanel via the --time-dummies
option: in the differences-only case these dummies are entered in differenced form by default,
but when the --dpdstyle switch is applied they are entered in levels.

The standard gretl syntax applies if you want to use lagged explanatory variables, so for
example the command

dpanel 1 ; y const x(0 to -1) --system

would result in estimation of the model

Vit = &Yit-1 + Bo + B1Xit + BaXi—1 + Ni + Vir.

Instruments

The default rules for instruments are:

e lags of the dependent variable are instrumented using all available orthogonality condi-
tions; and

e additional regressors are considered exogenous, so they are used as their own instru-
ments.

If a different policy is wanted, the instruments should be specified in an additional list, sep-
arated from the regressors list by a semicolon. The syntax closely mirrors that for the tsls
command, but in this context it is necessary to distinguish between “regular” instruments and
what are often called “GMM-style” instruments (that, instruments that are handled in the same
block-diagonal manner as lags of the dependent variable, as described above).

“Regular” instruments are transformed in the same way as regressors, and the contempora-
neous value of the transformed variable is used to form an orthogonality condition. Since
regressors are treated as exogenous by default, it follows that these two commands estimate
the same model:

dpanel 1 ; y z
dpanel 1 ; yz ; z

The instrument specification in the second case simply confirms what is implicit in the first:
that z is exogenous. Note, though, that if you have some additional variable z2 which you want
to add as a regular instrument, it then becomes necessary to include z in the instrument list if
it is to be treated as exogenous:

dpanel 1 ; y z ; z2 # z is now implicitly endogenous
dpanel 1 ; y z ; z z2 # z is treated as exogenous

The specification of “GMM-style” instruments is handled by the special constructs GMM() and
GMMTevel (). The first of these relates to instruments for the equations in differences, and the
second to the equations in levels. The syntax for GMM() is

GMM(varname, minlag, maxlag)

where varname is replaced by the name of a series, and minlag and maxlag are replaced by the
minimum and maximum lags to be used as instruments. The same goes for GMM1evel ().

One common use of GMM() is to limit the number of lagged levels of the dependent variable
used as instruments for the equations in differences. It’s well known that although exploiting all
possible orthogonality conditions yields maximal asymptotic efficiency, in finite samples it may
be preferable to use a smaller subset (but see also Okui (2009)). For example, the specification
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dpanel 1 ; y ; GMM(y, 2, 4)

ensures that no lags of y; earlier than t — 4 will be used as instruments.

A second use of GMM() is to exploit more fully the potential block-diagonal orthogonality condi-
tions offered by an exogenous regressor, or a related variable that does not appear as a regres-
sor. For example, in

dpanel 1 ; y x ; GMM(z, 2, 6)

the variable x is considered an endogenous regressor, and up to 5 lags of z are used as instru-
ments.

Note that in the following script fragment

dz = diff(2)
dpanel 1 ; y dz
dpanel 1 ; y dz ; GMM(z,0,0)

the two estimation commands should not be expected to give the same result, as the sets of
orthogonality relationships are subtly different. In the latter case, you have T — 2 separate
orthogonality relationships pertaining to z;;, none of which has any implication for the other
ones; in the former case, you only have one. In terms of the Z; matrix, the first form adds
a single row to the bottom of the instruments matrix, while the second form adds a diagonal
block with T — 2 columns, that is

[ Aziz Azig -+ Azy ]
versus
Azi3 0 e 0
0 Azigy - 0
0 0 - AZi

17.3 Replication of DPD results

In this section we show how to replicate the results of some of the pioneering work with dy-
namic panel-data estimators by Arellano, Bond and Blundell. As the DPD manual (Doornik,
Arellano and Bond, 2006) explains, it is difficult to replicate the original published results ex-
actly, for two main reasons: not all of the data used in those studies are publicly available; and
some of the choices made in the original software implementation of the estimators have been
superseded. Here, therefore, our focus is on replicating the results obtained using the current
DPD package and reported in the DPD manual.

The examples are based on the program files abestl.ox, abest3.ox and bbestl.ox. These
are included in the DPD package, along with the Arellano-Bond database files abdata.bn7 and
abdata.in7.# The Arellano-Bond data are also provided with gretl, in the file abdata.gdt. In
the following we do not show the output from DPD or gretl; it is somewhat voluminous, and is
easily generated by the user. As of this writing the results from Ox/DPD and gretl are identical
in all relevant respects for all of the examples shown.>

A complete Ox/DPD program to generate the results of interest takes this general form:

#include <oxstd.h>
#import <packages/dpd/dpd>

4See http://www.doornik.com/downTload.htm1.
5To be specific, this is using Ox Console version 5.10, version 1.24 of the DPD package, and gretl built from CVS
as of 2010-10-23, all on Linux.
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main()
{
decl dpd = new DPDQ);

dpd.Load("abdata.in7");
dpd.SetYear("YEAR");

// model-specific code here

delete dpd;

In the examples below we take this template for granted and show just the model-specific code.

Example 1

The following Ox/DPD code —drawn from abestl.ox—replicates column (b) of Table 4 in Arel-
lano and Bond (1991), an instance of the differences-only or GMM-DIF estimator. The dependent
variable is the log of employment, n; the regressors include two lags of the dependent variable,
current and lagged values of the log real-product wage, w, the current value of the log of gross
capital, k, and current and lagged values of the log of industry output, ys. In addition the
specification includes a constant and five year dummies; unlike the stochastic regressors, these
deterministic terms are not differenced. In this specification the regressors w, k and ys are
treated as exogenous and serve as their own instruments. In DPD syntax this requires entering
these variables twice, on the X_VAR and I_VAR lines. The GMM-type (block-diagonal) instru-
ments in this example are the second and subsequent lags of the level of n. Both 1-step and
2-step estimates are computed.

dpd.SetOptions(FALSE); // don’t use robust standard errors
dpd.Select(Y_VAR, {"n", 0, 2});

dpd.Select(X_VAR, {"w", O, 1, "k", 0, 0, "ys", 0, 1});
dpd.Select(I_VAR, {"w", O, 1, "k", 0, 0, "ys", 0, 1});

dpd.Gmm("n", 2, 99);
dpd.SetDummies (D_CONSTANT + D_TIME);

print("\n\n***** Arellano & Bond (1991), Table 4 (b)");
dpd.SetMethod (M_1STEP) ;

dpd.Estimate();

dpd.SetMethod (M_2STEP) ;

dpd.Estimate();

Here is gretl code to do the same job:

open abdata.gdt

Tist X = w w(-1) k ys ys(-1)

dpanel 2 ; n X const --time-dummies --asy --dpdstyle

dpanel 2 ; n X const --time-dummies --asy --two-step --dpdstyle

Note that in gretl the switch to suppress robust standard errors is --asymptotic, here abbre-
viated to --asy.® The --dpdstyTle flag specifies that the constant and dummies should not
be differenced, in the context of a GMM-DIF model. With gretl’s dpanel command it is not
necessary to specify the exogenous regressors as their own instruments since this is the de-
fault; similarly, the use of the second and all longer lags of the dependent variable as GMM-type
instruments is the default and need not be stated explicitly.

60ption flags in gretl can always be truncated, down to the minimal unique abbreviation.
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Example 2

The DPD file abest3.ox contains a variant of the above that differs with regard to the choice
of instruments: the variables w and k are now treated as predetermined, and are instrumented
GMM-style using the second and third lags of their levels. This approximates column (c) of
Table 4 in Arellano and Bond (1991). We have modified the code in abest3.ox slightly to allow
the use of robust (Windmeijer-corrected) standard errors, which are the default in both DPD
and gretl with 2-step estimation:

dpd.Select(Y_VAR, {"n", 0, 2});

dpd.Select (X_VAR, {"w", O, 1, "k", 0, 0, "ys", 0, 1});
dpd.Select(I_VAR, {"ys", 0, 1});

dpd.SetDummies (D_CONSTANT + D_TIME);

dpd.Gmm("n", 2, 99);
dpd.Gmm("w", 2, 3);
dpd.Gmm("k", 2, 3);

print("\n***** Arellano & Bond (1991), Table 4 (c)\n'");
print(" (but using different instruments!!)\n");
dpd.SetMethod (M_2STEP) ;

dpd.Estimate();

The gretl code is as follows:

open abdata.gdt

Tist X = w w(-1) k ys ys(-1)

Tist Ivars = ys ys(-1)

dpanel 2 ; n X const ; GMM(w,2,3) GMM(k,2,3) Ivars --time --two-step --dpd

Note that since we are now calling for an instrument set other then the default (following
the second semicolon), it is necessary to include the Ivars specification for the variable ys.
However, it is not necessary to specify GMM(n, 2,99) since this remains the default treatment
of the dependent variable.

Example 3

Our third example replicates the DPD output from bbestl.ox: this uses the same dataset as
the previous examples but the model specifications are based on Blundell and Bond (1998), and
involve comparison of the GMM-DIF and GMM-SYS (“system”) estimators. The basic specification
is slightly simplified in that the variable ys is not used and only one lag of the dependent
variable appears as a regressor. The Ox/DPD code is:

dpd.Select(Y_VAR, {"n", 0, 1});
dpd.Select(X_VAR, {"w", 0, 1, "k", 0, 1});
dpd.SetDummies (D_CONSTANT + D_TIME);

print("\n\n****%* Blundell & Bond (1998), Table 4: 1976-86 GMM-DIF");
dpd.Gmm("n", 2, 99);

dpd.Gmm("w", 2, 99);

dpd.Gmm("k", 2, 99);

dpd.SetMethod (M_2STEP) ;

dpd.Estimate();

print("\n\n***** Blundell & Bond (1998), Table 4: 1976-86 GMM-SYS");
dpd.GmmLevel ("n", 1, 1);

dpd.GmmLevel("w", 1, 1);

dpd.GmmLevel("k", 1, 1);

dpd.SetMethod (M_2STEP) ;

dpd.Estimate();
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Here is the corresponding gretl code:

open abdata.gdt
Tist X = w w(-1) k k(-1

# Blundell & Bond (1998), Table 4: 1976-86 GMM-DIF
dpanel 1 ; n X const ; GMM(w,2,99) GMM(k,2,99) --time --two-step --dpd

# Blundell & Bond (1998), Table 4: 1976-86 GMM-SYS
dpanel 1 ; n X const ; GMM(w,2,99) GMM(k,2,99) \
GMM1evel(w,1,1) GMMTevel(k,1,1) --time --two-step --dpd --system

Note the use of the --system option flag to specify GMM-SYS, including the default treatment
of the dependent variable, which corresponds to GMMlevel(n,1,1). In this case we also want
to use lagged differences of the regressors w and k as instruments for the levels equations so
we need explicit GMM1evel entries for those variables. If you want something other than the
default treatment for the dependent variable as an instrument for the levels equations, you
should give an explicit GMM1eve1 specification for that variable—and in that case the --system
flag is redundant (but harmless).

For the sake of completeness, note that if you specify at least one GMMlevel term, dpanel will
then include equations in levels, but it will not automatically add a default GMM1evel specifica-
tion for the dependent variable unless the --system option is given.

17.4 Cross-country growth example

The previous examples all used the Arellano-Bond dataset; for this example we use the dataset
CEL . gdt, which is also included in the gretl distribution. As with the Arellano-Bond data, there
are numerous missing values. Details of the provenance of the data can be found by opening the
dataset information window in the gretl GUI (Data menu, Dataset info item). This is a subset of
the Barro-Lee 138-country panel dataset, an approximation to which is used in Caselli, Esquivel
and Lefort (1996) and Bond, Hoeffler and Temple (2001).” Both of these papers explore the
dynamic panel-data approach in relation to the issues of growth and convergence of per capita
income across countries.

The dependent variable is growth in real GDP per capita over successive five-year periods; the
regressors are the log of the initial (five years prior) value of GDP per capita, the log-ratio of
investment to GDP, s, in the prior five years, and the log of annual average population growth,
n, over the prior five years plus 0.05 as stand-in for the rate of technical progress, g, plus the
rate of depreciation, 6 (with the last two terms assumed to be constant across both countries
and periods). The original model is

AsYit = BYir-s + aSig +y(Mig + g+ 6) + ve + Ni + € (17.7)

which allows for a time-specific disturbance v;. The Solow model with Cobb-Douglas produc-
tion function implies that y = —«, but this assumption is not imposed in estimation. The
time-specific disturbance is eliminated by subtracting the period mean from each of the series.

Equation (17.7) can be transformed to an AR(1) dynamic panel-data model by adding y; ;5 to
both sides, which gives
Yie =1+ B)Yit-s+ &Sy +y(ny +g +06) +ni + € (17.8)

where all variables are now assumed to be time-demeaned.

In (rough) replication of Bond et al. (2001) we now proceed to estimate the following two models:
(a) equation (17.8) via GMM-DIF, using as instruments the second and all longer lags of yj;, si;
and n; + g + 6; and (b) equation (17.8) via GMM-SYS, using Ay, ¢—1, Asi -1 and A(nji-1+ g+ 9d)

"We say an “approximation” because we have not been able to replicate exactly the OLS results reported in the
papers cited, though it seems from the description of the data in Caselli et al. (1996) that we ought to be able to
do so. We note that Bond et al. (2001) used data provided by Professor Caselli yet did not manage to reproduce the
latter’s results.
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as additional instruments in the levels equations. We report robust standard errors throughout.
(As a purely notational matter, we now use “t — 1” to refer to values five years prior to ¢, as in
Bond et al. (2001)).

The gretl script to do this job is shown below. Note that the final transformed versions of the
variables (logs, with time-means subtracted) are named 1y (y;;), 1inv (sit) and Tngd (n;; + g + 9).

open CEL.gdt

ngd = n + 0.05

ly = log(y)
Tinv = log(s)
Tngd = log(ngd)

# take out time means
Toop i=1..8 --quiet

smpl (time == i) --restrict --replace
Ty -= mean(ly)
Tinv -= mean(linv)
Tngd -= mean(lngd)
endloop
smp1 --full

Tist X = 1linv 1ngd

# 1l-step GMM-DIF

dpanel 1 ; 1y X ; GMM(1linv,2,99) GMM(Ingd,2,99)

# 2-step GMM-DIF

dpanel 1 ; 1y X ; GMM(Tinv,2,99) GMM(Ingd,2,99) --two-step
# GMM-SYS

dpanel 1 ; 1y X ; GMM(1linv,2,99) GMM(Tngd,2,99) \
GMMTevel(Tinv,1,1) GMMlevel(lngd,1,1) --two-step --sys

For comparison we estimated the same two models using Ox/DPD and the Stata command
xtabond2. (In each case we constructed a comma-separated values dataset containing the data
as transformed in the gretl script shown above, using a missing-value code appropriate to the
target program.) For reference, the commands used with Stata are reproduced below:

insheet using CEL.csv

tsset unit time

xtabond2 1y L.1ly Tlinv Tngd, gmm(L.ly, Tag(1l 99)) gmm(linv, Tag(2 99))
gmm(Ingd, Tag(2 99)) rob nolev

xtabond2 1y L.Ty Tinv Ingd, gmm(L.ly, Tlag(l 99)) gmm(linv, Tag(2 99))
gnm(1Ingd, Tag(2 99)) rob nolev twostep

xtabond2 1y L.T1y Tinv Tngd, gmm(L.ly, Tag(l 99)) gmm(linv, Tag(2 99))
gnm(1Ingd, Tlag(2 99)) rob nocons twostep

For the GMM-DIF model all three programs find 382 usable observations and 30 instruments,
and yield identical parameter estimates and robust standard errors (up to the number of digits
printed, or more); see Table 17.1.8

Results for GMM-SYS estimation are shown in Table 17.2. In this case we show two sets of gretl
results: those labeled “gretl(1)” were obtained using gretl’s --dpdstyle option, while those
labeled “gretl(2)” did not use that option—the intent being to reproduce the H matrices used
by Ox/DPD and xtabond2 respectively.

In this case all three programs use 479 observations; gretl and xtabond2 use 41 instruments
and produce the same estimates (when using the same H matrix) while Ox/DPD nominally
uses 66.7 It is noteworthy that with GMM-SYS plus “messy” missing observations, the results

8The coefficient shown for 1y(-1) in the Tables is that reported directly by the software; for comparability with
the original model (eq. 17.7) it is necesary to subtract 1, which produces the expected negative value indicating
conditional convergence in per capita income.

9This is a case of the issue described in section 17.1: the full A matrix turns out to be singular and special
measures must be taken to produce estimates.
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1-step 2-step
coeff std. error coeff std. error
Ty(-1) 0.577564 0.1292 0.610056 0.1562
Tinv 0.0565469  0.07082 0.100952 0.07772
Tngd —0.143950 0.2753 —-0.310041 0.2980

Table 17.1: GMM-DIF: Barro-Lee data

gretl(1) Ox/DPD gretl(2) Xtabond?2
Ty(-1D) 0.9237 (0.0385) 0.9167 (0.0373) 0.9073 (0.0370) 0.9073 (0.0370)
Tinv 0.1592 (0.0449) 0.1636 (0.0441) 0.1856 (0.0411) 0.1856 (0.0411)
Tngd —0.2370(0.1485) —0.2178 (0.1433) —0.2355(0.1501) —0.2355 (0.1501)

Table 17.2: 2-step GMM-SYS: Barro-Lee data (standard errors in parentheses)

depend on the precise array of instruments used, which in turn depends on the details of the
implementation of the estimator.

Auxiliary test statistics

We have concentrated above on the parameter estimates and standard errors. It may be worth
adding a few words on the additional test statistics that typically accompany both GMM-DIF and
GMM-SYS estimation. These include the Sargan test for overidentification, one or more Wald
tests for the joint significance of the regressors, and time dummies if applicable, and tests for
first- and second-order autocorrelation of the residuals from the equations in differences.

In general we see a good level of agreement between gretl, DPD and xtabond2 with regard to
these statistics, with a few relatively minor exceptions. Specifically, xtabond2 computes both
a “Sargan test” and a “Hansen test” for overidentification, but what it calls the Hansen test is
what DPD and gretl call the Sargan test. (We have had difficulty determining from the xtabond?2
documentation (Roodman, 2006) exactly how its Sargan test is computed.) In addition there
are cases where the degrees of freedom for the Sargan test differ between DPD and gretl; this
occurs when the A matrix is singular (section 17.1). In concept the df equals the number of
instruments minus the number of parameters estimated; for the first of these terms gretl uses
the rank of A, while DPD appears to use the full dimension of A.

17.5 Memo: dpanel options

flag effect

--asymptotic Suppresses the use of robust standard errors

--two-step Calls for 2-step estimation (the default being 1-step)

--system Calls for GMM-SYS, with default treatment of the dependent vari-

able, as in GMM1evel(y,1,1)
--time-dummies Includes period-specific dummy variables

--dpdstyle Compute the H matrix as in DPD; also suppresses differencing of
automatic time dummies and omission of intercept in the GMM-DIF
case

--verbose When --two-step is selected, prints the 1-step estimates first

--vcVv Calls for printing of the covariance matrix

--quiet Suppresses the printing of results
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Nonlinear least squares

18.1 Introduction and examples

Gretl supports nonlinear least squares (NLS) using a variant of the Levenberg-Marquardt algo-
rithm. The user must supply a specification of the regression function; prior to giving this
specification the parameters to be estimated must be “declared” and given initial values. Op-
tionally, the user may supply analytical derivatives of the regression function with respect to
each of the parameters. If derivatives are not given, the user must instead give a list of the pa-
rameters to be estimated (separated by spaces or commas), preceded by the keyword params.
The tolerance (criterion for terminating the iterative estimation procedure) can be adjusted us-
ing the set command.

The syntax for specifying the function to be estimated is the same as for the genr command.
Here are two examples, with accompanying derivatives.

# Consumption function from Greene
nls C = alpha + beta * YAgamma

deriv alpha = 1

deriv beta = YAgamma

deriv gamma = beta * YAgamma * log(Y)
end nls

# Nonlinear function from Russell Davidson
nls y = alpha + beta * x1 + (1/beta) * x2
deriv alpha =1
deriv beta = x1 - x2/(beta*beta)
end nls --vcv

Note the command words nTs (which introduces the regression function), deriv (which intro-
duces the specification of a derivative), and end nls, which terminates the specification and
calls for estimation. If the --vcv flag is appended to the last line the covariance matrix of the
parameter estimates is printed.

18.2 Initializing the parameters

The parameters of the regression function must be given initial values prior to the nls com-
mand. This can be done using the genr command (or, in the GUI program, via the menu item
“Variable, Define new variable”).

In some cases, where the nonlinear function is a generalization of (or a restricted form of) a
linear model, it may be convenient to run an ols and initialize the parameters from the OLS
coefficient estimates. In relation to the first example above, one might do:

ols COY

genr alpha = $coeff(0)
genr beta = $coeff(Y)
genr gamma = 1

And in relation to the second example one might do:
ols y 0 x1 x2

genr alpha = $coeff(0)
genr beta = $coeff(x1)

134
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18.3 NLS dialog window

It is probably most convenient to compose the commands for NLS estimation in the form of a
gretl script but you can also do so interactively, by selecting the item “Nonlinear Least Squares”
under the “Model, Nonlinear models” menu. This opens a dialog box where you can type the
function specification (possibly prefaced by genr lines to set the initial parameter values) and
the derivatives, if available. An example of this is shown in Figure 18.1. Note that in this context
you do not have to supply the n1s and end nls tags.

NLS: Specify function, and derivatives if possible:
[Please refer to Help for guidance)

genr alpha = 1@

genr beta = .5

genr gamma = 1

C = alpha + beta * Y*gamma

deriv alpha = 1

deriv beta = Y*gamma

deriv gamma = beta * Y*gamma * log(Y)

Show details of iterations

Robust standard errors

| @ﬂek’ | ‘ &glear

|Ogance| | [ (ﬂgK ]

Figure 18.1: NLS dialog box

18.4 Analytical and numerical derivatives

If you are able to figure out the derivatives of the regression function with respect to the para-
meters, it is advisable to supply those derivatives as shown in the examples above. If that is not
possible, gretl will compute approximate numerical derivatives. However, the properties of the
NLS algorithm may not be so good in this case (see section 18.7).

This is done by using the params statement, which should be followed by a list of identifiers
containing the parameters to be estimated. In this case, the examples above would read as
follows:

# Greene

nls C = alpha + beta * YAgamma
params alpha beta gamma

end nls

# Davidson

nls y = alpha + beta * x1 + (1/beta) * x2
params alpha beta

end nls

If analytical derivatives are supplied, they are checked for consistency with the given nonlinear
function. If the derivatives are clearly incorrect estimation is aborted with an error message.
If the derivatives are “suspicious” a warning message is issued but estimation proceeds. This
warning may sometimes be triggered by incorrect derivatives, but it may also be triggered by a
high degree of collinearity among the derivatives.

Note that you cannot mix analytical and numerical derivatives: you should supply expressions
for all of the derivatives or none.
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18.5 Controlling termination

The NLS estimation procedure is an iterative process. Iteration is terminated when the criterion
for convergence is met or when the maximum number of iterations is reached, whichever comes
first.

Let k denote the number of parameters being estimated. The maximum number of iterations is
100 x (k + 1) when analytical derivatives are given, and 200 x (k + 1) when numerical derivatives
are used.

Let € denote a small number. The iteration is deemed to have converged if at least one of the
following conditions is satisfied:

e Both the actual and predicted relative reductions in the error sum of squares are at most
€.

o The relative error between two consecutive iterates is at most €.

This default value of € is the machine precision to the power 3/4,' but it can be adjusted using
the set command with the parameter n1s_toler. For example

set nls_toler .0001

will relax the value of € to 0.0001.

18.6 Details on the code

The underlying engine for NLS estimation is based on the minpack suite of functions, available
from netlib.org. Specifically, the following minpack functions are called:

Tmder  Levenberg-Marquardt algorithm with analytical derivatives

chkder Check the supplied analytical derivatives

Tmdif  Levenberg-Marquardt algorithm with numerical derivatives

fdjac2 Compute final approximate Jacobian when using numerical derivatives
dpmpar Determine the machine precision

On successful completion of the Levenberg-Marquardt iteration, a Gauss-Newton regression
is used to calculate the covariance matrix for the parameter estimates. If the --robust flag
is given a robust variant is computed. The documentation for the set command explains the
specific options available in this regard.

Since NLS results are asymptotic, there is room for debate over whether or not a correction for
degrees of freedom should be applied when calculating the standard error of the regression
(and the standard errors of the parameter estimates). For comparability with OLS, and in light
of the reasoning given in Davidson and MacKinnon (1993), the estimates shown in gretl do use
a degrees of freedom correction.

18.7 Numerical accuracy

Table 18.1 shows the results of running the gretl NLS procedure on the 27 Statistical Reference
Datasets made available by the U.S. National Institute of Standards and Technology (NIST) for
testing nonlinear regression software.? For each dataset, two sets of starting values for the
parameters are given in the test files, so the full test comprises 54 runs. Two full tests were
performed, one using all analytical derivatives and one using all numerical approximations. In
each case the default tolerance was used.?

10n a 32-bit Intel Pentium machine a likely value for this parameter is 1.82 x 10712,

2For a discussion of gretl’s accuracy in the estimation of linear models, see Appendix D.

3The data shown in the table were gathered from a pre-release build of gretl version 1.0.9, compiled with gcc 3.3,
linked against glibc 2.3.2, and run under Linux on an i686 PC (IBM ThinkPad A21m).
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Out of the 54 runs, gretl failed to produce a solution in 4 cases when using analytical deriv-
atives, and in 5 cases when using numeric approximation. Of the four failures in analytical
derivatives mode, two were due to non-convergence of the Levenberg-Marquardt algorithm af-
ter the maximum number of iterations (on MGH09 and Bennett5, both described by NIST as of
“Higher difficulty”) and two were due to generation of range errors (out-of-bounds floating point
values) when computing the Jacobian (on BoxBOD and MGH17, described as of “Higher difficulty”
and “Average difficulty” respectively). The additional failure in numerical approximation mode
was on MGH10 (“Higher difficulty”, maximum number of iterations reached).

The table gives information on several aspects of the tests: the number of outright failures,
the average number of iterations taken to produce a solution and two sorts of measure of the
accuracy of the estimates for both the parameters and the standard errors of the parameters.

For each of the 54 runs in each mode, if the run produced a solution the parameter estimates
obtained by gretl were compared with the NIST certified values. We define the “minimum correct
figures” for a given run as the number of significant figures to which the least accurate gretl
estimate agreed with the certified value, for that run. The table shows both the average and
the worst case value of this variable across all the runs that produced a solution. The same
information is shown for the estimated standard errors.*

The second measure of accuracy shown is the percentage of cases, taking into account all para-
meters from all successful runs, in which the gretl estimate agreed with the certified value to at
least the 6 significant figures which are printed by default in the gretl regression output.

Table 18.1: Nonlinear regression: the NIST tests

Analytical derivatives Numerical derivatives

Failures in 54 tests 4 5
Average iterations 32 127
Mean of min. correct figures, 8.120 6.980
parameters

Worst of min. correct figures, 4 3
parameters

Mean of min. correct figures, 8.000 5.673
standard errors

Worst of min. correct figures, 5 2
standard errors

Percent correct to at least 6 figures, 96.5 91.9
parameters

Percent correct to at least 6 figures, 97.7 77.3

standard errors

Using analytical derivatives, the worst case values for both parameters and standard errors were
improved to 6 correct figures on the test machine when the tolerance was tightened to 1.0e—14.
Using numerical derivatives, the same tightening of the tolerance raised the worst values to 5
correct figures for the parameters and 3 figures for standard errors, at a cost of one additional
failure of convergence.

Note the overall superiority of analytical derivatives: on average solutions to the test problems
were obtained with substantially fewer iterations and the results were more accurate (most
notably for the estimated standard errors). Note also that the six-digit results printed by gretl
are not 100 percent reliable for difficult nonlinear problems (in particular when using numerical

4For the standard errors, I excluded one outlier from the statistics shown in the table, namely Lanczos1. This
is an odd case, using generated data with an almost-exact fit: the standard errors are 9 or 10 orders of magnitude
smaller than the coefficients. In this instance gretl could reproduce the certified standard errors to only 3 figures
(analytical derivatives) and 2 figures (numerical derivatives).
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derivatives). Having registered this caveat, the percentage of cases where the results were good
to six digits or better seems high enough to justify their printing in this form.
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Maximum likelihood estimation

19.1 Generic ML estimation with gretl

Maximum likelihood estimation is a cornerstone of modern inferential procedures. Gretl pro-
vides a way to implement this method for a wide range of estimation problems, by use of the
mle command. We give here a few examples.

To give a foundation for the examples that follow, we start from a brief reminder on the basics
of ML estimation. Given a sample of size T, it is possible to define the density function' for
the whole sample, namely the joint distribution of all the observations f(Y;60), where Y =
{»1,...,yr}. Its shape is determined by a k-vector of unknown parameters 0, which we assume
is contained in a set ©, and which can be used to evaluate the probability of observing a sample
with any given characteristics.

After observing the data, the values Y are given, and this function can be evaluated for any
legitimate value of 6. In this case, we prefer to call it the likelihood function; the need for
another name stems from the fact that this function works as a density when we use the y;s as
arguments and 0 as parameters, whereas in this context 0 is taken as the function’s argument,
and the data Y only have the role of determining its shape.

In standard cases, this function has a unique maximum. The location of the maximum is unaf-
fected if we consider the logarithm of the likelihood (or log-likelihood for short): this function
will be denoted as

£(0) =log f(Y; 0)

The log-likelihood functions that gretl can handle are those where £(0) can be written as

T
£(0) = > £:(0)

t=1

which is true in most cases of interest. The functions #;(0) are called the log-likelihood contri-
butions.

Moreover, the location of the maximum is obviously determined by the data Y. This means that
the value .
0(Y) =Argmax £(0) (19.1)
0cO
is some function of the observed data (a statistic), which has the property, under mild con-
ditions, of being a consistent, asymptotically normal and asymptotically efficient estimator of
0.

Sometimes it is possible to write down explicitly the function 0(Y); in general, it need not be
so. In these circumstances, the maximum can be found by means of numerical techniques.
These often rely on the fact that the log-likelihood is a smooth function of 0, and therefore on
the maximum its partial derivatives should all be 0. The gradient vector, or score vector, is a
function that enjoys many interesting statistical properties in its own right; it will be denoted
here as g(0). It is a k-vector with typical element

T
5:(6) = 04(0) _ s 04:(0)
t=1

00; 00;

lwe are supposing here that our data are a realization of continuous random variables. For discrete random
variables, everything continues to apply by referring to the probability function instead of the density. In both cases,
the distribution may be conditional on some exogenous variables.

139
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Gradient-based methods can be shortly illustrated as follows:

1. pick a point 6y € ©;
. evaluate g(6y);

. if g(0p) is “small”, stop. Otherwise, compute a direction vector d(g(6y));

2
3
4. evaluate 01 = 0y + d(g(0y));
5. substitute 0y with 6;

6

. restart from 2.

Many algorithms of this kind exist; they basically differ from one another in the way they
compute the direction vector d(g(0y)), to ensure that £(0;) > £(0y) (so that we eventually
end up on the maximum).

The default method gretl uses to maximize the log-likelihood is a gradient-based algorithm
known as the BFGS (Broyden, Fletcher, Goldfarb and Shanno) method. This technique is used in
most econometric and statistical packages, as it is well-established and remarkably powerful.
Clearly, in order to make this technique operational, it must be possible to compute the vector
g(0) for any value of 0. In some cases this vector can be written explicitly as a function of Y. If
this is not possible or too difficult the gradient may be evaluated numerically. The alternative
Newton-Raphson algorithm is also available, which is more effective under some circumstances
but is also more fragile; see section 19.8 and chapter 29 for details.

The choice of the starting value, 0y, is crucial in some contexts and inconsequential in others. In
general, however, it is advisable to start the algorithm from “sensible” values whenever possible.
If a consistent estimator is available, this is usually a safe and efficient choice: this ensures that
in large samples the starting point will be likely close to 6 and convergence can be achieved in
few iterations.

The maximum number of iterations allowed for the BFGS procedure, and the relative tolerance
for assessing convergence, can be adjusted using the set command: the relevant variables are
bfgs_maxiter (default value 500) and bfgs_toler (default value, the machine precision to the
power 3/4).

Covariance matrix and standard errors

By default the covariance matrix of the parameter estimates is based on the Outer Product of
the Gradient. That is,

Varors(0) = (6'(0)G(0)) (19.2)

where G(0) is the T x k matrix of contributions to the gradient. Two other options are available.
If the --hessian flag is given, the covariance matrix is computed from a numerical approxima-
tion to the Hessian at convergence. If the --robust option is selected, the quasi-ML “sandwich”
estimator is used: e . . . . .

Varom.(0) = H(0)"'G' (0)G(0)H(0) !

where H denotes the numerical approximation to the Hessian.

19.2 Gamma estimation

Suppose we have a sample of T independent and identically distributed observations from a
Gamma distribution. The density function for each observation x; is

o?

p-1 .
l"(p)xt exp (—xxy) (19.3)

Sfxt) =
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The log-likelihood for the entire sample can be written as the logarithm of the joint density of
all the observations. Since these are independent and identical, the joint density is the product
of the individual densities, and hence its log is

T » T
(e, p) = > log [F‘Z()xflexp(—txxt)] =>4 (19.4)
t=1 p t=1

where
U = p -log(ax:) — y(p) —log x: — xx;

and y(-) is the log of the gamma function. In order to estimate the parameters « and p via ML,
we need to maximize (19.4) with respect to them. The corresponding gretl code snippet is

scalar alpha = 1
scalar p =1

mle Togl = p*In(alpha * x) - Tngamma(p) - Tn(x) - alpha * x
params alpha p
end mle

The first two statements

alpha =1
p=1

are necessary to ensure that the variables alpha and p exist before the computation of Tog1 is
attempted. Inside the mTe block these variables (which could be either scalars, vectors or a com-
bination of the two — see below for an example) are identified as the parameters that should
be adjusted to maximize the likelihood via the params keyword. Their values will be changed
by the execution of the m1e command; upon successful completion, they will be replaced by the
ML estimates. The starting value is 1 for both; this is arbitrary and does not matter much in
this example (more on this later).

The above code can be made more readable, and marginally more efficient, by defining a variable
to hold « - x¢. This command can be embedded in the m1e block as follows:

mle logl = p*In(ax) - Tngamma(p) - Tn(x) - ax
series ax = alpha*x
params alpha p

end mle

The variable ax is not added to the params list, of course, since it is just an auxiliary variable to
facilitate the calculations. You can insert as many such auxiliary lines as you require before the
params line, with the restriction that they must contain either (a) commands to generate series,
scalars or matrices or (b) print commands (which may be used to aid in debugging).

In a simple example like this, the choice of the starting values is almost inconsequential; the
algorithm is likely to converge no matter what the starting values are. However, consistent
method-of-moments estimators of p and « can be simply recovered from the sample mean m
and variance V: since it can be shown that

E(x)) =p/a  Vixy) =p/eé
it follows that the following estimators

Xx = m/V

i) = m-~&
are consistent, and therefore suitable to be used as starting point for the algorithm. The gretl
script code then becomes
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scalar m = mean(x)
scalar alpha = m/var(x)
scalar p = m*alpha

mle Togl = p*In(ax) - Tngamma(p) - In(x) - ax
series ax = alpha*x
params alpha p

end mle

Another thing to note is that sometimes parameters are constrained within certain boundaries:
in this case, for example, both & and p must be positive numbers. Gretl does not check for this:
it is the user’s responsibility to ensure that the function is always evaluated at an admissible
point in the parameter space during the iterative search for the maximum. An effective tech-
nique is to define a variable for checking that the parameters are admissible and setting the
log-likelihood as undefined if the check fails. An example, which uses the conditional assign-
ment operator, follows:

scalar m = mean(x)
scalar alpha = m/var(x)
scalar p = m*alpha

mle logl = check ? p*In(ax) - Tngamma(p) - Tn(x) - ax : NA
series ax = alpha*x
scalar check = (alpha>0) && (p>0)
params alpha p

end mle

19.3 Stochastic frontier cost function

When modeling a cost function, it is sometimes worthwhile to incorporate explicitly into the
statistical model the notion that firms may be inefficient, so that the observed cost deviates
from the theoretical figure not only because of unobserved heterogeneity between firms, but
also because two firms could be operating at a different efficiency level, despite being identical
under all other respects. In this case we may write

Ci:Ci*+ui+vi

where C; is some variable cost indicator, C;* is its “theoretical” value, u; is a zero-mean dis-
turbance term and v; is the inefficiency term, which is supposed to be nonnegative by its very
nature.

A linear specification for C;* is often chosen. For example, the Cobb-Douglas cost function
arises when C;" is a linear function of the logarithms of the input prices and the output quanti-
ties.

The stochastic frontier model is a linear model of the form y; = x;B + ¢; in which the error term
&; is the sum of u; and v;. A common postulate is that u; ~ N(O, (rﬁ) and v; ~ |N(0,02)|. If
independence between u; and v; is also assumed, then it is possible to show that the density

function of &; has the form:
)- 2o (22) Ly ()
fl&) = nfb(g U¢> o (19.5)

where ®(-) and ¢(-) are, respectively, the distribution and density function of the standard
normal, o = /03 + 0% and A = o

As a consequence, the log-likelihood for one observation takes the form (apart form an irrele-

vant constant) ,
_ ﬁ) _ &
#t—logfb< p- [log(0)+202]
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Therefore, a Cobb-Douglas cost function with stochastic frontier is the model described by the
following equations:

logC; = logC} + ¢
m n
logC/ = C+Zleogyij+ZO<jlogPij
j=1 j=1
& = Ui+ TV
u; ~ N(0,07)
vi ~ |[N©,02)]

In most cases, one wants to ensure that the homogeneity of the cost function with respect to
the prices holds by construction. Since this requirement is equivalent to Z?:1 «; = 1, the above
equation for C;* can be rewritten as

m n
logCi —logpin =c + > Bjlogyij + > «j(logpij —logpin) + & (19.6)
j=1 j=2

The above equation could be estimated by OLS, but it would suffer from two drawbacks: first,
the OLS estimator for the intercept c is inconsistent because the disturbance term has a non-
zero expected value; second, the OLS estimators for the other parameters are consistent, but
inefficient in view of the non-normality of ¢;. Both issues can be addressed by estimating (19.6)
by maximum likelihood. Nevertheless, OLS estimation is a quick and convenient way to provide
starting values for the MLE algorithm.

Example 19.1 shows how to implement the model described so far. The banks91 file contains
part of the data used in Lucchetti, Papi and Zazzaro (2001).

The script in example 19.1 is relatively easy to modify to show how one can use vectors (that is,
1-dimensional matrices) for storing the parameters to optimize: example 19.2 holds essentially
the same script in which the parameters of the cost function are stored together in a vector.
Of course, this makes also possible to use variable lists and other refinements which make the
code more compact and readable.

19.4 GARCH models

GARCH models are handled by gretl via a native function. However, it is instructive to see how
they can be estimated through the m1e command.?

The following equations provide the simplest example of a GARCH(1,1) model:

Yt = M+t &

& = U Op

ur ~ N(O,1)

hy = w+ 0(5,_?,1 + Bh¢-q.

Since the variance of y; depends on past values, writing down the log-likelihood function is
not simply a matter of summing the log densities for individual observations. As is common
in time series models, y; cannot be considered independent of the other observations in our
sample, and consequently the density function for the whole sample (the joint density for all
observations) is not just the product of the marginal densities.

Maximum likelihood estimation, in these cases, is achieved by considering conditional densities,
so what we maximize is a conditional likelihood function. If we define the information set at
time t as

Fr = {6, Yt-1,--.},

2The gig addon, which handles other variants of conditionally heteroskedastic models, uses mle as its internal
engine.
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Example 19.1: Estimation of stochastic frontier cost function (with scalar parameters)

open banks91l

# Cobb-Douglas cost function

ols cost const y pl p2 p3

# Cobb-Douglas cost function with homogeneity restrictions
genr rcost = cost - p3

genr rpl = pl - p3
genr rp2 p2 - p3

ols rcost const y rpl rp2

# Cobb-Douglas cost function with homogeneity restrictions
# and inefficiency

scalar b0 = $coeff(const)

scalar bl = $coeff(y)
scalar b2 = $coeff(rpl)
scalar b3 = $coeff(rp2)

scalar su = 0.1
scalar sv = 0.1

mle logl = Tn(cnorm(e*Tambda/ss)) - (In(ss) + 0.5*(e/ss)A2)
scalar ss = sqrt(suA2 + svA2)
scalar lambda = su/sv
series e = rcost - bO*const - bl*y - b2*rpl - b3*rp2
params b0 bl b2 b3 su sv

end mle
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Example 19.2: Estimation of stochastic frontier cost function (with matrix parameters)

open banks91

# Cobb-Douglas cost function

ols cost const y pl p2 p3

# Cobb-Douglas cost function with homogeneity restrictions
genr rcost = cost - p3

genr rpl = pl - p3

genr rp2 = p2 - p3

Tist X = const y rpl rp2
ols rcost X

# Cobb-Douglas cost function with homogeneity restrictions
# and inefficiency

matrix b = $coeff
scalar su 0.1
scalar sv 0.1

mle logl = Tn(cnorm(e*Tambda/ss)) - (In(ss) + 0.5*%(e/ss)A2)
scalar ss = sqrt(suA2 + svA2)
scalar lambda = su/sv
series e = rcost - lincomb(X, b)
params b su sv
end mle
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then the density of y; conditional on F;_; is normal:

yielFr—1 ~N[u, hel.

By means of the properties of conditional distributions, the joint density can be factorized as
follows

T
foeye1,..) = [1_[ f(ytu:tl)] - f (o)
t=1

If we treat yg as fixed, then the term f(yy) does not depend on the unknown parameters,
and therefore the conditional log-likelihood can then be written as the sum of the individual
contributions as

T
L, 0,0,B) = > 4 (19.7)
t=1

where

Clog| L (X H) |- L e -w?
fomton] s (2t ) | = =5 [owono - 2

The following script shows a simple application of this technique, which uses the data file
djclose; it is one of the example dataset supplied with gretl and contains daily data from the
Dow Jones stock index.

open djclose
series y = 100*1diff(djclose)

scalar mu = 0.0
scalar omega = 1
scalar alpha = 0.4
scalar beta = 0.0

mle 11 = -0.5*(ClogCh) + (eA2)/h)
series e =y - mu
series h var(y)
series h = omega + alpha*(e(-1))A2 + beta*h(-1)
params mu omega alpha beta
end mle

19.5 Analytical derivatives

Computation of the score vector is essential for the working of the BFGS method. In all the
previous examples, no explicit formula for the computation of the score was given, so the
algorithm was fed numerically evaluated gradients. Numerical computation of the score for the
i-th parameter is performed via a finite approximation of the derivative, namely

00(61,...,0n) L(61,...,0i+h,...,00) —£(01,...,0i — h,...,04)
00; B 2h

where h is a small number.

In many situations, this is rather efficient and accurate. A better approximation to the true
derivative may be obtained by forcing mle to use a technique known as Richardson Extrapola-
tion, which gives extremely precise results, but is considerably more CPU-intensive. This feature
may be turned on by using the set command as in

set bfgs_richardson on

However, one might want to avoid the approximation and specify an exact function for the
derivatives. As an example, consider the following script:
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nulldata 1000

genr x1 = normal()
genr x2 = normal()
genr x3 = normal()

genr ystar = x1 + x2 + x3 + normal()
genr y = (ystar > 0)

scalar b0 =
scalar bl =
scalar b2 =
scalar b3 =

[eNeNeNo)

mle logl = y*Tn(P) + (1-y)*In(1-P)
series ndx = b0 + bl*x1 + b2*x2 + b3*x3
series P = cnorm(ndx)
params b0 bl b2 b3

end mle --verbose

Here, 1000 data points are artificially generated for an ordinary probit model:3 y; is a binary
variable, which takes the value 1 if y;* = Bix1: + B2X2r + B3x3: + & > 0 and 0 otherwise.
Therefore, y; = 1 with probability ®(S1x1;: + B2X2¢ + B3x3:) = 1. The probability function for
one observation can be written as

P(y) =" (1 — )t

Since the observations are independent and identically distributed, the log-likelihood is simply
the sum of the individual contributions. Hence

T
L= ylog(m) + (1 — ) log(l — 1)
t=1

The --verbose switch at the end of the end mTe statement produces a detailed account of the
iterations done by the BFGS algorithm.

In this case, numerical differentiation works rather well; nevertheless, computation of the ana-
lytical score is straightforward, since the derivative 8% can be written as

ot _ b om
o0Bi om 0P
via the chain rule, and it is easy to see that
ol _ oy l-»
OTT¢ Tt 1-11¢
a'th

P (Bixie + Baxar + B3X3t) - Xit

0Bi
The m1e block in the above script can therefore be modified as follows:

mle logl = y*1In(P) + (1-y)*In(1-P)
series ndx = b0 + bl*x1 + b2*x2 + b3*x3
series P = cnorm(ndx)
series m = dnorm(ndx)*(y/P - (1-y)/(1-P))
deriv b0 =m
deriv bl = m*x1
deriv b2 = m*x2
deriv b3 = m*x3
end mle --verbose

3 Again, gretl does provide a native probit command (see section 30.1), but a probit model makes for a nice
example here.
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Note that the params statement has been replaced by a series of deriv statements; these have
the double function of identifying the parameters over which to optimize and providing an
analytical expression for their respective score elements.

19.6 Debugging ML scripts

We have discussed above the main sorts of statements that are permitted within an m1e block,
namely

e auxiliary commands to generate helper variables;
e deriv statements to specify the gradient with respect to each of the parameters; and

e a params statement to identify the parameters in case analytical derivatives are not given.

For the purpose of debugging ML estimators one additional sort of statement is allowed: you
can print the value of a relevant variable at each step of the iteration. This facility is more
restricted then the regular print command. The command word print should be followed by
the name of just one variable (a scalar, series or matrix).

In the last example above a key variable named m was generated, forming the basis for the
analytical derivatives. To track the progress of this variable one could add a print statement
within the ML block, as in

series m = dnorm(ndx)*(y/P - (1-y)/(1-P))
print m

19.7 Using functions

The mle command allows you to estimate models that gretl does not provide natively: in some
cases, it may be a good idea to wrap up the mle block in a user-defined function (see Chapter
10), so as to extend gretl’s capabilities in a modular and flexible way.

As an example, we will take a simple case of a model that gretl does not yet provide natively: the
zero-inflated Poisson model, or ZIP for short.* In this model, we assume that we observe a mixed
population: for some individuals, the variable 7y; is (conditionally on a vector of exogenous
covariates x;) distributed as a Poisson random variate; for some others, y; is identically 0. The
trouble is, we don’t know which category a given individual belongs to.

For instance, suppose we have a sample of women, and the variable y; represents the number
of children that woman t has. There may be a certain proportion, &, of women for whom y; = 0
with certainty (maybe out of a personal choice, or due to physical impossibility). But there may
be other women for whom 7y; = 0 just as a matter of chance — they haven’t happened to have
any children at the time of observation.

In formulae:

uyt
P(y: =klx;) = oadi+(1-) [e“‘t]
V!
e = exp(x¢B)
1 for y;=0
d; =
0 for y;>0

Writing a m1e block for this model is not difficult:

mle 11 = Togprob
series xb = exp(b0 + bl * x)

4The actual ZIP model is in fact a bit more general than the one presented here. The specialized version discussed
in this section was chosen for the sake of simplicity. For futher details, see Greene (2003).
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series d = (y=0)
series poiprob = exp(-xb) * xbAy / gamma(y+1)
series logprob = (alpha>0) && (alpha<l) 7 \
Tog(alpha*d + (1-alpha)*poiprob) : NA
params alpha b0 bl
end mle -v

However, the code above has to be modified each time we change our specification by, say,
adding an explanatory variable. Using functions, we can simplify this task considerably and
eventually be able to write something easy like

Tist X = const X
zipQy, X)

Example 19.3: Zero-inflated Poisson Model — user-level function

/ %*
user-level function: estimate the model and print out
the results
*/
function void zip(series y, Tist X)
matrix coef_stde = zip_estimate(y, X)
printf "\nZero-inflated Poisson model:\n"
string parnames = "alpha,"
string parnames += varname(X)
modprint coef_stde parnames
end function

Let’s see how this can be done. First we need to define a function called zip() that will take
two arguments: a dependent variable y and a list of explanatory variables X. An example of
such function can be seen in script 19.3. By inspecting the function code, you can see that
the actual estimation does not happen here: rather, the zip() function merely uses the built-in
modprint command to print out the results coming from another user-written function, namely
zip_estimate().

The function zip_estimate() is not meant to be executed directly; it just contains the number-
crunching part of the job, whose results are then picked up by the end function zip (). In turn,
zip_estimate() calls other user-written functions to perform other tasks. The whole set of
“internal” functions is shown in the panel 19.4.

All the functions shown in 19.3 and 19.4 can be stored in a separate inp file and executed once,
at the beginning of our job, by means of the include command. Assuming the name of this
script file is zip_est.inp, the following is an example script which (a) includes the script file,
(b) generates a simulated dataset, and (c) performs the estimation of a ZIP model on the artificial
data.

set echo off
set messages off

# include the user-written functions
include zip_est.inp

# generate the artificial data
nulldata 1000

set seed 732237

scalar truep = 0.2

scalar b0 = 0.2

scalar bl = 0.5
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Example 19.4: Zero-inflated Poisson Model — internal functions

/* compute log probabilities for the plain Poisson model */
function series In_poi_prob(series y, Tist X, matrix beta)
series xb = Tincomb(X, beta)
return -exp(xb) + y*xb - Tngamma(y+1)
end function

/* compute log probabilities for the zero-inflated Poisson model */
function series In_zip_prob(series y, list X, matrix beta, scalar p0)
# check if the probability is in [0,1]; otherwise, return NA

if (p0>1) || (p0<0)
series ret = NA

else
series ret
series ret

endif

return ret

end function

Tn_poi_prob(y, X, beta) + Tn(1-p0)
(y=0) ? Tn(p0 + exp(ret)) : ret

/* do the actual estimation (silently) */
function matrix zip_estimate(series y, list X)
# initialize alpha to a "sensible" value: half the frequency
# of zeros in the sample
scalar alpha = mean(y=0)/2
# initialize the coeffs (we assume the first explanatory
# variable is the constant here)
matrix coef = zeros(nelem(X), 1)
coef[1] = mean(y) / (1-alpha)
# do the actual ML estimation
mle 11 = Tn_zip_prob(y, X, coef, alpha)
params alpha coef
end mle --hessian --quiet
return $coeff ~ $stderr
end function
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series x = normal()
series y = (uniform(Q)<truep) ? 0 : genpois(exp(b0 + bl*x))
Tist X = const Xx

# estimate the zero-inflated Poisson model
zipQy, X)

The results are as follows:

Zero-inflated Poisson model:

coefficient std. error z-stat p-value

alpha 0.203069 0.0238035 8.531  1.45e-17 #*¥*
const 0.257014 0.0417129 6.161 7.21e-10 ***
X 0.466657 0.0321235  14.53  8.17e-48 ***

A further step may then be creating a function package for accessing your new zip() function
via gretl’s graphical interface. For details on how to do this, see section 10.5.

19.8 Advanced use of mle: functions, analytical derivatives, algorithm choice

All the techniques decribed in the previous sections may be combined, and mle can be used
for solving non-standard estimation problems (provided, of course, that one chooses maximum
likelihood as the preferred inference method).

The strategy that, as of this writing, has proven most successful in designing scripts for this
purpose is:

e Modularize your code as much as possible.
e Use analytical derivatives whenever possible.

e Choose your optimization method wisely.

In the rest of this section, we will expand on the probit example of section 19.5 to give the
reader an idea of what a “heavy-duty” application of m1e looks like. Most of the code fragments
come from mTe-advanced.inp, which is one of the sample scripts supplied with the standard
installation of gretl (see under File > Script files > Practice File).

BFGS with and without analytical derivatives

The example in section 19.5 can be made more general by using matrices and user-written
functions. Consider the following code fragment:

Tist X = const x1 x2 x3
matrix b = zeros(nelem(X),1)

mle logl = y*1In(P) + (1-y)*In(1-P)
series ndx = lincomb(X, b)
series P = cnorm(ndx)
params b

end mle

In this context, the fact that the model we are estimating has four explanatory variables is
totally incidental: the code is written in such a way that we could change the content of the list
X without having to make any other modification. This was made possible by:

1. gathering the parameters to estimate into a single vector b rather than using separate
scalars;
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2. using the neTem() function to initialize b, so that its dimension is kept track of automat-
ically;

3. using the Tincomb () function to compute the index function.

A parallel enhancement could be achieved in the case of analytically computed derivatives: since
b is now a vector, m1e expects the argument to the deriv keyword to be a matrix, in which each
column is the partial derivative to the corresponding element of b. It is useful to re-write the
score for the i-th observation as

ol; ,
87[31 = m;x, (19.8)
where m; is the “signed Mills’ ratio”, that is
o= PGB BB
M e(xiB) "1-oxp)’
which was computed in section 19.5 via
series P = cnorm(ndx)
series m = dnorm(ndx)*(y/P - (1-y)/(1-P))
Here, we will code it in a somewhat terser way as
series m =y ? invmills(-ndx) : -invmills(ndx)

and make use of the conditional assignment operator and of the specialized function invmiT1s()
for efficiency. Building the score matrix is now easily achieved via

mle logl = y*1In(P) + (1-y)*In(1-P)
series ndx = lincomb(X, b)
series P = cnorm(ndx)
series m =y ? invmills(-ndx) : -invmills(ndx)
matrix mX = {X}
deriv b = mX .* {m}
end mle

in which the {} operator was used to turn series and lists into matrices (see chapter 13). How-
ever, proceeding in this way for more complex models than probit may imply inserting into the
mle block a long series of instructions; the example above merely happens to be short because
the score matrix for the probit model is very easy to write in matrix form.

A better solution is writing a user-level function to compute the score and using that inside the
mle block, as in

function matrix score(matrix b, series y, list X)
series ndx = lincomb(X, b)
series m =y ? invmills(-ndx) : -invmills(ndx)
return {m} .* {X}

end function

[...]

mle Togl = y*1In(P) + (1-y)*1n(1-P)
series ndx = lincomb(X, b)
series P = cnorm(ndx)
deriv b = score(b, y, X)

end mle

In this way, no matter how complex the computation of the score is, the mle block remains
nicely compact.



Chapter 19. Maximum likelihood estimation 153

Newton’s method and the analytical Hessian

Since version 1.9.7, gretl offers the user the option of using Newton’s method for maximizing
the log-likelihood. In terms of the notation used in section 19.1, the direction for updating the
inital parameter vector 0y is given by

d[g(00)] = —AH(0p) 'g(00), (19.9)

where H(0) is the Hessian of the total loglikelihood computed at € and 0 < A < 1 is a scalar
called the step length.

The above expression makes a few points clear:

1. At each step, it must be possible to compute not only the score g(0), but also its derivative
H(0);

2. the matrix H(0) should be nonsingular;

3. it is assumed that for some positive value of A, £(81) > £(0y); in other words, that going
in the direction d [g(6p) ] leads upwards for some step length.

The strength of Newton’s method lies in the fact that, if the loglikelihood is globally concave,
then (19.9) enjoys certain optimality properties and the number of iterations required to reach
the maximum is often much smaller than it would be with other methods, such as BFGS. How-
ever, it may have some disadvantages: for a start, the Hessian H(0) may be difficult or very
expensive to compute; moreover, the loglikelihood may not be globally concave, so for some
values of 0, the matrix H(0) is not negative definite or perhaps even singular. Those cases
are handled by gretl’s implementation of Newton’s algorithm by means of several heuristic
techniques®, but a number of adverse consequences may occur, which range from longer com-
putation time for optimization to non-convergence of the algorithm.

As a consequence, using Newton’s method is advisable only when the computation of the
Hessian is not too CPU-intensive and the nature of the estimator is such that it is known in
advance that the loglikelihood is globally concave. The probit models satisfies both requisites,
so we will expand the preceding example to illustrate how to use Newton’s method in gretl.

A first example may be given simply by issuing the command
set optimizer newton

before the mle block.® This will instruct gretl to use Newton’s method instead of BFGS. If the
deriv keyword is used, gretl will differentiate the score function numerically; otherwise, if
the score has to be computed itself numerically, gretl will calculate H(0) by differentiating the
loglikelihood numerically twice. The latter solution, though, is generally to be avoided, as may
be extremely time-consuming and may yield imprecise results.

A much better option is to calculate the Hessian analytically and have gretl use its true value
rather than a numerical approximation. In most cases, this is both much faster and numerically
stable, but of course comes at the price of having to differentiate the loglikelihood twice to
respect with the parameters and translate the resulting expressions into efficient hansl code.

Luckily, both tasks are relatively easy in the probit case: the matrix of second derivatives of ¥;
may be written as

ol _ —m; (mA +x’,8)xAx’
aBaBr 3 3 i 13
5The gist to it is that, if H is not negative definite, it is substituted by k - dg(H) + (1 — k) - H, where k is a suitable
scalar; however, if you're interested in the precise details, you'll be much better off looking at the source code: the
file you'll want to look atis Tib/src/gret1_bfgs.c.
6To go back to BFGS, you use set optimizer bfgs.
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so the total Hessian is

n 2p. wp
> ol _ _x _ X (19.10)

Wn

where w; = m; (mi +x;B). It can be shown that w; > 0, so the Hessian is guaranteed to
be negative definite in all sensible cases and the conditions are ideal for applying Newton’s
method.

A hansl translation of equation (19.10) may look like

function void Hess(matrix *H, matrix b, series y, list X)
/* computes the negative Hessian for a Probit model */
series ndx = lincomb(X, b)
series m =y ? invmills(-ndx) : -invmills(ndx)
series w = m*(m+ndx)
matrix mX = {X}

H= (mX .* {w})’mX
end function

There are two characteristics worth noting of the function above. For a start, it doesn’t return
anything: the result of the computation is simply stored in the matrix pointed at by the first
argument of the function. Second, the result is not the Hessian proper, but rather its negative.
This function becomes usable from within an m1e block by the keyword hessian. The syntax is

mle ...

hessian funcname(&mat_addr, ...)
end mle

In other words, the hessian keyword must be followed by the call to a function whose first
argument is a matrix pointer which is supposed to be filled with the negative of the Hessian at
0.

Another feature worth noting is that gretl does not perform any numerical check on whether
the function computes the Hessian correctly or not. On the one hand, this means that you
can trick mle into using alternatives to the Hessian and thereby implement other optimization
methods. For example, if you substitute in equation 19.9 the Hessian H with the negative of the
OPG matrix —G'G, as defined in (19.2), you get the so-called BHHH optimization method (see
Berndt et al. (1974)). Again, the sample file mTe-advanced.inp provides an example. On the
other hand, you may want to perform a check of your analytically-computed H matrix versus a
numerical approximation.

If you have a function that computes the score, this is relatively simple to do by using the
fdjac function, briefly described in section 29.4, which computes a numerical approximation
to a derivative. In practice, you need a function computing g(€) as a row vector and then use
fdjac to differentiate it numerically with respect to 0. The result can then be compared to your
analytically-computed Hessian. The code fragment below shows an example of how this can be
done in the probit case:

function matrix totalscore(matrix *b, series y, list X)
/* computes the total score */
return sumc(score(b, y, X))

end function

function void check(matrix b, series y, list X)
/% compares the analytical Hessian to its numerical
approximation obtained via fdjac */
matrix aH
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Hess(&aH, b, y, X) # stores the analytical Hessian into aH

matrix nH = fdjac(b, "totalscore(&b, y, XO")
nH = 0.5%(nH + nH’) # force symmetry

printf "Numerical Hessian\n%16.6f\n", nH

printf "Analytical Hessian (negative)\n%16.6f\n", aH

printf "Check (should be zero)\n%16.6f\n", nH + aH
end function



Chapter 20

GMM estimation

20.1 Introduction and terminology

The Generalized Method of Moments (GMM) is a very powerful and general estimation method,
which encompasses practically all the parametric estimation techniques used in econometrics.
It was introduced in Hansen (1982) and Hansen and Singleton (1982); an excellent and thorough
treatment is given in chapter 17 of Davidson and MacKinnon (1993).

The basic principle on which GMM is built is rather straightforward. Suppose we wish to es-
timate a scalar parameter 6 based on a sample x;,x2,...,x7. Let 8¢ indicate the “true” value
of 0. Theoretical considerations (either of statistical or economic nature) may suggest that a
relationship like the following holds:

Elx;-g(0)] =0 < 0 =06, (20.1)

with g(-) a continuous and invertible function. That is to say, there exists a function of the data
and the parameter, with the property that it has expectation zero if and only if it is evaluated
at the true parameter value. For example, economic models with rational expectations lead to
expressions like (20.1) quite naturally.

If the sampling model for the x;s is such that some version of the Law of Large Numbers holds,
then
1

T
X==>x 2 g(6o);
=1

~ |

hence, since g(-) is invertible, the statistic
é = g_l(X) L 001

so 0 is a consistent estimator of 9. A different way to obtain the same outcome is to choose, as
an estimator of 0, the value that minimizes the objective function

T 2
F(0) = [; Z(xt—g(G))] = [X - g(0)]%; (20.2)

t=1

the minimum is trivially reached at 0 = g~ 1(X), since the expression in square brackets equals
0.

The above reasoning can be generalized as follows: suppose 6 is an n-vector and we have m
relations like
E[fi(xt,0)]=0 fori=1...m, (20.3)

where E[-] is a conditional expectation on a set of p variables z;, called the instruments. In the
above simple example, m = 1 and f(x¢, 0) = x; — g(0), and the only instrument used is z; = 1.
Then, it must also be true that

E[fi(xt,0) - zji| =E[fij2(0)] =0 fori=1...m and j=1...p; (20.4)

equation (20.4) is known as an orthogonality condition, or moment condition. The GMM estimator
is defined as the minimum of the quadratic form

Fo,w) =t wf, (20.5)

156
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where f is a (1 x m - p) vector holding the average of the orthogonality conditions and W is
some symmetric, positive definite matrix, known as the weights matrix. A necessary condition
for the minimum to exist is the order condition n < m - p.

The statistic .
0 =Argmin F(0, W) (20.6)
0

is a consistent estimator of 8 whatever the choice of W. However, to achieve maximum asymp-
totic efficiency W must be proportional to the inverse of the long-run covariance matrix of the
orthogonality conditions; if W is not known, a consistent estimator will suffice.

These considerations lead to the following empirical strategy:

1. Choose a positive definite W and compute the one-step GMM estimator 0. Customary
choices for W are Iy, or I, ® (Z'Z)7 1.

2. Use 0; to estimate V/( fi,7,6(0)) and use its inverse as the weights matrix. The resulting
estimator 6, is called the two-step estimator.

3. Re-estimate V (f; j,(0)) by means of 0, and obtain 93; iterate until convergence. Asymp-
totically, these extra steps are unnecessary, since the two-step estimator is consistent and
efficient; however, the iterated estimator often has better small-sample properties and
should be independent of the choice of W made at step 1.

In the special case when the number of parameters n is equal to the total number of orthogo-
nality conditions m - p, the GMM estimator 0 is the same for any choice of the weights matrix
W, so the first step is sufficient; in this case, the objective function is 0 at the minimum.

If, on the contrary, n < m - p, the second step (or successive iterations) is needed to achieve
efficiency, and the estimator so obtained can be very different, in finite samples, from the one-
step estimator. Moreover, the value of the objective function at the minimum, suitably scaled by
the number of observations, yields Hansen'’s J statistic; this statistic can be interpreted as a test
statistic that has a x? distribution with m - p — n degrees of freedom under the null hypothesis
of correct specification. See Davidson and MacKinnon (1993, section 17.6) for details.

In the following sections we will show how these ideas are implemented in gretl through some
examples.

20.2 OLS as GMM

It is instructive to start with a somewhat contrived example: consider the linear model y; =
xtB+u;. Although most of us are used to read it as the sum of a hazily defined “systematic part”
plus an equally hazy “disturbance”, a more rigorous interpretation of this familiar expression
comes from the hypothesis that the conditional mean E(y;|x;) is linear and the definition of u,
as yr — E(yelxy).

From the definition of u;, it follows that E(u;|x;) = 0. The following orthogonality condition is
therefore available:

ELf(B)] =0, (20.7)

where f(B) = (v — x¢B)x¢. The definitions given in the previous section therefore specialize
here to:

0 is B;

the instrument is x¢;

Si,j,t(0) is (vt —x¢B)xt = uexy; the orthogonality condition is interpretable as the require-
ment that the regressors should be uncorrelated with the disturbances;

W can be any symmetric positive definite matrix, since the number of parameters equals
the number of orthogonality conditions. Let’s say we choose I.
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e The function F(0, W) is in this case

1< ’
F(O,W) = [T Z(atxt)]
t=1

and it is easy to see why OLS and GMM coincide here: the GMM objective function has
the same minimizer as the objective function of OLS, the residual sum of squares. Note,
however, that the two functions are not equal to one another: at the minimum, F(8,W) =0
while the minimized sum of squared residuals is zero only in the special case of a perfect
linear fit.

The code snippet contained in Example 20.1 uses gretl’s gmm command to make the above
operational.

Example 20.1: OLS via GMM

/* initialize stuff */
series e = 0

scalar beta = 0
matrix W = I(1)

/* proceed with estimation */
gmm
series e = y - x*beta
orthog e ; x

weights W
params beta
end gmm

We feed gretl the necessary ingredients for GMM estimation in a command block, starting with
gmm and ending with end gmm. After the end gmm statement two mutually exclusive options can
be specified: --two-step or --1iterate, whose meaning should be obvious.

Three elements are compulsory within a gmm block:

1. one or more orthog statements
2. one weights statement

3. one params statement

The three elements should be given in the stated order.

The orthog statements are used to specify the orthogonality conditions. They must follow the
syntax

orthog x ; Z

where x may be a series, matrix or list of series and Z may also be a series, matrix or list. In
example 20.1, the series e holds the “residuals” and the series x holds the regressor. If x had
been a list (a matrix), the orthog statement would have generated one orthogonality condition
for each element (column) of x. Note the structure of the orthogonality condition: it is assumed
that the term to the left of the semicolon represents a quantity that depends on the estimated
parameters (and so must be updated in the process of iterative estimation), while the term on
the right is a constant function of the data.

The weights statement is used to specify the initial weighting matrix and its syntax is straight-
forward. But please note...

= |n cases other than one-step estimation the specified weights matrix will be overwritten with the final
weights on completion of the gmm command. If you wish to execute more than one GMM block with a
common starting-point it is therefore necessary to reinitialize the weights matrix between runs.
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The params statement specifies the parameters with respect to which the GMM criterion should
be minimized; it follows the same logic and rules as in the mTe and n1ls commands.

The minimum is found through numerical minimization via BFGS (see chapters 29 and 19). The
progress of the optimization procedure can be observed by appending the --verbose switch
to the end gmm line.

20.3 TSLS as GMM

Moving closer to the proper domain of GMM, we now consider two-stage least squares (TSLS) as
a case of GMM.

TSLS is employed in the case where one wishes to estimate a linear model of the form y; =
X¢B + u;, but where one or more of the variables in the matrix X are potentially endogenous
— correlated with the error term, u. We proceed by identifying a set of instruments, Z;, which
are explanatory for the endogenous variables in X but which are plausibly uncorrelated with
u. The classic two-stage procedure is (1) regress the endogenous elements of X on Z; then (2)
estimate the equation of interest, with the endogenous elements of X replaced by their fitted
values from (1).

An alternative perspective is given by GMM. We define the residual iy as y; — X; 3, as usual. But
instead of relying on E(u|X) = 0 as in OLS, we base estimation on the condition E(u|Z) = 0. In
this case it is natural to base the initial weighting matrix on the covariance matrix of the instru-
ments. Example 20.2 presents a model from Stock and Watson’s Introduction to Econometrics.
The demand for cigarettes is modeled as a linear function of the logs of price and income; in-
come is treated as exogenous while price is taken to be endogenous and two measures of tax are
used as instruments. Since we have two instruments and one endogenous variable the model is
over-identified and therefore the weights matrix will influence the solution. Partial output from
this script is shown in 20.3. The estimated standard errors from GMM are robust by default; if
we supply the --robust option to the ts1s command we get identical results.!

20.4 Covariance matrix options

The covariance matrix of the estimated parameters depends on the choice of W through

S=UwhHTIwaw g wn (20.8)
where J is a Jacobian term )
P
Y00

and Q is the long-run covariance matrix of the orthogonality conditions.

Gretl computes J by numeric differentiation (there is no provision for specifying a user-supplied
analytical expression for J at the moment). As for Q, a consistent estimate is needed. The
simplest choice is the sample covariance matrix of the fs:

T
<Mm=%2ﬁwmwy (20.9)
t=1

This estimator is robust with respect to heteroskedasticity, but not with respect to autocorrela-
tion. A heteroskedasticity- and autocorrelation-consistent (HAC) variant can be obtained using
the Bartlett kernel or similar. A univariate version of this is used in the context of the Trvar()
function — see equation (5.1). The multivariate version is set out in equation (20.10).

A L Tk[ &
() = — > [ > wift(Q)ft—i(Q)'] : (20.10)
t=k

i=—k

IThe data file used in this example is available in the Stock and Watson package for gretl. See http://gretl.
sourceforge.net/gretl_data.html.


http://gretl.sourceforge.net/gretl_data.html
http://gretl.sourceforge.net/gretl_data.html
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Example 20.2: TSLS via GMM

open cig_chl0.gdt

# real avg price including sales tax
genr ravgprs = avgprs / cpi

# real avg cig-specific tax

genr rtax = tax / cpi

# real average total tax

genr rtaxs = taxs / cpi

# real average sales tax

genr rtaxso = rtaxs - rtax

# logs of consumption, price, income
genr T1packpc = Tog(packpc)

genr Travgprs = log(ravgprs)

genr perinc = income / (pop*cpi)

genr Tlperinc = Tog(perinc)

# restrict sample to 1995 observations
smpl --restrict year=1995

# Equation (10.16) by tsls

Tist xlist = const lravgprs Tperinc
Tist zlist = const rtaxso rtax TIperinc
tsls Tpackpc xTlist ; zlist --robust

# setup for gmm
matrix Z = { zlist }
matrix W inv(Z’2)
series e = 0

scalar b0 = 1

scalar bl =1

scalar b2 =1

gmm e = lpackpc - b0 - bl*lravgprs - b2*Iperinc
orthog e ; Z
weights W
params b0 bl b2

end gmm
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Example 20.3: TSLS via GMM: partial output

Model 1: TSLS estimates using the 48 observations 1-48
Dependent variable: Tpackpc

Instruments: rtaxso rtax

Heteroskedasticity-robust standard errors, variant HCO

VARIABLE COEFFICIENT STDERROR T STAT  P-VALUE
const 9.89496 0.928758 10.654 <0.00001 ***
Travgprs -1.27742 0.241684 -5.286 <0.00001 *%*
Tperinc 0.280405 0.245828 1.141  0.25401

Model 2: 1-step GMM estimates using the 48 observations 1-48
e = Ipackpc - b0 - bl*Travgprs - b2*Iperinc

PARAMETER ESTIMATE STDERROR T STAT  P-VALUE
bo 9.89496 0.928758 10.654 <0.00001 ¥+
bl -1.27742 0.241684 -5.286 <0.00001 #¥*
b2 0.280405 0.245828 1.141  0.25401

GMM criterion = 0.0110046

Gretl computes the HAC covariance matrix by default when a GMM model is estimated on time
series data. You can control the kernel and the bandwidth (that is, the value of k in 20.10) using
the set command. See chapter 15 for further discussion of HAC estimation. You can also ask
gretl not to use the HAC version by saying

set force_hc on

20.5 A real example: the Consumption Based Asset Pricing Model

To illustrate gretl’s implementation of GMM, we will replicate the example given in chapter 3 of
Hall (2005). The model to estimate is a classic application of GMM, and provides an example
of a case when orthogonality conditions do not stem from statistical considerations, but rather
from economic theory.

A rational individual who must allocate his income between consumption and investment in a
financial asset must in fact choose the consumption path of his whole lifetime, since investment
translates into future consumption. It can be shown that an optimal consumption path should
satisfy the following condition:

pU'(ct) = SKE [re:xU’ (crar) | Fe ], (20.11)

where p is the asset price, U(-) is the individual’s utility function, ¢ is the individual’s subjective
discount rate and 7;. is the asset’s rate of return between time t and time t + k. F; is the
information set at time t; equation (20.11) says that the utility “lost” at time t by purchasing
the asset instead of consumption goods must be matched by a corresponding increase in the
(discounted) future utility of the consumption financed by the asset’s return. Since the future
is uncertain, the individual considers his expectation, conditional on what is known at the time
when the choice is made.

We have said nothing about the nature of the asset, so equation (20.11) should hold whatever
asset we consider; hence, it is possible to build a system of equations like (20.11) for each asset
whose price we observe.

If we are willing to believe that

e the economy as a whole can be represented as a single gigantic and immortal representa-
tive individual, and
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xa‘x_l is a faithful representation of the individual’s preferences,

¢ the function U(x) =

then, setting k = 1, equation (20.11) implies the following for any asset j:

E |:57’j,t+1 (Ct+1 ) ol
Pit Ct

ft} =1, (20.12)

where C; is aggregate consumption and « and ¢ are the risk aversion and discount rate of the
representative individual. In this case, it is easy to see that the “deep” parameters « and 6 can
be estimated via GMM by using

o = 5Tt (Cm)“ 1
Pjt Ct

as the moment condition, while any variable known at time £ may serve as an instrument.

Example 20.4: Estimation of the Consumption Based Asset Pricing Model

open hall.gdt
set force_hc on

scalar alpha
scalar delta =
series e = 0

Il
[eNe)
[V}

Tist inst

const consrat(-1) consrat(-2) ewr(-1) ewr(-2)

matrix VO = 100000*I(neTem(inst))
matrix Z = { inst }
matrix V1 = $nobs*inv(Z’Z)

gnm e = delta*ewr*consratA(alpha-1) - 1
orthog e ; inst
weights VO
params alpha delta

end gmm

I
=

gnm e = delta*ewr*consratA(alpha-1)
orthog e ; inst
weights V1
params alpha delta

end gmm

I
=

gnm e = delta*ewr*consratA(alpha-1)
orthog e ; inst
weights VO
params alpha delta

end gmm --iterate

I
=

gnm e = delta*ewr*consratA(alpha-1)
orthog e ; inst
weights V1
params alpha delta

end gmm --iterate

In the example code given in 20.4, we replicate selected portions of table 3.7 in Hall (2005). The
variable consrat is defined as the ratio of monthly consecutive real per capita consumption
(services and nondurables) for the US, and ewr is the return-price ratio of a fictitious asset
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Example 20.5: Estimation of the Consumption Based Asset Pricing Model — output

Model 1: 1-step GMM estimates using the 465 observations 1959:04-1997:12
e = d¥ewr*consratA(alpha-1) - 1

PARAMETER ESTIMATE STDERROR T STAT  P-VALUE
alpha -3.14475 6.84439 -0.459 0.64590
d 0.999215 0.0121044 82.549 <0.00001 #*=*

GMM criterion = 2778.08

Model 2: 1-step GMM estimates using the 465 observations 1959:04-1997:12
e = d¥ewr*consratA(alpha-1) - 1

PARAMETER ESTIMATE STDERROR T STAT  P-VALUE
alpha 0.398194 2.26359 0.176  0.86036
d 0.993180 0.00439367 226.048 <0.00001 #***

CMM criterion = 14.247

Model 3: Iterated GMM estimates using the 465 observations 1959:04-1997:12
e = d¥ewr*consratA(alpha-1) - 1

PARAMETER ESTIMATE STDERROR T STAT  P-VALUE
alpha -0.344325 2.21458 -0.155 0.87644
d 0.991566 0.00423620 234.070 <0.00001 #**=*

GMM criterion = 5491.78
J test: Chi-square(3) = 11.8103 (p-value 0.0081)

Model 4: Iterated GMM estimates using the 465 observations 1959:04-1997:12
e = d¥ewr*consratA(alpha-1) - 1

PARAMETER ESTIMATE STDERROR T STAT  P-VALUE
alpha -0.344315 2.21359 -0.156  0.87639
d 0.991566 0.00423469 234.153 <0.00001 #***

GMM criterion = 5491.78
J test: Chi-square(3) = 11.8103 (p-value 0.0081)
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constructed by averaging all the stocks in the NYSE. The instrument set contains the constant
and two lags of each variable.

The command set force_hc on on the second line of the script has the sole purpose of repli-
cating the given example: as mentioned above, it forces gretl to compute the long-run variance
of the orthogonality conditions according to equation (20.9) rather than (20.10).

We run gmm four times: one-step estimation for each of two initial weights matrices, then it-
erative estimation starting from each set of initial weights. Since the number of orthogonality
conditions (5) is greater than the number of estimated parameters (2), the choice of initial
weights should make a difference, and indeed we see fairly substantial differences between the
one-step estimates (Models 1 and 2). On the other hand, iteration reduces these differences
almost to the vanishing point (Models 3 and 4).

Part of the output is given in 20.5. It should be noted that the J test leads to a rejection of the
hypothesis of correct specification. This is perhaps not surprising given the heroic assumptions
required to move from the microeconomic principle in equation (20.11) to the aggregate system
that is actually estimated.

20.6 Caveats

A few words of warning are in order: despite its ingenuity, GMM is possibly the most fragile
estimation method in econometrics. The number of non-obvious choices one has to make when
using GMM is high, and in finite samples each of these can have dramatic consequences on the
eventual output. Some of the factors that may affect the results are:

1. Orthogonality conditions can be written in more than one way: for example, if E(x; —u) =
0, then E(x¢/u—1) = 0 holds too. It is possible that a different specification of the moment
conditions leads to different results.

2. As with all other numerical optimization algorithms, weird things may happen when the
objective function is nearly flat in some directions or has multiple minima. BFGS is usually
quite good, but there is no guarantee that it always delivers a sensible solution, if one at
all.

3. The 1-step and, to a lesser extent, the 2-step estimators may be sensitive to apparently triv-
ial details, like the re-scaling of the instruments. Different choices for the initial weights
matrix can also have noticeable consequences.

4. With time-series data, there is no hard rule on the appropriate number of lags to use when
computing the long-run covariance matrix (see section 20.4). Our advice is to go by trial
and error, since results may be greatly influenced by a poor choice. Future versions of
gretl will include more options on covariance matrix estimation.

One of the consequences of this state of things is that replicating various well-known published
studies may be extremely difficult. Any non-trivial result is virtually impossible to reproduce
unless all details of the estimation procedure are carefully recorded.
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Model selection criteria

21.1 Introduction

In some contexts the econometrician chooses between alternative models based on a formal
hypothesis test. For example, one might choose a more general model over a more restricted
one if the restriction in question can be formulated as a testable null hypothesis, and the null
is rejected on an appropriate test.

In other contexts one sometimes seeks a criterion for model selection that somehow measures
the balance between goodness of fit or likelihood, on the one hand, and parsimony on the other.
The balancing is necessary because the addition of extra variables to a model cannot reduce the
degree of fit or likelihood, and is very likely to increase it somewhat even if the additional
variables are not truly relevant to the data-generating process.

The best known such criterion, for linear models estimated via least squares, is the adjusted
RZ?,
- SSR/(n — k)
RP=1-—"F"L— =
TSS/(n—1)

where n is the number of observations in the sample, k denotes the number of parameters
estimated, and SSR and TSS denote the sum of squared residuals and the total sum of squares
for the dependent variable, respectively. Compared to the ordinary coefficient of determination

or unadjusted R?,
SSR

~TSS
the “adjusted” calculation penalizes the inclusion of additional parameters, other things equal.

R%2=1

21.2 Information criteria

A more general criterion in a similar spirit is Akaike’s (1974) “Information Criterion” (AIC). The
original formulation of this measure is

AIC = —20(0) + 2k (21.1)

where £ (@) represents the maximum loglikelihood as a function of the vector of parameter es-
timates, 0, and k (as above) denotes the number of “independently adjusted parameters within
the model.” In this formulation, with AIC negatively related to the likelihood and positively
related to the number of parameters, the researcher seeks the minimum AIC.

The AIC can be confusing, in that several variants of the calculation are “in circulation.” For
example, Davidson and MacKinnon (2004) present a simplified version,

AIC = £(0) — k

which is just —2 times the original: in this case, obviously, one wants to maximize AIC.

In the case of models estimated by least squares, the loglikelihood can be written as
- n n
£(0) = —5(1+10g2n—10gn)—§10gSSR (21.2)
Substituting (21.2) into (21.1) we get

AIC = n(1 +log2m —logn) + nlog SSR + 2k

165
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which can also be written as

AIC = nlog (SSTR) + 2k +n(1 +log2) (21.3)

Some authors simplify the formula for the case of models estimated via least squares. For
instance, William Greene writes
AIC = log (SS—R> + Z—k (21.4)
n n
This variant can be derived from (21.3) by dividing through by n and subtracting the constant
1 + log 2. That is, writing AIC; for the version given by Greene, we have

AlCg = %AIC - (1 +log2m)

Finally, Ramanathan gives a further variant:
AICg = (SS—R) e?k/m
n

which is the exponential of the one given by Greene.

Gretl began by using the Ramanathan variant, but since version 1.3.1 the program has used
the original Akaike formula (21.1), and more specifically (21.3) for models estimated via least
squares.

Although the Akaike criterion is designed to favor parsimony, arguably it does not go far enough
in that direction. For instance, if we have two nested models with k — 1 and k parameters
respectively, and if the null hypothesis that parameter k equals O is true, in large samples the
AIC will nonetheless tend to select the less parsimonious model about 16 percent of the time
(see Davidson and MacKinnon, 2004, chapter 15).

An alternative to the AIC which avoids this problem is the Schwarz (1978) “Bayesian information
criterion” (BIC). The BIC can be written (in line with Akaike’s formulation of the AIC) as

BIC = —24(0) + klogn

The multiplication of k by log 7 in the BIC means that the penalty for adding extra parameters
grows with the sample size. This ensures that, asymptotically, one will not select a larger model
over a correctly specified parsimonious model.

A further alternative to AIC, which again tends to select more parsimonious models than AIC,
is the Hannan-Quinn criterion or HQC (Hannan and Quinn, 1979). Written consistently with the
formulations above, this is .

HQC = -2£(0) + 2kloglogn

The Hannan-Quinn calculation is based on the law of the iterated logarithm (note that the
last term is the log of the log of the sample size). The authors argue that their procedure
provides a “strongly consistent estimation procedure for the order of an autoregression”, and
that “compared to other strongly consistent procedures this procedure will underestimate the
order to a lesser degree.”

Gretl reports the AIC, BIC and HQC (calculated as explained above) for most sorts of models.
The key point in interpreting these values is to know whether they are calculated such that
smaller values are better, or such that larger values are better. In gretl, smaller values are
better: one wants to minimize the chosen criterion.
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Time series filters

In addition to the usual application of lags and differences, gretl provides fractional differencing
and various filters commonly used in macroeconomics for trend-cycle decomposition: notably
the Hodrick-Prescott filter (Hodrick and Prescott, 1997), the Baxter-King bandpass filter (Baxter
and King, 1999) and the Butterworth filter (Butterworth, 1930).

22.1 Fractional differencing

The concept of differencing a time series d times is pretty obvious when d is an integer; it may
seem odd when d is fractional. However, this idea has a well-defined mathematical content:
consider the function

flz)=01-2)4,
where z and d are real numbers. By taking a Taylor series expansion around z = 0, we see that
f(z):l+dz+@zz+---

or, more compactly,

f(2) =1+ piz'
i=1
with
CIEd+i-1) gy Gkl

7% Kl k-1 X

The same expansion can be used with the lag operator, so that if we defined
Y= (1-0)%X,
this could be considered shorthand for

Y = Xt —0.5X;-1 — 0.125X;_» — 0.0625X;-3 — - - -

In gretl this transformation can be accomplished by the syntax

genr Y = fracdiff(X,0.5)

22.2 The Hodrick-Prescott filter

This filter is accessed using the hpfiTt() function, which takes as its first argument the name
of the variable to be processed. (A further optional argument is explained below.)

A time series y; may be decomposed into a trend or growth component g; and a cyclical com-
ponent ¢;.
Ye=gr+c, t=12,...,T

The Hodrick-Prescott filter effects such a decomposition by minimizing the following:

T T-1
S =90 A (g1 —g0) — (Ge — ge-1)° -
t=1 t=2
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The first term above is the sum of squared cyclical components c; = y; — g;. The second term
is a multiple A of the sum of squares of the trend component’s second differences. This second
term penalizes variations in the growth rate of the trend component: the larger the value of A,
the higher is the penalty and hence the smoother the trend series.

Note that the hpfilt function in gretl produces the cyclical component, c;, of the original
series. If you want the smoothed trend you can subtract the cycle from the original:

hpfilt(yt)
yt - ct

genr ct
genr gt

Hodrick and Prescott (1997) suggest that a value of A = 1600 is reasonable for quarterly data.
The default value in gretl is 100 times the square of the data frequency (which, of course, yields
1600 for quarterly data). The value can be adjusted using an optional second argument to
hpfilt(), asin

genr ct = hpfilt(yt, 1300)

22.3 The Baxter and King filter

This filter is accessed using the bkfi1t() function, which again takes the name of the variable
to be processed as its first argument. The operation of the filter can be controlled via three
further optional argument.

Consider the spectral representation of a time series y;:
Tr .
Vi = J e'YdZ(w)
—TT

To extract the component of y; that lies between the frequencies w and @ one could apply a
bandpass filter:

¢ = J:r F*(w)el®dZ(w)

where F*(w) = 1 for w < |w| < w and 0 elsewhere. This would imply, in the time domain,
applying to the series a filter with an infinite number of coefficients, which is undesirable. The
Baxter and King bandpass filter applies to y; a finite polynomial in the lag operator A(L):

¢t = ALy

where A(L) is defined as

The coefficients a; are chosen such that F(w) = A(ei?)A(e”®) is the best approximation
to F*(w) for a given k. Clearly, the higher k the better the approximation is, but since 2k
observations have to be discarded, a compromise is usually sought. Moreover, the filter has
also other appealing theoretical properties, among which the property that A(1) = 0, so a
series with a single unit root is made stationary by application of the filter.

In practice, the filter is normally used with monthly or quarterly data to extract the “business
cycle” component, namely the component between 6 and 36 quarters. Usual choices for k are
8 or 12 (maybe higher for monthly series). The default values for the frequency bounds are 8
and 32, and the default value for the approximation order, k, is 8. You can adjust these values
using the full form of bkfiTt (), which is

bkfilt(seriesname, f1, 2, k)

where f1 and f2 represent the lower and upper frequency bounds respectively.
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22.4 The Butterworth filter

The Butterworth filter (Butterworth, 1930) is an approximation to an “ideal” square-wave filter.
The ideal filter divides the spectrum of a time series into a pass-band (frequencies less than
some chosen w* for a low-pass filter, or frequencies greater than w* for high-pass) and a stop-
band; the gain is 1 for the pass-band and 0 for the stop-band. The ideal filter is unattainable
in practice since it would require an infinite number of coefficients, but the Butterworth filter
offers a remarkably good approximation. This filter is derived and persuasively advocated by
Pollock (2000).

For data y, the filtered sequence x is given by
X =y—-ASQM+2AQ'5Q)'Q'y (22.1)

where
S={2Ir - (Lt + L7H)}T™% and M = {2I7 + (L7 + L71)}T

It denotes the identity matrix of order T; Lt = [ey,e2,...,e7-1,0] is the finite-sample matrix
version of the lag operator; and Q is defined such that pre-multiplication of a T-vector of data
by Q' of order (T — 2) x T produces the second differences of the data. The matrix product

Q'3Q = {2Ir — (Lt + Ly")}"

is a Toeplitz matrix.

The behavior of the Butterworth filter is governed by two parameters: the frequency cutoff w*
and an integer order, n, which determines the number of coefficients used. The A that appears
in (22.1) is tan(w™* /2)~2". Higher values of n produce a better approximation to the ideal filter
in principle (i.e. a sharper cut between the pass-band and the stop-band) but there is a downside:
with a greater number of coefficients numerical instability may be an issue, and the influence
of the initial values in the sample may be exaggerated.

In gretl the Butterworth filter is implemented by the bwfilt() function,! which takes three
arguments: the series to filter, the order n and the frequency cutoff, w™*, expressed in degrees.
The cutoff value must be greater than 0 and less than 180. This function operates as a low-pass
filter; for the high-pass variant, subtract the filtered series from the original, as in

series bwcycle =y - bwfilt(y, 8, 67)

Pollock recommends that the parameters of the Butterworth filter be tuned to the data: one
should examine the periodogram of the series in question (possibly after removal of a poly-
nomial trend) in search of a “dead spot” of low power between the frequencies one wishes to
exclude and the frequencies one wishes to retain. If w* is placed in such a dead spot then the
job of separation can be done with a relatively small n, hence avoiding numerical problems. By
way of illustration, consider the periodogram for quarterly observations on new cars sales in
the US,2 1975:1 to 1990:4 (the upper panel in Figure 22.1).

A seasonal pattern is clearly visible in the periodogram, centered at an angle of 90° or 4 periods.
If we set w* = 68° (or thereabouts) we should be able to excise the seasonality quite cleanly
using n = 8. The result is shown in the lower panel of the Figure, along with the frequency
response or gain plot for the chosen filter. Note the smooth and reasonably steep drop-off in
gain centered on the nominal cutoff of 68° ~ 31r/8.

The apparatus that supports this sort of analysis in the gretl GUI can be found under the
Variable menu in the main window: the items Periodogram and Filter. In the periodogram
dialog box you have the option of expressing the frequency axis in degrees, which is helpful
when selecting a Butterworth filter; and in the Butterworth filter dialog you have the option of
plotting the frequency response as well as the smoothed series and/or the residual or cycle.

LThe code for this filter is based on D. S. G. Pollock’s programs IDEOLOG and DETREND. The Pascal source code
for the former is available from http://www.le.ac.uk/users/dsgpl and the C sources for the latter were kindly
made available to us by the author.

2This is the variable QNC from the Ramanathan data file data9-7.
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Chapter 23

Univariate time series models

23.1 Introduction

Time series models are discussed in this chapter and the next two. Here we concentrate on
ARIMA models, unit root tests, and GARCH. The following chapter deals with VARs, and chap-
ter 25 with cointegration and error correction.

23.2 ARIMA models

Representation and syntax

The arma command performs estimation of AutoRegressive, Integrated, Moving Average (ARIMA)
models. These are models that can be written in the form

P (L)y: = O(L)es (23.1)

where ¢ (L), and (L) are polynomials in the lag operator, L, defined such that L"x; = x;_y,
and €; is a white noise process. The exact content of y;, of the AR polynomial ¢ (), and of the
MA polynomial (), will be explained in the following.

Mean terms

The process y; as written in equation (23.1) has, without further qualifications, mean zero.
If the model is to be applied to real data, it is necessary to include some term to handle the
possibility that y; has non-zero mean. There are two possible ways to represent processes with
nonzero mean: one is to define y; as the unconditional mean of y;, namely the central value of
its marginal distribution. Therefore, the series ¥; = y; — y; has mean 0, and the model (23.1)
applies to ;. In practice, assuming that p; is a linear function of some observable variables x;,
the model becomes

(L) (ye —xtB) = O(L)es (23.2)

This is sometimes known as a “regression model with ARMA errors”; its structure may be more
apparent if we represent it using two equations:

Ye = xif+u
pLyur = O(L)e

The model just presented is also sometimes known as “ARMAX” (ARMA + eXogenous variables).
It seems to us, however, that this label is more appropriately applied to a different model:
another way to include a mean term in (23.1) is to base the representation on the conditional
mean of y;, that is the central value of the distribution of y; given its own past. Assuming,
again, that this can be represented as a linear combination of some observable variables z;, the
model would expand to

PL)yr =zry + O(L)e; (23.3)

The formulation (23.3) has the advantage that y can be immediately interpreted as the vector
of marginal effects of the z; variables on the conditional mean of y;. And by adding lags of
z¢ to this specification one can estimate Transfer Function models (which generalize ARMA by
adding the effects of exogenous variable distributed across time).

Gretl provides a way to estimate both forms. Models written as in (23.2) are estimated by maxi-
mum likelihood; models written as in (23.3) are estimated by conditional maximum likelihood.
(For more on these options see the section on “Estimation” below.)
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In the special case when x; = z; = 1 (that is, the models include a constant but no exogenous
variables) the two specifications discussed above reduce to

dL)(ye — ) =0(L)e; (23.4)

and
d(L)y: = x+ O(L)e; (23.5)

respectively. These formulations are essentially equivalent, but if they represent one and the
same process uy and « are, fairly obviously, not numerically identical; rather

a=(1-¢p1—...—bp)u

The gretl syntax for estimating (23.4) is simply

arma p q ; y
The AR and MA lag orders, p and g, can be given either as numbers or as pre-defined scalars.
The parameter u can be dropped if necessary by appending the option --nc (“no constant”) to
the command. If estimation of (23.5) is needed, the switch --conditional must be appended
to the command, as in

arma p q ; y --conditional
Generalizing this principle to the estimation of (23.2) or (23.3), you get that

arma p q ; y const x1 x2
would estimate the following model:

Vi=XiB=b1 (Vi1 = x1-1B) + ...t bp (Viop — X pB) + €+ Or6r 1 + ...+ Oger g

where in this instance x;8 = Bo + x:,181 + Xt282. Appending the --conditional switch, as in

arma p g ; y const x1 x2 --conditional
would estimate the following model:

Ve=XtYy +P1yii+...+PpYip+ €+ 0161+ ...+ 04614

Ideally, the issue broached above could be made moot by writing a more general specification
that nests the alternatives; that is

(L) (e —xtB) = zty + O(L)eg; (23.6)

we would like to generalize the arma command so that the user could specify, for any estimation
method, whether certain exogenous variables should be treated as x;s or z;s, but we’re not yet
at that point (and neither are most other software packages).

Seasonal models

A more flexible lag structure is desirable when analyzing time series that display strong sea-
sonal patterns. Model (23.1) can be expanded to

PL)P(LY) e = O(L)O(LY)€;. (23.7)

For such cases, a fuller form of the syntax is available, namely,

armapgq; PQ;y
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where p and q represent the non-seasonal AR and MA orders, and P and Q the seasonal orders.
For example,

arma 11 ; 11 ; vy

would be used to estimate the following model:
(1= ¢pL)(1 - L) (yr —p) = (1 + OL)(1 + OLY)€;

If y; is a quarterly series (and therefore s = 4), the above equation can be written more explicitly
as

Ve—U=P(Vie1 — ) + P (Vg — ) — (P - P) (V-5 —H) + € + €1 + O€r—4 + (0 - O)€r—s

Such a model is known as a “multiplicative seasonal ARMA model”.

Gaps in the lag structure

The standard way to specify an ARMA model in gretl is via the AR and MA orders, p and g
respectively. In this case all lags from 1 to the given order are included. In some cases one may
wish to include only certain specific AR and/or MA lags. This can be done in either of two ways.

e One can construct a matrix containing the desired lags (positive integer values) and supply
the name of this matrix in place of p or g.

e One can give a space-separated list of lags, enclosed in braces, in place of p or g.
The following code illustrates these options:
matrix pvec = {1, 4}
arma pvec 1 ; vy
arma {1 4} 1 ; vy
Both forms above specify an ARMA model in which AR lags 1 and 4 are used (but not 2 and 3).

This facility is available only for the non-seasonal component of the ARMA specification.

Differencing and ARIMA
The above discussion presupposes that the time series y; has already been subjected to all the
transformations deemed necessary for ensuring stationarity (see also section 23.3). Differencing
is the most common of these transformations, and gretl provides a mechanism to include this
step into the arma command: the syntax

arma pdq;y

would estimate an ARMA(p, q) model on A%y;. It is functionally equivalent to

series tmp =y

loop i=1..d
tmp = diff(tmp)
endloop

arma p q ; tmp

except with regard to forecasting after estimation (see below).

When the series y; is differenced before performing the analysis the model is known as ARIMA
(“I” for Integrated); for this reason, gretl provides the arima command as an alias for arma.

Seasonal differencing is handled similarly, with the syntax

armapdq; PDQ; vy
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where D is the order for seasonal differencing. Thus, the command
arma 1 00 ; 111 ; vy
would produce the same parameter estimates as

genr dsy = sdiff(y)
arma 1 0 ; 11 ; dsy

where we use the sdiff function to create a seasonal difference (e.g. for quarterly data, y; —
Vi-4).

In specifying an ARIMA model with exogenous regressors we face a choice which relates back
to the discussion of the variant models (23.2) and (23.3) above. If we choose model (23.2), the
“regression model with ARMA errors”, how should this be extended to the case of ARIMA? The
issue is whether or not the differencing that is applied to the dependent variable should also be
applied to the regressors. Consider the simplest case, ARIMA with non-seasonal differencing of
order 1. We may estimate either

d(L)(1-L)(ye — X¢B) = O(L)er (23.8)

or
¢ (L) (1= L)y: — X¢B) = 0(L)e; (23.9)

The first of these formulations can be described as a regression model with ARIMA errors, while
the second preserves the levels of the X variables. As of gretl version 1.8.6, the default model
is (23.8), in which differencing is applied to both y; and X;. However, when using the default
estimation method (native exact ML, see below), the option --y-diff-only may be given, in
which case gretl estimates (23.9).!

Estimation

The default estimation method for ARMA models is exact maximum likelihood estimation (un-
der the assumption that the error term is normally distributed), using the Kalman filter in
conjunction with the BFGS maximization algorithm. The gradient of the log-likelihood with re-
spect to the parameter estimates is approximated numerically. This method produces results
that are directly comparable with many other software packages. The constant, and any exoge-
nous variables, are treated as in equation (23.2). The covariance matrix for the parameters is
computed using a numerical approximation to the Hessian at convergence.

The alternative method, invoked with the --conditional switch, is conditional maximum like-
lihood (CML), also known as “conditional sum of squares” (see Hamilton, 1994, p. 132). This
method was exemplified in the script 9.3, and only a brief description will be given here. Given
a sample of size T, the CML method minimizes the sum of squared one-step-ahead prediction
errors generated by the model for the observations ty,..., T. The starting point ty depends on
the orders of the AR polynomials in the model. The numerical maximization method used is
BHHH, and the covariance matrix is computed using a Gauss-Newton regression.

The CML method is nearly equivalent to maximum likelihood under the hypothesis of normal-
ity; the difference is that the first (o — 1) observations are considered fixed and only enter the
likelihood function as conditioning variables. As a consequence, the two methods are asymp-
totically equivalent under standard conditions — except for the fact, discussed above, that our
CML implementation treats the constant and exogenous variables as per equation (23.3).

The two methods can be compared as in the following example
open datalO-1

arma 11 ; r
arma 1 1 ; r --conditional

Iprior to gretl 1.8.6, the default model was (23.9). We changed this for the sake of consistency with other software.



Chapter 23. Univariate time series models 175

which produces the estimates shown in Table 23.1. As you can see, the estimates of ¢ and 0 are
quite similar. The reported constants differ widely, as expected — see the discussion following
equations (23.4) and (23.5). However, dividing the CML constant by 1 — ¢» we get 7.38, which is
not far from the ML estimate of 6.93.

Table 23.1: ML and CML estimates

Parameter ML CML
u 6.93042 (0.923882) 1.07322 (0.488661)
¢ 0.855360 (0.0511842) 0.852772 (0.0450252)
0 0.588056 (0.0986096) 0.591838 (0.0456662)

Convergence and initialization

The numerical methods used to maximize the likelihood for ARMA models are not guaranteed
to converge. Whether or not convergence is achieved, and whether or not the true maximum of
the likelihood function is attained, may depend on the starting values for the parameters. Gretl
employs one of the following two initialization mechanisms, depending on the specification of
the model and the estimation method chosen.

1. Estimate a pure AR model by Least Squares (nonlinear least squares if the model requires
it, otherwise OLS). Set the AR parameter values based on this regression and set the MA
parameters to a small positive value (0.0001).

2. The Hannan-Rissanen method: First estimate an autoregressive model by OLS and save
the residuals. Then in a second OLS pass add appropriate lags of the first-round residuals
to the model, to obtain estimates of the MA parameters.

To see the details of the ARMA estimation procedure, add the --verbose option to the com-
mand. This prints a notice of the initialization method used, as well as the parameter values
and log-likelihood at each iteration.

Besides the built-in initialization mechanisms, the user has the option of specifying a set of
starting values manually. This is done via the set command: the first argument should be the
keyword initvals and the second should be the name of a pre-specified matrix containing
starting values. For example

matrix start = { 0, 0.85, 0.34 }
set initvals start
arma 11 ; vy

The specified matrix should have just as many parameters as the model: in the example above
there are three parameters, since the model implicitly includes a constant. The constant, if
present, is always given first; otherwise the order in which the parameters are expected is the
same as the order of specification in the arma or arima command. In the example the constant
is set to zero, ¢ to 0.85, and 0, to 0.34.

You can get gretl to revert to automatic initialization via the command set initvals auto.

Two variants of the BFGS algorithm are available in gretl. In general we recommend the de-
fault variant, which is based on an implementation by Nash (1990), but for some problems the
alternative, limited-memory version (L-BFGS-B, see Byrd et al., 1995) may increase the chances
of convergence on the ML solution. This can be selected via the --1bfgs option to the arma
command.

Estimation via X-12-ARIMA

As an alternative to estimating ARMA models using “native” code, gretl offers the option of
using the external program X-12-ARIMA. This is the seasonal adjustment software produced
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and maintained by the U.S. Census Bureau; it is used for all official seasonal adjustments at the
Bureau.

Gretl includes a module which interfaces with X-12-ARIMA: it translates arma commands using
the syntax outlined above into a form recognized by X-12-ARIMA, executes the program, and
retrieves the results for viewing and further analysis within gretl. To use this facility you have
to install X-12-ARIMA separately. Packages for both MS Windows and GNU/Linux are available
from the gretl website, http://gretl.sourceforge.net/.

To invoke X-12-ARIMA as the estimation engine, append the flag --x-12-arima, as in
arma p q ; y --x-12-arima

As with native estimation, the default is to use exact ML but there is the option of using condi-
tional ML with the --conditional flag. However, please note that when X-12-ARIMA is used in
conditional ML mode, the comments above regarding the variant treatments of the mean of the
process y; do not apply. That is, when you use X-12-ARIMA the model that is estimated is (23.2),
regardless of whether estimation is by exact ML or conditional ML. In addition, the treatment
of exogenous regressors in the context of ARIMA differencing is always that shown in equation
(23.8).

Forecasting

ARMA models are often used for forecasting purposes. The autoregressive component, in par-
ticular, offers the possibility of forecasting a process “out of sample” over a substantial time
horizon.

Gretl supports forecasting on the basis of ARMA models using the method set out by Box
and Jenkins (1976).2 The Box and Jenkins algorithm produces a set of integrated AR coef-
ficients which take into account any differencing of the dependent variable (seasonal and/or
non-seasonal) in the ARIMA context, thus making it possible to generate a forecast for the level
of the original variable. By contrast, if you first difference a series manually and then apply
ARMA to the differenced series, forecasts will be for the differenced series, not the level. This
point is illustrated in Example 23.1. The parameter estimates are identical for the two mod-
els. The forecasts differ but are mutually consistent: the variable fcdiff emulates the ARMA
forecast (static, one step ahead within the sample range, and dynamic out of sample).

23.3 Unit root tests

The ADF test

The Augmented Dickey-Fuller (ADF) test is, as implemented in gretl, the t-statistic on @ in the
following regression:

14
Ay =l + QY1+ D YidYi—i + €1 (23.10)
i=1

This test statistic is probably the best-known and most widely used unit root test. It is a one-
sided test whose null hypothesis is ¢ = 0 versus the alternative ¢ < 0 (and hence large negative
values of the test statistic lead to the rejection of the null). Under the null, y; must be differ-
enced at least once to achieve stationarity; under the alternative, y; is already stationary and
no differencing is required.

Omne peculiar aspect of this test is that its limit distribution is non-standard under the null
hypothesis: moreover, the shape of the distribution, and consequently the critical values for the
test, depends on the form of the u; term. A full analysis of the various cases is inappropriate
here: Hamilton (1994) contains an excellent discussion, but any recent time series textbook
covers this topic. Suffice it to say that gretl allows the user to choose the specification for p;
among four different alternatives:

2See in particular their “Program 4” on p. 505ff.
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open greenel8_2.gdt

# log of quarterly U.S. nominal GNP, 1950:1 to 1983:4

genr y = log(Y)

# and its first difference

genr dy = diff(y)
# reserve 2 years for out-of-sample forecast

smpl ;

# Estimate using ARIMA
arima 1 1 1
# forecast over full period

# Return to sub-sample and run ARMA on the first difference of y

1981:4

smpl --full
fcast fcl
smpl ; 1981:4
arma 1 1 ; dy
smpl --full
fcast fc2

genr fcdiff = (t<=1982:1)7 (fcl - y(-1))

Y

Example 23.1: ARIMA forecasting

The output from the last command is:

1981:
1981:
1981:
1981:
1982:
1982:
1982:
1982:
1983:
1983:
1983:
1983:

BWNRMAMAWNRENEWNR

00 00 00 00 00 C0 00 00 C0 OO0 N N

y

.964086
.978654
.009463
.015625
.014997
.026562
.032717
.042249
.062685
.091627
.115700
.140811

00 00 00 00 00 00 OO0 00 00 N N N

fcl

.940930
.997576
.997503
.033695
.029698
.046037
.063636
.081935
.100623
.119528
.138554
.157646

[eNeNoNeoNoNoNeNoNoNeNoNoe]

(fcl - fcl(-1)
# compare the forecasts over the later period
smpl 1981:1 1983:4
print y fcl fc2 fcdiff --byobs

fc2

.02668
.03349
.01885
.02423
.01407
.01634
.01760
.01830
.01869
.01891
.01903
.01909

fediff

.02668
.03349
.01885
.02423
.01407
.01634
.01760
.01830
.01869
.01891
.01903
.01909
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Uy command option
0 --nc
Ho --C
Mo + pit --ct
[J()—I—ull'-i-ultz --ctt

These option flags are not mutually exclusive; when they are used together the statistic will be
reported separately for each selected case. By default, gretl uses the combination --c --ct.
For each case, approximate p-values are calculated by means of the algorithm developed in
MacKinnon (1996).

The gretl command used to perform the test is adf; for example
adf 4 x1

would compute the test statistic as the t-statistic for @ in equation 23.10 with p = 4 in the two
cases Uy = Ho and yy = o + My t.

The number of lags (p in equation 23.10) should be chosen as to ensure that (23.10) is a para-
metrization flexible enough to represent adequately the short-run persistence of Ay;. Setting
p too low results in size distortions in the test, whereas setting p too high leads to low power.
As a convenience to the user, the parameter p can be automatically determined. Setting p to a
negative number triggers a sequential procedure that starts with p lags and decrements p until
the t-statistic for the parameter y, exceeds 1.645 in absolute value.

The ADF-GLS test

Elliott, Rothenberg and Stock (1996) proposed a variant of the ADF test which involves an al-
ternative method of handling the parameters pertaining to the deterministic term y;: these are
estimated first via Generalized Least Squares, and in a second stage an ADF regression is per-
formed using the GLS residuals. This variant offers greater power than the regular ADF test for
the cases u; = po and py = o + Uy t.

The ADF-GLS test is available in gretl via the --g1s option to the adf command. When this
option is selected the --nc and --ctt options become unavailable, and only one case can be
selected at a time; by default the constant-only model is used but a trend can be added using
the --ct flag. When a trend is present in this test MacKinnon-type p-values are not available;
instead we show critical values from Table 1 in Elliott et al. (1996).

The KPSS test

The KPSS test (Kwiatkowski, Phillips, Schmidt and Shin, 1992) is a unit root test in which the
null hypothesis is opposite to that in the ADF test: under the null, the series in question is
stationary; the alternative is that the series is I(1).

The basic intuition behind this test statistic is very simple: if y; can be written as y; = u + ug,
where u; is some zero-mean stationary process, then not only does the sample average of the
y¢s provide a consistent estimator of u, but the long-run variance of u; is a well-defined, finite
number. Neither of these properties hold under the alternative.

The test itself is based on the following statistic:

EDNETY:

n= T252 (23.11)

where S; = Z§=1 es and 2 is an estimate of the long-run variance of e; = (y; — 7). Under
the null, this statistic has a well-defined (nonstandard) asymptotic distribution, which is free of
nuisance parameters and has been tabulated by simulation. Under the alternative, the statistic
diverges.

As a consequence, it is possible to construct a one-sided test based on n, where Hj is rejected
if n is bigger than the appropriate critical value; gretl provides the 90, 95 and 99 percent
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quantiles. The critical values are computed via the method presented by Sephton (1995), which
offers greater accuracy than the values tabulated in Kwiatkowski et al. (1992).

Usage example:
kpss m y

where m is an integer representing the bandwidth or window size used in the formula for esti-

mating the long run variance:
m

2 _ 3 || )A'
g z (1 m+1)Y

i=—m

The y; terms denote the empirical autocovariances of e; from order —m through m. For this
estimator to be consistent, m must be large enough to accommodate the short-run persistence
of e¢, but not too large compared to the sample size T. If the supplied m is non-positive a default

1/4
value is computed, namely the integer part of 4 (%) .

The above concept can be generalized to the case where y; is thought to be stationary around
a deterministic trend. In this case, formula (23.11) remains unchanged, but the series e; is
defined as the residuals from an OLS regression of y; on a constant and a linear trend. This
second form of the test is obtained by appending the --trend option to the kpss command:

kpss n y --trend

Note that in this case the asymptotic distribution of the test is different and the critical values
reported by gretl differ accordingly.

Panel unit root tests

The most commonly used unit root tests for panel data involve a generalization of the ADF
procedure, in which the joint null hypothesis is that a given times series is non-stationary for
all individuals in the panel.

In this context the ADF regression (23.10) can be rewritten as

Pi
AYit = Hit + QiVig-1+ 2. VijAVig—j + €it (23.12)
j=1

The model (23.12) allows for maximal heterogeneity across the individuals in the panel: the
parameters of the deterministic term, the autoregressive coefficient @, and the lag order p are
all specific to the individual, indexed by i.

One possible modification of this model is to impose the assumption that ¢; = @ for all i; that
is, the individual time series share a common autoregressive root (although they may differ in
respect of other statistical properties). The choice of whether or not to impose this assumption
has an important bearing on the hypotheses under test. Under model (23.12) the joint null is
@; = 0 for all i, meaning that all the individual time series are non-stationary, and the alter-
native (simply the negation of the null) is that at least one individual time series is stationary.
When a common @ is assumed, the null is that ¢ = 0 and the alternative is that ¢ < 0. The
null still says that all the individual series are non-stationary, but the alternative now says that
they are all stationary. The choice of model should take this point into account, as well as the
gain in power from forming a pooled estimate of @ and, of course, the plausibility of assuming
a common AR(1) coefficient.3

In gretl, the formulation (23.12) is used automatically when the adf command is used on panel
data. The joint test statistic is formed using the method of Im, Pesaran and Shin (2003). In
this context the behavior of adf differs from regular time-series data: only one case of the
deterministic term is handled per invocation of the command; the default is that y;; includes

3If the assumption of a common ¢ seems excessively restrictive, bear in mind that we routinely assume common
slope coefficients when estimating panel models, even if this is unlikely to be literally true.



Chapter 23. Univariate time series models 180

just a constant but the --nc and --ct flags can be used to suppress the constant or to include
a trend, respectively; and the quadratic trend option --ctt is not available.

The alternative that imposes a common value of @ is implemented via the Tevinlin command.
The test statistic is computed as per Levin, Lin and Chu (2002). As with the adf command, the
first argument is the lag order and the second is the name of the series to test; and the default
case for the deterministic component is a constant only. The options --nc and --ct have the
same effect as with adf. One refinement is that the lag order may be given in either of two
forms: if a scalar is given, this is taken to represent a common value of p for all individuals,
but you may instead provide a vector holding a set of p; values, hence allowing the order of
autocorrelation of the series to differ by individual. So, for example, given

levinlin 2 vy
levinlin {2,2,3,3,4,4} y

the first command runs a joint ADF test with a common lag order of 2, while the second (which
assumes a panel with six individuals) allows for differing short-run dynamics. The first argu-
ment to Tevinlin can be given as a set of comma-separated integers enclosed in braces, as
shown above, or as the name of an appropriately dimensioned pre-defined matrix (see chap-
ter 13).

Besides variants of the ADF test, the KPSS test also can be used with panel data via the kpss
command. In this case the test (of the null hypothesis that the given time series is stationary for
all individuals) is implemented using the method of Choi (2001). This is an application of meta-
analysis, the statistical technique whereby an overall or composite p-value for the test of a given
null hypothesis can be computed from the p-values of a set of separate tests. Unfortunately, in
the case of the KPSS test we are limited by the unavailability of precise p-values, although if an
individual test statistic falls between the 10 percent and 1 percent critical values we are able to
interpolate with a fair degree of confidence. This gives rise to four cases.

1. All the individual KPSS test statistics fall between the 10 percent and 1 percent critical
values: the Choi method gives us a plausible composite p-value.

2. Some of the KPSS test statistics exceed the 1 percent value and none fall short of the
10 percent value: we can give an upper bound for the composite p-value by setting the
unknown p-values to 0.01.

3. Some of the KPSS test statistics fall short of the 10 percent critical value but none exceed
the 1 percent value: we can give a lower bound to the composite p-value by setting the
unknown p-values to 0.10.

4. None of the above conditions are satisfied: the Choi method fails to produce any result
for the composite KPSS test.

23.4 Cointegration tests

The generally recommended test for cointegration is the Johansen test, which is discussed in
detail in chapter 25. In this context we offer a few remarks on the cointegration test of Engle
and Granger (1987), which builds on the ADF test discussed above (section 23.3).

For the Engle-Granger test, the procedure is:

1. Test each series for a unit root using an ADF test.

2. Run a “cointegrating regression” via OLS. For this we select one of the potentially cointe-
grated variables as dependent, and include the other potentially cointegrated variables as
regressors.

3. Perform an ADF test on the residuals from the cointegrating regression.
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The idea is that cointegration is supported if (a) the null of non-stationarity is not rejected for
each of the series individually, in step 1, while (b) the null is rejected for the residuals at step 3.
That is, each of the individual series is I(1) but some linear combination of the series is I(0).

This test is implemented in gretl by the coint command, which requires an integer lag order
(for the ADF tests) followed by a list of variables to be tested, the first of which will be taken
as dependent in the cointegrating regression. Please see the online help for coint, or the Gretl
Command Reference, for further details.

23.5 ARCH and GARCH

Heteroskedasticity means a non-constant variance of the error term in a regression model. Au-
toregressive Conditional Heteroskedasticity (ARCH) is a phenomenon specific to time series
models, whereby the variance of the error displays autoregressive behavior; for instance, the
time series exhibits successive periods where the error variance is relatively large, and succes-
sive periods where it is relatively small. This sort of behavior is reckoned to be common in asset
markets: an unsettling piece of news can lead to a period of increased volatility in the market.

An ARCH error process of order g can be represented as

q
Up = Ov&; 0 =EUQi-1) = &0 + D, Ui,
i=1
where the &;s are independently and identically distributed (iid) with mean zero and variance 1,
and where oy is taken to be the positive square root of UE. Q¢_1 denotes the information set as
of time t — 1 and O'tz is the conditional variance: that is, the variance conditional on information
dated t — 1 and earlier.

It is important to notice the difference between ARCH and an ordinary autoregressive error
process. The simplest (first-order) case of the latter can be written as

Ut = PU—1 + & -1<p<l1

where the &s are independently and identically distributed with mean zero and variance o 2.
With an AR(1) error, if p is positive then a positive value of u; will tend to be followed by a
positive u;,1. With an ARCH error process, a disturbance u; of large absolute value will tend
to be followed by further large absolute values, but with no presumption that the successive
values will be of the same sign. ARCH in asset prices is a “stylized fact” and is consistent
with market efficiency; on the other hand autoregressive behavior of asset prices would violate
market efficiency.

One can test for ARCH of order q in the following way:

1. Estimate the model of interest via OLS and save the squared residuals, %2.

2. Perform an auxiliary regression in which the current squared residual is regressed on a
constant and g lags of itself.

3. Find the TR? value (sample size times unadjusted R?) for the auxiliary regression.

4. Refer the TR? value to the x2 distribution with g degrees of freedom, and if the p-value is
“small enough” reject the null hypothesis of homoskedasticity in favor of the alternative
of ARCH(qg).

This test is implemented in gretl via the modtest command with the --arch option, which must
follow estimation of a time-series model by OLS (either a single-equation model or a VAR). For
example,

ols y 0 x
modtest 4 --arch

This example specifies an ARCH order of q = 4; if the order argument is omitted, g is set equal
to the periodicity of the data. In the graphical interface, the ARCH test is accessible from the
“Tests” menu in the model window (again, for single-equation OLS or VARS).
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GARCH

The simple ARCH(q) process is useful for introducing the general concept of conditional het-
eroskedasticity in time series, but it has been found to be insufficient in empirical work. The
dynamics of the error variance permitted by ARCH(g) are not rich enough to represent the
patterns found in financial data. The generalized ARCH or GARCH model is now more widely
used.

The representation of the variance of a process in the GARCH model is somewhat (but not
exactly) analogous to the ARMA representation of the level of a time series. The variance at
time t is allowed to depend on both past values of the variance and past values of the realized
squared disturbance, as shown in the following system of equations:

Yeo= XeB+ue (23.13)

U = Oté&t (2314)
a p

of = o+ D oqui i+ > 807 (23.15)
i=1 j=1

As above, &; is an iid sequence with unit variance. X; is a matrix of regressors (or in the simplest
case, just a vector of 1s allowing for a non-zero mean of ;). Note that if p = 0, GARCH collapses
to ARCH(q): the generalization is embodied in the §; terms that multiply previous values of the
error variance.

In principle the underlying innovation, &;, could follow any suitable probability distribution, and
besides the obvious candidate of the normal or Gaussian distribution the Student’s t distribu-
tion has been used in this context. Currently gretl only handles the case where &; is assumed to
be Gaussian. However, when the --robust option to the garch command is given, the estima-
tor gretl uses for the covariance matrix can be considered Quasi-Maximum Likelihood even with
non-normal disturbances. See below for more on the options regarding the GARCH covariance
matrix.

Example:
garch p q ; y const X

where p > 0 and g > 0 denote the respective lag orders as shown in equation (23.15). These
values can be supplied in numerical form or as the names of pre-defined scalar variables.

GARCH estimation

Estimation of the parameters of a GARCH model is by no means a straightforward task. (Con-
sider equation 23.15: the conditional variance at any point in time, O'tz, depends on the condi-
tional variance in earlier periods, but Utz is not observed, and must be inferred by some sort
of Maximum Likelihood procedure.) By default gretl uses native code that employs the BFGS
maximizer; you also have the option (activated by the --fcp command-line switch) of using the
method proposed by Fiorentini et al. (1996),* which was adopted as a benchmark in the study
of GARCH results by McCullough and Renfro (1998). It employs analytical first and second
derivatives of the log-likelihood, and uses a mixed-gradient algorithm, exploiting the informa-
tion matrix in the early iterations and then switching to the Hessian in the neighborhood of the
maximum likelihood. (This progress can be observed if you append the --verbose option to
gretl’s garch command.)

Several options are available for computing the covariance matrix of the parameter estimates
in connection with the garch command. At a first level, one can choose between a “standard”
and a “robust” estimator. By default, the Hessian is used unless the --robust option is given,
in which case the QML estimator is used. A finer choice is available via the set command, as
shown in Table 23.2.

It is not uncommon, when one estimates a GARCH model for an arbitrary time series, to find
that the iterative calculation of the estimates fails to converge. For the GARCH model to make

4The algorithm is based on Fortran code deposited in the archive of the Journal of Applied Econometrics by the
authors, and is used by kind permission of Professor Fiorentini.
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Table 23.2: Options for the GARCH covariance matrix

command effect

set garch_vcv hessian Use the Hessian

set garch_vcv im Use the Information Matrix

set garch_vcv op Use the Outer Product of the Gradient

set garch_vcv qml QML estimator

set garch_vcv bw Bollerslev-Wooldridge “sandwich” estimator

sense, there are strong restrictions on the admissible parameter values, and it is not always
the case that there exists a set of values inside the admissible parameter space for which the
likelihood is maximized.

The restrictions in question can be explained by reference to the simplest (and much the most
common) instance of the GARCH model, where p = g = 1. In the GARCH(1, 1) model the
conditional variance is

of = oo + xquUr_| + 6104, (23.16)

Taking the unconditional expectation of (23.16) we get

0% =g+ ;0% + 8,07

so that
2 _ Xo
1-—0q — 51
For this unconditional variance to exist, we require that o¢; + 61 < 1, and for it to be positive we
require that g > 0.

(o

A common reason for non-convergence of GARCH estimates (that is, a common reason for the
non-existence of «; and 6; values that satisfy the above requirements and at the same time
maximize the likelihood of the data) is misspecification of the model. It is important to realize
that GARCH, in itself, allows only for time-varying volatility in the data. If the mean of the
series in question is not constant, or if the error process is not only heteroskedastic but also
autoregressive, it is necessary to take this into account when formulating an appropriate model.
For example, it may be necessary to take the first difference of the variable in question and/or
to add suitable regressors, X;, as in (23.13).
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Vector Autoregressions

Gretl provides a standard set of procedures for dealing with the multivariate time-series models
known as VARs (Vector AutoRegression). More general models — such as VARMAS, nonlinear
models or multivariate GARCH models — are not provided as of now, although it is entirely
possible to estimate them by writing custom procedures in the gretl scripting language. In this
chapter, we will briefly review gretl’s VAR toolbox.

24.1 Notation

A VAR is a structure whose aim is to model the time persistence of a vector of n time series,
V¢, via a multivariate autoregression, as in

Yt = Alyt—l + AZ_)’t—Z + -+ Apyt_p + Bx; + €; (24.1)

The number of lags p is called the order of the VAR. The vector x;, if present, contains a set
of exogenous variables, often including a constant, possibly with a time trend and seasonal
dummies. The vector €; is typically assumed to be a vector white noise, with covariance matrix
3.

Equation (24.1) can be written more compactly as
A(L)yt = Bx; + € (242)

where A(L) is a matrix polynomial in the lag operator, or as

Yt Yt-1 B €t
_ _ 0 0

L VN I Xi + (24.3)
Yi-p-1 Vi-p 0 0

The matrix A is known as the “companion matrix” and equals

A Ay - A,
1 o --- 0
A= 0 I 0

Equation (24.3) is known as the “companion form” of the VAR.

Another representation of interest is the so-called “VMA representation”, which is written in
terms of an infinite series of matrices ®; defined as

o 0t
O = o€

(24.4)

The ©; matrices may be derived by recursive substitution in equation (24.1): for example, as-
suming for simplicity that B = 0 and p = 1, equation (24.1) would become

YVt =AYi-1+ €
which could be rewritten as

Ve=A"Ny €+ A€ + Aler o+ -+ A6y

184
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In this case ®; = A'. In general, it is possible to compute ©; as the n x n north-west block of
the i-th power of the companion matrix A (so Qg is always an identity matrix).

The VAR is said to be stable if all the eigenvalues of the companion matrix A are smaller than 1
in absolute value, or equivalently, if the matrix polynomial A(L) in equation (24.2) is such that
|A(z)| = 0 implies |z| > 1. If this is the case, lim;,—. ®; = 0 and the vector y; is stationary; as
a consequence, the equation

yvi —E(yt) = Z Qi€ (24.5)
i=0

is a legitimate Wold representation.

If the VAR is not stable, then the inferential procedures that are called for become somewhat
more specialized, except for some simple cases. In particular, if the number of eigenvalues of
A with modulus 1 is between 1 and n — 1, the canonical tool to deal with these models is the
cointegrated VAR model, discussed in chapter 25.

24.2 Estimation

The gretl command for estimating a VAR is var which, in the command line interface, is invoked
in the following manner:

[ modelname <- ] var p Ylist [; Xlist]

where p is a scalar (the VAR order) and Y11ist is a list of variables describing the content of y;.
If the list X11ist is absent, the vector x; is understood to contain a constant only; if present,
must be separated from Ylist by a semi-colon and contains the other exogenous variables.
Note, however, that a few common choices can be obtained in a simpler way via options: the
options gretl provides are --trend, --seasonals and --nc (no constant). Either YTist and
X11i st may be named lists (see section 12.1). The “<-" construct can be used to store the model
under a name (see section 3.2), if so desired. To estimate a VAR using the graphical interface,
choose “Time Series, Vector Autoregression”, under the Model menu.

The parameters in eq. (24.1) are typically free from restrictions, which implies that multivariate
OLS provides a consistent and asymptotically efficient estimator of all the parameters.! Given
the simplicity of OLS, this is what every software package, including gretl, uses: example script
24.1 exemplifies the fact that the var command gives you exactly the output you would have
from a battery of OLS regressions. The advantage of using the dedicated command is that, after
estimation is done, it makes it much easier to access certain quantities and manage certain
tasks. For example, the $coeff accessor returns the estimated coefficients as a matrix with n
columns and $sigma returns an estimate of the matrix 3, the covariance matrix of €;.

Moreover, for each variable in the system an F test is automatically performed, in which the
null hypothesis is that no lags of variable j are significant in the equation for variable i. This is
commonly known as a Granger causality test.

Periodicity horizon
Quarterly 20 (5 years)
Monthly 24 (2 years)
Daily 3 weeks
All other cases 10

Table 24.1: VMA horizon as a function of the dataset periodicity

In addition, two accessors become available for the companion matrix ($compan) and the VMA
representation ($vma). The latter deserves a detailed description: since the VMA representation
(24.5) is of infinite order, gretl defines a horizon up to which the ©®; matrices are computed

I fact, under normality of €; OLS is indeed the conditional ML estimator. You may want to use other methods if
you need to estimate a VAR in which some parameters are constrained.
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Input:

open sw_chl4.gdt
genr infl = 400*sdiff(Tog(PUNEW))

scalar p = 2

Tist X = LHUR inf1
Tist Xlag = lags(p,X)

Toop foreach

iX

ols $i const Xlag

end Toop

var p X

Output (selected portions):

Model 1: OLS, using observations 1960:3-1999:4 (T

Dependent variable: LHUR

coefficient

std. error

Example 24.1: Estimation of a VAR via OLS

const

LHUR_1
LHUR_2
infl_1
infl_2

Mean dependent var
Sum squared resid

0.113673 0.0875210
1.54297 0.0680518
-0.583104 0.0645879
0.0219040 0.00874581
-0.0148408 0.00920536
6.019198

VAR system, lag order 2
OLS estimates, observations 1960:3-1999:4 (T = 158)

Log-Tikelihood = -322.73663

8.654176

S.D. dependent var
S.E. of regression

Determinant of covariance matrix = 0.20382769

AIC = 4.2119
BIC = 4.4057
HQC = 4.2906

Portmanteau test: LB(39) =

Equation 1: LHUR

coefficient

0.1960
8.78e-51 #**
7.00e-16
0.0133  **
0.1090

1.502549
0.237830

226.984, df = 148 [0.0000]

std. error

LHUR_1
LHUR_2
infl_1
infl_2

Mean dependent var
Sum squared resid

0.113673 0.0875210
1.54297 0.0680518
-0.583104 0.0645879
0.0219040 0.00874581
-0.0148408 0.00920536
6.019198

8.654176

S.D. dependent var
S.E. of regression

0.1960
8.78e-51 *¥*
7.00e-16 #***
0.0133  **
0.1090

1.502549
0.237830
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automatically. By default, this is a function of the periodicity of the data (see table 24.1), but it
can be set by the user to any desired value via the set command with the horizon parameter,
as in

set horizon 30

Calling the horizon h, the $vma accessor returns an (h + 1) X n? matrix, in which the (i + 1)-th
row is the vectorized form of 0;.

VAR order selection

In order to help the user choose the most appropriate VAR order, gretl provides a special syntax
construct to the var command:

var p Ylist [; Xlist] --Tagselect

When the command is invoked with the --Tagselect option, estimation is performed for all
lags up to p and a table is printed: it displays, for each order, a LR test for the order p versus
p —1, plus an array of information criteria (see chapter 21). For each information criterion in the
table, a star indicates what appears to be the “best” choice. The same output can be obtained
through the graphical interface via the “Time Series, VAR lag selection” entry under the Model
menu.

Example 24.2: VAR lag selection via Information Criteria
Input:

open denmark

list Y=12 3 4
var 4 Y --Tagselect
var 6 Y --Tagselect

Output (selected portions):

VAR system, maximum lag order 4

The asterisks below indicate the best (that is, minimized) values
of the respective information criteria, AIC = Akaike criterion,
BIC = Schwarz Bayesian criterion and HQC = Hannan-Quinn criterion.

Tlags Toglik p(LR) AIC BIC HQC
1 609.15315 -23.104045 -22.346466* -22.814552
2 631.70153 0.00013 -23.360844* -21.997203 -22.839757*%
3 642.38574 0.16478 -23.152382 -21.182677  -22.399699
4 653.22564 0.15383 -22.950025 -20.374257  -21.965748

VAR system, maximum lag order 6

The asterisks below indicate the best (that is, minimized) values
of the respective information criteria, AIC = Akaike criterion,
BIC = Schwarz Bayesian criterion and HQC = Hannan-Quinn criterion.

Tlags Toglik p(LR) AIC BIC HQC

594.38410 -23.444249  -22.672078* -23.151288*
615.43480 0.00038 -23.650400* -22.260491 -23.123070
624.97613 0.26440 -23.386781  -21.379135 -22.625083
636.03766 0.13926 -23.185210 -20.559827 -22.189144
658.36014 0.00016 -23.443271 -20.200150 -22.212836
669.88472 0.11243 -23.260601  -19.399743 -21.795797

AUV A WN R
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Warning: in finite samples the choice of p may affect the outcome of the procedure. This is
not a bug, but rather a nasty but unavoidable side effect of the way these comparisons should
be made: if your sample contains T observations, the lag selection procedure, if invoked with
parameter p, examines all VARs of order ranging form 1 to p, estimated on a sample of T — p
observations. In other words, the comparison procedure does not use all the data available
when estimating VARs of order less than p to make sure that all the models compared are
estimated on the same data range. Under these circumstances, choosing a different value of p
may alter the results, although this is unlikely to happen if your sample size is reasonably large.

An example of this unpleasant phenomenon is given in example script 24.2. As can be seen,
according to the Hannan-Quinn criterion, order 2 seems preferable to order 1 if the maximum
tested order is 4, but the situation is reversed if the maximum tested order is 6.

24.3 Structural VARs

As of today, gretl does not provide a native implementation for the class of models known
as “Structural VARs”; however, it provides an implementation of the Cholesky deconposition-
based approach, which is the most classic, and certainly most popular SVAR version.

IRF and FEVD

Assume that the disturbance in equation (24.1) can be thought of as a linear function of a vector
of structural shocks u;, which are assumed to have unit variance and to be incorrelated to one
another, so V(u;) = I. If €, = Kuy, it follows that > = V(¢;) = KK'.

The main object of interest in this setting the sequence of matrices

Co= 2 ok, (24.6)
OUt—i
known as the structural VMA representation. From the Cy matrices defined in equation (24.6)
two quantities of interest may be derived: the Impulse Response Function (IRF) and the Fore-
cast Error Variance Decomposition (FEVD).

The IRF of variable i to shock j is simply the sequence of the elements in row i and column j
of the Cy matrices. In formulae:

Vit
ou .tk
As arule, Impulse Response Functions are plotted as a function of k, and are interpreted as the
effect that a shock has on an observable variable through time. Of course, what we observe are
the estimated IRFs, so it is natural to endow them with confidence intervals: following common
practice among econometric software, gretl computes the confidence intervals by using the
bootstrap?; details are later in this section.

Tijk =

Another quantity of interest that may be computed from the structural VMA representation is
the Forecast Error Variance Decomposition (FEVD). The forecast error variance after h steps is
given by

h
Qn = > GGy,
k=0
hence the variance for variable i is
h h n
w? = [Qplii = > diag(CkCli= > > (kCia)®
k=0 k=01=1

where pc;; is, trivially, the i, element of Cx. As a consequence, the share of uncertainty on
variable i that can be attributed to the j-th shock after h periods equals
h
>k—o(kCij)?
7 .
k=0 2it1 (kCin)?

2Tt is possible, in principle, to compute analytical confidence intervals via an asymptotic approximation, but this
is not a very popular choice: asymptotic formulae are known to often give a very poor approximation of the finite-
sample properties.

/\/Di’j’h’ =
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This makes it possible to quantify which shocks are most important to determine a certain
variable in the short and/or in the long run.

Triangularization

The formula 24.6 takes K as known, while of course it has to be estimated. The estimation
problem has been the subject of an enormous body of literature we will not even attempt to
summarize here: see for example (Liitkepohl, 2005, chapter 9).

Suffice it to say that the most popular choice dates back to Sims (1980), and consists in assuming
that K is lower triangular, so its estimate is simply the Cholesky deconposition of the estimate
of 3. The main consequence of this choice is that the ordering of variables within the vector
¢ becomes meaningful: since K is also the matrix of Impulse Response Functions at lag 0, the
triangularity assumption means that the first variable in the ordering responds instantaneously
only to shock number 1, the second one only to shocks 1 and 2, and so forth. For this reason,
each variable is thought to “own” one shock: variable 1 owns shock number 1, etcetera.

This is the reason why in this sort of exercises the ordering of the variables is important and
the applied literature has developed the “most exogenous first” mantra. Where, in this setting,
“exogenous” really means “instantaneously insensitive to structural shocks”3. To put it differ-
ently, if variable foo comes before variable bar in the Y list, it follows that the shock owned by
foo affects bar instantaneously, but the reverse does not happen.

Impulse Response Functions and the FEVD can be printed out via the command line interface
by using the --impulse-response and --variance-decomp options, respectively. If you need
to store them into matrices, you can compute the structural VMA and proceed from there. For
example, the following code snippet shows you how to compute a matrix containing the IRFs:

open denmark

list Y=12 3 4

scalar n = nelem(Y)

var 2 Y --quiet --impulse

matrix K = cholesky($sigma)
matrix V = $vma

matrix IRF =V * (K ** I(n))
print IRF

in which the equality

vec(Cy) = vec(0xK) = (K’ ® I)vec(O)
was used.
FIXME: show all the nice stuff we have under the GUL

IRF bootstrap
FIXME: todo

3The word “exogenous” has caught on in this context, but it’s a rather unfortunate choice: for a start, each shock
impacts on every variable after one lag, so nothing is really exogenous here. A much better choice of words would
probably have been something like “sturdy”, but it’s too late now.



Chapter 25

Cointegration and Vector Error Correction
Models

25.1 Introduction

The twin concepts of cointegration and error correction have drawn a good deal of attention
in macroeconometrics over recent years. The attraction of the Vector Error Correction Model
(VECM) is that it allows the researcher to embed a representation of economic equilibrium re-
lationships within a relatively rich time-series specification. This approach overcomes the old
dichotomy between (a) structural models that faithfully represented macroeconomic theory but
failed to fit the data, and (b) time-series models that were accurately tailored to the data but
difficult if not impossible to interpret in economic terms.

The basic idea of cointegration relates closely to the concept of unit roots (see section 23.3).
Suppose we have a set of macroeconomic variables of interest, and we find we cannot reject the
hypothesis that some of these variables, considered individually, are non-stationary. Specifi-
cally, suppose we judge that a subset of the variables are individually integrated of order 1, or
I(1). That is, while they are non-stationary in their levels, their first differences are stationary.
Given the statistical problems associated with the analysis of non-stationary data (for exam-
ple, the threat of spurious regression), the traditional approach in this case was to take first
differences of all the variables before proceeding with the analysis.

But this can result in the loss of important information. It may be that while the variables
in question are I(1) when taken individually, there exists a linear combination of the variables
that is stationary without differencing, or 1(0). (There could be more than one such linear
combination.) That is, while the ensemble of variables may be “free to wander” over time,
nonetheless the variables are “tied together” in certain ways. And it may be possible to interpret
these ties, or cointegrating vectors, as representing equilibrium conditions.

For example, suppose we find some or all of the following variables are I(1): money stock, M,
the price level, P, the nominal interest rate, R, and output, Y. According to standard theories
of the demand for money, we would nonetheless expect there to be an equilibrium relationship
between real balances, interest rate and output; for example

m-—p=yo+yy +yr Y1 >0,y2<0

where lower-case variable names denote logs. In equilibrium, then,

m-p-—-yi1y —yY2vr =%o

Realistically, we should not expect this condition to be satisfied each period. We need to allow
for the possibility of short-run disequilibrium. But if the system moves back towards equilib-
rium following a disturbance, it follows that the vector x = (m, p,y,7)’ is bound by a cointe-
grating vector B’ = (B1, B2, B3, B4), such that ’x is stationary (with a mean of y). Furthermore,
if equilibrium is correctly characterized by the simple model above, we have f> = —f1, B3 < 0
and B4 > 0. These things are testable within the context of cointegration analysis.

There are typically three steps in this sort of analysis:

1. Test to determine the number of cointegrating vectors, the cointegrating rank of the sys-
tem.

2. Estimate a VECM with the appropriate rank, but subject to no further restrictions.

190
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3. Probe the interpretation of the cointegrating vectors as equilibrium conditions by means
of restrictions on the elements of these vectors.

The following sections expand on each of these points, giving further econometric details and
explaining how to implement the analysis using gretl.

25.2 Vector Error Correction Models as representation of a cointegrated system

Consider a VAR of order p with a deterministic part given by p; (typically, a polynomial in time).
One can write the n-variate process y; as

Ve=Mr+A1Ye 1+t Ao+ ApYep t € (25.1)
But since y;—; = vi-1 — (Ayi—1 + Ayi—o + - - - + AYi_i+1), we can re-write the above as

p-1
Aye =p + My + > LAy + €, (25.2)
i=1
where IT= 3% | A; —TandT; = - 5'):1'+1 Aj. This is the VECM representation of (25.1).
The interpretation of (25.2) depends crucially on v, the rank of the matrix IT.

e If r = 0, the processes are all I(1) and not cointegrated.
e If ¥ = n, then II is invertible and the processes are all I(0).

e Cointegration occurs in between, when 0 < v < n and II can be written as «f’. In this
case, y; is I(1), but the combination z; = 'y, is I(0). If, for example, » = 1 and the first
element of f was —1, then one could write z; = — Y1t + B2y2t + - - - + BuYn,t, which is
equivalent to saying that

Vi, =Boeyoir + -+ Bunt — Zt

is a long-run equilibrium relationship: the deviations z; may not be 0 but they are station-
ary. In this case, (25.2) can be written as

p-1
Aye =+ By + D LAy i + €. (25.3)
i=1

If B were known, then z; would be observable and all the remaining parameters could be
estimated via OLS. In practice, the procedure estimates f first and then the rest.

The rank of II is investigated by computing the eigenvalues of a closely related matrix whose
rank is the same as IT: however, this matrix is by construction symmetric and positive semidef-
inite. As a consequence, all its eigenvalues are real and non-negative, and tests on the rank of
IT can therefore be carried out by testing how many eigenvalues are 0.

If all the eigenvalues are significantly different from 0, then all the processes are stationary. If,
on the contrary, there is at least one zero eigenvalue, then the y; process is integrated, although
some linear combination B’y; might be stationary. At the other extreme, if no eigenvalues are
significantly different from 0, then not only is the process y; non-stationary, but the same holds
for any linear combination ' y;; in other words, no cointegration occurs.

Estimation typically proceeds in two stages: first, a sequence of tests is run to determine v, the
cointegration rank. Then, for a given rank the parameters in equation (25.3) are estimated. The
two commands that gretl offers for estimating these systems are coint2 and vecm, respectively.

The syntax for coint2 is

coint2 p ylist [ ; xTist [ ; zlist ] 1]
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where p is the number of lags in (25.1); y1ist is a list containing the 7y; variables; x1ist is an
optional list of exogenous variables; and z11ist is another optional list of exogenous variables
whose effects are assumed to be confined to the cointegrating relationships.

The syntax for vecm is
vecm p r ylist [ ; xlist [ ; zlist ] ]
where p is the number of lags in (25.1); r is the cointegration rank; and the lists yTist, x1ist

and z11ist have the same interpretation as in coint2.

Both commands can be given specific options to handle the treatment of the deterministic
component u. These are discussed in the following section.

25.3 Interpretation of the deterministic components

Statistical inference in the context of a cointegrated system depends on the hypotheses one is
willing to make on the deterministic terms, which leads to the famous “five cases.”

In equation (25.2), the term p; is usually understood to take the form

Mt = Ho + g - L.

In order to have the model mimic as closely as possible the features of the observed data, there
is a preliminary question to settle. Do the data appear to follow a deterministic trend? If so, is
it linear or quadratic?

Once this is established, one should impose restrictions on py and u; that are consistent with
this judgement. For example, suppose that the data do not exhibit a discernible trend. This
means that Ay, is on average zero, so it is reasonable to assume that its expected value is also
zero. Write equation (25.2) as

[(L)Aye = po + p1 -t + Xz¢-1 + €, (25.4)

where z; = B’y; is assumed to be stationary and therefore to possess finite moments. Taking
unconditional expectations, we get

O0=pg+p - t+om;.

Since the left-hand side does not depend on t, the restriction y; = 0 is a safe bet. As for py,
there are just two ways to make the above expression true: either py = 0 with m_, = 0, or yg
equals —axm. The latter possibility is less restrictive in that the vector o may be non-zero, but
is constrained to be a linear combination of the columns of «. In that case, uy can be written as
« - ¢, and one may write (25.4) as

[(L)Ay: =« [B c] [ ytl_l } + €.

The long-run relationship therefore contains an intercept. This type of restriction is usually
written
o' o = 0,

where «, is the left null space of the matrix «.

An intuitive understanding of the issue can be gained by means of a simple example. Consider
a series x; which behaves as follows

Xt =M+ Xt—1 + &

where m is a real number and &; is a white noise process: x; is then a random walk with drift
m. In the special case m = 0, the drift disappears and x; is a pure random walk.

Consider now another process y;, defined by

yt=k+xt+ut
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where, again, k is a real number and u; is a white noise process. Since u; is stationary by
definition, x; and y; cointegrate: that is, their difference

Zr=yt—Xxt=k+u;

is a stationary process. For k = 0, z; is simple zero-mean white noise, whereas for k # 0 the
process z; is white noise with a non-zero mean.

After some simple substitutions, the two equations above can be represented jointly as a VAR(1)
system
k + 1 - +
ye | _ m+0 Yior || uet &
Xt m 01 Xt-1 &t
or in VECM form

e I B Y | O Y R B
o Rt el IR R I R R

| Vi1
= +
Ho + «B [x

:|+’7t = Ho + XZ¢-1 + N,

where B is the cointegration vector and « is the “loadings” or “adjustments” vector.

We are now ready to consider three possible cases:

1. m # 0: In this case x; is trended, as we just saw; it follows that y; also follows a lin-
ear trend because on average it keeps at a fixed distance k from x;. The vector g is
unrestricted.

2. m =0 and k # 0: In this case, x; is not trended and as a consequence neither is y;.
However, the mean distance between y; and x; is non-zero. The vector L is given by

oo )

which is not null and therefore the VECM shown above does have a constant term. The
constant, however, is subject to the restriction that its second element must be 0. More
generally, uo is a multiple of the vector «. Note that the VECM could also be written as

Yi-1
Ayt -1 Ut + &
B R IS (R | R SR R

1

which incorporates the intercept into the cointegration vector. This is known as the “re-
stricted constant” case.

3. m =0 and k = 0: This case is the most restrictive: clearly, neither x; nor y; are trended,
and the mean distance between them is zero. The vector Ly is also 0, which explains why
this case is referred to as “no constant.”

In most cases, the choice between these three possibilities is based on a mix of empirical ob-
servation and economic reasoning. If the variables under consideration seem to follow a linear
trend then we should not place any restriction on the intercept. Otherwise, the question arises
of whether it makes sense to specify a cointegration relationship which includes a non-zero
intercept. One example where this is appropriate is the relationship between two interest rates:
generally these are not trended, but the VAR might still have an intercept because the difference
between the two (the “interest rate spread”) might be stationary around a non-zero mean (for
example, because of a risk or liquidity premium).

The previous example can be generalized in three directions:
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1. If a VAR of order greater than 1 is considered, the algebra gets more convoluted but the
conclusions are identical.

2. If the VAR includes more than two endogenous variables the cointegration rank v can be
greater than 1. In this case, « is a matrix with » columns, and the case with restricted
constant entails the restriction that py should be some linear combination of the columns
of «.

3. If a linear trend is included in the model, the deterministic part of the VAR becomes
Uo + u1t. The reasoning is practically the same as above except that the focus now centers
on p; rather than pg. The counterpart to the “restricted constant” case discussed above is
a “restricted trend” case, such that the cointegration relationships include a trend but the
first differences of the variables in question do not. In the case of an unrestricted trend,
the trend appears in both the cointegration relationships and the first differences, which
corresponds to the presence of a quadratic trend in the variables themselves (in levels).

In order to accommodate the five cases, gretl provides the following options to the coint2 and
vecm commands:

Ut option flag description
0 --nc no constant
Mo, o o = 0 --rc restricted constant
Ho --uc unrestricted constant
Mo + it, &y =0 --crt constant + restricted trend
Ho + pit --ct constant + unrestricted trend

Note that for this command the above options are mutually exclusive. In addition, you have the
option of using the --seasonal options, for augmenting u; with centered seasonal dummies.
In each case, p-values are computed via the approximations devised by Doornik (1998).

25.4 The Johansen cointegration tests

The two Johansen tests for cointegration are used to establish the rank of B; in other words,
how many cointegration vectors the system has. These are the “A-max” test, for hypotheses on
individual eigenvalues, and the “trace” test, for joint hypotheses. Suppose that the eigenvalues
A; are sorted from largest to smallest. The null hypothesis for the A-max test on the i-th
eigenvalue is that A; = 0. The corresponding trace test, instead, considers the hypothesis
Aj=0forallj=1i.

The gretl command coint2 performs these two tests. The corresponding menu entry in the
GUI is “Model, Time Series, Cointegration Test, Johansen”.

As in the ADF test, the asymptotic distribution of the tests varies with the deterministic compo-
nent u; one includes in the VAR (see section 25.3 above). The following code uses the denmark
data file, supplied with gretl, to replicate Johansen’s example found in his 1995 book.

open denmark
coint2 2 LRM LRY IBO IDE --rc --seasonal

In this case, the vector y; in equation (25.2) comprises the four variables LRM, LRY, IBO, IDE.
The number of lags equals p in (25.2) (that is, the number of lags of the model written in VAR
form). Part of the output is reported below:

Johansen test:

Number of equations = 4

Lag order = 2

Estimation period: 1974:3 - 1987:3 (T = 53)
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Case 2: Restricted constant
Rank Eigenvalue Trace test p-value Lmax test p-value

0 0.43317 49.144 [0.1284] 30.087 [0.0286]
1 0.17758 19.057 [0.7833] 10.362 [0.8017]
2 0.11279 8.6950 [0.7645] 6.3427 [0.7483]
3 0.043411 2.3522 [0.7088] 2.3522 [0.7076]

Both the trace and A-max tests accept the null hypothesis that the smallest eigenvalue is 0
(see the last row of the table), so we may conclude that the series are in fact non-stationary.
However, some linear combination may be I(0), since the A-max test rejects the hypothesis that
the rank of IT is O (though the trace test gives less clear-cut evidence for this, with a p-value of
0.1284).

25.5 Identification of the cointegration vectors

The core problem in the estimation of equation (25.2) is to find an estimate of IT that has by
construction rank ¥, so it can be written as IT = «f’, where f is the matrix containing the
cointegration vectors and « contains the “adjustment” or “loading” coefficients whereby the
endogenous variables respond to deviation from equilibrium in the previous period.

Without further specification, the problem has multiple solutions (in fact, infinitely many). The
parameters « and S are under-identified: if all columns of S are cointegration vectors, then
any arbitrary linear combinations of those columns is a cointegration vector too. To put it
differently, if IT = oopB( for specific matrices ¢y and Bo, then IT also equals (xoQ)(Q~B;)
for any conformable non-singular matrix Q. In order to find a unique solution, it is therefore
necessary to impose some restrictions on « and/or B. It can be shown that the minimum
number of restrictions that is necessary to guarantee identification is ¥2. Normalizing one
coefficient per column to 1 (or —1, according to taste) is a trivial first step, which also helps in
that the remaining coefficients can be interpreted as the parameters in the equilibrium relations,
but this only suffices when » = 1.

The method that gretl uses by default is known as the “Phillips normalization”, or “triangular
representation”.! The starting point is writing g in partitioned form as in

| B }
St
where f; is an ¥ X ¥ matrix and B is (n — ) X ¥. Assuming that ; has full rank, B can be

post-multiplied by 871, giving
~ 1 1
=] g |71 5 |
BZBl ! -B

The coefficients that gretl produces are ﬁ, with B known as the matrix of unrestricted coeffi-
cients. In terms of the underlying equilibrium relationship, the Phillips normalization expresses
the system of » equilibrium relations as

Yit = bl,r+1yr+1,t +...+ bl,nyn,t
Yo boyri1Yri1t + ...+ bonnt

Yrit = bryaYriip+ oo+ byayey
where the first » variables are expressed as functions of the remaining n — 7.

Although the triangular representation ensures that the statistical problem of estimating S is
solved, the resulting equilibrium relationships may be difficult to interpret. In this case, the

IFor comparison with other studies, you may wish to normalize § differently. Using the set command you
can do set vecm_norm diag to select a normalization that simply scales the columns of the original B such that
Bij =1fori=jandi <, as used in the empirical section of Boswijk and Doornik (2004). Another alternative is
set vecm_norm first, which scales 8 such that the elements on the first row equal 1. To suppress normalization
altogether, use set vecm_norm none. (To return to the default: set vecm_norm phillips.)
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user may want to achieve identification by specifying manually the system of ¥? constraints
that gretl will use to produce an estimate of S.

As an example, consider the money demand system presented in section 9.6 of Verbeek (2004).
The variables used are m (the log of real money stock M1), inf1 (inflation), cpr (the commercial
paper rate), y (log of real GDP) and tbr (the Treasury bill rate).?

Estimation of B can be performed via the commands

open money.gdt
smpl 1954:1 1994:4
vecm 6 2 m infl cpr y thbr --rc

and the relevant portion of the output reads
Maximum Tikelihood estimates, observations 1954:1-1994:4 (T = 164)
Cointegration rank = 2

Case 2: Restricted constant

beta (cointegrating vectors, standard errors in parentheses)

m 1.0000 0.0000
(0.0000) (0.0000)

infl 0.0000 1.0000
(0.0000) (0.0000)

cpr 0.56108 -24.367
(0.10638) (4.2113)

y -0.40446 -0.91166
(0.10277) (4.0683)

tbr -0.54293 24.786
(0.10962) (4.3394)

const -3.7483 16.751
(0.78082) (30.909)

Interpretation of the coefficients of the cointegration matrix 8 would be easier if a meaning
could be attached to each of its columns. This is possible by hypothesizing the existence of two
long-run relationships: a money demand equation

m=rcy+ B1infl + Bay + B3tbr
and a risk premium equation
cpr =cp + B4infl + Bsy + Bgtbr

which imply that the cointegration matrix can be normalized as

-1 0
B1 Ba
0 -1
b= B2 Bs
Bs Bs
L €1 €2 _

This renormalization can be accomplished by means of the restrict command, to be given af-
ter the vecm command or, in the graphical interface, by selecting the “Test, Linear Restrictions”
menu entry. The syntax for entering the restrictions should be fairly obvious:?

2This data set is available in the verbeek data package; see http://gret].sourceforge.net/gretl_data.html.

3Note that in this context we are bending the usual matrix indexation convention, using the leading index to refer
to the column of B (the particular cointegrating vector). This is standard practice in the literature, and defensible
insofar as it is the columns of B (the cointegrating relations or equilibrium errors) that are of primary interest.


http://gretl.sourceforge.net/gretl_data.html
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restrict
b[1,1] = -1
b[1,3] =0
b[2,1] = 0
b[2,3] = -1

end restrict

which produces

Cointegrating vectors (standard errors in parentheses)

m -1.0000 0.0000
(0.0000) (0.0000)

infl -0.023026 0.041039
(0.0054666) (0.027790)

cpr 0.0000 -1.0000
(0.0000) (0.0000)

y 0.42545 -0.037414
(0.033718) (0.17140)

tbr -0.027790 1.0172
(0.0045445) (0.023102)

const 3.3625 0.68744
(0.25318) (1.2870)

25.6 Over-identifying restrictions

One purpose of imposing restrictions on a VECM system is simply to achieve identification. If
these restrictions are simply normalizations, they are not testable and should have no effect
on the maximized likelihood. In addition, however, one may wish to formulate constraints
on B and/or « that derive from the economic theory underlying the equilibrium relationships;
substantive restrictions of this sort are then testable via a likelihood-ratio statistic.

Gretl is capable of testing general linear restrictions of the form
Ryvec(B) =q (25.5)

and/or
Ravec(x) =0 (25.6)

Note that the B restriction may be non-homogeneous (q + 0) but the « restriction must be
homogeneous. Nonlinear restrictions are not supported, and neither are restrictions that cross
between f and «. In the case where ¥ > 1 such restrictions may be in common across all the
columns of B (or x) or may be specific to certain columns of these matrices. This is the case
discussed in Boswijk (1995) and Boswijk and Doornik (2004), section 4.4.

The restrictions (25.5) and (25.6) may be written in explicit form as
vec(B) = He + hyg (25.7)

and
vec(a') = Gy (25.8)

respectively, where ¢ and  are the free parameter vectors associated with B and « respec-
tively. We may refer to the free parameters collectively as 0 (the column vector formed by
concatenating ¢ and ). Gretl uses this representation internally when testing the restrictions.

If the list of restrictions that is passed to the restrict command contains more constraints
than necessary to achieve identification, then an LR test is performed; moreover, the restrict
command can be given the --fulT1 switch, in which case full estimates for the restricted system
are printed (including the I; terms), and the system thus restricted becomes the “current model”
for the purposes of further tests. Thus you are able to carry out cumulative tests, as in Chapter
7 of Johansen (1995).



Chapter 25. Cointegration and Vector Error Correction Models 198

Syntax

The full syntax for specifying the restriction is an extension of that exemplified in the previous
section. Inside a restrict...end restrict block, valid statements are of the form

parameter linear combination= scalar

where a parameter linear combination involves a weighted sum of individual elements of f8
or « (but not both in the same combination); the scalar on the right-hand side must be 0 for
combinations involving «, but can be any real number for combinations involving . Below, we
give a few examples of valid restrictions:

b[1,1] = 1.618

b[1,4] + 2*b[2,5] = O
a[1,3] =0

all,1] - a[1,2] =0

Special syntax is used when a certain constraint should be applied to all columns of £: in this
case, one index is given for each b term, and the square brackets are dropped. Hence, the
following syntax

restrict
bl + b2 =0
end restrict

corresponds to

B11 B2

| B B2
b= Bz Bos
Bia  Boa

The same convention is used for «: when only one index is given for an a term the restriction
is presumed to apply to all » columns of «, or in other words the variable associated with the
given row of « is weakly exogenous. For instance, the formulation

restrict
a3 =0
a4 =0

end restrict

specifies that variables 3 and 4 do not respond to the deviation from equilibrium in the previous
period. Note that when two indices are given in a restriction on « the indexation is consistent
with that for B restrictions: the leading index denotes the cointegrating vector and the trailing
index the equation number.

Finally, a short-cut is available for setting up complex restrictions (but currently only in relation
to B): you can specify Ry, and g, as in Rpvec(B) = g, by giving the names of previously defined
matrices. For example,

matrix I4 = I(4)
matrix vR = I4**(I4~zeros(4,1))
matrix vq = mshape(I4,16,1)
restrict

R = vR

a = vq

end restrict

which manually imposes Phillips normalization on the  estimates for a system with cointegrat-
ing rank 4.
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An example

Brand and Cassola (2004) propose a money demand system for the Euro area, in which they
postulate three long-run equilibrium relationships:

money demand m=Bil+Byy
Fisher equation m=¢l

Expectation theory of [=3s
interest rates

where m is real money demand, [ and s are long- and short-term interest rates, y is output and
17 is inflation.? (The names for these variables in the gretl data file are m_p, r1, rs, y and inf1,
respectively.)

The cointegration rank assumed by the authors is 3 and there are 5 variables, giving 15 elements
in the § matrix. 3 X3 = 9 restrictions are required for identification, and a just-identified system
would have 15 — 9 = 6 free parameters. However, the postulated long-run relationships feature
only three free parameters, so the over-identification rank is 3.

Example 25.1 replicates Table 4 on page 824 of the Brand and Cassola article.> Note that we
use the $1n1 accessor after the vecm command to store the unrestricted log-likelihood and the
$r1nl accessor after restrict for its restricted counterpart.

The example continues in script 25.2, where we perform further testing to check whether (a)
the income elasticity in the money demand equation is 1 (8, = 1) and (b) the Fisher relation is
homogeneous (¢ = 1). Since the --full switch was given to the initial restrict command,
additional restrictions can be applied without having to repeat the previous ones. (The second
script contains a few printf commands, which are not strictly necessary, to format the output
nicely.) It turns out that both of the additional hypotheses are rejected by the data, with p-
values of 0.002 and 0.004.

Another type of test that is commonly performed is the “weak exogeneity” test. In this context,
a variable is said to be weakly exogenous if all coefficients on the corresponding row in the «
matrix are zero. If this is the case, that variable does not adjust to deviations from any of the
long-run equilibria and can be considered an autonomous driving force of the whole system.

The code in Example 25.3 performs this test for each variable in turn, thus replicating the
first column of Table 6 on page 825 of Brand and Cassola (2004). The results show that weak
exogeneity might perhaps be accepted for the long-term interest rate and real GDP (p-values
0.07 and 0.08 respectively).

Identification and testability

One point regarding VECM restrictions that can be confusing at first is that identification (does
the restriction identify the system?) and testability (is the restriction testable?) are quite sepa-
rate matters. Restrictions can be identifying but not testable; less obviously, they can be testable
but not identifying.

This can be seen quite easily in relation to a rank-1 system. The restriction §; = 1 is identifying
(it pins down the scale of ) but, being a pure scaling, it is not testable. On the other hand,
the restriction ; + B2 = 0 is testable — the system with this requirement imposed will almost
certainly have a lower maximized likelihood — but it is not identifying; it still leaves open the
scale of B.

We said above that the number of restrictions must equal at least ¥2, where 7 is the cointe-
grating rank, for identification. This is a necessary and not a sufficient condition. In fact, when
¥ > 1 it can be quite tricky to assess whether a given set of restrictions is identifying. Gretl uses

4A traditional formulation of the Fisher equation would reverse the roles of the variables in the second equation,
but this detail is immaterial in the present context; moreover, the expectation theory of interest rates implies that the
third equilibrium relationship should include a constant for the liquidity premium. However, since in this example the
system is estimated with the constant term unrestricted, the liquidity premium gets merged in the system intercept
and disappears from z;.

SModulo what appear to be a few typos in the article.
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Input:

Example 25.1: Estimation of a money demand system with constraints on 8

open brand_cassola.gdt

# perform a few transformations
m_p = m_p*100

y = y*100
infl = infl1/4
rs = rs/4
rl = rl/4

# replicate table 4, page 824
vecm 2 3 m_p infl rl1 rs y -q
genr 110 = $1n1

restrict --full

b[1,1]
b[1,2]
b[1,4]
b[2,1]
b[2,2]
b[2,4]
b[2,5]
b[3,1]
b[3,2]
b[3,3]
b[3,4]
b[3,5]

|
RPOOOORrROOOK

]
I
=

=0

end restrict
genr 111 = $rinl

Partial output:

Unrestricted loglikelihood (Tu)
Restricted loglikelihood (1r) =
2% (Tu - 1r) = 1.47635

P(Chi-Square(3) > 1.47635) = 0.68774

beta (cointegrating vectors, standard errors in parentheses)

m_p

in

ri

rs

f1

1.0000
(0.0000)
0.0000
(0.0000)
1.6108
(0.62752)
0.0000
(0.0000)
-1.3304
(0.030533)

0.0000
(0.0000)
1.0000
(0.0000)
-0.67100
(0.049482)
0.0000
(0.0000)
0.0000
(0.0000)

11

116.60268
5.86451

0.
(0.
0.
(0.
1.
(0.
.0000
(0.
0.
(0.

-1

0000
0000)
0000
0000)
0000
0000)

0000)
0000
0000)
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Input:

restrict
b[1,5] = -1
end restrict
genr Tl_uie = $rinl

restrict
b[2,3] = -1
end restrict
genr T11_hfh = $rinl

# replicate table 5

Example 25.2: Further testing of money demand system

, page 824

printf "Testing zero restrictions in cointegration space:\n"

printf " LR-test,
pvalue(X, 3

rank = 3:
, 2*(170-111))

printf "Unit income elasticity: LR-test, rank = 3:\n"
printf " chiA2(4) = %g [%6.4Ff]1\n", 2*(110-11_uie), \
pvalue(X, 4, 2*(110-11_uie))

printf "Homogeneity in the Fisher hypothesis:\n"

printf " LR-test,
pvalue(X, 4

Output:

rank = 3:
, 2%(110-11_hfth))

Testing zero restrictions in cointegration space:

LR-test, rank = 3:

chiA2(3) = 1.4763 [0.6877]

Unit income elasticity: LR-test, rank = 3:
chiA2(4) = 17.2071 [0.0018]
Homogeneity in the Fisher hypothesis:

LR-test, rank = 3:

chiA2(4) = 15.547 [0.0037]

chiA2(3) = %6.4f [%6.4f1\n", 2*(110-111), \

chiA2(4) = %6.3f [%6.4Ff1\n", 2*(110-11_hfh), \
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Input:

restrict

al = 0
end restrict
2*(110

ts_m =

restric
a2 =

end restrict
ts_p = 2*(110

restric
a3 =

end restrict
ts_1 = 2*(110

restric
a4 =

end restrict
ts_s = 2*(110

restric
a5 =

end restrict
ts_y = 2*(110

t
0

t
0

t
0

t
0

$rinl)

$rinl)

$rinl)

$rinl)

$rinl)

Example 25.3: Testing for weak exogeneity

Toop foreach i mp 1 s y --quiet

printf "\Delta $i\t%6.3f [%6.4f]\n", ts_$i, pvalue(X, 6, ts_$i)

endloop

Output (variable, LR test, p-value):

\Delta
\Delta
\Delta
\Delta
\Delta

< W =T =S

18.111
21.067
11.819
16.000
11.335

[0.0060]
[0.0018]
[0.0661]
[0.0138]
[0.0786]
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the method suggested by Doornik (1995), where identification is assessed via the rank of the
information matrix.

It can be shown that for restrictions of the sort (25.7) and (25.8) the information matrix has the
same rank as the Jacobian matrix

70) = [, e BYG : (x® I,)H]

A sufficient condition for identification is that the rank of 7(0) equals the number of free para-
meters. The rank of this matrix is evaluated by examination of its singular values at a randomly
selected point in the parameter space. For practical purposes we treat this condition as if it
were both necessary and sufficient; that is, we disregard the special cases where identification
could be achieved without this condition being met.%

25.7 Numerical solution methods

In general, the ML estimator for the restricted VECM problem has no closed form solution,
hence the maximum must be found via numerical methods.” In some cases convergence may
be difficult, and gretl provides several choices to solve the problem.

Switching and LBFGS

Two maximization methods are available in gretl. The default is the switching algorithm set
out in Boswijk and Doornik (2004). The alternative is a limited-memory variant of the BFGS
algorithm (LBFGS), using analytical derivatives. This is invoked using the --1bfgs flag with the
restrict command.

The switching algorithm works by explicitly maximizing the likelihood at each iteration, with
respect to ¢, (y and Q (the covariance matrix of the residuals) in turn. This method shares a fea-
ture with the basic Johansen eigenvalues procedure, namely, it can handle a set of restrictions
that does not fully identify the parameters.

LBFGS, on the other hand, requires that the model be fully identified. When using LBFGS, there-
fore, you may have to supplement the restrictions of interest with normalizations that serve to
identify the parameters. For example, one might use all or part of the Phillips normalization
(see section 25.5).

Neither the switching algorithm nor LBFGS is guaranteed to find the global ML solution.® The
optimizer may end up at a local maximum (or, in the case of the switching algorithm, at a saddle
point).

The solution (or lack thereof) may be sensitive to the initial value selected for 0. By default,
gretl selects a starting point using a deterministic method based on Boswijk (1995), but two
further options are available: the initialization may be adjusted using simulated annealing, or
the user may supply an explicit initial value for 6.

The default initialization method is:
1. Calculate the unrestricted ML B using the Johansen procedure.
2. If the restriction on $ is non-homogeneous, use the method proposed by Boswijk:
b0 = —[Uy ® B)'HI*(Ir ® B.) ho (25.9)
where A/ = 0 and A* denotes the Moore-Penrose inverse of A. Otherwise

¢o = (H'H) 'H'vec(f) (25.10)

6See Boswijk and Doornik (2004), pp. 447-8 for discussion of this point.

"The exception is restrictions that are homogeneous, common to all  or all & (in case ¥ > 1), and involve either
B only or « only. Such restrictions are handled via the modified eigenvalues method set out by Johansen (1995). We
solve directly for the ML estimator, without any need for iterative methods.

8In developing gretl’s VECM-testing facilities we have considered a fair number of “tricky cases” from various
sources. We'd like to thank Luca Fanelli of the University of Bologna and Sven Schreiber of Goethe University Frank-
furt for their help in devising torture-tests for gretl’s VECM code.
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3. VEC(B()) = Hd)() + ]’l().

4. Calculate the unrestricted ML & conditional on By, as per Johansen:
& = So1B0(ByS11B0) ! (25.11)

5. If « is restricted by vec(«’) = Gy, then @y = (G'G)'G' vec(&') and vec(cy) = Gyo.

Alternative initialization methods

As mentioned above, gretl offers the option of adjusting the initialization using simulated an-
nealing. This is invoked by adding the --jitter option to the restrict command.

The basic idea is this: we start at a certain point in the parameter space, and for each of n
iterations (currently n = 4096) we randomly select a new point within a certain radius of the
previous one, and determine the likelihood at the new point. If the likelihood is higher, we
jump to the new point; otherwise, we jump with probability P (and remain at the previous point
with probability 1 — P). As the iterations proceed, the system gradually “cools” — that is, the
radius of the random perturbation is reduced, as is the probability of making a jump when the
likelihood fails to increase.

In the course of this procedure many points in the parameter space are evaluated, starting with
the point arrived at by the deterministic method, which we’ll call 6y. One of these points will
be “best” in the sense of yielding the highest likelihood: call it 6*. This point may or may not
have a greater likelihood than 0y. And the procedure has an end point, 6, which may or may
not be “best”.

The rule followed by gretl in selecting an initial value for 0 based on simulated annealing is
this: use 0* if 0* > 0, otherwise use 0,. That is, if we get an improvement in the likelihood
via annealing, we make full use of this; on the other hand, if we fail to get an improvement we
nonetheless allow the annealing to randomize the starting point. Experiments indicated that
the latter effect can be helpful.

Besides annealing, a further alternative is manual initialization. This is done by passing a
predefined vector to the set command with parameter initvals, as in

set initvals myvec

The details depend on whether the switching algorithm or LBFGS is used. For the switching
algorithm, there are two options for specifying the initial values. The more user-friendly one
(for most people, we suppose) is to specify a matrix that contains vec(f) followed by vec(x).
For example:

open denmark.gdt
vecm 2 1 LRM LRY IBO IDE --rc --seasonals

matrix BA = {1, -1, 6, -6, -6, -0.2, 0.1, 0.02, 0.03}
set initvals BA
restrict
b[1] =1
b[1] + b[2] =
b[3] + b[4] =0
end restrict

|
o

In this example — from Johansen (1995) — the cointegration rank is 1 and there are 4 variables.
However, the model includes a restricted constant (the --rc flag) so that  has 5 elements. The
o matrix has 4 elements, one per equation. So the matrix BA may be read as

(B1, B2, B3, B4, Bs, &1, &2, &3, &4)

The other option, which is compulsory when using LBFGS, is to specify the initial values in terms
of the free parameters, ¢ and . Getting this right is somewhat less obvious. As mentioned



Chapter 25. Cointegration and Vector Error Correction Models 205

above, the implicit-form restriction Rvec(f) = g has explicit form vec() = H¢ + hg, where
H = R, the right nullspace of R. The vector ¢ is shorter, by the number of restrictions, than
vec(f). The savvy user will then see what needs to be done. The other point to take into account
is that if « is unrestricted, the effective length of y is 0, since it is then optimal to compute «
using Johansen’s formula, conditional on 8 (equation 25.11 above). The example above could
be rewritten as:

open denmark.gdt
vecm 2 1 LRM LRY IBO IDE --rc --seasonals

matrix phi = {-8, -6}
set initvals phi
restrict --Tbfgs
b[1] = 1
b[1] + b[2]
b[3] + b[4] =
end restrict

0
0

In this more economical formulation the initializer specifies only the two free parameters in ¢ (5
elements in B minus 3 restrictions). There is no call to give values for  since « is unrestricted.

Scale removal

Consider a simpler version of the restriction discussed in the previous section, namely,

restrict

b[1l] =1

b[1] + b[2] =0
end restrict

This restriction comprises a substantive, testable requirement — that ; and > sum to zero —
and a normalization or scaling, B; = 1. The question arises, might it be easier and more reliable
to maximize the likelihood without imposing 1 = 1?° If so, we could record this normalization,
remove it for the purpose of maximizing the likelihood, then reimpose it by scaling the result.

Unfortunately it is not possible to say in advance whether “scale removal” of this sort will give
better results, for any particular estimation problem. However, this does seem to be the case
more often than not. Gretl therefore performs scale removal where feasible, unless you

o explicitly forbid this, by giving the --no-scaling option flag to the restrict command; or
e provide a specific vector of initial values; or

¢ select the LBFGS algorithm for maximization.

Scale removal is deemed infeasible if there are any cross-column restrictions on 8, or any non-
homogeneous restrictions involving more than one element of .

In addition, experimentation has suggested to us that scale removal is inadvisable if the system
is just identified with the normalization(s) included, so we do not do it in that case. By “just
identified” we mean that the system would not be identified if any of the restrictions were
removed. On that criterion the above example is not just identified, since the removal of the
second restriction would not affect identification; and gretl would in fact perform scale removal
in this case unless the user specified otherwise.

9As a numerical matter, that is. In principle this should make no difference.
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Multivariate models

By a multivariate model we mean one that includes more than one dependent variable. Certain
specific types of multivariate model for time-series data are discussed elsewhere: chapter 24
deals with VARs and chapter 25 with VECMs. Here we discuss two general sorts of multivari-
ate model, implemented in gretl via the system command: SUR systems (Seemingly Unrelated
Regressions), in which all the regressors are taken to be exogenous and interest centers on
the covariance of the error term across equations; and simultaneous systems, in which some
regressors are assumed to be endogenous.

In this chapter we give an account of the syntax and use of the system command and its
companions, restrict and estimate; we also explain the options and accessors available in
connection with multivariate models.

26.1 The system command

The specification of a multivariate system takes the form of a block of statements, starting with
system and ending with end system. Once a system is specified it can estimated via various
methods, using the estimate command, with or without restrictions, which may be imposed
via the restrict command.

Starting a system block

The first line of a system block may be augmented in either (or both) of two ways:

¢ An estimation method is specified for the system. This is done by following system with
an expression of the form method=estimator, where estimator must be one of ols (Or-
dinary Least Squares), ts1s (Two-Stage Least Squares), sur (Seemingly Unrelated Regres-
sions), 3s1s (Three-Stage Least Squares), 1im1 (Limited Information Maximum Likelihood)
or fiml (Full Information Maximum Likelihood). Two examples:

system method=sur
system method=fiml

OLS, TSLS and LIML are, of course, single-equation methods rather than true system esti-
mators; they are included to facilitate comparisons.

e The system is assigned a name. This is done by giving the name first, followed by a
back-arrow, “<-", followed by system. If the name contains spaces it must be enclosed in
double-quotes. Here are two examples:

sysl <- system
"System 1" <- system

Note, however, that this naming method is not available within a user-defined function,
only in the main body of a gretl script.

If the initial system line is augmented in the first way, the effect is that the system is estimated
as soon as its definition is completed, using the specified method. The effect of the second
option is that the system can then be referenced by the assigned name for the purposes of the
restrict and estimate commands; in the gretl GUI an additional effect is that an icon for the
system is added to the “Session view”.

These two possibilities can be combined, as in

206



Chapter 26. Multivariate models 207

mysys <- system method=3sTs

In this example the system is estimated immediately via Three-Stage Least Squares, and is also
available for subsequent use under the name mysys.

If the system is not named via the back-arrow mechanism, it is still available for subsequent use
via restrict and estimate; in this case you should use the generic name $system to refer to
the last-defined multivariate system.

The body of a system block

The most basic element in the body of a system block is the equation statement, which is
used to specify each equation within the system. This takes the same form as the regression
specification for single-equation estimators, namely a list of series with the dependent variable
given first, followed by the regressors, with the series given either by name or by ID number
(order in the dataset). A system block must contain at least two equation statements, and
for systems without endogenous regressors these statements are all that is required. So, for
example, a minimal SUR specification might look like this:

system method=sur
equation yl const x1
equation y2 const x2
end system

For simultaneous systems it is necessary to determine which regressors are endogenous and
which exogenous. By default all regressors are treated as exogenous, except that any variable
that appears as the dependent variable in one equation is automatically treated as endogeous
if it appears as a regressor elsewhere. However, an explicit list of endogenous regressors may
be supplied following the equations lines: this takes the form of the keyword endog followed
by the names or ID numbers of the relevant regressors.

When estimation is via TSLS or 3SLS it is possible to specify a particular set of instruments for
each equation. This is done by giving the equation lists in the format used with the ts1s com-
mand: first the dependent variable, then the regressors, then a semicolon, then the instruments,
as in

system method=3sls
equation yl const x11 x12 ; const x11 zl1
equation y2 const x21 x22 ; const x21 z2
end system

In this case, as in ts1s, any regressors that are not also listed as instruments are treated as
endogenous, so in the example above x11 and x21 are treated as exogenous while x21 and x22
are endogenous, and instrumented by z1 and z2 respectively.

One more sort of statement is allowed in a system block: that is, the keyword identity fol-
lowed by an equation that defines an accounting relationship, rather then a stochastic one,
between variables. For example,

identity Y =C+ I + G + X

There can be more than one identity in a system block. But note that these statements are
specific to estimation via FIML; they are ignored for other estimators.

Equation systems within functions

It is also possible to define a multivariate system in a programmatic way. This is useful if the
precise specification of the system depends on some input parameters that are not known in
advance, but are given when the script is actually run.!

IThis feature was added in version 1.9.7 of gretl.
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The relevant syntax is given by the equations keyword (note the plural), which replaces the
block of equation lines in the standard form. An equations line requires two list arguments.
The first list must contain all series on the left-hand side of the system; thus the number of
elements in this first list determines the number of equations in the system. The second list is
a “list of lists”, which is a special variant of the list data type. That is, for each equation of the
system you must provide a list of right-hand side variables, and the lists for all equations must
be joined by assigning them to another list object; in that assignment, they must be separated
by a semicolon. Here is an example for a two-equation system:

Tist syslist = xTistl ; x1list2

Therefore, specifying a system generically in this way just involves building the necessary list
arguments, as shown in the following example:

open denmark
Tist LHS = LRM LRY
Tist RHS1 = const LRM(-1) IBO(-1) IDE(-1)
Tist RHS2 = const LRY(-1) IBO(-1)
Tist RHS = RHS1 ; RHS2
system method=01s
equations LHS RHS
end system

As mentioned above, the option of assigning a specific name to a system is not available within
functions, but the generic identifier $system can be used to similar effect. The following exam-
ple shows how one can define a system, estimate it via two methods, apply a restriction, then
re-estimate it subject to the restriction.

function void anonsys(series x, series y)
system
equation x const
equation y const
end system
estimate $system method=01ls
estimate $system method=sur
restrict $system
b[1,1] - b[2,1] =0
end restrict
estimate $system method=ols
end function

26.2 Restriction and estimation

The behavior of the restrict command is a little different for multivariate systems as com-
pared with single-equation models.

In the single-equation case, restrict refers to the last-estimated model, and once the com-
mand is completed the restriction is tested. In the multivariate case, you must give the name
of the system to which the restriction is to be applied (or $system to refer to the last-defined
system), and the effect of the command is just to attach the restriction to the system; testing
is not done until the next estimate command is given. In addition, in the system case the
default is to produce full estimates of the restricted model; if you are not interested in the full
estimates and just want the test statistic you can append the --quiet option to estimate.

A given system restriction remains in force until it is replaced or removed. To return a system
to its unrestricted state you can give an empty restrict block, as in

restrict sysname
end restrict
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As illustrated above, you can use the method tag to specify an estimation method with the
estimate command. If the system has already been estimated you can omit this tag and the
previous method is used again.

The estimate command is the main locus for options regarding the details of estimation. The
available options are as follows:

¢ If the estimation method is SUR or 3SLS and the --iterate flag is given, the estimator
will be iterated. In the case of SUR, if the procedure converges the results are maximum
likelihood estimates. Iteration of three-stage least squares, however, does not in general
converge on the full-information maximum likelihood results. This flag is ignored for
other estimators.

o If the equation-by-equation estimators OLS or TSLS are chosen, the default is to apply a
degrees of freedom correction when calculating standard errors. This can be suppressed
using the --no-df-corr flag. This flag has no effect with the other estimators; no degrees
of freedom correction is applied in any case.

e By default, the formula used in calculating the elements of the cross-equation covariance
matrix is o

uiu j
T

where T is the sample size and 1i; is the vector of residuals from equation i. But if the

--geomean flag is given, a degrees of freedom correction is applied: the formula is

é’ij =

AT A

u;u;

[T - k(T —ky)

where k; denotes the number of independent parameters in equation i.

o If an iterative method is specified, the --verbose option calls for printing of the details
of the iterations.

e When the system estimator is SUR or 3SLS the cross-equation covariance matrix is initially
estimated via OLS or TSLS, respectively. In the case of a system subject to restrictions the
question arises: should the initial single-equation estimator be restricted or unrestricted?
The default is the former, but the --unrestrict-init flag can be used to select unre-
stricted initialization. (Note that this is unlikely to make much difference if the --iterate
option is given.)

26.3 System accessors

After system estimation various matrices may be retrieved for further analysis. Let g denote the
number of equations in the system and let K denote the total number of estimated parameters
(K = >; ki). The accessors $uhat and $yhat get T x g matrices holding the residuals and fitted
values respectively. The accessor $coeff gets the stacked K-vector of parameter estimates;
$vcv gets the K X K variance matrix of the parameter estimates; and $sigma gets the g x g
cross-equation covariance matrix, 3.

A test statistic for the hypothesis that X is diagonal can be retrieved as $diagtest and its p-
value as $diagpval. This is the Breusch-Pagan test except when the estimator is (unrestricted)
iterated SUR, in which case it’s a Likelihood Ratio test. The Breusch-Pagan test is computed as

g i-1

IM=T> > 7}
i=2 j=1
where Yij = @'ij/ﬁlé'iioﬁj'; the LR test is

g
IR=T (Z log 67 — 1og|2|)

i=1
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where 67 is @;0;/T from the individual OLS regressions. In both cases the test statistic is

distributed asymptotically as x? with g(g — 1)/2 degrees of freedom.

Systems of simultaneous systems can be represented in structural form as
Iye =AY+ AeYi-2+ -+ ApVi—p + BXt + €

where y; represents the vector of endogenous variables in period t and x; the vector of exoge-
nous variables. The structural-form matrices can be retrieved as $sysGamma, $sysA and $sysB
respectively. If y; is m X 1 and x; is n x 1, then I' is m X m and B is m X n. If the system
contains no lags of the endogenous variables then the A matrix is not defined, otherwise A is
the horizontal concatenation of Ay,..., Ay, and is therefore m x mp.

TODO: add an example of use of the structural-form matrices
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Forecasting

27.1 Introduction

In some econometric contexts forecasting is the prime objective: one wants estimates of the fu-
ture values of certain variables to reduce the uncertainty attaching to current decision making.
In other contexts where real-time forecasting is not the focus prediction may nonetheless be an
important moment in the analysis. For example, out-of-sample prediction can provide a useful
check on the validity of an econometric model. In other cases we are interested in questions of
“what if”: for example, how might macroeconomic outcomes have differed over a certain period
if a different policy had been pursued? In the latter cases “prediction” need not be a matter
of actually projecting into the future but in any case it involves generating fitted values from a
given model. The term “postdiction” might be more accurate but it is not commonly used; we
tend to talk of prediction even when there is no true forecast in view.

This chapter offers an overview of the methods available within gretl for forecasting or predic-
tion (whether forward in time or not) and explicates some of the finer points of the relevant
commands.

27.2 Saving and inspecting fitted values

In the simplest case, the “predictions” of interest are just the (within sample) fitted values from
an econometric model. For the single-equation linear model, y; = X; + u;, these are y; = X;f.

In command-line mode, the y series can be retrieved, after estimating a model, using the acces-
sor $yhat, as in

series yh = $yhat

If the model in question takes the form of a system of equations, $yhat returns a matrix, each
column of which contains the fitted values for a particular dependent variable. To extract the
fitted series for, e.g., the dependent variable in the second equation, do

matrix Yh = $yhat
series yh2 = Yh[,2]

Having obtained a series of fitted values, you can use the fcstats function to produce a vector
of statistics that characterize the accuracy of the predictions (see section 27.4 below).

The gretl GUI offers several ways of accessing and examining within-sample predictions. In
the model display window the Save menu contains an item for saving fitted values, the Graphs
menu allows plotting of fitted versus actual values, and the Analysis menu offers a display of
actual, fitted and residual values.

27.3 The fcast command

The fcast command generates predictions based on the last estimated model. Several ques-
tions arise here: How to control the range over which predictions are generated? How to control
the forecasting method (where a choice is available)? How to control the printing and/or saving
of the results? Basic answers can be found in the Gretl Command Reference, we add some more
details here.
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The forecast range

The range defaults to the currently defined sample range. If this remains unchanged following
estimation of the model in question, the forecast will be “within sample” and (with some qual-
ifications noted below) it will essentially duplicate the information available via the retrieval of
fitted values (see section 27.2 above).

A common situation is that a model is estimated over a given sample and then forecasts are
wanted for a subsequent out-of-sample range. The simplest way to accomplish this is via the
--out-of-sample option to fcast. For example, assuming we have a quarterly time-series
dataset containing observations from 1980:1 to 2008:4, four of which are to be reserved for
forecasting:

# reserve the last 4 observations
smpl 1980:1 2007:4

ols y 0 xTist

fcast --out-of-sample

This will generate a forecast from 2008:1 to 2008:4.

There are two other ways of adjusting the forecast range, offering finer control:

e Use the smp1 command to adjust the sample range prior to invoking fcast.

¢ Use the optional startobs and endobs arguments to fcast (which should come right after
the command word). These values set the forecast range independently of the sample
range.

What if one wants to generate a true forecast that goes beyond the available data? In that case
one can use the dataset command with the addobs parameter to add extra observations before
forecasting. For example:

# use the entire dataset, which ends in 2008:4
ols y 0 xTist

dataset addobs 4

fcast 2009:1 2009:4

But this will work as stated only if the set of regressors in x11ist does not contain any stochastic
regressors other than lags of y. The dataset addobs command attempts to detect and extrap-
olate certain common deterministic variables (e.g., time trend, periodic dummy variables). In
addition, lagged values of the dependent variable can be supported via a dynamic forecast (see
below for discussion of the static/dynamic distinction). But “future” values of any other in-
cluded regressors must be supplied before such a forecast is possible. Note that specific values
in a series can be set directly by date, for example: x1[2009:1] = 120.5. Or, if the assumption
of no change in the regressors is warranted, one can do something like this:

Toop t=2009:1..2009:4
Toop foreach i xlist
$i[t] = $i[2008:4]
endloop
endloop

Static, dynamic and rolling forecasts

The distinction between static and dynamic forecasts applies only to dynamic models, i.e., those
that feature one or more lags of the dependent variable. The simplest case is the AR(1) model,

Yt =Ko+ X1Yt-1 + € (27.1)

In some cases the presence of a lagged dependent variable is implicit in the dynamics of the
error term, for example

Ye=B+u
Ut = PUL-1 T+ €
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which implies that
Ye=(1-=p)B+pye-1+e€

Suppose we want to forecast y for period s using a dynamic model, say (27.1) for example. If
we have data on y available for period s — 1 we could form a fitted value in the usual way:
Vs = Ko + &1 Ys—1. But suppose that data are available only up to s — 2. In that case we can apply
the chain rule of forecasting:

Vs-1= &+ X152
Vs =&+ X1 V51

This is what is called a dynamic forecast. A static forecast, on the other hand, is simply a fitted
value (even if it happens to be computed out-of-sample).

Printing and saving forecasts

To be written.

27.4 Univariate forecast evaluation statistics

Let y; be the value of a variable of interest at time t and let f; be a forecast of y;. We define
the forecast error as e; = y; — f;. Given a series of T observations and associated forecasts we
can construct several measures of the overall accuracy of the forecasts. Some commonly used
measures are the Mean Error (ME), Mean Squared Error (MSE), Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), Mean Percentage Error (MPE) and Mean Absolute Percentage Error
(MAPE). These are defined as follows.

1
ME =

~ |

T 1 1 <
De¢ MSE=_—>e! RMSE= MAE = - > let|
t=1 Tt*l thl

1 I et 1 L |et|
MPE = — 100 — MAPE = — 100 —
A further relevant statistic is Theil’s U (Theil, 1966), defined as the positive square root of

- 2 - 27t
U2 = szl (ft+1 —yt+1> ) szl (yt+1 _yt>
T t=1 Vi T Vi

t=1

The more accurate the forecasts, the lower the value of Theil’s U, which has a minimum of 0.1
This measure can be interpreted as the ratio of the RMSE of the proposed forecasting model to
the RMSE of a naive model which simply predicts y;.1 = y; for all t. The naive model yields
U = 1; values less than 1 indicate an improvement relative to this benchmark and values greater
than 1 a deterioration.

In addition, Theil (1966, pp. 33-36) proposed a decomposition of the MSE which can be useful
in evaluating a set of forecasts. He showed that the MSE could be broken down into three
non-negative components as follows

MSE = (f—j/)z + (sf—rsy)2+ (1—1/2>532,

where f and y are the sample means of the forecasts and the observations, s r and s, are the
respective standard deviations (using T in the denominator), and v is the sample correlation
between y and f. Dividing through by MSE we get
~ 2 2
(f—J_’> . (Sf—TSy> . (1—72)S§, .
MSE MSE MSE

LThis statistic is sometimes called Uy, to distinguish it from a related but different U defined in an earlier work by
Theil (1961). It seems to be generally accepted that the later version of Theil’s U is a superior statistic, so we ignore
the earlier version here.

(27.2)
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Theil labeled the three terms on the left-hand side of (27.2) the bias proportion (UM), regression
proportion (UR) and disturbance proportion (UP), respectively. If y and f represent the in-
sample observations of the dependent variable and the fitted values from a linear regression
then the first two components, UM and UR, will be zero (apart from rounding error), and the
entire MSE will be accounted for by the unsystematic part, U”. In the case of out-of-sample
prediction, however (or “prediction” over a sub-sample of the data used in the regression), UM
and UR are not necessarily close to zero, although this is a desirable property for a forecast
to have. UM differs from zero if and only if the mean of the forecasts differs from the mean
of the realizations, and UX is non-zero if and only if the slope of a simple regression of the
realizations on the forecasts differs from 1.

The above-mentioned statistics are printed as part of the output of the fcast command. They
can also be retrieved in the form of a column vector using the function fcstats, which takes
two series arguments corresponding to y and f. The vector returned is

(ME MSE MAE MPE MAPE U UM yR pyP )

(Note that the RMSE is not included since it can easily be obtained given the MSE.) The series
given as arguments to fcstats must not contain any missing values in the currently defined
sample range; use the smp1 command to adjust the range if needed.

27.5 Forecasts based on VAR models

To be written.

27.6 Forecasting from simultaneous systems

To be written.
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The Kalman Filter

28.1 Preamble

The Kalman filter has been used “behind the scenes” in gretl for quite some time, in computing
ARMA estimates. But user access to the Kalman filter is new and it has not yet been tested
to any great extent. We have run some tests of relatively simple cases against the benchmark
of SsfPack Basic. This is state-space software written by Koopman, Shephard and Doornik and
documented in Koopman, Shephard and Doornik (1999). It requires Doornik’s ox program.
Both ox and SsfPack are available as free downloads for academic use but neither is open-
source; see http://www.ssfpack.com. Since Koopman is one of the leading researchers in this
area, presumably the results from SsfPack are generally reliable. To date we have been able to
replicate the SsfPack results in gretl with a high degree of precision.

We welcome both success reports and bug reports.

28.2 Notation

It seems that in econometrics everyone is happy with v = X +u, but we can’t, as a community,
make up our minds on a standard notation for state-space models. Harvey (1989), Hamilton
(1994), Harvey and Proietti (2005) and Pollock (1999) all use different conventions. The notation
used here is based on James Hamilton’s, with slight variations.

A state-space model can be written as

S =F& +v¢ (28.1)
Vi = A;Xt + H;Et + Wt (28.2)

where (28.1) is the state transition equation and (28.2) is the observation or measurement equa-
tion. The state vector, &;, is (+ x 1) and the vector of observables, y;, is (n x 1); x; is a (k X 1)
vector of exogenous variables. The (» x 1) vector v; and the (n x 1) vector w; are assumed to be
vector white noise:

E(viv;) = Q; for t = s, otherwise 0

E(wiw;) = R for t = s, otherwise 0

The number of time-series observations will be denoted by T. In the special case when F; = F,
H; = H, A; = A, Q; = Q and R; = R, the model is said to be time-invariant.

The Kalman recursions

Using this notation, and assuming for the moment that v; and w; are mutually independent,
the Kalman recursions can be written as follows.

Initialization is via the unconditional mean and variance of &;:

Eij = E(E)
Pyjo = E{[& —E&)][&: _E(El)],}

Usually these are given by guo =0and
vec(P1jo) = [L,2 —FoF]! - vec(Q) (28.3)
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but see below for further discussion of the initial variance.

Iteration then proceeds in two steps.! First we update the estimate of the state

$t+1\t = Ft%tlt—l +Kre (28.4)
where e; is the prediction error for the observable:
€ =Y — A;_‘Xt - H£$t|t—1

and K; is the gain matrix, given by

K; = FiPy 1 H 2! (28.5)
with

3 =H;Py1Hy + Ry
The second step then updates the estimate of the variance of the state using

Pii1ye = FiPri1Fp — K ZKG + Q¢ (28.6)

Cross-correlated disturbances

The formulation given above assumes mutual independence of the disturbances in the state and
observation equations, v; and w;. This assumption holds good in many practical applications,
but a more general formulation allows for cross-correlation. In place of (28.1)-(28.2) we may
write

&1 =F& +Big
ye = Apxe + Hi &, + Crgg

where &; is a (p X 1) disturbance vector, all the elements of which have unit variance, B; is (* X p)
and C; is (n x p).

The no-correlation case is nested thus: define v/ and w; as modified versions of v; and wy,
scaled such that each element has unit variance, and let

vi
& = *
Wi

so that p = v + n. Then (suppressing time subscripts for simplicity) let

B= [ Tysr 0y xn ]
C = [ Onx‘r An><1’L ]
where T and A are lower triangular matrices satisfying Q = I'T” and R = AA’ respectively. The

zero sub-matrices in the above expressions for B and C produce the case of mutual indepen-
dence; this corresponds to the condition BC' = 0.

In the general case p is not necessarily equal to v + n, and BC' may be non-zero. This means
that the Kalman gain equation (28.5) must be modified as

Kt = (FtPtIt—lHt + BtCQ)Z{I (287)
Otherwise, the equations given earlier hold good, if we write BB’ in place of Q and CC’ in place
of R.

In the account of gretl’s Kalman facility below we take the uncorrelated case as the baseline,
but add remarks on how to handle the correlated case where applicable.

IFor a justification of the following formulae see the classic book by Anderson and Moore (1979) or, for a more
modern treatment, Pollock (1999) or Hamilton (1994). A transcription of R. E. Kalman’s original paper (Kalman, 1960)
is available at http://www.cs.unc.edu/~welch/kalman/kaTlmanPaper.html.
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28.3 Intended usage

The Kalman filter can be used in three ways: two of these are the classic forward and back-
ward pass, or filtering and smoothing respectively; the third use is simulation. In the filter-
ing/smoothing case you have the data y; and you want to reconstruct the states &; (and the
forecast errors as a by-product), but we may also have a computational apparatus that does the
reverse: given artificially-generated series w; and vy, generate the states §; (and the observables
y: as a by-product).

The usefulness of the classical filter is well known; the usefulness of the Kalman filter as a
simulation tool may be huge too. Think for instance of Monte Carlo experiments, simulation-
based inference —see Gourieroux and Monfort (1996)—or Bayesian methods, especially in the
context of the estimation of DSGE models.

28.4 Overview of syntax

Using the Kalman filter in gretl is a two-step process. First you set up your filter, using a block of
commands starting with kalman and ending with end kalman—much like the gmm command.
Then you invoke the functions kfiTter, ksmooth or ksimul to do the actual work. The next
two sections expand on these points.

28.5 Defining the filter

Each line within the kalman ... end kalman block takes the form
keyword value

where keyword represents a matrix, as shown below. (An additional matrix which may be useful
in some cases is introduced later under the heading “Constant term in the state transition”.)

Keyword Symbol Dimensions

obsy y Txn
obsymat H rXn
obsx X T x k
obsxmat A kxn
obsvar R nxn
statemat F Y XV
statevar Q rXvr
inistate £1|0 rx1
inivar Pijo ¥ XV¥

For the data matrices y and x the corresponding value may be the name of a predefined matrix,
the name of a data series, or the name of a list of series.?

For the other inputs, value may be the name of a predefined matrix or, if the input in question
happens to be (1x1), the name of a scalar variable or a numerical constant. If the value of a
coefficient matrix is given as the name of a matrix or scalar variable, the input is not “hard-
wired” into the Kalman structure, rather a record is made of the name of the variable and on
each run of a Kalman function (as described below) its value is re-read. It is therefore possible
to write one kaTman block and then do several filtering or smoothing passes using different
sets of coefficients.? An example of this technique is provided later, in the example scripts 28.1
and 28.2. This facility to alter the values of the coefficients between runs of the filter is to be
distinguished from the case of time-varying matrices, which is discussed below.

2Note that the data matrices obsy and obsx have T rows. That is, the column vectors y; and x; in (28.1) and (28.2)
are in fact the transposes of the t-dated rows of the full matrices.

3Note, however, that the dimensions of the various input matrices are defined via the initial kalman set-up and it
is an error if any of the matrices are changed in size.
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Not all of the above-mentioned inputs need be specified in every case; some are optional. (In
addition, you can specify the matrices in any order.) The mandatory elements are y, H, F and
Q, so the minimal kaTman block looks like this:

kaTman
obsy y
obsymat H
statemat F
statevar Q
end kalman

The optional matrices are listed below, along with the implication of omitting the given matrix.

Keyword  If omitted...

obsx no exogenous variables in observation equation
obsxmat  no exogenous variables in observation equation
obsvar no disturbance term in observation equation

inistate &, is set to a zero vector
inivar P1)o is set automatically

It might appear that the obsx (x) and obsxmat (A) matrices must go together—either both
are given or neither is given. But an exception is granted for convenience. If the observation
equation includes a constant but no additional exogenous variables, you can give a (1 X n) value
for A without having to specify obsx. More generally, if the row dimension of A is 1 greater
than the column dimension of x, it is assumed that the first element of A is associated with an
implicit column of 1s.

Regarding the automatic initialization of P;|¢ (in case no inivar input is given): by default this
is done as in equation (28.3). However, this method is applicable only if all the eigenvalues of
F lie inside the unit circle. If this condition is not satisfied we instead apply a diffuse prior,
setting Pyjo = kI, with k = 107. If you wish to impose this diffuse prior from the outset, append
the option flag --diffuse to the end kalman statement.*

Time-varying matrices

Any or all of the matrices obsymat, obsxmat, obsvar, statemat and statevar may be time-
varying. In that case the value corresponding to the matrix keyword should be given in a special
form: the name of an existing matrix plus a function call which modifies that matrix, separated
by a semicolon. Note that in this case you must use a matrix variable, even if the matrix in
question happens tobe 1 x 1.

For example, suppose the matrix H is time-varying. Then we might write
obsymat H ; modify_H(&H, theta)

where modify_H is a user-defined function which modifies matrix H (and theta is a suitable
additional argument to that function, if required).

The above is just an illustration: the matrix argument does not have to come first, and the
function can have as many arguments as you like. The essential point is that the function must
modify the specified matrix, which requires that it be given as an argument in “pointer” form
(preceded by &). The function need not return any value directly; if it does, that value is ignored.

Such matrix-modifying functions will be called at each time-step of the filter operation, prior to
performing any calculations. They have access to the current time-step of the Kalman filter via
the internal variable $kalman_t, which has value 1 on the first step, 2 on the second, and so
on, up to step T. They also have access to the previous n-vector of forecast errors, e;_1, under
the name $kalman_uhat. When t = 1 this will be a zero vector.

4Initialization of the Kalman filter outside of the case where equation (28.3) applies has been the subject of much
discussion in the literature —see for example de Jong (1991), Koopman (1997). At present gretl does not implement
any of the more elaborate proposals that have been made.
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Correlated disturbances

Defining a filter in which the disturbances v; and w; are correlated involves one modification to
the account given above. If you append the --cross option flag to the end kalman statement,
then the matrices corresponding to the keywords statevar and obsvar are interpreted not as
Q and R but rather as B and C as discussed in section 28.2. Gretl then computes Q = BB’ and
R = CC’ as well as the cross-product BC' and utilizes the modified expression for the gain as
given in equation (28.7). As mentioned above, B should be (¥ X p) and C should be (n x p), where
p is the number of elements in the combined disturbance vector &;.

Constant term in the state transition

In some applications it is useful to be able to represent a constant term in the state transition
equation explicitly; that is, equation (28.1) becomes

i1 =M +FE + vy (28.8)

This is never strictly necessary; the system (28.1) and (28.2) is general enough to accommodate
such a term, by absorbing it as an extra (unvarying) element in the state vector. But this comes
at the cost of expanding all the matrices that touch the state (&, F, v, Q, H), making the model
relatively awkward to formulate and forecasts relatively expensive to compute.

As a simple illustration, consider a univariate model in which the state, s;, is just a random walk
with drift 4 and the observed variable, ), is the state plus white noise:

St41 = U+ St + Uy (28.9)

Vi = St + Wt (28.10)

Putting this into the standard form of (28.1) and (28.2) we get:
St+1 _ 1 1 St Vt _ 0'5 0
R R | B
yt:l:l O]|:S;i|+wt

In such a simple case the notational and computational burden is not very great; nonetheless
it is clearly more “natural” to express this system in the form of (28.9) and (28.10) and in a
multivariate model the gain in parsimony could be substantial.

For this reason we support the use of an additional named matrix in the kalman setup, namely
stconst. This corresponds to u in equation (28.8); it should be an » x1 vector (or if ¥ = 1 may be
given as the name of a scalar variable). The use of stconst in setting up a filter corresponding
to (28.9) and (28.10) is shown below.

matrix H = {1}
matrix R = {1}
matrix F = {1}
matrix Q = {1}
matrix mu = {0.05}
kalman

obsy y

obsymat H

obsvar R

statemat F

statevar Q

stconst mu
end kalman



Chapter 28. The Kalman Filter 220

Handling of missing values

It is acceptable for the data matrices, obsy and obsx, to contain missing values. In this case the
filtering operation will work around the missing values, and the ksmooth function can be used
to obtain estimates of these values. However, there are two points to note.

First, gretl’s default behavior is to skip missing observations when constructing matrices from
data series. To change this, use the set command thus:

set skip_missing off

Second, the handling of missing values is not yet quite right for the case where the observable
vector y; contains more than one element. At present, if any of the elements of y; are missing
the entire observation is ignored. Clearly it should be possible to make use of any non-missing
elements, and this is not very difficult in principle, it’s just awkward and is not implemented
yet.

Persistence and identity of the filter

At present there is no facility to create a “named filter”. Only one filter can exist at any point
in time, namely the one created by the last kalman block.”> If a filter is already defined, and
you give a new kaTman block, the old filter is over-written. Otherwise the existing filter persists
(and remains available for the kfiTter, ksmooth and ksimul functions) until either (a) the gretl
session is terminated or (b) the command delete kalman is given.

28.6 The kfilter function

Once a filter is established, as discussed in the previous section, kfilter can be used to run
a forward, forecasting pass. This function returns a scalar code: 0 for successful completion,
or 1 if numerical problems were encountered. On successful completion, two scalar accessor
variables become available: $kalman_1n1, which gives the overall log-likelihood under the joint
normality assumption,

T T
0=~ [nTlog(ZTr) + D log S+ Y ef%; 1et]
t=1 t=1

and $kaTman_s2, which gives the estimated variance,

1 T
Az_iTg Z;let

(but see below for modifications to these formulae for the case of a diffuse prior). In addition
the accessor $kalman_11t gives a (T x 1) vector, element ¢ of which is

0 = —% [nlog(er) + log |Z¢]| + eézt_let]

The kfilter function does not require any arguments, but up to five matrix quantities may
be retrieved via optional pointer arguments. Each of these matrices has T rows, one for each
time-step; the contents of the rows are shown in the following listing.

1. Forecast errors for the observable variables: e;, n columns.

2. Variance matrix for the forecast errors: vech(Z;)’, n(n + 1) /2 columns.

3. Estimate of the state vector: Em,l, ¥ columns.

5This is not quite true: more precisely, there can be no more than one Kalman filter at each level of function
execution. That is, if a gretl script creates a Kalman filter, a user-defined function called from that script may also
create a filter, without interfering with the original one.
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4. MSE of estimate of the state vector: vech(P;|;—1)’, ¥ (¥ + 1) /2 columns.

5. Kalman gain: vec(K;)’, ¥n columns.

Unwanted trailing arguments can be omitted, otherwise unwanted arguments can be skipped
by using the keyword null. For example, the following call retrieves the forecast errors in the
matrix E and the estimate of the state vector in S:

matrix E S
kfilter(&E, null, &S)

Matrices given as pointer arguments do not have to be correctly dimensioned in advance; they
will be resized to receive the specified content.

Further note: in general, the arguments to kfiTter should all be matrix-pointers, but under two
conditions you can give a pointer to a series variable instead. The conditions are: (i) the matrix
in question has just one column in context (for example, the first two matrices will have a single
column if the length of the observables vector, n, equals 1) and (ii) the time-series length of the
filter is equal to the current gretl sample size.

Likelihood under the diffuse prior

There seems to be general agreement in the literature that the log-likelihood calculation should
be modified in the case of a diffuse prior for Pyjg. However, it is not clear to us that there is
a well-defined “correct” method for this. At present we emulate SsfPack (see Koopman et al.
(1999) and section 28.1). In case P10 = kI, we set d = ¥ and calculate

T T
{= —% [(nT —d)log(21) + Z log |2 + Z e = le - dlog(K)]
t=1 t=1

and

1

2 re—1
_7§ s

g~ = T lt let t e;

28.7 The ksmooth function

This function returns the (T x r) matrix of smoothed estimates of the state vector—that is,

estimates based on all T observations: row t of this matrix holds §;|T. This function has no
required arguments but it offers one optional matrix-pointer argument, which retrieves the
variance of the smoothed state estimate, P;;r. The latter matrix is (T X ¥ (¥ + 1)/2); each row is
in transposed vech form. Examples:

matrix S = ksmooth() # smoothed state only
matrix P
S = ksmooth(&P) # the variance is wanted
These values are computed via a backward pass of the filter, from t = T to t = 1, as follows:
L = F, —KH;,
U1 = HtZ;Iet + L;_»llt
U1 = HiZ HH, + L UL,
Eur = &rje—1 + Prr—1ue
Pir = Prie-1 — Prje—1Ur—1 Py 1
with initial values ur = 0 and Uy = 0.6

This iteration is preceded by a special forward pass in which the matrices K;, ;*, £t|t71 and
P;;—1 are stored for all t. If F is time-varying, its values for all ¢t are stored on the forward pass,
and similarly for H.

6See 1. Karibzhanov’s exposition at http://www.econ.umn.edu/~karib003/help/kalcvs.htm.
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28.8 The ksimul function

This simulation function takes up to three arguments. The first, mandatory, argument is a (T Xt)
matrix containing artificial disturbances for the state transition equation: row t of this matrix
represents v;. If the current filter has a non-null R (obsvar) matrix, then the second argument
should be a (T x n) matrix containing artificial disturbances for the observation equation, on
the same pattern. Otherwise the second argument should be given as null. If » = 1 you may
give a series for the first argument, and if n = 1 a series is acceptable for the second argument.

Provided that the current filter does not include exogenous variables in the observation equation
(obsx), the T for simulation need not equal that defined by the original obsy data matrix: in
effect T is temporarily redefined by the row dimension of the first argument to ksimul. Once
the simulation is completed, the T value associated with the original data is restored.

The value returned by ksimul is a (T x n) matrix holding simulated values for the observables
at each time step. A third optional matrix-pointer argument allows you to retrieve a (T X ¥)
matrix holding the simulated state vector. Examples:

matrix Y = ksimul(V) # obsvar is null
Y = ksimul(V, W) # obsvar is non-null
matrix S

Y = ksimul(V, null, &S) # the simulated state is wanted

The initial value &, is calculated thus: we find the matrix T such that TT’ = Py o (as given by the
inivar element in the kalman block), multiply it into v, and add the result to &;, (as given by
inistate).

If the disturbances are correlated across the two equations the arguments to ksimul must be
revised: the first argument should be a (T x p) matrix, each row of which represents &; (see
section 28.2), and the second argument should be given as nul1.

28.9 Example 1: ARMA estimation

As is well known, the Kalman filter provides a very efficient way to compute the likelihood of
ARMA models; as an example, take an ARMA(1,1) model

Ye=Pye1+&+ 08

One of the ways the above equation can be cast in state-space form is by defining a latent
process & = (1 — ¢pL) L. The observation equation corresponding to (28.2) is then

Ye =8 +0& 1 (28.11)

and the state transition equation corresponding to (28.1) is

PR ESR

The gretl syntax for a corresponding kalman block would be

matrix H = {1; theta}
matrix F = {phi, 0; 1, 0}
matrix Q = {sA2, 0; 0, 0}
kalman

obsy y

obsymat H

statemat F
statevar Q
end kalman
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Note that the observation equation (28.11) does not include an “error term”; this is equivalent
to saying that V(w;) = 0 and, as a consequence, the kalman block does not include an obsvar
keyword.

Once the filter is set up, all it takes to compute the log-likelihood for given values of ¢, 6 and
0?2 is to execute the kfilter() function and use the $kalman_1n1 accessor (which returns
the total log-likelihood) or, more appropriately if the likelihood has to be maximized through
mle, the $kalman_11t accessor, which returns the series of individual contribution to the log-
likelihood for each observation. An example is shown in script 28.1.

Example 28.1: ARMA estimation

function void armall_via_kalman(series y)
/* parameter initalization */

phi =0
theta = 0
sigma = 1

/* Kalman filter setup */
matrix H = {1; theta}
matrix F = {phi, 0; 1, 0}

matrix Q = {sigmaA2, 0; 0, 0}
kaTman

obsy y

obsymat H

statemat F
statevar Q
end kalman

/* maximum 1ikelihood estimation */
mle Togl = ERR ? NA : $kalman_11t
H[2] = theta
F[1,1] = phi
Q[1,1] = sigmaA2
ERR = kfilter()
params phi theta sigma
end mle -h
end function

# oo - Mmain -----————-————
open arma.gdt # open the "arma" example dataset
armall_via_kalman(y) # estimate an arma(l,1) model

arma 1 1 ; y --nc # check via native command

28.10 Example 2: local level model

Suppose we have a series y; = u; + &, where u; is a random walk with normal increments of
variance 012 and &; is a normal white noise with variance 022, independent of y;. This is known
as the “local level” model in Harvey’s (1989) terminology, and it can be cast in state-space form
as equations (28.1)-(28.2) with F = 1, vy ~ N(O, 012), H =1 and wy ~ N(O, 0'22). The translation
to a kaTlman block is

kalman
obsy y
obsymat 1
statemat 1
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statevar s2
obsvar sl
end kalman --diffuse

The two unknown parameters o> and o5 can be estimated via maximum likelihood. Script 28.2
provides an example of simulation and estimation of such a model. For the sake of brevity,
simulation is carried out via ordinary gretl commands, rather than the state-space apparatus
described above.

The example contains two functions: the first one carries out the estimation of the unknown
parameters o and o via maximum likelihood; the second one uses these estimates to compute
a smoothed estimate of the unobservable series u; calles muhat. A plot of uy and its estimate is
presented in Figure 28.1.

By appending the following code snippet to the example in Table 28.2, one may check the results
against the R command StructTsS.

foreign language=R --send-data
y <- gretldatal,"y"]
a <- StructTS(y, type="level")
a
StateFromR <- as.ts(tsSmooth(a))
gretl.export(StateFromR)
end foreign

append @dotdir/StateFromR.csv

ols muhat O StateFromR --simple
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Example 28.2: Local level model

function matrix local_level (series y)
/* starting values */
scalar s1 =1
scalar s2 = 1

/* Kalman filter set-up */
kaTlman

obsy y

obsymat 1

statemat 1

statevar s2

obsvar sl
end kalman --diffuse

/* ML estimation */

mle 11 = ERR ? NA : $kalman_11t
ERR = kfilter()
params sl s2

end mle

return sl ~ s2
end function

function series loclev_sm (series y, scalar sl, scalar s2)
/* return the smoothed estimate of \mu_t */
kaTman
obsy y
obsymat 1
statemat 1
statevar s2
obsvar sl
end kalman --diffuse
series ret = ksmooth()
return ret
end function

nulldata 200

set seed 202020

setobs 1 1 --special

true_sl = 0.25

true_s2 = 0.5

v = normal() * sqrt(true_sl)
w = normal() * sqrt(true_s2)
mu = 2 + cum(w)

y =mu + Vv

matrix Vars = Tocal_level(y) # estimate the variances
muhat = Toclev_sm(y, Vars[1l], Vars[2]) # compute the smoothed state

225
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0 50 100 150 200

Figure 28.1: Local level model: u; and its smoothed estimate
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Numerical methods

Several functions are available to aid in the construction of special-purpose estimators: one
group of functions are used to maximize user-supplied functions via numerical methods: BFGS,
Newton-Raphson and Simulated Annealing. Another relevant function is fdjac, which pro-
duces a forward-difference approximation to the Jacobian.

29.1 BFGS

The BFGSmax function has two required arguments: a vector holding the initial values of a set of
parameters, and a call to a function that calculates the (scalar) criterion to be maximized, given
the current parameter values and any other relevant data. If the object is in fact minimization,
this function should return the negative of the criterion. On successful completion, BFGSmax re-
turns the maximized value of the criterion and the matrix given via the first argument holds the
parameter values which produce the maximum. It is assumed here that the objective function
is a user-defined function (see Chapter 10) with the following general set-up:

function scalar ObjFunc (matrix *theta, matrix *X)
scalar val = ... # do some computation
return val

end function

The first argument contains the arguments upon which the maximization has to take place,
while the second argument may be used to hold “extra” values that are necessary to compute
the objective function, but are not the variables of the optimization problem. For example, if
the objective function were a loglikelihood, the first argument would contain the parameters
and the second one the data. Or, for more economic-theory inclined readers, if the objective
function were the utility of a consumer, the first argument would contain the quantities of
goods and the second one their prices and disposable income.

Example 29.1: Finding the minimum of the Rosenbrock function

function scalar Rosenbrock(matrix *param)
scalar x = param[1]
scalar y = param[2]
return -(1-x)A2 - 100 * (y - xA2)A2
end function

matrix theta = { 0, 0 }

set max_verbose 1
M = BFGSmax(theta, Rosenbrock(&theta))

print theta

The operation of BFGS can be adjusted using the set variables bfgs_maxiter and bfgs_toler
(see Chapter 19). In addition you can provoke verbose output from the maximizer by assigning
a positive value to max_verbose, again via the set command.

227
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The Rosenbrock function is often used as a test problem for optimization algorithms. It is also
known as “Rosenbrock’s Valley” or “Rosenbrock’s Banana Function”, on account of the fact that
its contour lines are banana-shaped. It is defined by:

fx,y) = (1-x)2+100(y — x?)?

The function has a global minimum at (x,y) = (1,1) where f(x,y) = 0. Example 29.1 shows a
gretl script that discovers the minimum using BFGSmax (giving a verbose account of progress).
Note that, in this particular case, the function to be maximized only depends on the parameters,
so the second parameter is omitted from the definition of the function Rosenbrock.

Limited-memory variant

See Byrd et al. (1995) (...FIXME: expand a little here ...)

Supplying analytical derivatives for BFGS

An optional third argument to the BFGSmax function enables the user to supply analytical deriv-
atives of the criterion function with respect to the parameters (without which a numerical ap-
proximation to the gradient is computed). This argument is similar to the second one in that
it specifies a function call. In this case the function that is called must have the following
signature.

Its first argument should be a pre-defined matrix correctly dimensioned to hold the gradient;
that is, if the parameter vector contains k elements, the gradient matrix must also be a k-vector.
This matrix argument must be given in “pointer” form so that its content can be modified by
the function. (Note that unlike the parameter vector, where the choice of initial values can be
important, the initial values given to the gradient are immaterial and do not affect the results.)

In addition the gradient function must have as one of its argument the parameter vector. This
may be given in pointer form (which enhances efficiency) but that is not required. Additional
arguments may be specified if necessary.

Given the current parameter values, the function call must fill out the gradient vector appro-
priately. It is not required that the gradient function returns any value directly; if it does, that
value is ignored.

Example 29.2 illustrates, showing how the Rosenbrock script can be modified to use analytical
derivatives. (Note that since this is a minimization problem the values written into g[1] and
g[2] in the function Rosen_grad are in fact the derivatives of the negative of the Rosenbrock
function.)

29.2 Newton-Raphson

BFGS, discussed above, is an excellent all-purpose maximizer, and about as robust as possible
given the limitations of digital computer arithmetic. The Newton-Raphson maximizer is not as
robust, but may converge much faster than BFGS for problems where the maximand is reason-
ably well behaved — in particular, where it is anything like quadratic (see below). The case for
using Newton-Raphson is enhanced if it is possible to supply a function to calculate the Hessian
analytically.

The gretl function NRmax, which implements the Newton-Raphson method, has a maximum of
four arguments. The first two (required) arguments are exactly as for BFGS: an initial parameter
vector, and a function call which returns the maximand given the parameters. The (optional)
third argument is again as in BFGS: a function call that calculates the gradient. Specific to NRmax
is an optional fourth argument, namely a function call to calculate the (negative) Hessian. The
first argument of this function must be a pre-defined matrix of the right dimension to hold the
Hessian — that is, a k X k matrix, where k is the length of the parameter vector — given in
“pointer” form. The second argument should be the parameter vector (optionally in pointer
form). Other data may be passed as additional arguments as needed. Similarly to the case with
the gradient, if the fourth argument to NRmax is omitted then a numerical approximation to the
Hessian is constructed.
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Example 29.2: Rosenbrock function with analytical gradient

function scalar Rosenbrock (matrix *param)
scalar x = param[1]
scalar y = param[2]
return -(1-x)A2 - 100 * (y - xA2)A2

end function

function void Rosen_grad (matrix *g, matrix *param)
scalar x = param[1]
scalar y = param[2]
gll] = 2*(1-x) + 2%x*(200* (y-xA2))
g[2] = -200%(y - xA2)
end function

matrix theta = { 0, 0 }
matrix grad = { 0, 0 }

set max_verbose 1
M = BFGSmax(theta, Rosenbrock(&theta), Rosen_grad(&grad, &theta))

print theta
print grad

What is ultimately required in Newton-Raphson is the negative inverse of the Hessian. Note that
if you give the optional fourth argument, your function should compute the negative Hessian,
but should not invert it; NRmax takes care of inversion, with special handling for the case where
the matrix is not negative definite, which can happen far from the maximum.

Script 29.3 extends the Rosenbrock example, using NRmax with a function Rosen_hess to com-
pute the Hessian. The functions Rosenbrock and Rosen_grad are just the same as in Exam-
ple 29.2 and are omitted for brevity.

Example 29.3: Rosenbrock function via Newton-Raphson

function void Rosen_hess (matrix *H, matrix *param)
scalar x = param[1]
scalar y = param[2]
H[1,1] = 2 - 400*%y + 1200%xA2
H[1,2] = -400%*x
H[2,1] = -400*x
H[2,2] = 200
end function

matrix theta = { 0, 0 }
matrix g = { 0, 0 }
matrix H = zeros(2, 2)

set max_verbose 1
M = NRmax(theta, Rosenbrock(&theta), Rosen_grad(&g, &theta),
Rosen_hess(&H, &theta))

print theta
print grad



Chapter 29. Numerical methods 230

The idea behind Newton-Raphson is to exploit a quadratic approximation to the maximand,
under the assumption that it is concave. If this is true, the method is very effective. However,
if the algorithm happens to evaluate the function at a point where the Hessian is not negative
definite, things may go wrong. Script 29.4 exemplifies this by using a normal density, which is
concave in the interval (—1,1) and convex elsewhere. If the algorithm is started from within
the interval everything goes well and NR is (slightly) more effective than BFGS. If, however, the
Hessian is positive at the starting point BFGS converges with only little more difficulty, while
Newton-Raphson fails.

Example 29.4: Maximization of a Gaussian density

function scalar ND(matrix x)
scalar z = x[1]
return exp(-0.5%z*z)

end function

set max_verbose 1

x = {0.75}
A = BFGSmax(x, ND(x))

x = {0.75}
A = NRmax(x, ND(x))

x = {1.5}
A = BFGSmax(x, ND(x))

x = {1.5}
A = NRmax(x, ND(x))

29.3 Simulated Annealing

Simulated annealing — as implemented by the gretl function simann — is not a full-blown
maximization method in its own right, but can be a useful auxiliary tool in problems where
convergence depends sensitively on the initial values of the parameters. The idea is that you
supply initial values and the simulated annealing mechanism tries to improve on them via
controlled randomization.

The simann function takes up to three arguments. The first two (required) are the same as for
BFGSmax and NRmax: an initial parameter vector and a function that computes the maximand.
The optional third argument is a positive integer giving the maximum number of iterations, n,
which defaults to 1024.

Starting from the specified point in the parameter space, for each of n iterations we select at
random a new point within a certain radius of the previous one and determine the value of the
criterion at the new point. If the criterion is higher we jump to the new point; otherwise, we
jump with probability P (and remain at the previous point with probability 1 — P). As the itera-
tions proceed, the system gradually “cools” — that is, the radius of the random perturbation is
reduced, as is the probability of making a jump when the criterion fails to increase.

In the course of this procedure n + 1 points in the parameter space are evaluated: call them
0;,i = 0,...,n, where 0 is the initial value given by the user. Let 6* denote the “best” point
among 01,..., 0, (highest criterion value). The value written into the parameter vector on com-
pletion is then 0* if 6* is better than 6y, otherwise 6,. In other words, failing an actual im-
provement in the criterion, simann randomizes the starting point, which may be helpful in
tricky optimization problems.

Example 29.5 shows simann at work as a helper for BFGSmax in finding the maximum of a
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bimodal function. Unaided, BFGSmax requires 60 function evaluations and 55 evaluations of the
gradient, while after simulated annealing the maximum is found with 7 function evaluations
and 6 evaluations of the gradient.!

Example 29.5: BFGS with initialization via Simulated Annealing

function scalar bimodal (matrix x, matrix A)
scalar ret = exp(-gform((x-1)’, A))
ret += 2%exp(-qform((x+4)’, A))
return ret

end function

set seed 12334
set max_verbose on

scalar k = 2
matrix A = 0.1 * I(k)
matrix x0 = {3; -5}

x = x0

u = BFGSmax(x, bimodal(x, A))
print x

x = x0

u = simann(x, bimodal(x, A), 1000)
print x

u = BFGSmax(x, bimodal(x, A))
print x

29.4 Computing a Jacobian

Gretl offers the possibility of differentiating numerically a user-defined function via the fdjac
function.

This function takes two arguments: an n X 1 matrix holding initial parameter values and a
function call that calculates and returns an m X 1 matrix, given the current parameter values
and any other relevant data. On successful completion it returns an m X n matrix holding the
Jacobian. For example,

matrix Jac = fdjac(theta, SumOC(&theta, &X))
where we assume that SumOC is a user-defined function with the following structure:

function matrix SumOC (matrix *theta, matrix *X)
matrix V = ... # do some computation
return V

end function

This may come in handy in several cases: for example, if you use BFGSmax to estimate a model,
you may wish to calculate a numerical approximation to the relevant Jacobian to construct a
covariance matrix for your estimates.

Another example is the delta method: if you have a consistent estimator of a vector of pa-
rameters 0, and a consistent estimate of its covariance matrix ¥, you may need to compute
estimates for a nonlinear continuous transformation ¢y = g(0). In this case, a standard result

lYour mileage may vary: these figures are somewhat compiler- and machine-dependent.
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in asymptotic theory is that

0L 0 _ @ =90) 2 w=4g0)
VT (6-0) L NO,3) VT (§ - w) % N(0,J=])
09 (x)

where T is the sample size and J is the Jacobian =5= s

Example 29.6: Delta Method

function matrix MPC(matrix *param, matrix *Y)
beta = param[2]
gamma = param[3]
y = Y[1]
return beta*gamma*yA(gamma-1)
end function

# William Greene, Econometric Analysis, 5e, Chapter 9
set echo off

set messages off

open greene5_1.gdt

# Use OLS to initialize the parameters
ols realcons 0 realdpi --quiet

genr a = $coeff(0)

genr b $coeff(realdpi)

genr g 1.0

# Run NLS with analytical derivatives
nls realcons = a + b * (realdpiAg)
deriva =1

deriv b = realdpiAg
deriv g = b * realdpiAg * Tog(realdpi)
end nls

matrix Y = realdpi[2000:4]
matrix theta = $coeff
matrix V = $vcv

mpc = MPC(&theta, &Y)
matrix Jac = fdjac(theta, MPC(&theta, &Y))
Sigma = gform(Jac, V)

printf "\nmpc = %g, std.err = %g\n", mpc, sqrt(Sigma)

scalar teststat = (mpc-1)/sqrt(Sigma)

printf "\nTest for MPC = 1: %g (p-value = %g)\n", \
teststat, pvalue(n,abs(teststat))

232

Script 29.6 exemplifies such a case: the example is taken from Greene (2003), section 9.3.1. The
slight differences between the results reported in the original source and what gretl returns are
due to the fact that the Jacobian is computed numerically, rather than analytically as in the

book.

On the subject of numerical versus analytical derivatives, one may wonder what difference it
makes to use one method or another. Simply put, the answer is: analytical derivatives may be
painful to derive and to translate into code, but in most cases they are much faster than using
fdjac; as a consequence, if you need to use derivatives as part of an algorithm that requires
iteration (such as numerical optimization, or a Monte Carlo experiment), you'll definitely want

to use analytical derivatives.
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Analytical derivatives are also, in most cases, more precise than numerical ones, but this ad-
vantage may or may not be negligible in practice depending on the practical details: the two
fundamental aspects to take in consideration are nonlinearity and machine precision.

As an example, consider the derivative of a highly nonlinear function such as the matrix inverse.
In order to keep the example simple, let’s focus on 2 x 2 matrices and define the function

function matrix vecinv(matrix x)
A = mshape(x,2,2)
return vec(inv(A))’

end function

which, given vec(A), returns vec(A~1). As is well known (see for example Magnus and Neudecker

(1988)),

ovec(A™h) ., 1
ovec(A) (A7) e (A7),

which is rather easy to code in hansl as
function matrix grad(matrix x)
iA = inv(mshape(x,2,2))
return -iA’ ** iA
end function
Using the fdjac function to obtain the same result is even easier: you just invoke it like
fdjac(a, "vecinv(a)")
In order to see what the difference is, in terms of precision, between analytical and numerical

1
Jacobians, start from A = [ 1 }; the following code

a={2; 1; 1; 1%

ja = vecinv(a)

ag = grad(a)

ng = fdjac(a, "vecinv(a)")
dg = ag - ng

print ag ng dg

gives
ag (4 x 4
-1 1 1 -1
1 -2 -1 2
1 -1 -2 2
-1 2 2 -4
ng (4 x 4)
-1 1 1 -1
1 -2 -1 2
1 -1 -2 2
-1 2 2 -4
dg (4 x 4)
-3.3530e-08 -3.7251e-08 -3.7251e-08 -3.7255e-08
2.6079e-08 5.2150e-08 3.7251e-08 6.7060e-08
2.6079e-08 3.7251e-08 5.2150e-08 6.7060e-08
-2.2354e-08 -5.9600e-08 -5.9600e-08 -1.4902e-07
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in which the analytically-computed derivative and its numerical approximation are essentially
1.0001 1

1 1

a point in which the function itself is considerably more nonlinear since the matrix is much
closer to being singular. As a consequence, the numerical approximation becomes much less

the same. If, however, you set A = [ ] you end up evaluating the function at

satisfactory:

ag (4 x 4)

-1.0000e+08 1.0000e+08 1.0000e+08 -1.0000e+08
1.0000e+08 -1.0001e+08 -1.0000e+08 1.0001e+08
1.0000e+08 -1.0000e+08 -1.0001e+08 1.0001e+08

-1.0000e+08 1.0001e+08 1.0001e+08 -1.0002e+08

ng (4 x 4)

-9.9985e+07 1.0001e+08 1.0001e+08 -9.9985e+07
9.9985e+07 -1.0002e+08 -1.0001e+08 9.9995e+07
9.9985e+07 -1.0001e+08 -1.0002e+08 9.9995e+07

-9.9985e+07 1.0002e+08 1.0002e+08 -1.0001e+08

dg (4 x 4)

-14899. -14901. -14901. -14900.
14899. 14903. 14901. 14902.
14899. 14901. 14903. 14902.

-14899. -14903. -14903. -14903.

2
Moreover, machine precision may have its impact: if you take A = 0.00001 x [ 1

matrix itself is not singular at all, but the order of magnitude of its elements is close enough to

machine precision to provoke problems:

ag (4 x 4

-1.0000e+10 1.0000e+10 1.0000e+10 -1.0000e+10
1.0000e+10 -2.0000e+10 -1.0000e+10 2.0000e+10
1.0000e+10 -1.0000e+10 -2.0000e+10 2.0000e+10

-1.0000e+10 2.0000e+10 2.0000e+10 -4.0000e+10

ng (4 x 4)

-1.0000e+10 1.0000e+10 1.0000e+10 -1.0000e+10
1.0000e+10 -2.0000e+10 -1.0000e+10 2.0000e+10
1.0000e+10 -1.0000e+10 -2.0000e+10 2.0000e+10

-1.0000e+10 2.0000e+10 2.0000e+10 -4.0000e+10

dg (4 x 4)

-488.30 -390.60 -390.60 -195.33
634.79 781.21 390.60 585.98
634.79 488.26 683.55 585.98

-781.27 -976.52 -781.21 -1367.3
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Discrete and censored dependent variables

This chapter deals with models for dependent variables that are discrete or censored or other-
wise limited (as in event counts or durations, which must be positive) and that therefore call for
estimation methods other than the classical linear model. We discuss several estimators (mostly
based on the Maximum Likelihood principle), adding some details and examples to complement
the material on these methods in the Gretl Command Reference.

30.1 Logit and probit models

It often happens that one wants to specify and estimate a model in which the dependent variable
is not continuous, but discrete. A typical example is a model in which the dependent variable
is the occupational status of an individual (1 = employed, 0 = unemployed). A convenient way
of formalizing this situation is to consider the variable y; as a Bernoulli random variable and
analyze its distribution conditional on the explanatory variables x;. That is,

1 P;
| = 1
Vi {0 b, (30.1)

where P; = P(y; = 1|x;) is a given function of the explanatory variables x;.

In most cases, the function P; is a cumulative distribution function F, applied to a linear com-
bination of the x;s. In the probit model, the normal cdf is used, while the logit model employs
the logistic function A(). Therefore, we have

probit P, =F(z;) = ®(z;) (30.2)
. 1
IOglt Pl = F(Zl) = A(Zl) = Tﬁ (303)
k
Zi = z Xijﬁj (30.4)
j=1

where z; is commonly known as the index function. Note that in this case the coefficients f;
cannot be interpreted as the partial derivatives of E(y;|x;) with respect to x;;. However, for a
given value of x; it is possible to compute the vector of “slopes”, that is

0F(z2)
an

slope;(x) =
z=z

Gretl automatically computes the slopes, setting each explanatory variable at its sample mean.

Another, equivalent way of thinking about this model is in terms of an unobserved variable y;*
which can be described thus:

k
Y= xijBj+Ei=zi+ & (30-5)
j=1

We observe y; = 1 whenever yi* > 0 and y; = 0 otherwise. If &; is assumed to be normal, then
we have the probit model. The logit model arises if we assume that the density function of ¢; is
OA(&) e ¢

dog; (1 +e&)2

A(ei) =

235
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Both the probit and logit model are estimated in gretl via maximum likelihood, where the log-
likelihood can be written as

L(B)= > In[1-F(z)]+ > InF(z), (30.6)

¥i=0 yi=1

which is always negative, since 0 < F(-) < 1. Since the score equations do not have a closed form
solution, numerical optimization is used. However, in most cases this is totally transparent to
the user, since usually only a few iterations are needed to ensure convergence. The --verbose
switch can be used to track the maximization algorithm.

Example 30.1: Estimation of simple logit and probit models

open greenel9_1

Togit GRADE const GPA TUCE PSI
probit GRADE const GPA TUCE PSI

As an example, we reproduce the results given in chapter 21 of Greene (2000), where the effec-
tiveness of a program for teaching economics is evaluated by the improvements of students’
grades. Running the code in example 30.1 gives the output reported in Table 30.1; note that,
for the probit model, a conditional moment test on skewness and kurtosis is printed out auto-
matically as a test for normality.

In this context, the $uhat accessor function takes a special meaning: it returns generalized
residuals as defined in Gourieroux, Monfort, Renault and Trognon (1987), which can be inter-
preted as unbiased estimators of the latent disturbances &;. These are defined as

y; - P; for the logit model (30.7)
u; = S Ny )
! Vi - ;f((j:)) - (1 -y - % for the probit model

Among other uses, generalized residuals are often used for diagnostic purposes. For example,
itis very easy to set up an omitted variables test equivalent to the familiar LM test in the context
of a linear regression; example 30.2 shows how to perform a variable addition test.

Example 30.2: Variable addition test in a probit model

open greenel9_1

probit GRADE const GPA PSI

series u = $uhat

%$

ols u const GPA PSI TUCE -q

printf "Variable addition test for TUCE:\n"

printf "Rsq * T = %g (p. val. = %g)\n", $trsq, pvalue(X,1,$trsq)

The perfect prediction problem

One curious characteristic of logit and probit models is that (quite paradoxically) estimation
is not feasible if a model fits the data perfectly; this is called the perfect prediction problem.
The reason why this problem arises is easy to see by considering equation (30.6): if for some
vector B and scalar k it’s the case that z; < k whenever y; = 0 and z; > k whenever y; = 1, the
same thing is true for any multiple of 8. Hence, L(B) can be made arbitrarily close to 0 simply
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Model 1: Logit estimates using the 32 observations 1-32
Dependent variable: GRADE

VARIABLE COEFFICIENT STDERROR T STAT SLOPE
(at mean)
const -13.0213 4.93132 -2.641
GPA 2.82611 1.26294 2.238 0.533859
TUCE 0.0951577 0.141554 0.672 0.0179755
PSI 2.37869 1.06456 2.234 0.449339

Mean of GRADE = 0.344

Number of cases ’correctly predicted’ = 26 (81.2%)

f(beta’x) at mean of independent vars = 0.189

McFadden’s pseudo-R-squared = 0.374038

Log-1ikelihood = -12.8896

Likelihood ratio test: Chi-square(3) = 15.4042 (p-value 0.001502)
Akaike information criterion (AIC) = 33.7793

Schwarz Bayesian criterion (BIC) = 39.6422

Hannan-Quinn criterion (HQC) = 35.7227

Predicted

0 1

Actual 0 18 3
1 3 8

Model 2: Probit estimates using the 32 observations 1-32
Dependent variable: GRADE

VARIABLE COEFFICIENT STDERROR T STAT SLOPE
(at mean)
const -7.45232 2.54247 -2.931
GPA 1.62581 0.693883 2.343 0.533347
TUCE 0.0517288 0.0838903 0.617 0.0169697
PSI 1.42633 0.595038 2.397 0.467908

Mean of GRADE = 0.344

Number of cases ’correctly predicted’
f(beta’x) at mean of independent vars
McFadden’s pseudo-R-squared = 0.377478
Log-Tikelihood = -12.8188

LikeTihood ratio test: Chi-square(3) = 15.5459 (p-value 0.001405)
Akaike information criterion (AIC) = 33.6376

Schwarz Bayesian criterion (BIC) = 39.5006

Hannan-Quinn criterion (HQC) = 35.581

26 (81.2%)
0.328

Predicted

0 1

Actual 0 18 3
1 3 8

Test for normality of residual -
Null hypothesis: error is normally distributed
Test statistic: Chi-square(2) = 3.61059
with p-value = 0.164426

Table 30.1: Example logit and probit
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by choosing enormous values for . As a consequence, the log-likelihood has no maximum,
despite being bounded.

Gretl has a mechanism for preventing the algorithm from iterating endlessly in search of a
non-existent maximum. One sub-case of interest is when the perfect prediction problem arises
because of a single binary explanatory variable. In this case, the offending variable is dropped
from the model and estimation proceeds with the reduced specification. Nevertheless, it may
happen that no single “perfect classifier” exists among the regressors, in which case estimation
is simply impossible and the algorithm stops with an error. This behavior is triggered during
the iteration process if

maxz; <minz;

i:y;=0 iyi=1

If this happens, unless your model is trivially mis-specified (like predicting if a country is an
oil exporter on the basis of oil revenues), it is normally a small-sample problem: you probably
just don’t have enough data to estimate your model. You may want to drop some of your
explanatory variables.

This problem is well analyzed in Stokes (2004); the results therein are replicated in the example
script murder_rates.inp.

30.2 Ordered response models

These models constitute a simple variation on ordinary logit/probit models, and are usually
applied when the dependent variable is a discrete and ordered measurement — not simply
binary, but on an ordinal rather than an interval scale. For example, this sort of model may be
applied when the dependent variable is a qualitative assessment such as “Good”, “Average” and
“Bad”.

In the general case, consider an ordered response variable, y, that can take on any of the J + 1
values 0,1, 2,...,J. We suppose, as before, that underlying the observed response is a latent
variable,

y¥=XB+e=z+c¢

Now define “cut points”, 1 < &2 < - -+ < «y, such that

y=0 if y* <
y=1 if g <y*=<o

y=J] if y*> o
For example, if the response takes on three values there will be two such cut points, «; and oo.

The probability that individual i exhibits response j, conditional on the characteristics x;j, is
then given by

P(y* <oq|xi) = F(xq - zi) for j=0
P(yi=jlxi) =4 Plaj <y* <jp11xi) = F(xjy1 —zi) —F(xj—z;) for0<j<J (30.8)
P(y* > oylxi) =1~F(xy —zi) for j =17

The unknown parameters «; are estimated jointly with the s via maximum likelihood. The &;
estimates are reported by gretl as cutl, cut2 and so on. For the probit variant, a conditional
moment test for normality constructed in the spirit of Chesher and Irish (1987) is also included.

Note that the «; parameters can be shifted arbitrarily by adding a constant to z;, so the model
is under-identified if there is some linear combination of the explanatory variables which is
constant. The most obvious case in which this occurs is when the model contains a constant
term; for this reason, gretl drops automatically the intercept if present. However, it may happen
that the user inadventently specifies a list of regressors that may be combined in such a way to
produce a constant (for example, by using a full set of dummy variables for a discrete factor).
If this happens, gretl will also drop any offending regressors.
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In order to apply these models in gretl, the dependent variable must either take on only non-
negative integer values, or be explicitly marked as discrete. (In case the variable has non-integer
values, it will be recoded internally.) Note that gretl does not provide a separate command for
ordered models: the Togit and probit commands automatically estimate the ordered version
if the dependent variable is acceptable, but not binary.

Example 30.3 reproduces the results presented in section 15.10 of Wooldridge (2002a). The
question of interest in this analysis is what difference it makes, to the allocation of assets in
pension funds, whether individual plan participants have a choice in the matter. The response
variable is an ordinal measure of the weight of stocks in the pension portfolio. Having reported
the results of estimation of the ordered model, Wooldridge illustrates the effect of the choice
variable by reference to an “average” participant. The example script shows how one can com-
pute this effect in gretl.

After estimating ordered models, the $uhat accessor yields generalized residuals as in binary
models; additionally, the $yhat accessor function returns Z;, so it is possible to compute an
unbiased estimator of the latent variable y* simply by adding the two together.

30.3 Multinomial logit

When the dependent variable is not binary and does not have a natural ordering, multinomial
models are used. Multinomial logit is supported in gretl via the --muTtinomial option to the
Togit command. Simple models can also be handled via the mTe command (see chapter 19).
We give here an example of such a model. Let the dependent variable, y;, take on integer values
0,1,...p. The probability that y; = k is given by

exp(xiBx)

P(yi=klxi) = ————
(1 =klx) >F_oexp(xiBj)

For the purpose of identification one of the outcomes must be taken as the “baseline”; it is
usually assumed that By = 0, in which case

exp(x;Bx)
P(y; = k|x;) =
YT T LS exp(xiBy)
and .
P(y; =0lx;) =

1+ 35 exp(xiB))

Example 30.4 reproduces Table 15.2 in Wooldridge (2002a), based on data on career choice from
Keane and Wolpin (1997). The dependent variable is the occupational status of an individual (0
= in school; 1 = not in school and not working; 2 = working), and the explanatory variables are
education and work experience (linear and square) plus a “black” binary variable. The full data
set is a panel; here the analysis is confined to a cross-section for 1987.

30.4 Bivariate probit

The bivariate probit model is simply a two-equation system in which each equation is a probit
model, but the two disturbance terms may not be independent. In formulae,

k1

yii= D xijBj + €1 yii=1e=y>0 (30.9)
j=1
k2

yz*‘i = Z ZijYj+ €2,i Voi= 1 < yZ*,i >0 (30.10)
j=1

[ e2 ] ~N[0,< e )] (30.11)
&2 p 1
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Example 30.3: Ordered probit model

/:“:
Replicate the results in Wooldridge, Econometric Analysis of Cross
Section and Panel Data, section 15.10, using pension-plan data from
Papke (AER, 1998).

The dependent variable, pctstck (percent stocks), codes the asset
allocation responses of "mostly bonds", "mixed" and "mostly stocks"
as {0, 50, 100}.

The independent variable of interest is "choice", a dummy indicating

whether individuals are able to choose their own asset allocations.

z‘:/
open pension.gdt

# demographic characteristics of participant

Tist DEMOG = age educ female black married

# dummies coding for income level

Tist INCOME = finc25 finc35 finc50 finc75 fincl00 finclOl

# Papke’s OLS approach

ols pctstck const choice DEMOG INCOME wealth89 prftshr
# save the OLS choice coefficient

choice_ols = $coeff(choice)

# estimate ordered probit
probit pctstck choice DEMOG INCOME wealth89 prftshr

k = $ncoeff

matrix b = $coeff[1:k-2]
al = $coeff[k-1]

a2 $coeff[k]

/:’:
Wooldridge illustrates the ’'choice’ effect in the ordered probit
by reference to a single, non-black male aged 60, with 13.5 years
of education, income in the range $50K - $75K and wealth of $200K,
participating in a plan with profit sharing.

:'c/

matrix X = {60, 13.5, 0, 0, O, O, O, O, 1, 0, O, 200, 1}

# with ’choice’ =0

scalar Xb = (0 ~ X) * b

PO = cdf(N, al - Xb)

P50 = cdf(N, a2 - Xb) - PO
P100 = 1 - cdf(N, a2 - Xb)
EO = 50 * P50 + 100 * P100

# with ’choice’ =1

Xb = (L ~X) *b

PO = cdf(N, al - Xb)

P50 = cdf(N, a2 - Xb) - PO
P100 = 1 - cdf(N, a2 - Xb)
E1 = 50 * P50 + 100 * P100

printf "\nWith choice, E(y) = %.2f, without E(y) = %.2f\n", E1, EO

printf "Estimated choice effect via ML = %.2f (OLS = %.2f)\n", E1 - EO,

choice_ols

240
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Example 30.4: Multinomial logit
Input:

open keane.gdt
smpl (year=87) --restrict
Togit status 0 educ exper expersq black --multinomial

Output (selected portions):

Model 1: Multinomial Logit, using observations 1-1738 (n = 1717)

Missing or incomplete observations dropped: 21
Dependent variable: status
Standard errors based on Hessian

coefficient std. error z p-value
status = 2
const 10.2779 1.13334 9.069 1
educ -0.673631 0.0698999 -9.637 5
exper -0.106215 0.173282 -0.6130 0.5399
expersq -0.0125152 0.0252291 -0.4961 0.6199
black 0.813017 0.302723 2.686 0.0072
status = 3
const 5.54380 1.08641 5.103 3
educ -0.314657 0.0651096 -4.833 1
exper 0.848737 0.156986 5.406 6.43e-08 ***
expersq -0.0773003 0.0229217 -3.372 0.0007 ok
black 0.311361 0.281534 1.106 0.2687
Mean dependent var  2.691322 S.D. dependent var  0.573502
Log-Tikelihood -907.8572 Akaike criterion 1835.714
Schwarz criterion 1890.198 Hannan-Quinn 1855.874

Number of cases ’correctly predicted’ = 1366 (79.6%)
Likelihood ratio test: Chi-square(8) = 583.722 [0.0000]

241
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e The explanatory variables for the first equation x and for the second equation z may
overlap

e example contained in biprobit.inp

e $uhat and $yhat are matrices

FIXME: expand.

30.5 The Tobit model

The Tobit model is used when the dependent variable of a model is censored. Assume a latent
variable y;* can be described as

k
yi =D xijBj + &,
j=1
where & ~ N(0,02). If ¥ were observable, the model’s parameters could be estimated via
ordinary least squares. On the contrary, suppose that we observe y;, defined as

a for y*=<a
yi=q i for a<y’<b (30.12)
b for y=b

In most cases found in the applied literature, a = 0 and b = o0, S0 in practice negative values of
;" are not observed and are replaced by zeros.

In this case, regressing y; on the x;s does not yield consistent estimates of the parameters
B, because the conditional mean E(y;|x;) is not equal to Z§=1 xi;jBj. It can be shown that
restricting the sample to non-zero observations would not yield consistent estimates either.
The solution is to estimate the parameters via maximum likelihood. The syntax is simply

tobit depvar indvars

As usual, progress of the maximization algorithm can be tracked via the --verbose switch,
while $uhat returns the generalized residuals. Note that in this case the generalized residual
is defined as 1i; = E(¢;|y; = 0) for censored observations, so the familiar equality ©1; = y; — V;
only holds for uncensored observations, that is, when y; > 0.

An important difference between the Tobit estimator and OLS is that the consequences of non-
normality of the disturbance term are much more severe: non-normality implies inconsistency
for the Tobit estimator. For this reason, the output for the Tobit model includes the Chesher
and Irish (1987) normality test by default.

The general case in which a is nonzero and/or b is finite can be handled by using the options
--11imit and --rTimit. So, for example,

tobit depvar indvars --11imit=10

would tell gretl that the left bound a is set to 10.

30.6 Interval regression

The interval regression model arises when the dependent variable is unobserved for some (pos-
sibly all) observations; what we observe instead is an interval in which the dependent variable
lies. In other words, the data generating process is assumed to be

v =xiB+e€

but we only know that m; < y;* < M;, where the interval may be left- or right-unbounded (but
not both). If m; = M;, we effectively observe y;* and no information loss occurs. In practice,
each observation belongs to one of four categories:



Chapter 30. Discrete and censored dependent variables 243

1. left-unbounded, when m; = —oo,
2. right-unbounded, when M; = o,
3. bounded, when —c < m; < M; < o and

4. point observations when m; = M;.

It is interesting to note that this model bears similarities to other models in several special
cases:

e When all observations are point observations the model trivially reduces to the ordinary
linear regression model.

e The interval model could be thought of an ordered probit model (see 30.2) in which the
cut points (the «; coefficients in eq. 30.8) are observed and don’t need to be estimated.

e The Tobit model (see 30.5) is a special case of the interval model in which m; and M;
do not depend on i, that is, the censoring limits are the same for all observations. As
a matter of fact, gretl’s tobit commands is handled internally as a special case of the
interval model.

The gretl command intreg estimates interval models by maximum likelihood, assuming nor-
mality of the disturbance term ¢;. Its syntax is

intreg minvar maxvar X

where minvar contains the m; series, with NAs for left-unbounded observations, and maxvar
contains M;, with NAs for right-unbounded observations. By default, standard errors are com-
puted using the negative inverse of the Hessian. If the --robust flag is given, then QML or
Huber-White standard errors are calculated instead. In this case the estimated covariance
matrix is a “sandwich” of the inverse of the estimated Hessian and the outer product of the
gradient.

If the model specification contains regressors other than just a constant, the output includes
a chi-square statistic for testing the joint null hypothesis that none of these regressors has
any effect on the outcome. This is a Wald statistic based on the estimated covariance matrix.
If you wish to construct a likelihood ratio test, this is easily done by estimating both the full
model and the null model (containing only the constant), saving the log-likelihood in both cases
via the $1n1 accessor, and then referring twice the difference between the two log-likelihoods
to the chi-square distribution with k degrees of freedom, where k is the number of additional
regressors (see the pvalue command in the Gretl Command Reference). Also included is a
conditional moment normality test, similar to those provided for the probit, ordered probit and
Tobit models (see above). An example is contained in the sample script wtp.inp, provided with
the gretl distribution.

As with the probit and Tobit models, after a model has been estimated the $uhat accessor
returns the generalized residual, which is an estimate of €;: more precisely, it equals y; — x;8
for point observations and E(€;|m;, M;, x;) otherwise. Note that it is possible to compute an
unbiased predictor of y;* by summing this estimate to x;B. Script 30.5 shows an example. As a
further similarity with Tobit, the interval regression model may deliver inconsistent estimates
if the disturbances are non-normal; hence, the Chesher and Irish (1987) test for normality is
included by default here too.

30.7 Sample selection model

In the sample selection model (also known as “Tobit II” model), there are two latent variables:

k
v > xiiBj + & (30.13)

-

j=1
p
j=1
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Example 30.5: Interval model on artificial data
Input:

nulldata 100

# generate artificial data
set seed 201449

x = normal()

epsilon = 0.2*normal()
ystar = 1 + x + epsilon
To_bound = floor(ystar)
hi_bound ceil(ystar)

# run the interval model
intreg lo_bound hi_bound const x

# estimate ystar
gen_resid = $uhat

yhat = $yhat + gen_resid
corr ystar yhat

Output (selected portions):

Model 1: Interval estimates using the 100 observations 1-100
Lower Timit: To_bound, Upper Timit: hi_bound

coefficient std. error t-ratio p-value
const 0.993762 0.0338325 29.37 1.22e-189 *¥*
X 0.986662 0.0319959 30.84 8.34e-209 *¥¥*
Chi-square(1) 950.9270 p-value 8.3e-209
Log-Tikelihood -44.21258 Akaike criterion 94.42517
Schwarz criterion 102.2407 Hannan-Quinn 97.58824

sigma = 0.223273

Left-unbounded observations: 0
Right-unbounded observations: 0
Bounded observations: 100

Point observations: 0O

corr(ystar, yhat) = 0.98960092
Under the null hypothesis of no correlation:
t(98) = 68.1071, with two-tailed p-value 0.0000

and the observation rule is given by

vy for s*>0
Vi = "
¢ for s7=<0
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(30.15)

In this context, the ¢ symbol indicates that for some observations we simply do not have data
on y: y; may be 0, or missing, or anything else. A dummy variable d; is normally used to set

censored observations apart.

One of the most popular applications of this model in econometrics is a wage equation coupled
with a labor force participation equation: we only observe the wage for the employed. If y;* and
s were (conditionally) independent, there would be no reason not to use OLS for estimating
equation (30.13); otherwise, OLS does not yield consistent estimates of the parameters f;.

Since conditional independence between y;* and s/ is equivalent to conditional independence
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between ¢; and n;, one may model the co-dependence between &; and n; as

& =Ani + v
substituting the above expression in (30.13), you obtain the model that is actually estimated:

k

Yi= D, xijBj +Afi +vi,
j=1

so the hypothesis that censoring does not matter is equivalent to the hypothesis Hy : A = 0,
which can be easily tested.

The parameters can be estimated via maximum likelihood under the assumption of joint nor-
mality of &; and n;; however, a widely used alternative method yields the so-called Heckit esti-
mator, named after Heckman (1979). The procedure can be briefly outlined as follows: first, a
probit model is fit on equation (30.14); next, the generalized residuals are inserted in equation
(30.13) to correct for the effect of sample selection.

Gretl provides the heckit command to carry out estimation; its syntax is

heckit y X ; d Z
where y is the dependent variable, X is a list of regressors, d is a dummy variable holding 1 for
uncensored observations and Z is a list of explanatory variables for the censoring equation.

Since in most cases maximum likelihood is the method of choice, by default gretl computes ML
estimates. The 2-step Heckit estimates can be obtained by using the --two-step option. After
estimation, the $uhat accessor contains the generalized residuals. As in the ordinary Tobit
model, the residuals equal the difference between actual and fitted y; only for uncensored
observations (those for which d; = 1).

Example 30.6: Heckit model

open mroz87.gdt
genr EXP2 = AXA2
genr WA2 = WAA2
genr KIDS = (KL6+K618)>0

# Greene’s specification

const AX EXP2 WE CIT
const WA WA2 FAMINC KIDS WE

Tist X
Tist Z

heckit Ww X ; LFP Z --two-step
heckit Ww X ; LFP Z

# Wooldridge’s specification

series NWINC = FAMINC - WW*WHRS
series Tww = Tog(Ww)

Tist X = const WE AX EXP2

Tist Z X NWINC WA KL6 K618

heckit Tww X ; LFP Z --two-step

Example 30.6 shows two estimates from the dataset used in Mroz (1987): the first one replicates
Table 22.7 in Greene (2003),! while the second one replicates table 17.1 in Wooldridge (2002a).

INote that the estimates given by gretl do not coincide with those found in the printed volume. They do, however,
match those found on the errata web page for Greene’s book: http://pages.stern.nyu.edu/~wgreene/Text/
Errata/ERRATAS.htm.


http://pages.stern.nyu.edu/~wgreene/Text/Errata/ERRATA5.htm
http://pages.stern.nyu.edu/~wgreene/Text/Errata/ERRATA5.htm
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30.8 Count data

Here the dependent variable is assumed to be a non-negative integer, so a probabilistic descrip-
tion of y;|x; must hinge on some discrete distribution. The most common model is the Poisson
model, in which

ur

Plyi=YIx) = ey
Hi = eXD(ZXiij)

J

In some cases, an “offset” variable is needed. The number of occurrences of y; in a given time
is assumed to be strictly proportional to the offset variable n;. In the epidemiology literature,
the offset is known as “population at risk”. In this case, the model becomes

Hi = N exp (Z Xiij)

J

Another way to look at the offset variable is to consider its natural log as just another explana-
tory variable whose coefficient is constrained to be one.

Estimation is carried out by maximum likelihood and follows the syntax
poisson depvar indep

If an offset variable is needed, it has to be specified at the end of the command, separated from
the list of explanatory variables by a semicolon, as in

poisson depvar indep ; offset

It should be noted that the poisson command does not use, internally, the same optimization
engines as most other gretl command, such as arma or tobit. As a consequence, some details
may differ: the --verbose option will yield different output and settings such as bfgs_toler
will not work.

Overdispersion

In the Poisson model, E(yi|x;) = V(yilx;) = u;, that is, the conditional mean equals the con-
ditional variance by construction. In many cases, this feature is at odds with the data, as the
conditional variance is often larger than the mean; this phenomenon is called “overdispersion”.
The output from the poisson command includes a conditional moment test for overdisper-
sion (as per Davidson and MacKinnon (2004), section 11.5), which is printed automatically after
estimation.

Overdispersion can be attributed to unmodeled heterogeneity between individuals. Two data
points with the same observable characteristics x; = x; may differ because of some unobserved
scale factor s; # s; so that

E(yilxi, si) = pisi # pjsj = E(yjlxj,s;)

even though p; = pj. In other words, y; is a Poisson random variable conditional on both x;
and s;, but since s; is unobservable, the only thing we can we can use, P(y;|x;), will not follow
the Poisson distribution.

It is often assumed that s; can be represented as a gamma random variable with mean 1 and
variance «: the parameter « is estimated together with the vector 8, and measures the degree
of heterogeneity between individuals.

In this case, the conditional probability for y; given x; can be shown to be

-1

oy i+ ah pi 1 @t
PO = £ o s 1 [ui - al] [“i e (30.16)
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which is known as the “Negative Binomial Model”. The conditional mean is still E(y;|x;) = u;,
but the variance equals V (y;]x;) = pi (1 + g;x). The gretl command for this model is negbin
depvar indep.

e There is also a less used variant of the negative binomial model, in which the conditional
variance is a scalar multiple of the conditional mean, that is V(y;|x;) = y; (1 +y). To
distinguish between the two, the model (30.16) is termed “Type 2”. Gretl implements
model 1 via the option --model1.

e A script which exemplifies the above models is included among gretl’s sample scripts,
under the name camtriv.inp.

FIXME: expand.

30.9 Duration models

In some contexts we wish to apply econometric methods to measurements of the duration of
certain states. Classic examples include the following:

e From engineering, the “time to failure” of electronic or mechanical components: how long
do, say, computer hard drives last until they malfunction?

e From the medical realm: how does a new treatment affect the time from diagnosis of
a certain condition to exit from that condition (where “exit” might mean death or full
recovery)?

e From economics: the duration of strikes, or of spells of unemployment.

In each case we may be interested in how the durations are distributed, and how they are af-
fected by relevant covariates. There are several approaches to this problem; the one we discuss
here — which is currently the only one supported by gretl — is estimation of a parametric
model by means of Maximum Likelihood. In this approach we hypothesize that the durations
follow some definite probability law and we seek to estimate the parameters of that law, factor-
ing in the influence of covariates.

We may express the density (PDF) of the durations as f(t, X, 8), where t is the length of time in
the state in question, X is a matrix of covariates, and 0 is a vector of parameters. The likelihood
for a sample of n observations indexed by i is then

L=]]f(tixi0)
i=1

Rather than working with the density directly, however, it is standard practice to factor f(-)
into two components, namely a hazard function, A, and a survivor function, S. The survivor
function gives the probability that a state lasts at least as long as t; it is therefore 1 — F(t, X, 0)
where F is the CDF corresponding to the density f(-). The hazard function addresses this
question: given that a state has persisted as long as t, what is the likelihood that it ends within
a short increment of time beyond t — that is, it ends between t and t + A? Taking the limit as
A goes to zero, we end up with the ratio of the density to the survivor function:?

_ f(t,X,0)
A(t, X,0) = SLX.0) (30.17)
so the log-likelihood can be written as
n n
€= > log f(ti,xi,0) = > logA(ti, xi, 0) + log S (£, xi, 0) (30.18)

i=1 i=1

2For a fuller discussion see, for example, Davidson and MacKinnon (2004).
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One point of interest is the shape of the hazard function, in particular its dependence (or not)
on time since the state began. If A does not depend on t we say the process in question ex-
hibits duration independence: the probability of exiting the state at any given moment neither
increases nor decreases based simply on how long the state has persisted to date. The alter-
natives are positive duration dependence (the likelihood of exiting the state rises, the longer
the state has persisted) or negative duration dependence (exit becomes less likely, the longer it
has persisted). Finally, the behavior of the hazard with respect to time need not be monotonic;
some parameterizations allow for this possibility and some do not.

Since durations are inherently positive the probability distribution used in modeling must re-
spect this requirement, giving a density of zero for t < 0. Four common candidates are the
exponential, Weibull, log-logistic and log-normal, the Weibull being the most common choice.
The table below displays the density and the hazard function for each of these distributions as
they are commonly parameterized, written as functions of t alone. (¢ and ® denote, respec-
tively, the Gaussian PDF and CDF.)

density, f(t) hazard, A(t)
Exponential yexp (—yt) Yy
Weibull xy*t*lexp[—(yt)*] xyXt*1
. (yt)x-1 (yt)x!
Log-logistic x—"— X
8081 YO ¥ (yoyeP? YU+ (y)e]
] 1 _ 1 ¢[dogt-p)/o]
Log-normal ot¢ [(logt —u) /o] L[~ (ogl - 1)]0]

The hazard is constant for the exponential distribution. For the Weibull, it is monotone increas-
ing in t if & > 1, or monotone decreasing for @ < 1. (If « = 1 the Weibull collapses to the
exponential.) The log-logistic and log-normal distributions allow the hazard to vary with ¢ in a
non-monotonic fashion.

Covariates are brought into the picture by allowing them to govern one of the parameters of the
density, so that the durations are not identically distributed across cases. For example, when
using the log-normal distribution it is natural to make u, the expected value of logt, depend on
the covariates, X. This is typically done via a linear index function: u = Xp.

Note that the expressions for the log-normal density and hazard contain the term (logt —u)/o.
Replacing p with X this becomes (logt — Xf)/o. It turns out that this constitutes a useful
simplifying change of variables for all of the distributions discussed here. As in Kalbfleisch and
Prentice (2002), we define

wi = (logt; — xipf)/o

The interpretation of the scale factor, o, in this expression depends on the distribution. For the
log-normal, o represents the standard deviation of logt; for the Weibull and the log-logistic it
corresponds to 1/«; and for the exponential it is fixed at unity. For distributions other than the
log-normal, X8 corresponds to —log y, or in other words y = exp(—Xp).

With this change of variables, the density and survivor functions may be written compactly as
follows (the exponential is the same as the Weibull).

density, f(w;) survivor, S(w;)
Weibull exp (w; — e%i) exp(—eVi)
Log-logistic eWi (1 + ewi)~? (1+ewi)™ !
Log-normal b (w;) d(—w;)

In light of the above we may think of the generic parameter vector 0, as in f(t,X, 0), as com-
posed of the coefficients on the covariates, B, plus (in all cases apart from the exponential) the
additional parameter o.
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A complication in estimation of 8 is posed by “incomplete spells”. That is, in some cases the
state in question may not have ended at the time the observation is made (e.g. some workers
remain unemployed, some components have not yet failed). If we use t; to denote the time from
entering the state to either (a) exiting the state or (b) the observation window closing, whichever
comes first, then all we know of the “right-censored” cases (b) is that the duration was at least
as long as t;. This can be handled by rewriting the the log-likelihood (compare 30.18) as

L= > 8ilogS (w;) + (1 - &;) [~log o +log f (wy)] (30.19)
i=1

where §; equals 1 for censored cases (incomplete spells), and O for complete observations. The
rationale for this is that the log-density equals the sum of the log hazard and the log survivor
function, but for the incomplete spells only the survivor function contributes to the likelihood.
So in (30.19) we are adding up the log survivor function alone for the incomplete cases, plus the
full log density for the completed cases.

Implementation in gretl and illustration

The duration command accepts a list of series on the usual pattern: dependent variable fol-
lowed by covariates. If right-censoring is present in the data this should be represented by a
dummy variable corresponding to 6; above, separated from the covariates by a semicolon. For
example,

duration durat 0 X ; cens

where durat measures durations, 0 represents the constant (which is required for such models),
X is a named list of regressors, and cens is the censoring dummy.

By default the Weibull distribution is used; you can substitute any of the other three distribu-
tions discussed here by appending one of the option flags --exponential, --Toglogistic or
--Tognormal.

Interpreting the coefficients in a duration model requires some care, and we will work through
an illustrative case. The example comes from section 20.3 of Wooldridge (2002a), and it con-
cerns criminal recidivism.? The data (filename recid.gdt) pertain to a sample of 1,445 convicts
released from prison between July 1, 1977 and June 30, 1978. The dependent variable is the
time in months until they are again arrested. The information was gathered retrospectively by
examining records in April 1984; the maximum possible length of observation is 81 months.
Right-censoring is important: when the date were compiled about 62 percent had not been ar-
rested. The dataset contains several covariates, which are described in the data file; we will
focus below on interpretation of the married variable, a dummy which equals 1 if the respon-
dent was married when imprisoned.

Example 30.7 shows the gretl commands for a Weibull model along with most of the output.
Consider first the scale factor, o. The estimate is 1.241 with a standard error of 0.048. (We
don’t print a z score and p-value for this term since Hy : 0 = 0 is not of interest.) Recall
that o corresponds to 1/«; we can be confident that « is less than 1, so recidivism displays
negative duration dependence. This makes sense: it is plausible that if a past offender manages
to stay out of trouble for an extended period his risk of engaging in crime again diminishes.
(The exponential model would therefore not be appropriate in this case.)

On a priori grounds, however, we may doubt the monotonic decline in hazard that is implied
by the Weibull specification. Even if a person is liable to return to crime, it seems relatively
unlikely that he would do so straight out of prison. In the data, we find that only 2.6 percent
of those followed were rearrested within 3 months. The log-normal specification, which allows
the hazard to rise and then fall, may be more appropriate. Using the duration command again
with the same covariates but the --Tognormal flag, we get a log-likelihood of —1597 as against
—1633 for the Weibull, confirming that the log-normal gives a better fit.

3German Rodriguez of Princeton University has a page discussing this example and displaying estimates from
Stata at http://data.princeton.edu/pop509a/recidl.html.
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Example 30.7: Weibull model for recidivism data
Input:

open recid.gdt

Tist X = workprg priors tserved felon alcohol drugs \
black married educ age

duration durat 0 X ; cens

duration durat 0 X ; cens --Tognormal

Partial output

Model 1: Duration (Weibull), using observations 1-1445
Dependent variable: durat

coefficient std. error z p-value
const 4.22167 0.341311 12.37 3.85e-35 #**
workprg -0.112785 0.112535 -1.002 0.3162
priors -0.110176 0.0170675 -6.455 1.08e-10 ***
tserved -0.0168297 0.00213029 -7.900 2.78e-15
felon 0.371623 0.131995 2.815 0.0049
alcohol -0.555132 0.132243 -4.198 2.69e-05
drugs -0.349265 0.121880 -2.866 0.0042
bTack -0.563016 0.110817 -5.081 3.76e-07 #***
married 0.188104 0.135752 1.386 0.1659
educ 0.0289111 0.0241153 1.199 0.2306
age 0.00462188 0.000664820 6.952  3.60e-12 ***
sigma 1.24090 0.0482896
Chi-square(10) 165.4772 p-value 2.39e-30
Log-Tikelihood -1633.032  Akaike criterion 3290.065

Model 2: Duration (Tog-normal), using observations 1-1445
Dependent variable: durat

coefficient std. error z p-value
const 4.09939 0.347535 11.80 4.
workprg -0.0625693 0.120037 -0.5213 0.
priors -0.137253 0.0214587 -6.396 1.
tserved -0.0193306 0.00297792 -6.491 8.
felon 0.443995 0.145087 3.060 0.
alcohol -0.634909 0.144217 -4.402 1.
drugs -0.298159 0.132736 -2.246 0.
bTack -0.542719 0.117443 -4.621 3.
married 0.340682 0.139843 2.436 0.
educ 0.0229194 0.0253974 0.9024 0.
age 0.00391028 0.000606205 6.450 1.
sigma 1.81047 0.0623022
Chi-square(10) 166.7361 p-value 1.31e-30

Log-1ikeTihood -1597.059 Akaike criterion 3218.118
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Let us now focus on the married coefficient, which is positive in both specifications but larger
and more sharply estimated in the log-normal variant. The first thing is to get the interpretation
of the sign right. Recall that X enters negatively into the intermediate variable w. The Weibull
hazard is A(w;) = e%i, so being married reduces the hazard of re-offending, or in other words
lengthens the expected duration out of prison. The same qualitative interpretation applies for
the log-normal.

To get a better sense of the married effect, it is useful to show its impact on the hazard across
time. We can do this by plotting the hazard for two values of the index function Xf: in each
case the values of all the covariates other than married are set to their means (or some chosen
values) while married is set first to O then to 1. Example 30.8 provides a script that does this,
and the resulting plots are shown in Figure 30.1. Note that when computing the hazards we
need to multiply by the Jacobian of the transformation from t; to w; = log(t; — x;) /0, namely
1/t. Note also that the estimate of ¢ is available via the accessor $sigma, but it is also present
as the last element in the coefficient vector obtained via $coeff.

A further difference between the Weibull and log-normal specifications is illustrated in the
plots. The Weibull is an instance of a proportional hazard model. This means that for any
sets of values of the covariates, x; and x;, the ratio of the associated hazards is invariant with
respect to duration. In this example the Weibull hazard for unmarried individuals is always
1.1637 times that for married. In the log-normal variant, on the other hand, this ratio gradually
declines from 1.6703 at one month to 1.1766 at 100 months.

Alternative representations of the Weibull model

One point to watch out for with the Weibull duration model is that the estimates may be repre-
sented in different ways. The representation given by gretl is sometimes called the accelerated
failure-time (AFT) metric. An alternative that one sometimes sees is the log relative-hazard met-
ric; in fact this is the metric used in Wooldridge’s presentation of the recidivism example. To
get from AFT estimates to log relative-hazard form it is necessary to multiply the coefficients
by —o L. For example, the married coefficient in the Weibull specification as shown here is
0.188104 and & is 1.24090, so the alternative value is —0.152, which is what Wooldridge shows
(2002a, Table 20.1).

Fitted values and residuals

By default, gretl computes fitted values (accessible via $yhat) as the conditional mean of dura-
tion. The formulae are shown below (where I' denotes the gamma function, and the exponential
variant is just Weibull with o = 1).

Weibull Log-logistic Log-normal
_no 2
exp(XB)I'(1+ o) eXp(XB)sin(ncr) exp(XB+0°/2)

The expression given for the log-logistic mean, however, is valid only for o < 1; otherwise the
expectation is undefined, a point that is not noted in all software.*

Alternatively, if the --medians option is given, gretl’s duration command will produce condi-
tional medians as the content of $yhat. For the Weibull the median is exp(Xf) (log2)7; for the
log-logistic and log-normal it is just exp(Xf3).

The values we give for the accessor $uhat are generalized (Cox-Snell) residuals, computed as
the integrated hazard function, which equals the negative of the log of the survivor function:
i = A(ti, xi,0) = —log S(ty, xi, 0)

Under the null of correct specification of the model these generalized residuals should follow
the unit exponential distribution, which has mean and variance both equal to 1 and density e~!.
See Cameron and Trivedi (2005) for further discussion.

4The predict adjunct to the streg command in Stata 10, for example, gaily produces large negative values for
the log-logistic mean in duration models with o > 1.
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Example 30.8: Create plots showing conditional hazards

open recid.gdt -q

# leave 'married’ separate for analysis
Tist X = workprg priors tserved felon alcohol drugs \
black educ age

# Weibull variant

duration durat O X married ; cens

# coefficients on all Xs apart from married
matrix beta_w = $coeff[1l:$ncoeff-2]

# married coefficient

scalar mc_w = $coeff[$ncoeff-1]

scalar s_w = $sigma

# Log-normal variant

duration durat O X married ; cens --lognormal
matrix beta_n = $coeff[1l:$ncoeff-2]

scalar mc_n = $coeff[$ncoeff-1]

scalar s_n = $sigma

Tist allX = 0 X

# evaluate X\beta at means of all variables except marriage
scalar Xb_w = meanc({all1X}) * beta_w

scalar Xb_n = meanc({all1X}) * beta_n

# construct two plot matrices
matrix mat_w = zeros(100, 3)
matrix mat_n = zeros(100, 3)

Toop t=1..100 -q
# first column, duration
mat_w[t, 1] = t
mat_n[t, 1] = t
wi_w = (Tog(t) - Xb_w)/s_w
wi_n = (Tog(t) - Xb_n)/s_n
# second col: hazard with married = 0
mat_w[t, 2] = (1/t) * exp(wi_w)
mat_n[t, 2] = (1/t) * pdf(z, wi_n) / cdf(z, -wi_n)
wi_w = (log(t) - (Xb_w + mc_w))/s_w
wi_n = (Tog(t) - (Xb_n + mc_n))/s_n
# third col: hazard with married = 1

mat_w[t, 3] = (1/t) * exp(wi_w)
mat_n[t, 3] = (1/t) * pdf(z, wi_n) / cdf(z, -wi_n)
endloop

colnames(mat_w, "months unmarried married")
colnames(mat_n, "months unmarried married")

gnuplot 2 3 1 --with-Tines --supp --matrix=mat_w --output=weibull.plt
gnuplot 2 3 1 --with-Tines --supp --matrix=mat_n --output=Tognorm.plt
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Figure 30.1: Recidivism hazard estimates for married and unmarried ex-convicts
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Quantile regression

31.1 Introduction

In Ordinary Least Squares (OLS) regression, the fitted values, y; = XiB, represent the conditional
mean of the dependent variable — conditional, that is, on the regression function and the
values of the independent variables. In median regression, by contrast and as the name implies,
fitted values represent the conditional median of the dependent variable. It turns out that the
principle of estimation for median regression is easily stated (though not so easily computed),
namely, choose B so as to minimize the sum of absolute residuals. Hence the method is known
as Least Absolute Deviations or LAD. While the OLS problem has a straightforward analytical
solution, LAD is a linear programming problem.

Quantile regression is a generalization of median regression: the regression function predicts
the conditional T-quantile of the dependent variable — for example the first quartile (T = .25)
or the ninth decile (T = .90).

If the classical conditions for the validity of OLS are satisfied — that is, if the error term is
independently and identically distributed, conditional on X — then quantile regression is re-
dundant: all the conditional quantiles of the dependent variable will march in lockstep with
the conditional mean. Conversely, if quantile regression reveals that the conditional quantiles
behave in a manner quite distinct from the conditional mean, this suggests that OLS estimation
is problematic.

As of version 1.7.5, gretl offers quantile regression functionality (in addition to basic LAD re-
gression, which has been available since early in gretl’s history via the Tad command).!

31.2 Basic syntax

The basic invocation of quantile regression is
quantreg tau reglist
where

e reglist is a standard gretl regression list (dependent variable followed by regressors, in-
cluding the constant if an intercept is wanted); and

e tauis the desired conditional quantile, in the range 0.01 to 0.99, given either as a numerical
value or the name of a pre-defined scalar variable (but see below for a further option).

Estimation is via the Frisch-Newton interior point solver (Portnoy and Koenker, 1997), which is
substantially faster than the “traditional” Barrodale-Roberts (1974) simplex approach for large
problems.

By default, standard errors are computed according to the asymptotic formula given by Koenker
and Bassett (1978). Alternatively, if the --robust option is given, we use the sandwich estima-
tor developed in Koenker and Zhao (1994).2

lwe gratefully acknowledge our borrowing from the quantreg package for GNU R (version 4.17). The core of the
quantreg package is composed of Fortran code written by Roger Koenker; this is accompanied by various driver
and auxiliary functions written in the R language by Koenker and Martin Machler. The latter functions have been
re-worked in C for gretl. We have added some guards against potential numerical problems in small samples.
2These correspond to the iid and nid options in R’s quantreg package, respectively.
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31.3 Confidence intervals

An option --intervals is available. When this is given we print confidence intervals for the
parameter estimates instead of standard errors. These intervals are computed using the rank
inversion method and in general they are asymmetrical about the point estimates — that is, they
are not simply “plus or minus so many standard errors”. The specifics of the calculation are
inflected by the --robust option: without this, the intervals are computed on the assumption of
IID errors (Koenker, 1994); with it, they use the heteroskedasticity-robust estimator developed
by Koenker and Machado (1999).

By default, 90 percent intervals are produced. You can change this by appending a confidence
value (expressed as a decimal fraction) to the intervals option, as in

quantreg tau reglist --intervals=.95

When the confidence intervals option is selected, the parameter estimates are calculated us-
ing the Barrodale-Roberts method. This is simply because the Frisch-Newton code does not
currently support the calculation of confidence intervals.

Two further details. First, the mechanisms for generating confidence intervals for quantile
estimates require that the model has at least two regressors (including the constant). If the
--intervals option is given for a model containing only one regressor, an error is flagged.
Second, when a model is estimated in this mode, you can retrieve the confidence intervals using
the accessor $coeff_ci. This produces a k X 2 matrix, where k is the number of regressors.
The lower bounds are in the first column, the upper bounds in the second. See also section 31.5
below.

31.4 Multiple quantiles

As a further option, you can give tau as a matrix — either the name of a predefined matrix
or in numerical form, as in {.05, .25, .5, .75, .95}. The given model is estimated for
all the T values and the results are printed in a special form, as shown below (in this case the
--intervals option was also given).

Model 1: Quantile estimates using the 235 observations 1-235
Dependent variable: foodexp
With 90 percent confidence intervals

VARIABLE TAU COEFFICIENT LOWER UPPER
const 0.05 124.880 98.3021 130.517
0.25 95.4835 73.7861 120.098

0.50 81.4822 53.2592 114.012

0.75 62.3966 32.7449 107.314

0.95 64.1040 46.2649 83.5790

income 0.05 0.343361 0.343327 0.389750
0.25 0.474103 0.420330 0.494329

0.50 0.560181 0.487022 0.601989

0.75 0.644014 0.580155 0.690413

0.95 0.709069 0.673900 0.734441

The gretl GUI has an entry for Quantile Regression (under /Model/Robust estimation), and you
can select multiple quantiles there too. In that context, just give space-separated numerical
values (as per the predefined options, shown in a drop-down list).

When you estimate a model in this way most of the standard menu items in the model window
are disabled, but one extra item is available — graphs showing the T sequence for a given
coefficient in comparison with the OLS coefficient. An example is shown in Figure 31.1. This
sort of graph provides a simple means of judging whether quantile regression is redundant
(OLS is fine) or informative.
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Figure 31.1: Regression of food expenditure on income; Engel’s data

In the example shown — based on data on household income and food expenditure gathered by
Ernst Engel (1821-1896) — it seems clear that simple OLS regression is potentially misleading.
The “crossing” of the OLS estimate by the quantile estimates is very marked.

However, it is not always clear what implications should be drawn from this sort of conflict.
With the Engel data there are two issues to consider. First, Engel’s famous “law” claims an
income-elasticity of food consumption that is less than one, and talk of elasticities suggests
a logarithmic formulation of the model. Second, there are two apparently anomalous obser-
vations in the data set: household 105 has the third-highest income but unexpectedly low
expenditure on food (as judged from a simple scatter plot), while household 138 (which also
has unexpectedly low food consumption) has much the highest income, almost twice that of
the next highest.

With n = 235 it seems reasonable to consider dropping these observations. If we do so, and
adopt a log-log formulation, we get the plot shown in Figure 31.2. The quantile estimates still
cross the OLS estimate, but the “evidence against OLS” is much less compelling: the 90 percent
confidence bands of the respective estimates overlap at all the quantiles considered.

31.5 Large datasets

As noted above, when you give the --intervals option with the quantreg command, which
calls for estimation of confidence intervals via rank inversion, gretl switches from the default
Frisch-Newton algorithm to the Barrodale-Roberts simplex method.

This is OK for moderately large datasets (up to, say, a few thousand observations) but on
very large problems the simplex algorithm may become seriously bogged down. For exam-
ple, Koenker and Hallock (2001) present an analysis of the determinants of birth weights, using
198377 observations and with 15 regressors. Generating confidence intervals via Barrodale-
Roberts for a single value of T took about half an hour on a Lenovo Thinkpad T60p with 1.83GHz
Intel Core 2 processor.

If you want confidence intervals in such cases, you are advised not to use the --intervals
option, but to compute them using the method of “plus or minus so many standard errors”.
(One Frisch-Newton run took about 8 seconds on the same machine, showing the superiority of
the interior point method.) The script below illustrates:



Chapter 31. Quantile regression 257

Coefficient on log(income)
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Figure 31.2: Log-log regression; 2 observations dropped from full Engel data set.

quantreg .10 y 0 xTist

scalar crit = gnorm(.95)

matrix ci = $coeff - crit * $stderr
ci = ci~($coeff + crit * $stderr)
print ci

The matrix ci will contain the lower and upper bounds of the (symmetrical) 90 percent confi-
dence intervals.

To avoid a situation where gretl becomes unresponsive for a very long time we have set the
maximum number of iterations for the Borrodale-Roberts algorithm to the (somewhat arbitrary)
value of 1000. We will experiment further with this, but for the meantime if you really want to
use this method on a large dataset, and don’t mind waiting for the results, you can increase the
limit using the set command with parameter rq_maxiter, as in

set rqg_maxiter 5000
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Nonparametric methods

The main focus of gretl is on parametric estimation, but we offer a selection of nonparametric
methods. The most basic of these

o various tests for difference in distribution (Sign test, Wilcoxon rank-sum test, Wilcoxon
signed-rank test);

¢ the Runs test for randomness; and

e nonparametric measures of association: Spearman’s rho and Kendall’s tau.

Details on the above can be found by consulting the help for the commands difftest, runs,
corr and spearman. In the GUI program these items are found under the Tools menu and the
Robust estimation item under the Model menu.

In this chapter we concentrate on two relatively complex methods for nonparametric curve-
fitting and prediction, namely William Cleveland’s “loess” (also known as “lowess”) and the
Nadaraya-Watson estimator.

32.1 Locally weighted regression (loess)

Loess (Cleveland, 1979) is a nonparametric smoother employing locally weighted polynomial
regression. It is intended to yield an approximation to g(-) when the dependent variable, y,
can be expressed as

yi=9g(xi) +€

for some smooth function g(-).

Given a sample of n observations on the variables y and X, the procedure is to run a weighted
least squares regression (a polynomial of order d = 0, 1 or 2 in x) localized to each data point,
i. In each such regression the sample consists of the » nearest neighbors (in the x dimension)
to the point i, with weights that are inversely related to the distance |x; — xx|, k =1,...,7. The
predicted value y; is then obtained by evaluating the estimated polynomial at x;. The most
commonly used orderis d = 1.

A bandwidth parameter 0 < g < 1 controls the proportion of the total number of data points
used in each regression; thus v = gn (rounded up to an integer). Larger values of g lead to
a smoother fitted series, smaller values to a series that tracks the actual data more closely;
0.25 < g < 0.5 is often a suitable range.

In gretl’s implementation of loess the weighting scheme is that given by Cleveland, namely,
wi(xi) = W(h;(xk - x1))

where h; is the distance between x; and its ! nearest neighbor, and W (-) is the tricube func-
tion,

(1-1xI3)3 for|x|<1

0 for x| =1

Wi(x) = {

The local regression can be made robust via an adjustment based on the residuals, e; = y; — ¥;.
Robustness weights, 6, are defined by

Ok = B(ex/6s)

258



Chapter 32. Nonparametric methods 259

where s is the median of the |e;| and B(-) is the bisquare function,

Blx) = (1-x2)2 for|x| <1
) for |x| > 1

The polynomial regression is then re-run using weight o3 wy (x;) at (X, V).

The Toess () function in gretl takes up to five arguments as follows: the 7y series, the x series,
the order d, the bandwidth g, and a boolean switch to turn on the robust adjustment. The
last three arguments are optional: if they are omitted the default values are d = 1, g = 0.5
and no robust adjustment. An example of a full call to Toess () is shown below; in this case a
quadratic in x is specified, three quarters of the data points will be used in each local regression,
and robustness is turned on:

series yh = loess(y, x, 2, 0.75, 1)

An illustration of loess is provided in Example 32.1: we generate a series that has a deterministic
sine wave component overlaid with noise uniformly distributed on (-1, 1). Loess is then used to
retrieve a good approximation to the sine function. The resulting graph is shown in Figure 32.1.

Example 32.1: Loess script

nulldata 120

series x = index

scalar n = $nobs

series y = sin(2*pi*x/n) + uniform(-1, 1)
series yh = loess(y, x, 2, 0.75, 0)

gnuplot y yh x --output=display --with-lines=yh

T
loess fit

Figure 32.1: Loess: retrieving a sine wave

32.2 The Nadaraya-Watson estimator

The Nadaraya-Watson nonparametric estimator (Nadaraya, 1964; Watson, 1964) is an estimator
for the conditional mean of a variable Y, available in a sample of size n, for a given value of a
conditioning variable X, and is defined as

S y; - Kn(X - x;)
ST Kn(X - xj)

m(X) =
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where K}, (-) is the so-called kernel function, which is usually some simple transform of a density
function that depends on a scalar called the bandwidth. The one gretl uses is given by

2
Kp(x) = exp (—;Ch>

for |x| < T and zero otherwise. The scalar T is used to prevent numerical problems when the
kernel function is evaluated too far away from zero and is called the trim parameter.

Example 32.2: Nadaraya-Watson example

# Nonparametric regression example: husband’s age on wife’s age
open mroz87.gdt

# initial value for the bandwidth
scalar h = $nobsA(-0.2)

# three increasingly smoother estimates
series mO0 = nadarwat(HA, WA, h)

series ml = nadarwat(HA, WA, h * 5)
series m2 nadarwat(HA, WA, h * 10)

# produce the graph
dataset sortby WA
gnuplot mO ml m2 HA WA --output=display --with-Tines

60 T T T T T T T
m0 —— X X X X
ml X

X

55 |

X

50

45

HA

40

35

30

30 35 40 45 50 55 60
WA

Figure 32.2: Nadaraya-Watson example for several choices of the bandwidth parameter

Example 32.2 produces the graph shown in Figure 32.2 (after some slight editing).

The choice of the bandwidth is up to the user: larger values of h lead to a smoother m(-)
function; smaller values make the m(-) function follow the y; values more closely, so that the
function appears more “jagged”. In fact, as h — o, m(x;) — Y; on the contrary, if h — 0,
observations for which x; # X are not taken into account at all when computing m (X).

Also, the statistical properties of m(-) vary with h: its variance can be shown to be decreasing in
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h, while its squared bias is increasing in h. It can be shown that choosing h ~ n~!/> minimizes
the RMSE, so that value is customarily taken as a reference point.

Note that the kernel function has its tails “trimmed”. The scalar T, which controls the level at
which trimming occurs is set by default at 4 - h; this setting, however, may be changed via the
set command. For example,

set nadarwat_trim 10

sets T = 10 - h. This may at times produce more sensible results in regions of X with sparse
support; however, you should be aware that in those same cases machine precision (division
by numerical zero) may render your results spurious. The default is relatively safe, but experi-
menting with larger values may be a sensible strategy in some cases.

A common variant of the Nadaraya-Watson estimator is the so-called “leave-one-out” estimator:
this is a variant of the estimator that does not use the i-th observation for evaluating m(x;).
This makes the estimator more robust numerically and its usage is often advised for inference
purposes. In formulae, the leave-one-out estimator is

Z#iyj . Kh(Xi —Xj)
2 j4i Kn(xi —x;)

m(x;) =

In order to have gretl compute the leave-one-out estimator, just reverse the sign of h: if we
changed example 32.2 by substituting

scalar h

$nobsA(-0.2)
with

scalar h -($nobsA(-0.2))

the rest of the example would have stayed unchanged, the only difference being the usage of
the leave-one-out estimator.

Although X could be, in principle, any value, in the typical usage of this estimator you want
to compute m(X) for X equal to one or more values actually observed in your sample, that
is m(x;). If you need a point estimate of m(X) for some value of X which is not present
among the valid observations of your dependent variable, you may want to add some “fake”
observations to your dataset in which 7y is missing and x contains the values you want m(x)
evaluated at. For example, the following script evaluates m(x) at regular intervals between -2.0
and 2.0:

nulldata 120
set seed 120496

# first part of the sample: actual data
smp1 1 100

X = normal()

y = xA2 + sin(x) + normal()

# second part of the sample: fake x data
smp1 101 120
x = (obs-110) / 5

# compute the Nadaraya-Watson estimate
# with bandwidth equal to 0.4 (note that
# 100A(-0.2) = 0.398)

smp1 full

m = nadarwat(y, x, 0.4)

# show m(x) for the fake x values only
smp1 101 120
print x m -o
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and running it produces

101
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m

.165934
.730221
.314705
.026057
.131999
.215445
.269257
.304451
.306448
.238766
.038837
.354660
.908178
.485178
.000003
.460100
.905176
.380874
.927682
.538364
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Chapter 33

Gretl and TgX

33.1 Introduction

TgX — initially developed by Donald Knuth of Stanford University and since enhanced by hun-
dreds of contributors around the world — is the gold standard of scientific typesetting. Gretl
provides various hooks that enable you to preview and print econometric results using the TgX
engine, and to save output in a form suitable for further processing with TgX.

This chapter explains the finer points of gretl’s TgX-related functionality. The next section
describes the relevant menu items; section 33.3 discusses ways of fine-tuning TgX output; and
section 33.4 gives some pointers on installing (and learning) TgX if you do not already have it on
your computer. (Just to be clear: TgX is not included with the gretl distribution; it is a separate
package, including several programs and a large number of supporting files.)

Before proceeding, however, it may be useful to set out briefly the stages of production of a
final document using TgX. For the most part you don’t have to worry about these details, since,
in regard to previewing at any rate, gretl handles them for you. But having some grasp of what
is going on behind the scences will enable you to understand your options better.

The first step is the creation of a plain text “source” file, containing the text or mathematics to
be typset, interspersed with mark-up that defines how it should be formatted. The second step
is to run the source through a processing engine that does the actual formatting. Typically this
is either:

e a program called latex that generates so-called DVI (device-independent) output, or

e (more commonly nowadays) a program called pdflatex that generates PDF output.!

For previewing, one uses either a DVI viewer (typically xdvi on GNU/Linux systems) or a PDF
viewer (for example, Adobe’s Acrobat Reader or xpdf), depending on how the source was
processed. If the DVI route is taken, there’s then a third step to produce printable output,
typically using the program dvips to generate a PostScript file. If the PDF route is taken, the
output is ready for printing without any further processing.

On MS Windows and Mac OS X, gretl calls pdflatex to process the source file, and expects the
operating system to be able to find the default viewer for PDF output; DVI is not supported. On
GNU/Linux the default is also to produce PDF, but if you prefer the DVI/PostScript route you can
do the following: select the menu item “Tools, Preferences, General” then the “Programs” tab.
Find the item titled “Command to compile TeX files”, and set this to Tatex. In the same window,
Make sure the commands to view DVI and PostScript files are set to something appropriate for
your system.

33.2 TpX-related menu items

The model window

The fullest TgX support in gretl is found in the GUI model window. This has a menu item titled

“LaTeX” with sub-items “View”, “Copy”, “Save” and “Equation options” (see Figure 33.1).

IExperts will be aware of something called “plain TgX”, which is processed using the program tex. The great
majority of TgX users, however, use the KIEX macros, initially developed by Leslie Lamport. Gretl does not support
plain TgX.
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Figure 33.1: KIEX menu in model window

File Edit Tests Sawe Graphs &nalysis|:|

Wiew r
Model 1: OLS estimates using the 51 obse cCopy ,
Dependent variable: EMROLL Save .
VARIABLE COEFFICIENT Equation options *| P-VALUE
Tabular options. ..
const 8.241185 11T 3.b5Z B.080865 *x*
CATHOL 8.223538 8.8455781 4.863 9.00881 #x*

The first three sub-items have branches titled “Tabular” and “Equation”. By “Tabular” we mean
that the model is represented in the form of a table; this is the fullest and most explicit presen-
tation of the results. See Table 33.1 for an example; this was pasted into the manual after using
the “Copy, Tabular” item in gretl (a few lines were edited out for brevity).

Table 33.1: Example of KIEX tabular output

Model 1: OLS estimates using the 51 observations 1-51
Dependent variable: ENROLL

Variable Coefficient Std. Error t-statistic  p-value
const 0.241105 0.0660225 3.6519 0.0007
CATHOL 0.223530 0.0459701 4.8625 0.0000
PUPIL —0.00338200 0.00271962 —-1.2436 0.2198
WHITE -0.152643 0.0407064 -3.7499 0.0005

Mean of dependent variable 0.0955686

S.D. of dependent variable 0.0522150

Sum of squared residuals 0.0709594

Standard error of residuals (&) 0.0388558

Unadjusted R? 0.479466

Adjusted R? 0.446241

F(3,47) 14.4306

The “Equation” option is fairly self-explanatory — the results are written across the page in
equation format, as below:

ENROLL = 0.241105 + 0.223530 CATHOL — 0.00338200 PUPIL — 0.152643 WHITE
(0.066022) (0.04597) (0.0027196) (0.040706)

T =51 R?=0.4462 F(3,47) =14.431 & = 0.038856
(standard errors in parentheses)

The distinction between the “Copy” and “Save” options (for both tabular and equation) is
twofold. First, “Copy” puts the TgX source on the clipboard while with “Save” you are prompted
for the name of a file into which the source should be saved. Second, with “Copy” the material
is copied as a “fragment” while with “Save” it is written as a complete file. The point is that a
well-formed TgX source file must have a header that defines the documentclass (article, report,
book or whatever) and tags that say \begin{document} and \end{document}. This material is
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included when you do “Save” but not when you do “Copy”, since in the latter case the expecta-
tion is that you will paste the data into an existing TgX source file that already has the relevant
apparatus in place.

The items under “Equation options” should be self-explanatory: when printing the model in
equation form, do you want standard errors or t-ratios displayed in parentheses under the
parameter estimates? The default is to show standard errors; if you want t-ratios, select that
item.

Other windows

Several other sorts of output windows also have TgX preview, copy and save enabled. In the
case of windows having a graphical toolbar, look for the TgX button. Figure 33.2 shows this icon
(second from the right on the toolbar) along with the dialog that appears when you press the
button.

Figure 33.2: TgX icon and dialog

G [() ™ x

=) View
Summarf O Copy

Variable MEAN] ) Save

ENROLL 0.0

CATHOL 0.1 ok ¥ cancel
PUPIL 17.3

One aspect of gretl’s TgX support that is likely to be particularly useful for publication purposes
is the ability to produce a typeset version of the “model table” (see section 3.4). An example of
this is shown in Table 33.2.

33.3 Fine-tuning typeset output

There are three aspects to this: adjusting the appearance of the output produced by gretl in
KTEX preview mode; adjusting the formatting of gretl’s tabular output for models when using
the tabprint command; and incorporating gretl’s output into your own TgX files.

Previewing in the GUI

As regards preview mode, you can control the appearance of gretl’s output using a file named
gretlpre.tex, which should be placed in your gretl user directory (see the Gretl Command
Reference). If such a file is found, its contents will be used as the “preamble” to the TgX source.
The default value of the preamble is as follows:

\documentclass[1llpt]{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{dcolumn, Tongtable}
\begin{document}
\thispagestyle{empty}

Note that the amsmath and dcolumn packages are required. (For some sorts of output the
Tongtable package is also needed.) Beyond that you can, for instance, change the type size or
the font by altering the documentclass declaration or including an alternative font package.
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Table 33.2: Example of model table output

OLS estimates

Dependent variable: ENROLL

Model 1 Model 2 Model 3
const 0.2907** 0.2411** 0.08557
(0.07853) (0.06602) (0.05794)
CATHOL 0.2216** 0.2235%* 0.2065**
(0.04584) (0.04597) (0.05160)
PUPIL -0.003035 -0.003382 —-0.001697
(0.002727) (0.002720) (0.003025)
WHITE —-0.1482** -0.1526**
(0.04074) (0.04071)
ADMEXP —0.1551
(0.1342)
n 51 51 51
R? 0.4502 0.4462 0.2956
{ 96.09 95.36 88.69

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

In addition, if you wish to typeset gretl output in more than one language, you can set up
per-language preamble files. A “localized” preamble file is identified by a name of the form
gretlpre_xx.tex, where xx is replaced by the first two letters of the current setting of the LANG
environment variable. For example, if you are running the program in Polish, using LANG=p1_PL,
then gretl will do the following when writing the preamble for a TgX source file.

1. Look for a file named gretlpre_pT1.tex in the gretl user directory. If this is not found,
then

2. look for a file named gretlpre. tex in the gretl user directory. If this is not found, then

3. use the default preamble.

Conversely, suppose you usually run gretl in a language other than English, and have a suitable
gretipre.tex file in place for your native language. If on some occasions you want to produce
TgX output in English, then you could create an additional file gretTpre_en.tex: this file will
be used for the preamble when gretl is run with a language setting of, say, en_US.

Command-line options

After estimating a model via a script — or interactively via the gretl console or using the
command-line program gretlcli — you can use the commands tabprint or eqnprint to print
the model to file in tabular format or equation format respectively. These options are explained
in the Gretl Command Reference.

If you wish alter the appearance of gretl’s tabular output for models in the context of the
tabprint command, you can specify a custom row format using the --format flag. The format
string must be enclosed in double quotes and must be tied to the flag with an equals sign. The
pattern for the format string is as follows. There are four fields, representing the coefficient,
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standard error, t-ratio and p-value respectively. These fields should be separated by vertical
bars; they may contain a printf-type specification for the formatting of the numeric value in
question, or may be left blank to suppress the printing of that column (subject to the constraint
that you can’t leave all the columns blank). Here are a few examples:

--format="%.41|%.4f|%.4f|%.4f"
--format="%.4f|%.4f|%.3f|"
--format="%.5f|%.4f| |%.4f"
-—format="%.8g|%.8g| |%.4f"

The first of these specifications prints the values in all columns using 4 decimal places. The
second suppresses the p-value and prints the t-ratio to 3 places. The third omits the t-ratio.
The last one again omits the t, and prints both coefficient and standard error to 8 significant
figures.

Once you set a custom format in this way, it is remembered and used for the duration of the
gretl session. To revert to the default formatting you can use the special variant --format=default.

Further editing

Once you have pasted gretl’s TgX output into your own document, or saved it to file and opened
it in an editor, you can of course modify the material in any wish you wish. In some cases,
machine-generated TgX is hard to understand, but gretl’s output is intended to be human-
readable and -editable. In addition, it does not use any non-standard style packages. Besides
the standard EIgX document classes, the only files needed are, as noted above, the amsmath,
dcolumn and longtable packages. These should be included in any reasonably full TgX imple-
mentation.

33.4 Installing and learning TgX

This is not the place for a detailed exposition of these matters, but here are a few pointers.

So far as we know, every GNU/Linux distribution has a package or set of packages for TgX, and in
fact these are likely to be installed by default. Check the documentation for your distribution.
For MS Windows, several packaged versions of TgX are available: one of the most popular is
MiKTX at http://www.miktex.org/. For Mac OS X a nice implementation is iTgXMac, at http:
//itexmac.sourceforge.net/. An essential starting point for online TgX resources is the
Comprehensive TgX Archive Network (CTAN) at http://www.ctan.org/.

As for learning TgX, many useful resources are available both online and in print. Among online
guides, Tony Roberts’ “BIgX: from quick and dirty to style and finesse” is very helpful, at

http://www.sci.usqg.edu.au/staff/robertsa/LaTeX/Tatexintro.html

An excellent source for advanced material is The BTgX Companion (Goossens et al., 2004).


http://www.miktex.org/
http://itexmac.sourceforge.net/
http://itexmac.sourceforge.net/
http://www.ctan.org/
http://www.sci.usq.edu.au/staff/robertsa/LaTeX/latexintro.html

Chapter 34

Gretl and R

34.1 Introduction

R is, by far, the largest free statistical project.! Like gretl, it is a GNU project and the two have
a lot in common; however, gretl’s approach focuses on ease of use much more than R, which
instead aims to encompass the widest possible range of statistical procedures.

As is natural in the free software ecosystem, we don’t view ourselves as competitors to R,?
but rather as projects sharing a common goal who should support each other whenever possi-
ble. For this reason, gretl provides a way to interact with R and thus enable users to pool the
capabilities of the two packages.

In this chapter, we will explain how to exploit R’s power from within gretl. We assume that the
reader has a working installation of R available and a basic grasp of R’s syntax.3

Despite several valiant attempts, no graphical shell has gained wide acceptance in the R com-
munity: by and large, the standard method of working with R is by writing scripts, or by typing
commands at the R prompt, much in the same way as one would write gretl scripts or work
with the gretl console. In this chapter, the focus will be on the methods available to execute R
commands without leaving gretl.

34.2 Starting an interactive R session

The easiest way to use R from gretl is in interactive mode. Once you have your data loaded in
gretl, you can select the menu item “Tools, Start GNU R” and an interactive R session will be
started, with your dataset automatically pre-loaded.

A simple example: OLS on cross-section data

For this example we use Ramanathan’s dataset data4-1, one of the sample files supplied with
gretl. We first run, in gretl, an OLS regression of price on sqft, bedrms and baths. The basic
results are shown in Table 34.1.

Table 34.1: OLS house price regression via gretl

Variable Coefficient Std. Error t-statistic  p-value
const 129.062 88.3033 1.4616 0.1746
sqft 0.154800 0.0319404 4.8465 0.0007
bedrms -21.587 27.0293 -0.7987 0.4430
baths -12.192 43.2500 -0.2819 0.7838

We will now replicate the above results using R. Select the menu item “Tools, Start GNU R”. A
window similar to the one shown in figure 34.1 should appear.

1R’s homepage is at http://www.r-project.org/.

20K, who are we kidding? But it's friendly competition!

3The main reference for R documentation is http://cran.r-project.org/manuals.html. In addition, R tutori-
als abound on the Net; as always, Google is your friend.
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R wersion 2,10,1 (2009-12-14)
Copyright €03 2009 The B Foundation for Statistical Computing
ISBH 3-900051-07-0

R iz free software and comes with ABSOLUTELY WO WARRAMTY,
You are welcome to redistribute it under certain conditions,
Tupe 'license()' or 'licence()' for distribution details,

Matural language support but running in an English locale

R iz a collaborative project with many contributors,
Type 'contributors()' For more information and
‘citation(]' on how to cite B or R packages in publications,

Tupe 'demof)' for some demosz, 'helpi)' for on-line help, or
'help,start(}' for an HTML browser interface to help.
Tupe 'gqi)' to quit R,

u:uEr*ent data loaded as data frame "gretldata”
»

Figure 34.1: R window

The actual look of the R window may be somewhat different from what you see in Figure 34.1
(especially for Windows users), but this is immaterial. The important point is that you have
a window where you can type commands to R. If the above procedure doesn’t work and no R
window opens, it means that gretl was unable to launch R. You should ensure that R is installed
and working on your system and that gretl knows where it is. The relevant settings can be
found by selecting the “Tools, Preferences, General” menu entry, under the “Programs” tab.

Assuming R was launched successfully, you will see notification that the data from gretl are
available. In the background, gretl has arranged for two R commands to be executed, one to
load the gretl dataset in the form of a data frame (one of several forms in which R can store
data) and one to attach the data so that the variable names defined in the gretl workspace are
available as valid identifiers within R.

In order to replicate gretl’s OLS estimation, go into the R window and type at the prompt

model <- Tm(price ~ sqft + bedrms + baths)
summary (model)

You should see something similar to Figure 34.2. Surprise — the estimates coincide! To get
out, just close the R window or type q() at the R prompt.

Time series data

We now turn to an example which uses time series data: we will compare gretl’s and R’s esti-
mates of Box and Jenkins’ immortal “airline” model. The data are contained in the bjg sample
dataset. The following gretl code

open bjg
arimm 011 ; 011; 1g --nc

produces the estimates shown in Table 34.2.

If we now open an R session as described in the previous subsection, the data-passing mech-
anism is slightly different. Since our data were defined in gretl as time series, we use an R
time-series object (ts for short) for the transfer. In this way we can retain in R useful informa-
tion such as the periodicity of the data and the sample limits. The downside is that the names
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» model <- Im{price ™ sqft + bedrms + baths)
» summary{model )

Call:
Imiformula = price ™ sgft + bedrms + baths)
Fesiduals:

Hin 10 HMedian 20 Ma

-05,533 -16,213 6,033 22,432 BB,703

Coefficients:
Estimate Std, Error t walue Pr(:ltl])
(Intercept) 123,0B8163  88,30326 1,462 0,174553

sqft 0,15430 0,03134 4,847 0000675 *+*
bedrms -21,58752  27,02333  -0,793 0,443057

baths -12,13276 43,2000 -0,282 0,783758
Signif, codesy O ©FET Q001 ST Q01 T 005 (.7 001 7 T 1

Rezidual standard erraor: 40,87 on 10 degrees of freedom

Hultiple R-squared: 0,836, Adjusted R-squared: 0,7063
F-ztatistic: 16,99 on 2 and 10 IF, p-wvalue: 0,0002926
b |

Figure 34.2: OLS regression on house prices via R

Table 34.2: Airline model from Box and Jenkins (1976) — selected portion of gretl’s estimates

Variable Coefficient Std. Error t-statistic  p-value

0, -0.401824 0.0896421 —4.4825 0.0000

0 —0.556936 0.0731044 —7.6184 0.0000
Variance of innovations 0.00134810
Log-likelihood 244.696

Akaike information criterion —483.39
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of individual series, as defined in gretl, are not valid identifiers. In order to extract the variable
1g, one needs to use the syntax 1g <- gretldatal[, "1g"].

ARIMA estimation can be carried out by issuing the following two R commands:

1g <- gretldatal[, "1g"]
arima(lg, c(0,1,1), seasonal=c(0,1,1))

which yield

Coefficients:
mal smal
-0.4018 -0.5569
s.e. 0.0896 0.0731

sigmaA2 estimated as 0.001348: Tlog Tikelihood = 244.7, aic = -483.4

Happily, the estimates again coincide.

34.3 Running an R script

Opening an R window and keying in commands is a convenient method when the job is small.
In some cases, however, it would be preferable to have R execute a script prepared in advance.
One way to do this is via the source() command in R. Alternatively, gretl offers the facility to
edit an R script and run it, having the current dataset pre-loaded automatically. This feature
can be accessed via the “File, Script Files” menu entry. By selecting “User file”, one can load a
pre-existing R script; if you want to create a new script instead, select the “New script, R script”
menu entry.

——__ - gretl; edit B commands

rEI SLDBEE @ x

lg =- gretldatal, "lg"]
arima(lg, c(0,1,1), seasonal=c(0,1,1])

Figure 34.3: Editing window for R scripts

In either case, you are presented with a window very similar to the editor window used for
ordinary gretl scripts, as in Figure 34.3.

There are two main differences. First, you get syntax highlighting for R’s syntax instead of
gretl’s. Second, clicking on the Execute button (the gears icon), launches an instance of R in
which your commands are executed. Before R is actually run, you are asked if you want to run
R interactively or not (see Figure 34.4).

An interactive run opens an R instance similar to the one seen in the previous section: your data
will be pre-loaded (if the “pre-load data” box is checked) and your commands will be executed.
Once this is done, you will find yourself at the R prompt, where you can enter more commands.

A non-interactive run, on the other hand, will execute your script, collect the output from R and
present it to you in an output window; R will be run in the background. If, for example, the
script in Figure 34.3 is run non-interactively, a window similar to Figure 34.5 will appear.

34.4 Taking stuff back and forth

As regards the passing of data between the two programs, so far we have only considered
passing series from gretl to R. In order to achieve a satisfactory degree of interoperability, more
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@ MNon-interactive (just get output)

() Interactive R session

+| pre-load data

| Ogancel |

Hok

Figure 34.4: Editing window for R scripts

gretl: script cutput

273

current data loaded as ts object "gretldata"

Call:
arima(x = lg, order = c(®, 1, 1},

Coefficients:
mal smal
-0.4018 -0.5569
5. e, 0. 0896 0.0731

sigma~2 estimated as ©.001348: log likelihood = 244.7,

seasonal = c(@, 1, 1))

aic = -483.4

Figure 34.5: Output from a non-interactive R run
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is needed. In the following sub-sections we see how matrices can be exchanged, and how data
can be passed from R back to gretl.

Passing matrices from gretl to R

For passing matrices from gretl to R, you can use the mwrite matrix function described in
section 13.6. For example, the following gretl code fragment generates the matrix

3 7 11
A 4 8 12
5 9 13
6 10 14

and stores it into the file mymatfile.mat.

matrix A = mshape(seq(3,14),4,3)
err = mwrite(A, "mymatfile.mat")

In order to retrieve this matrix from R, all you have to do is
A <- as.matrix(read.table("mymatfile.mat", skip=1))

Although in principle you can give your matrix file any valid filename, a couple of conventions
may prove useful. First, you may want to use an informative file suffix such as “.mat”, but this
is a matter of taste. More importantly, the exact location of the file created by mwrite could
be an issue. By default, if no path is specified in the file name, gretl stores matrix files in the
current work directory. However, it may be wise for the purpose at hand to use the directory
in which gretl stores all its temporary files, whose name is stored in the built-in string dotdir
(see section 12.2). The value of this string is automatically passed to R as the string variable
gretl.dotdir, so the above example may be rewritten more cleanly as

Gretl side:

matrix A = mshape(seq(3,14),4,3)
err = mwrite(A, "@dotdir/mymatfile.mat")

R side:

fname <- paste(gretl.dotdir, "mymatfile.mat", sep="")
A <- as.matrix(read.table(fname, skip=1))

Passing data from R to gretl

For passing data in the opposite direction, gretl defines a special function that can be used in
the R environment. An R object will be written as a temporary file in gretl’s dotd1ir directory,
from where it can be easily retrieved from within gretl.

The name of this function is gret1.export(), and it accepts one argument, the object to be
exported. At present, the objects that can be exported with this method are matrices, data
frames and time-series objects. The function creates a text file, with the same name as the
exported object, in gretl’s temporary directory. Data frames and time-series objects are stored
as CSV files, and can be retrieved by using gretl’s append command. Matrices are stored in a
special text format that is understood by gretl (see section 13.6); the file suffix is in this case
.mat, and to read the matrix in gretl you must use the mread () function.

As an example, we take the airline data and use them to estimate a structural time series model
a la Harvey (1989). The model we will use is the Basic Structural Model (BSM), in which a time
series is decomposed into three terms:

Yt =Ht + Yt + &
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where ; is a trend component, y; is a seasonal component and &; is a noise term. In turn, the
following is assumed to hold:

Apr = Bro1+ne
ABr = T
Asyr = Awy

where A; is the seasonal differencing operator, (1 — L¥), and n¢, C; and w; are mutually un-
correlated white noise processes. The object of the analysis is to estimate the variances of the
noise components (which may be zero) and to recover estimates of the latent processes p; (the
“level”), B¢ (the “slope”) and y;.

Gretl does not provide (yet) a command for estimating this class of models, so we will use R’s
StructTS command and import the results back into gretl. Once the bjg dataset is loaded in
gretl, we pass the data to R and execute the following script:

# extract the log series

y <- gretldatal[, "1g"]

# estimate the model

strmod <- StructTS(y)

# save the fitted components (smoothed)
compon <- as.ts(tsSmooth(strmod))

# save the estimated variances

vars <- as.matrix(strmod$coef)

# export into gretl’s temp dir
gretl.export(compon)
gretl.export(vars)

Running this script via gretl produces minimal output:

current data loaded as ts object "gretldata"
wrote /home/cottrell/.gretl/compon.csv
wrote /home/cottrell/.gretl/vars.mat

However, we are now able to pull the results back into gretl by executing the following com-
mands, either from the console or by creating a small script:*

append @dotdir/compon.csv
vars = mread("@dotdir/vars.mat")

The first command reads the estimated time-series components from a CSV file, which is the
format that the passing mechanism employs for series. The matrix vars is read from the file
vars.mat.

After the above commands have been executed, three new series will have appeared in the gretl
workspace, namely the estimates of the three components; by plotting them together with the
original data, you should get a graph similar to Figure 34.6. The estimates of the variances can
be seen by printing the vars matrix, as in

? print vars
vars (4 x 1)

0.00077185
0.0000
0.0013969
0.0000

4This example will work on Linux and presumably on OSX without modifications. On the Windows platform, you
may have to substitute the “/” character with “\”.
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Figure 34.6: Estimated components from BSM

That is,
0y =0.00077185, 6% =0, &4 =0.0013969, 67 =0

Notice that, since 62 = 0, the estimate for B; is constant and the level component is simply a
random walk with a drift.

34.5 Interacting with R from the command line

Up to this point we have spoken only of interaction with R via the GUI program. In order to do
the same from the command line interface, gretl provides the foreign command. This enables
you to embed non-native commands within a gretl script.

A “foreign” block takes the form

foreign language=R [--send-data] [--quiet]
. R commands ...
end foreign

and achieves the same effect as submitting the enclosed R commands via the GUI in the non-
interactive mode (see section 34.3 above). The --send-data option arranges for auto-loading
of the data present in the gretl session. The --quiet option prevents the output from R from
being echoed in the gretl output.

Using this method, replicating the example in the previous subsection is rather easy: basically,
all it takes is encapsulating the content of the R script in a foreign...end foreign block; see
example 34.1.

The above syntax, despite being already quite useful by itself, shows its full power when it
is used in conjunction with user-written functions. Example 34.2 shows how to define a gretl
function that calls R internally.



Chapter 34. Gretl and R

Example 34.1: Estimation of the Basic Structural Model — simple

open bjg.gdt

foreign language=R --send-data
y <- gretldatal[, "1g"]
strmod <- StructTS(y)
compon <- as.ts(tsSmooth(strmod))
vars <- as.matrix(strmod$coef)

gretl.export(compon)
gretl.export(vars)
end foreign

append @dotdir/compon.csv
rename Tevel Tg_Tlevel
rename slope Tg_sTope
rename sea lg_seas

vars = mread("@dotdir/vars.mat")

Example 34.2: Estimation of the Basic Structural Model — via a function

function 1list RStructTS(series myseries)

smp1 ok(myseries) --restrict
sx = argname(myseries)

foreign language=R --send-data --quiet
@sx <- gretldatal[, "myseries"]
strmod <- StructTS(@sx)
compon <- as.ts(tsSmooth(strmod))
gretl.export(compon)

end foreign

append @dotdir/compon.csv
rename level @sx_Tlevel
rename slope @sx_sTope
rename sea @sx_seas

Tist ret = @sx_level @sx_sTope @sx_seas
return ret
end function

open bjg.gdt
Tist X = RStructTS(1g)

277



Chapter 34. Gretl and R 278

34.6 Performance issues with R

R is a large and complex program, which takes an appreciable time to initialize itself.> In
interactive use this not a significant problem, but if you have a gretl script that calls R repeatedly
the cumulated start-up costs can become bothersome. To get around this, gretl calls the R
shared library by preference; in this case the start-up cost is borne only once, on the first
invocation of R code from within gretl.

Support for the R shared library is built into the gretl packages for MS Windows and OS X — but
the advantage is realized only if the library is in fact available at run time. If you are building
gretl yourself on Linux and wish to make use of the R library, you should ensure (a) that R has
been built with the shared library enabled (specify --enable-R-sh1ib when configuring your
build of R), and (b) that the pkg-config program is able to detect your R installation. We do not
link to the R library at build time, rather we open it dynamically on demand. The gretl GUI has
an item under the Tools/Preferences menu which enables you to select the path to the library,
if it is not detected automatically.

If you have the R shared library installed but want to force gretl to call the R executable instead,
you can do

set R_Tib off

34.7 Further use of the R library

Besides improving performance, as noted above, use of the R shared library makes possible a
further refinement. That is, you can define functions in R, within a foreign block, then call
those functions later in your script much as if they were gretl functions. This is illustrated
below.

set R_functions on
foreign language=R
plus_one <- function(q) {
z =g+l
invisible(z)
}

end foreign

scalar b=R.plus_one(2)

The R function plus_one is obviously trivial in itself, but the example shows a couple of points.
First, for this mechanism to work you need to enable R_functions via the set command.
Second, to avoid collision with the gretl function namespace, calls to functions defined in this
way must be prefixed with “R.”, as in R.pTus_one.

Built-in R functions may also be called in this way, once R_functions is set on. For example
one can invoke R’s choose function, which computes binomial coefficients:

set R_functions on
scalar b=R.choose(10,4)

Note, however, that the possibilities for use of built-in R functions are limited; only functions
whose arguments and return values are sufficiently generic (basically scalars or matrices) will
work.

> About one third of a second on an Intel Core Duo machine of 2009 vintage.
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Gretl and Ox

35.1 Introduction

Ox, written by Jurgen A. Doornik (see Doornik, 2007), is described by its author as “an object-
oriented statistical system. At its core is a powerful matrix language, which is complemented
by a comprehensive statistical library. Among the special features of Ox are its speed [and]
well-designed syntax.... Ox comes in two versions: Ox Professional and Ox Console. Ox is
available for Windows, Linux, Mac (OS X), and several Unix platforms.” (www.doornik.com)

Ox is proprietary, closed-source software. The command-line version of the program is, how-
ever, available free of change for academic users. Quoting again from Doornik’s website: “The
Console (command line) versions may be used freely for academic research and teaching pur-
poses only.... The Ox syntax is public, and, of course, you may do with your own Ox code what-
ever you wish.” If you wish to use Ox in conjunction with gretl please refer to doornik.com for
further details on licensing.

As the reader will no doubt have noticed, all the other software that we discuss in this Guide
is open-source and freely available for all users. We make an exception for Ox on the grounds
that it is indeed fast and well designed, and that its statistical library — along with various add-
on packages that are also available — has exceptional coverage of cutting-edge techniques in
econometrics. The gretl authors have used Ox for benchmarking some of gretl’s more advanced
features such as dynamic panel models and the state space models.}

35.2 Ox support in gretl

The support offered for Ox in gretl is similar to that offered for R, as discussed in chapter 34,
but with a few differences. The first difference to note is that Ox support is not on by default;
it must be enabled explicitly.

= To enable support for Ox, go to the Tools/Preferences/General menu item and check the box labeled
“Enable Ox support”. Click “OK” in the preferences dialog, then quit and restart gretl. You will now find,
under the Programs tab in the Tools/Preferences/General dialog, an entry for specifying the path to the
ox1 executable, that is, the program that runs Ox files (on MS Windows it is called ox1.exe). Make sure
that path is right, and you’re ready to go.

With support enabled, you can open and edit Ox programs in the gretl GUI. Clicking the “ex-
ecute” icon in the editor window will send your code to Ox for execution. Figures 35.1 and
Figure 35.2 show an Ox program and part of its output.

In addition you can embed Ox code within a gretl script using a foreign block, as described
in connection with R. A trivial example, which simply prints the gretl data matrix within Ox, is
shown below:

open data4-1
matrix m = { dataset }
mwrite(m, "@dotdir/gretl.mat")

foreign language=0x
#include <oxstd.h>
main()

IFor a review of Ox, see Cribari-Neto and Zarkos (2003) and for a (somewhat dated) comparison of Ox with other
matrix-oriented packages such as GAUSS, see Steinhaus (1999).
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gretl: edit Ox program

NEEEe#00AB 6 X|

1

Binclude =oxstd.h=
#1include <packages/ssfpack/ssfpack.h=

main ()

decl mphi, momega, msigma;
GetSsfArma(<0.6,0.2>, =-0.2Z>, 0.9, &mphi, &momega, &msigma);

print("Phi =", mphi, "Omega =", momega, "Sigma =", msigmal;
decl myt = loadmat("arma2l.mat")";

decl mkf = KalmanFil(myt, mphi, momega, msigma);
printimkf"};

decl sm = SsfCondDens(ST_SMO, myt, mphi, momega, msigma);
print{sm');

decl dLL, dvar;
SsfLik(&dLL, &dvVar, myt, mphi, momega, msigma);
print{"dLL = ", dLL, "“n"J);

print{"dvar =", dVar, "‘\n"};

[« |

Figure 35.1: Ox editing window

gretl: script ocutput

0x Console version 5.10 (Linux) (C) J.A. Doornik, 1994-2008
This wversion may be used for academic research and teaching only
Phi =
0.60000 1.0000
0.20000 0. 0000
1.60000 0. 0000
Omega =
0.81000 -0. 16200 0.0000
-0.16200 0.032400 0.0000
0.0000 0. 0000 0.0000
Sigma =
1.4271 0.0811571
B.011571 0.089486
0.0000 0.0000
2.08334 0.60811 0. 20000 0.70070
0.028437 0.41988 0. 20000 1.1119
-0.29212 0.40879 B.20000 1.2297

Figure 35.2: Output from Ox
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decl gmat = gretl_loadmat("gretl.mat");
print(gmat);
}

end foreign

The above example illustrates how a matrix can be passed from gretl to Ox. We use the mwrite
function to write a matrix into the user’s “dotdir” (see section 12.2), then in Ox we use the
function gret1_loadmat to retrieve the matrix.

How does gretl_loadmat come to be defined? When gretl writes out the Ox program corre-
sponding to your foreign block it does two things in addition. First, it writes a small utility
file named gretl_io.ox into your dotdir. This contains a definition for gretl_loadmat and
also for the function gret1_export (see below). Second, gretl interpolates into your Ox code
a line which includes this utility file (it is inserted right after the inclusion of oxstd.h, which
is needed in all Ox programs). Note that gret1_loadmat expects to find the named file in the
user’s dotdir.

35.3 lllustration: replication of DPD model

Example 35.1 shows a more ambitious case. This script replicates one of the dynamic panel
data models in Arellano and Bond (1991), first using gretl and then using Ox; we then check
the relative differences between the parameter estimates produced by the two programs (which
turn out to be reassuringly small).

Unlike the previous example, in this case we pass the dataset from gretl to Ox as a CSV file in
order to preserve the variable names. Note the use of the internal variable csv_na to get the
right representation of missing values for use with Ox — and also note that the --send-data
option for the foreign command is not available in connection with Ox.

We get the parameter estimates back from Ox using gret1_export on the Ox side and mread
on the gretl side. The gret1_export function takes two arguments, a matrix and a file name.
The file is written into the user’s dotdir, from where it can be picked up using mread. The final
portion of the output from Example 35.1 is shown below:

? matrix oxparm = mread("/home/cottrell/.gretl/oxparm.mat™)

Generated matrix oxparm

? eval abs((parm - oxparm) ./ oxparm)
1.4578e-13

.5642e-13

.0672e-15

.6091e-13

.9808e-15

.0450e-14

.0218e-13

.1048e-13

.5898e-15

.8658e-14

.1852e-14

.9451e-13

.9398e-13

RFNNRFRPFONRKENORVIWw
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Example 35.1: Estimation of dynamic panel data model via gretl and Ox

open abdata.gdt

# Take first differences of the independent variables
genr Dw = diff(w)

genr Dk = diff(k)

genr Dys = diff(ys)

# 1-step GMM estimation
arbond 2 ; n Dw Dw(-1) Dk Dys Dys(-1) 0 --time-dummies
matrix parm = $coeff

# Write CSV file for Ox
set csv_na .NaN
store @dotdir/abdata.csv

# Replicate using the Ox DPD package
foreign language=0x

#include <oxstd.h>

#import <packages/dpd/dpd>

main ()

{
decT dpd = new DPD(Q);
dpd.Load("@dotdir/abdata.csv'");
dpd.SetYear("YEAR");

dpd.Select(Y_VAR, {"n", 0, 2});

dpd.Select(X_VAR, {"w", 0, 1, "k", 0, 0, "ys", 0, 1});
dpd.Select(I_VAR, {"w", 0, 1, "k", 0, 0, "ys", 0, 1});

dpd.Gmm("n", 2, 99); // GMM-type instrument
dpd.SetDummies (D_CONSTANT + D_TIME);
dpd.SetTest(2, 2); // Sargan, AR 1-2 tests
dpd.Estimate(); // l-step estimation

decl parm = dpd.GetPar(Q);

gretl_export(parm, "oxparm.mat");

delete dpd;
3

end foreign

# Compare the results
matrix oxparm = mread("@dotdir/oxparm.mat")
eval abs((parm - oxparm) ./ oxparm)
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Gretl and Octave

36.1 Introduction

GNU Octave, written by John W. Eaton and others, is described as “a high-level language, pri-
marily intended for numerical computations.” The program is oriented towards “solving linear
and nonlinear problems numerically” and “performing other numerical experiments using a
language that is mostly compatible with Matlab.” (www.gnu.org/software/octave) Octave
is available in source-code form (naturally, for GNU software) and also in the form of binary
packages for MS Windows and Mac OS X. Numerous contributed packages that extend Octave’s
functionality in various ways can be found at octave.sf.net.

36.2 Octave support in gretl

The support offered for Octave in gretl is similar to that offered for R (chapter 34). For example,
you can open and edit Octave scripts in the gretl GUI Clicking the “execute” icon in the editor
window will send your code to Octave for execution. Figures 36.1 and Figure 36.2 show an
Octave script and its output; in this example we use the function Togistic_regression to
replicate some results from Greene (2000).

gretl: edit Octave script

DBEEESE#DODANR DR

## logistic regression from William Greene's =
## Econometric Analysis, 4e, ch. 19.

load spector.dat

n = rows(GPAETC);

* = [ones(n, 1) GPAETC 1;

[theta, beta, dev, dl, d21] = logistic_regression (GRADE, X);
beta(l) = beta(l) - theta;

beta

k = columns(X);
second = zeros(k, k);

for i=1:k

for j=1:k

second(i, j) = d21(1i+1, j+1);

endfor
endfor
vew = -1 * inv(second);
se = zerosik, 1);
for 1=1:k

se(i) = sgrifvev(i, 1));
endfor ]
se -

Figure 36.1: Octave editing window
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gretl: script ocutput
beta =
-13. 020386
2.825937
B.095146
2.,378536
se =
4.93100
1.26289
B.14155
1.06452

Figure 36.2: Output from Octave

In addition you can embed Octave code within a gretl script using a foreign block, as described
in connection with R. A trivial example, which simply loads and prints the gretl data matrix

within Octave, is shown below. (Note that in Octave, appending “;” to a line suppresses verbose
output; leaving off the semicolon results in printing of the object that is produced, if any.)

open data4-1
matrix m = { dataset }
mwrite(m, "@dotdir/gretl.mat")

foreign language=0ctave
gmat = gretl_Tloadmat('gretl.mat")
end foreign

We use the mwrite function to write a matrix into the user’s “dotdir” (see section 12.2), then
in Octave we use the function gret1_loadmat to retrieve the matrix. The “magic” behind
gretl_Tloadmat works in essentially the same way as for Ox (chapter 35).

36.3 lllustration: spectral methods

We now present a more ambitious example which exploits Octave’s handling of the frequency
domain (and also its ability to use code written for MATLAB), namely estimation of the spectral
coherence of two time series. For this illustration we require two extra Octave packages from
octave.sf.net, namely those supporting spectral functions (specfun) and signal processing
(signal). After downloading the packages you can install them from within Octave as follows
(using version numbers as of March 2010):

pkg install specfun-1.0.8.tar.gz
pkg install signal-1.0.10.tar.gz

In addition we need some specialized MATLAB files made available by Mario Forni of the Univer-
sity of Modena, at http://www.economia.unimore.it/forni_mario/matlab.htm. The files
needed are coheren2.m, coheren.m, coher.m, cospec.m, crosscov.m, crosspec.m, crosspe.m
and spec.m. These are in a form appropriate for MS Windows. On Linux you could run the fol-
lowing shell script to get the files and remove the Windows end-of-file character (which prevents
the files from running under Octave):

SITE=http://www.economia.unimore.it/forni_mario/MYPROG
# download files and delete trailing Ctrl1-Z
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for f in \
coheren2.m \
coheren.m \
coher.m \
cospec.m \
crosscov.m \
crosspec.m \
crosspe.m \
spec.m ; do
wget $SITE/$T && \
cat $f | tr -d \\032 > tmp.m && mv tmp.m $f
done

The Forni files should be placed in some appropriate directory, and you should tell Octave
where to find them by adding that directory to Octave’s Toadpath. On Linux this can be done
via an entry in one’s ~/.octaverc file. For example

addpath("~/stats/octave/forni");

Alternatively, an addpath directive can be written into the Octave script that calls on these files.

With everything set up on the Octave side we now write a gretl script (see Example 36.1) which
opens a time-series dataset, constructs and writes a matrix containing two series, and defines
a foreign block containing the Octave statements needed to produce the spectral coherence
matrix. The matrix is exported via the gret1_export function, which is automatically defined
for you; this function takes two arguments, a matrix and a file name. The file is written into the
user’s “dotdir”, from where it can be picked up using mread. Finally, we produce a graph from
the matrix in gretl. In the script this is sent to the screen; Figure 36.3 shows the same graph in
PDF format.

Example 36.1: Estimation of spectral coherence via Octave

open data9-7
matrix xy = { PRIME, UNEMP }
mwrite(xy, "@dotdir/xy.mat")

foreign language=0Octave

# uncomment and modify the following if necessary

# addpath("~/stats/octave/forni");

xy = gretl_loadmat("xy.mat");

x = xy(:,1);

y = xy(:,2);

# note: the last parameter is the Bartlett window size
h = coher(x, y, 8);

gretl_exportCh, "h.mat");

end foreign

h = mread("@dotdir/h.mat")
colnames(Ch, "coherence")
gnuplot 1 --time-series --with-lines --matrix=h --output=display
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Figure 36.3: Spectral coherence estimated via Octave
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Chapter 37

Troubleshooting gretl

37.1 Bug reports

Bug reports are welcome. Hopefully, you are unlikely to find bugs in the actual calculations done
by gretl (although this statement does not constitute any sort of warranty). You may, however,
come across bugs or oddities in the behavior of the graphical interface. Please remember that
the usefulness of bug reports is greatly enhanced if you can be as specific as possible: what
exactly went wrong, under what conditions, and on what operating system? If you saw an error
message, what precisely did it say?

37.2 Auxiliary programs

As mentioned above, gretl calls some other programs to accomplish certain tasks (gnuplot for
graphing, KIgX for high-quality typesetting of regression output, GNU R). If something goes
wrong with such external links, it is not always easy for gretl to produce an informative error
message. If such a link fails when accessed from the gretl graphical interface, you may be able
to get more information by starting gretl from the command prompt rather than via a desktop
menu entry or icon. On the X window system, start gretl from the shell prompt in an xterm;
on MS Windows, start the program gretlw32.exe from a console window or “DOS box” using
the -g or --debug option flag. Additional error messages may be displayed on the terminal
window.

Also please note that for most external calls, gretl assumes that the programs in question are
available in your “path” — that is, that they can be invoked simply via the name of the program,
without supplying the program’s full location.! Thus if a given program fails, try the experiment
of typing the program name at the command prompt, as shown below.

Graphing Typesetting GNU R
X window system  gnuplot latex, xdvi R
MS Windows wgnuplot.exe pdflatex RGui.exe

If the program fails to start from the prompt, it’s not a gretl issue but rather that the program’s
home directory is not in your path, or the program is not installed (properly). For details on
modifying your path please see the documentation or online help for your operating system or
shell.

1The exception to this rule is the invocation of gnuplot under MS Windows, where a full path to the program is
given.
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Chapter 38

The command line interface

The gretl package includes the command-line program gretlcli. On Linux it can be run from
a terminal window (xterm, rxvt, or similar), or at the text console. Under MS Windows it can
be run in a console window (sometimes inaccurately called a “DOS box”). gretlcli has its own
help file, which may be accessed by typing “help” at the prompt. It can be run in batch mode,
sending output directly to a file (see also the Gretl Command Reference).

If gretlcli is linked to the readline library (this is automatically the case in the MS Windows ver-
sion; also see Appendix C), the command line is recallable and editable, and offers command
completion. You can use the Up and Down arrow keys to cycle through previously typed com-
mands. On a given command line, you can use the arrow keys to move around, in conjunction
with Emacs editing keystrokes.! The most common of these are:

Keystroke Effect
Ctrl-a  go to start of line
Ctrl-e go toend of line
Ctrl-d  delete character to right

where “Ctrl1-a” means press the “a” key while the “Ctr1” key is also depressed. Thus if you
want to change something at the beginning of a command, you don’t have to backspace over
the whole line, erasing as you go. Just hop to the start and add or delete characters. If you type
the first letters of a command name then press the Tab key, readline will attempt to complete
the command name for you. If there’s a unique completion it will be put in place automatically.
If there’s more than one completion, pressing Tab a second time brings up a list.

Probably the most useful mode for heavy-duty work with gretlcli is batch (non-interactive) mode,
in which the program reads and processes a script, and sends the output to file. For example

gretlcli -b scriptfile > outputfile

Note that scriptfile is treated as a program argument; only the output file requires redirection
(>). Don't forget the -b (batch) switch, otherwise the program will wait for user input after
executing the script (and if output is redirected, the program will appear to “hang”).

1 Actually, the key bindings shown below are only the defaults; they can be customized. See the readline manual.
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Appendix A

Data file details

A.1 Basic native format

In gretl’s native data format, a data set is stored in XML (extensible mark-up language). Data
files correspond to the simple DTD (document type definition) given in gretldata.dtd, which
is supplied with the gretl distribution and is installed in the system data directory (e.g. /usr/
share/gretl/data on Linux.) Data files may be plain text or gzipped. They contain the actual
data values plus additional information such as the names and descriptions of variables, the
frequency of the data, and so on.

Most users will probably not have need to read or write such files other than via gretl itself,
but if you want to manipulate them using other software tools you should examine the DTD
and also take a look at a few of the supplied practice data files: data4-1.gdt gives a simple
example; data4-10.gdt is an example where observation labels are included.

A.2 Traditional ESL format

For backward compatibility, gretl can also handle data files in the “traditional” format inherited
from Ramu Ramanathan’s ESL program. In this format a data set is represented by two text
files; one contains the actual data and the other information on how the data should be read.
To be more specific:

1. Actual data: A rectangular matrix of white-space separated numbers. By default, each
column represents a variable, each row an observation. The data columns can be separated
by spaces or tabs. Traditionally the data filename has no extension/suffix.

2. Header: The data file must be accompanied by a header file which has the same basename
as the data file plus the suffix . hdr. This file contains, in order:

¢ (Optional) comments on the data, set off by the opening string (* and the closing
string *), each of these strings to occur on lines by themselves.

¢ (Required) a list of the names of the variables in the data file, separated by white
space. Names are limited to 8 characters, must start with a letter, and are limited to
alphanumeric characters plus the underscore. The list may continue over more than
one line; it should be terminated with a semicolon.

e (Required) an observations line of the form 1 1 85. The first element gives the data
frequency (1 for undated or annual data, 4 for quarterly, 12 for monthly). The second
and third elements give the starting and ending observations. These should be 1 and
the number of observations, respectively, for undated data. For time-series data one
can use dates of the form 1959.1 (quarterly, one digit after the point) or 1967.03
(monthly, two digits after the point).

e The keyword BYOBS (but see below).

Here is an example of a well-formed data header file; the corresponding data file contains three
columns of data, each having 90 entries.

(7‘:
DATA9-6:

Data on log(money), Tog(income) and interest rate from US.
Source: Stock and Watson (1993) Econometrica
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(unsmoothed data) Period is 1900-1989 (annual data).
Data compiled by Graham ETTiott.

7’:)

Tmoney lincome intrate ;

1 1900 1989 BYOBS

Three further features of the traditional ESL data format may be noted.

1. If the BYOBS keyword is replaced by BYVAR this indicates that in the corresponding data
file the data are written out by variable rather than by observation.

2. If BYOBS is followed by the keyword MARKERS, gretl expects a data file in which the first
column contains strings (8 characters maximum) used to identify the observations. This
may be useful in the case of cross-sectional data where the units of observation are iden-
tifiable: countries, states, cities or whatever. It can also be useful for irregular time series
data, such as daily stock price data where some days are not trading days — in this case
the observations can be marked with a date string such as 10/01/98. (Remember the
8-character maximum.) Note that BYVAR and MARKERS are mutually exclusive flags. Also
note that the “markers” are not considered to be a variable: this column does not have a
corresponding entry in the list of variable names in the header file.

3. If a file with the same base name as the data file and header files, but with the suffix . TbT,
is found, it is read to fill out the descriptive labels for the data series. The format of the la-
bel file is simple: each line contains the name of one variable (as found in the header file),
followed by one or more spaces, followed by the descriptive label. Here is an example, giv-
ing a label for a variable named “price”: price New car price index, 1982 base year

If you want to save data in traditional format, use the --traditional flag with the store
command, either in the command-line program or in the console window of the GUI program.

A.3 Binary database details

A gretl database consists of two parts: an ASCII index file (with filename suffix .idx) contain-
ing information on the series, and a binary file (suffix .bin) containing the actual data. Two
examples of the format for an entry in the idx file are shown below:

GOM910 Composite index of 11 Teading indicators (1987=100)
M 1948.01 - 1995.11 n = 575

currbal Balance of Payments: Balance on Current Account; SA
Q 1960.1 - 1999.4 n = 160

The first field is the series name. The second is a description of the series (maximum 128
characters). On the second line the first field is a frequency code: M for monthly, Q for quarterly,
A for annual, B for business-daily (daily with five days per week) and D for daily (seven days
per week). No other frequencies are accepted at present. Then comes the starting date (N.B.
with two digits following the point for monthly data, one for quarterly data, none for annual),
a space, a hyphen, another space, the ending date, the string “n = ” and the integer number
of observations. In the case of daily data the starting and ending dates should be given in the
form YYYY/MM/DD. This format must be respected exactly.

Optionally, the first line of the index file may contain a short comment (up to 64 characters) on
the source and nature of the data, following a hash mark. For example:

# Federal Reserve Board (interest rates)

The corresponding binary database file holds the data values, represented as “floats”, that is,
single-precision floating-point numbers, typically taking four bytes apiece. The numbers are
packed “by variable”, so that the first n numbers are the observations of variable 1, the next m
the observations on variable 2, and so on.



Appendix B

Data import via ODBC

Since version 1.7.5, gretl provides a method for retrieving data from databases which support
the Open Database Connectivity (ODBC) standard. Most users won’t be interested in this, but
there may be some for whom this feature matters a lot — typically, those who work in an
environment where huge data collections are accessible via a Data Base Management System
(DBMS).

In the following section we explain what is needed for ODBC support in gretl. We provide some
background information on how ODBC works in section B.2, and explain the details of getting
gretl to retrieve data from a database in section B.3.

B.1 ODBC support

The piece of software that bridges between gretl and the ODBC system is a dynamically loaded
“plugin”. This is included in the gretl packages for MS Windows and Mac OS X (on OS X support
was added in gretl 1.9.0). On other unix-type platforms (notably Linux) you will have to build
gretl from source to get ODBC support. This is because the gretl plugin depends on having
unixODBC installed, which we cannot assume to be the case on typical Linux systems. To
enable the ODBC plugin when building gretl, you must pass the option --with-odbc to gretl’s
configure script. In addition, if unixODBC is installed in a non-standard location you will have
to specify its installation prefix using --with-0DBC-prefix, as in (for example)

./configure --with-odbc --with-ODBC-prefix=/opt/0DBC

B.2 ODBC base concepts

ODBC is short for Open DataBase Connectivity, a group of software methods that enable a client
to interact with a database server. The most common operation is when the client fetches some
data from the server. ODBC acts as an intermediate layer between client and server, so the
client “talks” to ODBC rather than accessing the server directly (see Figure B.1).

Figure B.1: Retrieving data via ODBC

For the above mechanism to work, it is necessary that the relevant ODBC software is installed
and working on the client machine (contact your DB administrator for details). At this point,
the database (or databases) that the server provides will be accessible to the client as a data
source with a specific identifier (a Data Source Name or DSN); in most cases, a username and a
password are required to connect to the data source.

Once the connection is established, the user sends a gquery to ODBC, which contacts the data-
base manager, collects the results and sends them back to the user. The query is almost invari-
ably formulated in a special language used for the purpose, namely SQL.! We will not provide

1See http://en.wikipedia.org/wiki/SQL.
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here an SQL tutorial: there are many such tutorials on the Net; besides, each database manager
tends to support its own SQL dialect so the precise form of an SQL query may vary slightly if
the DBMS on the other end is Oracle, MySQL, PostgreSQL or something else.

Suffice it to say that the main statement for retrieving data is the SELECT statement. Within a
DBMS, data are organized in tables, which are roughly equivalent to spreadsheets. The SELECT
statement returns a subset of a table, which is itself a table. For example, imagine that the
database holds a table called “NatAccounts”, containing the data shown in Table B.1.

year (qtr gdp consump tradebal
1970 1 584763 344746.9 -5891.01
1970 2 597746 350176.9 -7068.71
1970 3 604270 355249.7 -8379.27
1970 4 609706 361794.7 -7917.61
1971 1 609597 362490 -6274.3
1971 2 617002 368313.6 -6658.76
1971 3 625536 372605 —4795.89
1971 4 630047 377033.9 -6498.13

Table B.1: The “NatAccounts” table
The SQL statement

SELECT qgtr, tradebal, gdp FROM NatAccounts WHERE year=1970;

produces the subset of the original data shown in Table B.2.

qtr tradebal gdp
1 -5891.01 584763
2 —7068.71 597746
3 —8379.27 604270
4 -7917.61 609706

Table B.2: Result of a SELECT statement

Gretl provides a mechanism for forwarding your query to the DBMS via ODBC and including the
results in your currently open dataset.

B.3 Syntax

At present gretl does not offer a graphical interface for ODBC import; this must be done via the
command line interface. The two commands used for fetching data via an ODBC connection are
open and data.

The open command is used for connecting to a DBMS: its syntax is
open dsn=database [user=username] [password=password] --odbc

The user and password items are optional; the effect of this command is to initiate an ODBC
connection. It is assumed that the machine gretl runs on has a working ODBC client installed.

In order to actually retrieve the data, the data command is used. Its syntax is:
data series [obs-format=format-string] query=query-string --odbc
where:

series is a list of names of gretl series to contain the incoming data, separated by spaces. Note
that these series need not exist pior to the ODBC import.
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format-string is an optional parameter, used to handle cases when a “rectangular” organisation
of the database cannot be assumed (more on this later);

query-string is a string containing the SQL statement used to extract the data.?

There should be no spaces around the equals signs in the obs-format and query fields in the
data command.

The query-string can, in principle, contain any valid SQL statement which results in a table.
This string may be specified directly within the command, as in

data x query="SELECT foo FROM bar" --odbc

which will store into the gretl variable x the content of the column foo from the table bar.
However, since in a real-life situation the string containing the SQL statement may be rather
long, it may be best to store it in a string variable. For example:

string Sq1Qry = "SELECT fool, foo2 FROM bar"
data x y query=SqlQry --odbc

The observation format specifier

If the optional parameter obs-format is absent, as in the above example, the SQL query should
return k columns of data, where k is the number of series names listed in the data command.
It may be necessary to include a smp1 command before the data command to set up the right
“window” for the incoming data. In addition, if one cannot assume that the data will be de-
livered in the correct order (typically, chronological order), the SQL query should contain an
appropriate ORDER BY clause.

The optional format string is used for those cases when there is no certainty that the data from
the query will arrive in the same order as the gretl dataset. This may happen when missing
values are interspersed within a column, or with data that do not have a natural ordering, e.g.
cross-sectional data. In this case, the SQL statement should return a table with m + k columns,
where the first m columns are used to identify the observation or row in the gretl dataset into
which the actual data values in the final k columns should be placed. The obs-format string is
used to translate the first m fields into a string which matches the string gretl uses to identify
observations in the currently open dataset. Up to three columns can be used for this purpose
(m < 3).

Note that the strings gretl uses to identify observations can be seen by printing any variable “by
observation”, as in

print index --byobs

(The series named 1index is automatically added to a dataset created via the nulldata com-
mand.)

The format specifiers available for use with obs-format are as follows:

%d print an integer value
%s print an string value
%g print a floating-point value

In addition the format can include literal characters to be passed through, such as slashes or
colons, to make the resulting string compatible with gretl’s observation identifiers.

For example, consider the following fictitious case: we have a 5-days-per-week dataset, to which
we want to add the stock index for the Verdurian market;3 it so happens that in Verduria

2Prior to gretl 1.8.8, the tag “query=" was not required (or accepted) before the query string, and only one series
could be imported at a time. This variant is still accepted for the sake of backward compatibility.
3See http://www.almeopedia.com/index.php/Verduria.
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Saturdays are working days but Wednesdays are not. We want a column which does not contain
data on Saturdays, because we wouldn’t know where to put them, but at the same time we want
to place missing values on all the Wednesdays.

In this case, the following syntax could be used

string QRY="SELECT year,month,day,VerdSE FROM AlmeaIndexes"
data y obs-format="%d/%d/%d" query=QRY --odbc

The column VerdSE holds the data to be fetched, which will go into the gretl series y. The
first three columns are used to construct a string which identifies the day. Daily dates take the
form YYYY/MM/DD in gretl. If a row from the DBMS produces the observation string 2008/04/01
this will match OK (it’s a Tuesday), but 2008/04/05 will not match since it is a Saturday; the
corresponding row will therefore be discarded. On the other hand, since no string 2008/04/23
will be found in the data coming from the DBMS (it’s a Wednesday), that entry is left blank in
our series y.

B.4 Examples

Table Consump Table DATA
Field T

Field Type 1€ yp.e

- - year decimal(4,0)
time decimal(7,2) .
. . qtr decimal(1,0)
income decimal(16,6)
consum decimal(16,6) varname  varchar(16)

b ’ xval decimal(20,10)

Table B.3: Example AWM database - structure

Table Consump Table DATA

1970 1 CAN —517.9085000000
107000 424278075500 a47acosaons 170 2 AN 6025996000000
1970.25 433218.709400 350176.890400 1970 4 CAN 4672508000000
1970.50 440954.219100 355249.672300 1970 1 COMPR 18.4000000000
1970.75 446278.664700 361794.719900 1970 2 COMPR 18.6341000000
1971.00 447752.681800 362489.970500 1970 3 COMPR 18.3000000000
1971.25 453553.860100 368313.558500 1970 4 COMPR 18.2663000000
1971.50 460115.133100 372605.015300 1970 1 DI 1.0000000000

1970 2 D1 0.0000000000

Table B.4: Example AWM database — data

In the following examples, we will assume that access is available to a database known to ODBC
with the data source name “AWM”, with username “Otto” and password “Bingo”. The database
“AWM” contains quarterly data in two tables (see B.3 and B.4):

The table Consump is the classic “rectangular” dataset; that is, its internal organization is the
same as in a spreadsheet or econometrics package: each row is a data point and each column is
a variable. The structure of the DATA table is different: each record is one figure, stored in the
column xval, and the other fields keep track of which variable it belongs to, for which date.

Example B.1 shows a query for two series: first we set up an empty quarterly dataset. Then
we connect to the database using the open statement. Once the connection is established we
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Example B.1: Simple query from a rectangular table

nulldata 160
setobs 4 1970:1 --time
open dsn=AWM user=0tto password=Bingo --odbc

string Qry = "SELECT consump, income FROM Consump"
data cons inc query=Qry --odbc

retrieve two columns from the Consump table. No observation string is required because the
data already have a suitable structure; we need only import the relevant columns.

Example B.2: Simple query from a non-rectangular table

string S = "select year, qtr, xval from DATA \
where varname='WLN’ ORDER BY year, qtr"
data wln obs-format="%d:%d" query=S --odbc

In example B.2, by contrast, we make use of the observation string since we are drawing from
the DATA table, which is not rectangular. The SQL statement stored in the string S produces a
table with three columns. The ORDER BY clause ensures that the rows will be in chronological
order, although this is not strictly necessary in this case.
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Example B.3: Handling of missing values for a non-rectangular table

string foo = "select year, qtr, xval from DATA \
where varname=’STN’ AND qgtr>1"

data bar obs-format="%d:%d" query=foo --odbc

print bar --byobs

Example B.3 shows what happens if the rows in the outcome from the SELECT statement do
not match the observations in the currently open gretl dataset. The query includes a condition
which filters out all the data from the first quarter. The query result (invisible to the user) would
be something like

R R e +
| year | qtr | xval |
e o o +
| 1970 | 2 | 7.8705000000 |
| 1970 | 3 | 7.5600000000 |
| 1970 | 4 | 7.1892000000 |
| 1971 | 2 | 5.8679000000 |
| 1971 | 3 | 6.2442000000 |
| 1971 | 4 | 5.9811000000 |
| 1972 | 2 | 4.6883000000 |
| 1972 | 3 | 4.6302000000 |

Internally, gretl fills the variable bar with the corresponding value if it finds a match; otherwise,
NA is used. Printing out the variable bar thus produces

Obs bar
1970:1
1970:2 7.8705
1970:3 7.5600
1970:4 7.1892
1971:1
1971:2 5.8679
1971:3 6.2442
1971:4 5.9811
1972:1
1972:2 4.6883
1972:3 4.6302
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Building gretl

C.1 Requirements

Gretl is written in the C programming language, abiding as far as possible by the ISO/ANSI C
Standard (C90) although the graphical user interface and some other components necessarily
make use of platform-specific extensions.

The program was developed under Linux. The shared library and command-line client should
compile and run on any platform that supports ISO/ANSI C and has the libraries listed in Ta-
ble C.1. If the GNU readline library is found on the host system this will be used for gretcli,
providing a much enhanced editable command line. See the readline homepage.

Library  purpose website

zlib data compression info-zip.org
libxml2 XML manipulation xmlsoft.org
LAPACK linear algebra netlib.org
FFTW3 Fast Fourier Transform fftw.org
glib-2.0  Numerous utilities gtk.org

Table C.1: Libraries required for building gretl

The graphical client program should compile and run on any system that, in addition to the
above requirements, offers GTK version 2.4.0 or higher (see gtk.org).!

Gretl calls gnuplot for graphing. You can find gnuplot at gnuplot.info. As of this writing the
most recent official release is 4.2.6 (of September, 2009). The gretl packages for MS Windows
and Mac OS X come with current CVS gnuplot (version 4.5), and the gretl website offers infor-
mation on building or installing gnuplot 4.5 on Linux.

Some features of gretl make use of portions of Adrian Feguin’s gtkextra library. The relevant
parts of this package are included (in slightly modified form) with the gretl source distribution.

A binary version of the program is available for the Microsoft Windows platform (Windows 2000
or higher). This version was cross-compiled under Linux using mingw (the GNU C compiler, gcc,
ported for use with win32) and linked against the Microsoft C library, msvcrt.d11. The (free,
open-source) Windows installer program is courtesy of Jordan Russell (jrsoftware.org).

C.2 Build instructions: a step-by-step guide

In this section we give instructions detailed enough to allow a user with only a basic knowledge
of a Unix-type system to build gretl. These steps were tested on a fresh installation of Debian
Etch. For other Linux distributions (especially Debian-based ones, like Ubuntu and its deriva-
tives) little should change. Other Unix-like operating systems such as MacOSX and BSD would
probably require more substantial adjustments.

In this guided example, we will build gretl complete with documentation. This introduces a few
more requirements, but gives you the ability to modify the documentation files as well, like the
help files or the manuals.

1Up till version 1.5.1, gretl could also be built using GTK 1.2. Support for this was dropped at version 1.6.0 of
gretl.
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Installing the prerequisites
We assume that the basic GNU utilities are already installed on the system, together with these
other programs:

o some TX/EIgXsystem (tex11ive will do beautifully)
e Gnuplot
e ImageMagick

We also assume that the user has administrative privileges and knows how to install packages.
The examples below are carried out using the apt-get shell command, but they can be per-
formed with menu-based utilities like aptitude, dselect or the GUI-based program synaptic.
Users of Linux distributions which employ rpm packages (e.g. Red Hat/Fedora, Mandriva, SuSE)
may want to refer to the dependencies page on the gretl website.

The first step is installing the C compiler and related basic utilities, if these are not already in
place. On a Debian system, these are contained in a bunch of packages that can be installed via
the command

apt-get install gcc autoconf automakel.9 1ibtool flex bison gcc-doc \
Tibc6-dev Tibc-dev gfortran gettext pkgconfig

Then it is necessary to install the “development” (dev) packages for the libraries that gretl uses:

Library command

GLIB apt-get install Tibglib2.0-dev
GTK 2.0 apt-get install Tibgtk2.0-dev
PNG apt-get install Tibpngl2-dev
XSLT apt-get install Tibxsltl-dev
LAPACK apt-get install TibTlapack-dev
FFTW apt-get install Tibfftw3-dev
READLINE apt-get install libreadline-dev
ZLIB apt-get install zliblg-dev
XML apt-get install Tibxml2-dev
GMP apt-get install Tibgmp3-dev
MPFR apt-get install Tibmpfr-dev

(MPFR is optional, but recommended.) The dev packages for these libraries are necessary to
compile gretl — you’ll also need the plain, non-dev library packages to run gretl, but most
of these should already be part of a standard installation. In order to enable other optional
features, like audio support, you may need to install more libraries.

= The above steps can be much simplified on Linux systems that provide deb-based package managers,
such as Debian and its derivatives (Ubuntu, Knoppix and other distributions). The command

apt-get build-dep gretl

will download and install all the necessary packages for building the version of gretl that is currently
present in your APT sources. Techincally, this does not guarantee that all the software necessary to build
the CVS version is included, because the version of gretl on your repository may be quite old and build
requirements may have changed in the meantime. However, the chances of a mismatch are rather remote
for a reasonably up-to-date system, so in most cases the above command should take care of everything
correctly.

Getting the source: release or CVS

At this point, it is possible to build from the source. You have two options here: obtain the
latest released source package, or retrieve the current CVS version of gretl (CVS = Concurrent
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Versions System). The usual caveat applies to the CVS version, namely, that it may not build
correctly and may contain “experimental” code; on the other hand, CVS often contains bug-fixes
relative to the released version. If you want to help with testing and to contribute bug reports,
we recommend using CVS gretl.

To work with the released source:

1. Download the gretl source package from gretl.sourceforge.net.

2. Unzip and untar the package. On a system with the GNU utilities available, the command
would be tar xvfz gretl-N.tar.gz (replace N with the specific version number of the
file you downloaded at step 1).

3. Change directory to the gretl source directory created at step 2 (e.g. gret1-1.6.6).

4. Proceed to the next section, “Configure and make”.

To work with CVS you'll first need to install the cvs client program if it’s not already on your sys-
tem. Relevant resources you may wish to consult include the CVS website at www.nongnu.org/cvs,
general information on sourceforge CVS on the SourceForge CVS page, and instructions specific
to gretl at the SF gretl CVS page.

When grabbing the CVS sources for the first time, you should first decide where you want to
store the code. For example, you might create a directory called cvs under your home directory.
Open a terminal window, cd into this directory, and type the following commands:

cvs -d:pserver:anonymous@gretl.cvs.sourceforge.net:/cvsroot/gretl Togin
cvs -z3 -d:pserver:anonymous@gretl].cvs.sourceforge.net:/cvsroot/gret]l co -P gretl

After the first command you will be prompted for a password: just hit the Enter key. After the
second command, cvs should create a subdirectory named gret1 and fill it with the current
sources.

When you want to update the source, this is very simple: just move into the gret1 directory and
type

cvs update -d -P

Assuming you’re now in the CVS gret1 directory, you can proceed in the same manner as with
the released source package.

Configure the source

The next command you need is . /configure; this is a complex script that detects which tools
you have on your system and sets things up. The configure command accepts many options;
you may want to run

./configure --help

first to see what options are available. One option you way wish to tweak is --prefix. By
default the installation goes under /usr/local but you can change this. For example

./configure --prefix=/usr

will put everything under the /usr tree. Another useful option refers to the fact that, by default,
gretl offers support for the gnome desktop. If you want to suppress the gnome-specific features
you can pass the option --without-gnome to configure.

In order to have the documentation built, we need to pass the relevant option to configure, as
in

./configure --enable-build-doc
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But please note that this option will work only if you are using the CVS source.

You will see a number of checks being run, and if everything goes according to plan, you should
see a summary similar to that displayed in Example C.1.

Example C.1: Output from ./configure --enable-build-doc

Configuration:

Installation path: /usr/local
Use readline library: yes
Use gnuplot for graphs: yes
Use PNG for gnuplot graphs: yes
Use LaTeX for typesetting output: yes
Gnu Multiple Precision support: yes
MPFR support: no
LAPACK support: yes
FFTW3 support: yes
Build with GTK version: 2.0
Script syntax highlighting: yes
Use installed gtksourceview: yes
Build with gnome support: no
Build gretl documentation: yes
Build message catalogs: yes
Gnome installation prefix: NA
X-12-ARIMA support: yes
TRAMO/SEATS support: yes
Experimental audio support: no

Now type ’'make’ to build gretl.

== |f you're using CVS, it’s a good idea to re-run the configure script after doing an update. This is not
always necessary, but sometimes it is, and it never does any harm. For this purpose, you may want to
write a little shell script that calls configure with any options you want to use.

Build and install

We are now ready to undertake the compilation proper: this is done by running the make com-
mand, which takes care of compiling all the necessary source files in the correct order. All you
need to do is type

make

This step will likely take several minutes to complete; a lot of output will be produced on screen.
Once this is done, you can install your freshly baked copy of gretl on your system via

make install
On most systems, the make install command requires you to have administrative privileges.
Hence, either you log in as root before launching make install or you may want to use the
sudo utility:

sudo make install



Appendix D

Numerical accuracy

Gretl uses double-precision arithmetic throughout — except for the multiple-precision plugin
invoked by the menu item “Model, Other linear models, High precision OLS” which represents
floating-point values using a number of bits given by the environment variable GRETL_MP_BITS
(default value 256).

The normal equations of Least Squares are by default solved via Cholesky decomposition, which
is highly accurate provided the matrix of cross-products of the regressors, X'X, is not very ill
conditioned. If this problem is detected, gretl automatically switches to use QR decomposition.

The program has been tested rather thoroughly on the statistical reference datasets provided by
NIST (the U.S. National Institute of Standards and Technology) and a full account of the results
may be found on the gretl website (follow the link “Numerical accuracy”).

To date, two published reviews have discussed gretl’s accuracy: Giovanni Baiocchi and Walter
Distaso (2003), and Talha Yalta and Yasemin Yalta (2007). We are grateful to these authors
for their careful examination of the program. Their comments have prompted several modifi-
cations including the use of Stephen Moshier’s cephes code for computing p-values and other
quantities relating to probability distributions (see netlib.org), changes to the formatting of re-
gression output to ensure that the program displays a consistent number of significant digits,
and attention to compiler issues in producing the MS Windows version of gretl (which at one
time was slighly less accurate than the Linux version).

Gretl now includes a “plugin” that runs the NIST linear regression test suite. You can find this
under the “Tools” menu in the main window. When you run this test, the introductory text
explains the expected result. If you run this test and see anything other than the expected
result, please send a bug report to cottrell@wfu.edu.

All regression statistics are printed to 6 significant figures in the current version of gretl (except
when the multiple-precision plugin is used, in which case results are given to 12 figures). If you
want to examine a particular value more closely, first save it (for example, using the genr
command) then print it using printf, to as many digits as you like (see the Gretl Command
Reference).

302


http://www.netlib.org/cephes/

Appendix E

Related free software

Gretl’s capabilities are substantial, and are expanding. Nonetheless you may find there are
some things you can’t do in gretl, or you may wish to compare results with other programs.
If you are looking for complementary functionality in the realm of free, open-source software
we recommend the following programs. The self-description of each program is taken from its
website.

e GNU R r-project.org: “R is a system for statistical computation and graphics. It consists
of a language plus a run-time environment with graphics, a debugger, access to certain
system functions, and the ability to run programs stored in script files... It compiles and
runs on a wide variety of UNIX platforms, Windows and MacOS.” Comment: There are
numerous add-on packages for R covering most areas of statistical work.

¢ GNU Octave www.octave.org: “GNU Octave is a high-level language, primarily intended
for numerical computations. It provides a convenient command line interface for solving
linear and nonlinear problems numerically, and for performing other numerical experi-
ments using a language that is mostly compatible with Matlab. It may also be used as a
batch-oriented language.”

e JMulTi www.jmulti.de: “JMulTi was originally designed as a tool for certain econometric
procedures in time series analysis that are especially difficult to use and that are not
available in other packages, like Impulse Response Analysis with bootstrapped confidence
intervals for VAR/VEC modelling. Now many other features have been integrated as well
to make it possible to convey a comprehensive analysis.” Comment: JMulTi is a java GUI
program: you need a java run-time environment to make use of it.

As mentioned above, gretl offers the facility of exporting data in the formats of both Octave
and R. In the case of Octave, the gretl data set is saved as a single matrix, X. You can pull the X
matrix apart if you wish, once the data are loaded in Octave; see the Octave manual for details.
As for R, the exported data file preserves any time series structure that is apparent to gretl. The
series are saved as individual structures. The data should be brought into R using the source()
command.

In addition, gretl has a convenience function for moving data quickly into R. Under gretl’s
“Tools” menu, you will find the entry “Start GNU R”. This writes out an R version of the current
gretl data set (in the user’s gretl directory), and sources it into a new R session. The particular
way R is invoked depends on the internal gretl variable Rcommand, whose value may be set under
the “Tools, Preferences” menu. The default command is RGui . exe under MS Windows. Under
X it is xterm -e R. Please note that at most three space-separated elements in this command
string will be processed; any extra elements are ignored.
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Appendix F

Listing of URLs

Below is a listing of the full URLs of websites mentioned in the text.

Estima (RATS) http://www.estima.com/

FFTW3 http://www.fftw.org/

Gnome desktop homepage http://www.gnome.org/

GNU Multiple Precision (GMP) library http://gmplib.org/

GNU Octave homepage http://www.octave.org/

GNU R homepage http://www.r-project.org/

GNU R manual http://cran.r-project.org/doc/manuals/R-intro.pdf
Gnuplot homepage http://www.gnuplot.info/

Gnuplot manual http://ricardo.ecn.wfu.edu/gnuplot.html

Gretl data page http://gretl.sourceforge.net/greti_data.html

Gretl homepage http://gretl.sourceforge.net/

GTK+ homepage http://www.gtk.org/

GTK+ port for win32 http://www.gimp.org/~tml/gimp/win32/
Gtkextra homepage http://gtkextra.sourceforge.net/

InfoZip homepage http://www.info-zip.org/pub/infozip/zlib/
JMulTi homepage http://www.jmulti.de/

JRSoftware http://www.jrsoftware.org/

Mingw (gcc for win32) homepage http://www.mingw.org/

Minpack http://www.netlib.org/minpack/

Penn World Table http://pwt.econ.upenn.edu/

Readline homepage http://cnswww.cns.cwru.edu/~chet/readline/rltop.html
Readline manual http://cnswww.cns.cwru.edu/~chet/readline/readline.html

Xmlsoft homepage http://xmlsoft.org/
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