/* $NetBSD: key.c,v 1.280.2.1 2023/10/02 12:58:51 martin Exp $ */ /* $FreeBSD: key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */ /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.280.2.1 2023/10/02 12:58:51 martin Exp $"); /* * This code is referred to RFC 2367 */ #if defined(_KERNEL_OPT) #include "opt_inet.h" #include "opt_ipsec.h" #include "opt_gateway.h" #include "opt_net_mpsafe.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #endif #ifdef INET6 #include #include #include #endif /* INET6 */ #ifdef INET #include #endif #ifdef INET6 #include #endif /* INET6 */ #include #include #include #include #include #include #ifdef INET6 #include #endif #include #include #include #define FULLMASK 0xffu #define _BITS(bytes) ((bytes) << 3) #define PORT_NONE 0 #define PORT_LOOSE 1 #define PORT_STRICT 2 #ifndef SAHHASH_NHASH #define SAHHASH_NHASH 128 #endif #ifndef SAVLUT_NHASH #define SAVLUT_NHASH 128 #endif percpu_t *pfkeystat_percpu; /* * Note on SA reference counting: * - SAs that are not in DEAD state will have (total external reference + 1) * following value in reference count field. they cannot be freed and are * referenced from SA header. * - SAs that are in DEAD state will have (total external reference) * in reference count field. they are ready to be freed. reference from * SA header will be removed in key_delsav(), when the reference count * field hits 0 (= no external reference other than from SA header. */ u_int32_t key_debug_level = 0; static u_int key_spi_trycnt = 1000; static u_int32_t key_spi_minval = 0x100; static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ static u_int32_t policy_id = 0; static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/ static u_int32_t acq_seq = 0; /* * Locking order: there is no order for now; it means that any locks aren't * overlapped. */ /* * Locking notes on SPD: * - Modifications to the key_spd.splist must be done with holding key_spd.lock * which is a adaptive mutex * - Read accesses to the key_spd.splist must be in pserialize(9) read sections * - SP's lifetime is managed by localcount(9) * - An SP that has been inserted to the key_spd.splist is initially referenced * by none, i.e., a reference from the key_spd.splist isn't counted * - When an SP is being destroyed, we change its state as DEAD, wait for * references to the SP to be released, and then deallocate the SP * (see key_unlink_sp) * - Getting an SP * - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx) * - Must iterate the list and increment the reference count of a found SP * (by key_sp_ref) in a pserialize read section * - We can gain another reference from a held SP only if we check its state * and take its reference in a pserialize read section * (see esp_output for example) * - We may get an SP from an SP cache. See below * - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref) * - Updating member variables of an SP * - Most member variables of an SP are immutable * - Only sp->state and sp->lastused can be changed * - sp->state of an SP is updated only when destroying it under key_spd.lock * - SP caches * - SPs can be cached in PCBs * - The lifetime of the caches is controlled by the global generation counter * (ipsec_spdgen) * - The global counter value is stored when an SP is cached * - If the stored value is different from the global counter then the cache * is considered invalidated * - The counter is incremented when an SP is being destroyed * - So checking the generation and taking a reference to an SP should be * in a pserialize read section * - Note that caching doesn't increment the reference counter of an SP * - SPs in sockets * - Userland programs can set a policy to a socket by * setsockopt(IP_IPSEC_POLICY) * - Such policies (SPs) are set to a socket (PCB) and also inserted to * the key_spd.socksplist list (not the key_spd.splist) * - Such a policy is destroyed when a corresponding socket is destroed, * however, a socket can be destroyed in softint so we cannot destroy * it directly instead we just mark it DEAD and delay the destruction * until GC by the timer * - SP origin * - SPs can be created by both userland programs and kernel components. * The SPs created in kernel must not be removed by userland programs, * although the SPs can be read by userland programs. */ /* * Locking notes on SAD: * - Data structures * - SAs are managed by the list called key_sad.sahlists and sav lists of * sah entries * - An sav is supposed to be an SA from a viewpoint of users * - A sah has sav lists for each SA state * - Multiple saves with the same saidx can exist * - Only one entry has MATURE state and others should be DEAD * - DEAD entries are just ignored from searching * - All sav whose state is MATURE or DYING are registered to the lookup * table called key_sad.savlut in addition to the savlists. * - The table is used to search an sav without use of saidx. * - Modifications to the key_sad.sahlists, sah.savlist and key_sad.savlut * must be done with holding key_sad.lock which is a adaptive mutex * - Read accesses to the key_sad.sahlists, sah.savlist and key_sad.savlut * must be in pserialize(9) read sections * - sah's lifetime is managed by localcount(9) * - Getting an sah entry * - We get an sah from the key_sad.sahlists * - Must iterate the list and increment the reference count of a found sah * (by key_sah_ref) in a pserialize read section * - A gotten sah must be released after use by key_sah_unref * - An sah is destroyed when its state become DEAD and no sav is * listed to the sah * - The destruction is done only in the timer (see key_timehandler_sad) * - sav's lifetime is managed by localcount(9) * - Getting an sav entry * - First get an sah by saidx and get an sav from either of sah's savlists * - Must iterate the list and increment the reference count of a found sav * (by key_sa_ref) in a pserialize read section * - We can gain another reference from a held SA only if we check its state * and take its reference in a pserialize read section * (see esp_output for example) * - A gotten sav must be released after use by key_sa_unref * - An sav is destroyed when its state become DEAD */ /* * Locking notes on misc data: * - All lists of key_misc are protected by key_misc.lock * - key_misc.lock must be held even for read accesses */ /* SPD */ static struct { kmutex_t lock; kcondvar_t cv_lc; struct pslist_head splist[IPSEC_DIR_MAX]; /* * The list has SPs that are set to a socket via * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy. */ struct pslist_head socksplist; pserialize_t psz; kcondvar_t cv_psz; bool psz_performing; } key_spd __cacheline_aligned; /* SAD */ static struct { kmutex_t lock; kcondvar_t cv_lc; struct pslist_head *sahlists; u_long sahlistmask; struct pslist_head *savlut; u_long savlutmask; pserialize_t psz; kcondvar_t cv_psz; bool psz_performing; } key_sad __cacheline_aligned; /* Misc data */ static struct { kmutex_t lock; /* registed list */ LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1]; #ifndef IPSEC_NONBLOCK_ACQUIRE /* acquiring list */ LIST_HEAD(_acqlist, secacq) acqlist; #endif #ifdef notyet /* SP acquiring list */ LIST_HEAD(_spacqlist, secspacq) spacqlist; #endif } key_misc __cacheline_aligned; /* Macros for key_spd.splist */ #define SPLIST_ENTRY_INIT(sp) \ PSLIST_ENTRY_INIT((sp), pslist_entry) #define SPLIST_ENTRY_DESTROY(sp) \ PSLIST_ENTRY_DESTROY((sp), pslist_entry) #define SPLIST_WRITER_REMOVE(sp) \ PSLIST_WRITER_REMOVE((sp), pslist_entry) #define SPLIST_READER_EMPTY(dir) \ (PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ pslist_entry) == NULL) #define SPLIST_READER_FOREACH(sp, dir) \ PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \ struct secpolicy, pslist_entry) #define SPLIST_WRITER_FOREACH(sp, dir) \ PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \ struct secpolicy, pslist_entry) #define SPLIST_WRITER_INSERT_AFTER(sp, new) \ PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry) #define SPLIST_WRITER_EMPTY(dir) \ (PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ pslist_entry) == NULL) #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \ PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \ pslist_entry) #define SPLIST_WRITER_NEXT(sp) \ PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry) #define SPLIST_WRITER_INSERT_TAIL(dir, new) \ do { \ if (SPLIST_WRITER_EMPTY((dir))) { \ SPLIST_WRITER_INSERT_HEAD((dir), (new)); \ } else { \ struct secpolicy *__sp; \ SPLIST_WRITER_FOREACH(__sp, (dir)) { \ if (SPLIST_WRITER_NEXT(__sp) == NULL) { \ SPLIST_WRITER_INSERT_AFTER(__sp,\ (new)); \ break; \ } \ } \ } \ } while (0) /* Macros for key_spd.socksplist */ #define SOCKSPLIST_WRITER_FOREACH(sp) \ PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \ struct secpolicy, pslist_entry) #define SOCKSPLIST_READER_EMPTY() \ (PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \ pslist_entry) == NULL) /* Macros for key_sad.sahlist */ #define SAHLIST_ENTRY_INIT(sah) \ PSLIST_ENTRY_INIT((sah), pslist_entry) #define SAHLIST_ENTRY_DESTROY(sah) \ PSLIST_ENTRY_DESTROY((sah), pslist_entry) #define SAHLIST_WRITER_REMOVE(sah) \ PSLIST_WRITER_REMOVE((sah), pslist_entry) #define SAHLIST_READER_FOREACH(sah) \ for(int _i_sah = 0; _i_sah <= key_sad.sahlistmask; _i_sah++) \ PSLIST_READER_FOREACH((sah), &key_sad.sahlists[_i_sah], \ struct secashead, pslist_entry) #define SAHLIST_READER_FOREACH_SAIDX(sah, saidx) \ PSLIST_READER_FOREACH((sah), \ &key_sad.sahlists[key_saidxhash((saidx), \ key_sad.sahlistmask)], \ struct secashead, pslist_entry) #define SAHLIST_WRITER_FOREACH(sah) \ for(int _i_sah = 0; _i_sah <= key_sad.sahlistmask; _i_sah++) \ PSLIST_WRITER_FOREACH((sah), &key_sad.sahlists[_i_sah], \ struct secashead, pslist_entry) #define SAHLIST_WRITER_INSERT_HEAD(sah) \ PSLIST_WRITER_INSERT_HEAD( \ &key_sad.sahlists[key_saidxhash(&(sah)->saidx, \ key_sad.sahlistmask)], \ (sah), pslist_entry) /* Macros for key_sad.sahlist#savlist */ #define SAVLIST_ENTRY_INIT(sav) \ PSLIST_ENTRY_INIT((sav), pslist_entry) #define SAVLIST_ENTRY_DESTROY(sav) \ PSLIST_ENTRY_DESTROY((sav), pslist_entry) #define SAVLIST_READER_FIRST(sah, state) \ PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ pslist_entry) #define SAVLIST_WRITER_REMOVE(sav) \ PSLIST_WRITER_REMOVE((sav), pslist_entry) #define SAVLIST_READER_FOREACH(sav, sah, state) \ PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \ struct secasvar, pslist_entry) #define SAVLIST_WRITER_FOREACH(sav, sah, state) \ PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \ struct secasvar, pslist_entry) #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \ PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry) #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \ PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry) #define SAVLIST_WRITER_EMPTY(sah, state) \ (PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ pslist_entry) == NULL) #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \ PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \ pslist_entry) #define SAVLIST_WRITER_NEXT(sav) \ PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry) #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \ do { \ if (SAVLIST_WRITER_EMPTY((sah), (state))) { \ SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\ } else { \ struct secasvar *__sav; \ SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \ if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\ SAVLIST_WRITER_INSERT_AFTER(__sav,\ (new)); \ break; \ } \ } \ } \ } while (0) #define SAVLIST_READER_NEXT(sav) \ PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry) /* Macros for key_sad.savlut */ #define SAVLUT_ENTRY_INIT(sav) \ PSLIST_ENTRY_INIT((sav), pslist_entry_savlut) #define SAVLUT_READER_FOREACH(sav, dst, proto, hash_key) \ PSLIST_READER_FOREACH((sav), \ &key_sad.savlut[key_savluthash(dst, proto, hash_key, \ key_sad.savlutmask)], \ struct secasvar, pslist_entry_savlut) #define SAVLUT_WRITER_INSERT_HEAD(sav) \ key_savlut_writer_insert_head((sav)) #define SAVLUT_WRITER_REMOVE(sav) \ do { \ if (!(sav)->savlut_added) \ break; \ PSLIST_WRITER_REMOVE((sav), pslist_entry_savlut); \ (sav)->savlut_added = false; \ } while(0) /* search order for SAs */ /* * This order is important because we must select the oldest SA * for outbound processing. For inbound, This is not important. */ static const u_int saorder_state_valid_prefer_old[] = { SADB_SASTATE_DYING, SADB_SASTATE_MATURE, }; static const u_int saorder_state_valid_prefer_new[] = { SADB_SASTATE_MATURE, SADB_SASTATE_DYING, }; static const u_int saorder_state_alive[] = { /* except DEAD */ SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL }; static const u_int saorder_state_any[] = { SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD }; #define SASTATE_ALIVE_FOREACH(s) \ for (int _i = 0; \ _i < __arraycount(saorder_state_alive) ? \ (s) = saorder_state_alive[_i], true : false; \ _i++) #define SASTATE_ANY_FOREACH(s) \ for (int _i = 0; \ _i < __arraycount(saorder_state_any) ? \ (s) = saorder_state_any[_i], true : false; \ _i++) #define SASTATE_USABLE_FOREACH(s) \ for (int _i = 0; \ _i < __arraycount(saorder_state_valid_prefer_new) ? \ (s) = saorder_state_valid_prefer_new[_i], \ true : false; \ _i++) static const int minsize[] = { sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ sizeof(struct sadb_sa), /* SADB_EXT_SA */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 0, /* SADB_X_EXT_KMPRIVATE */ sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ }; static const int maxsize[] = { sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ sizeof(struct sadb_sa), /* SADB_EXT_SA */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 0, /* SADB_EXT_ADDRESS_SRC */ 0, /* SADB_EXT_ADDRESS_DST */ 0, /* SADB_EXT_ADDRESS_PROXY */ 0, /* SADB_EXT_KEY_AUTH */ 0, /* SADB_EXT_KEY_ENCRYPT */ 0, /* SADB_EXT_IDENTITY_SRC */ 0, /* SADB_EXT_IDENTITY_DST */ 0, /* SADB_EXT_SENSITIVITY */ 0, /* SADB_EXT_PROPOSAL */ 0, /* SADB_EXT_SUPPORTED_AUTH */ 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 0, /* SADB_X_EXT_KMPRIVATE */ 0, /* SADB_X_EXT_POLICY */ sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 0, /* SADB_X_EXT_NAT_T_OAI */ 0, /* SADB_X_EXT_NAT_T_OAR */ sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ }; static int ipsec_esp_keymin = 256; static int ipsec_esp_auth = 0; static int ipsec_ah_keymin = 128; static bool ipsec_allow_different_idtype = false; #ifdef SYSCTL_DECL SYSCTL_DECL(_net_key); #endif #ifdef SYSCTL_INT SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ &key_debug_level, 0, ""); /* max count of trial for the decision of spi value */ SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ &key_spi_trycnt, 0, ""); /* minimum spi value to allocate automatically. */ SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ &key_spi_minval, 0, ""); /* maximun spi value to allocate automatically. */ SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ &key_spi_maxval, 0, ""); /* interval to initialize randseed */ SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ &key_int_random, 0, ""); /* lifetime for larval SA */ SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ &key_larval_lifetime, 0, ""); /* counter for blocking to send SADB_ACQUIRE to IKEd */ SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ &key_blockacq_count, 0, ""); /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ &key_blockacq_lifetime, 0, ""); /* ESP auth */ SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ &ipsec_esp_auth, 0, ""); /* minimum ESP key length */ SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ &ipsec_esp_keymin, 0, ""); /* minimum AH key length */ SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ &ipsec_ah_keymin, 0, ""); /* perfered old SA rather than new SA */ SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\ &key_prefered_oldsa, 0, ""); #endif /* SYSCTL_INT */ #define __LIST_CHAINED(elm) \ (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) #define LIST_INSERT_TAIL(head, elm, type, field) \ do {\ struct type *curelm = LIST_FIRST(head); \ if (curelm == NULL) {\ LIST_INSERT_HEAD(head, elm, field); \ } else { \ while (LIST_NEXT(curelm, field)) \ curelm = LIST_NEXT(curelm, field);\ LIST_INSERT_AFTER(curelm, elm, field);\ }\ } while (0) #define KEY_CHKSASTATE(head, sav) \ /* do */ { \ if ((head) != (sav)) { \ IPSECLOG(LOG_DEBUG, \ "state mismatched (TREE=%d SA=%d)\n", \ (head), (sav)); \ continue; \ } \ } /* while (0) */ #define KEY_CHKSPDIR(head, sp) \ do { \ if ((head) != (sp)) { \ IPSECLOG(LOG_DEBUG, \ "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\ (head), (sp)); \ } \ } while (0) /* * set parameters into secasindex buffer. * Must allocate secasindex buffer before calling this function. */ static int key_setsecasidx(int, int, int, const struct sockaddr *, const struct sockaddr *, struct secasindex *); /* key statistics */ struct _keystat { u_long getspi_count; /* the avarage of count to try to get new SPI */ } keystat; static void key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *); static const struct sockaddr * key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx) { return PFKEY_ADDR_SADDR(mhp->ext[idx]); } static void key_fill_replymsg(struct mbuf *m, int seq) { struct sadb_msg *msg; KASSERT(m->m_len >= sizeof(*msg)); msg = mtod(m, struct sadb_msg *); msg->sadb_msg_errno = 0; msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); if (seq != 0) msg->sadb_msg_seq = seq; } #if 0 static void key_freeso(struct socket *); static void key_freesp_so(struct secpolicy **); #endif static struct secpolicy *key_getsp (const struct secpolicyindex *); static struct secpolicy *key_getspbyid (u_int32_t); static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *, bool); static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t, bool); static void key_destroy_sp(struct secpolicy *); static struct mbuf *key_gather_mbuf (struct mbuf *, const struct sadb_msghdr *, int, int, ...); static int key_api_spdadd(struct socket *, struct mbuf *, const struct sadb_msghdr *); static u_int32_t key_getnewspid (void); static int key_api_spddelete(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_api_spddelete2(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_api_spdget(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_api_spdflush(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_api_spddump(struct socket *, struct mbuf *, const struct sadb_msghdr *); static struct mbuf * key_setspddump (int *errorp, pid_t); static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid); static int key_api_nat_map(struct socket *, struct mbuf *, const struct sadb_msghdr *); static struct mbuf *key_setdumpsp (struct secpolicy *, u_int8_t, u_int32_t, pid_t); static u_int key_getspreqmsglen (const struct secpolicy *); static int key_spdexpire (struct secpolicy *); static struct secashead *key_newsah (const struct secasindex *); static void key_unlink_sah(struct secashead *); static void key_destroy_sah(struct secashead *); static bool key_sah_has_sav(struct secashead *); static void key_sah_ref(struct secashead *); static void key_sah_unref(struct secashead *); static void key_init_sav(struct secasvar *); static void key_wait_sav(struct secasvar *); static void key_destroy_sav(struct secasvar *); static struct secasvar *key_newsav(struct mbuf *, const struct sadb_msghdr *, int *, int, const char*, int); #define KEY_NEWSAV(m, sadb, e, proto) \ key_newsav(m, sadb, e, proto, __func__, __LINE__) static void key_delsav (struct secasvar *); static struct secashead *key_getsah(const struct secasindex *, int); static struct secashead *key_getsah_ref(const struct secasindex *, int); static bool key_checkspidup(const struct secasindex *, u_int32_t); static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t); static int key_setsaval (struct secasvar *, struct mbuf *, const struct sadb_msghdr *); static void key_freesaval(struct secasvar *); static int key_init_xform(struct secasvar *); static void key_clear_xform(struct secasvar *); static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t, u_int8_t, u_int32_t, u_int32_t); static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t); static struct mbuf *key_setsadbxtype (u_int16_t); static struct mbuf *key_setsadbxfrag (u_int16_t); static void key_porttosaddr (union sockaddr_union *, u_int16_t); static int key_checksalen (const union sockaddr_union *); static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t, u_int32_t, pid_t, u_int16_t, int); static struct mbuf *key_setsadbsa (struct secasvar *); static struct mbuf *key_setsadbaddr(u_int16_t, const struct sockaddr *, u_int8_t, u_int16_t, int); #if 0 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *, int, u_int64_t); #endif static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t); static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t, u_int32_t, int); static void *key_newbuf (const void *, u_int); #ifdef INET6 static int key_ismyaddr6 (const struct sockaddr_in6 *); #endif static void sysctl_net_keyv2_setup(struct sysctllog **); static void sysctl_net_key_compat_setup(struct sysctllog **); /* flags for key_saidx_match() */ #define CMP_HEAD 1 /* protocol, addresses. */ #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ #define CMP_REQID 3 /* additionally HEAD, reaid. */ #define CMP_EXACTLY 4 /* all elements. */ static int key_saidx_match(const struct secasindex *, const struct secasindex *, int); static int key_sockaddr_match(const struct sockaddr *, const struct sockaddr *, int); static int key_bb_match_withmask(const void *, const void *, u_int); static u_int16_t key_satype2proto (u_int8_t); static u_int8_t key_proto2satype (u_int16_t); static int key_spidx_match_exactly(const struct secpolicyindex *, const struct secpolicyindex *); static int key_spidx_match_withmask(const struct secpolicyindex *, const struct secpolicyindex *); static int key_api_getspi(struct socket *, struct mbuf *, const struct sadb_msghdr *); static u_int32_t key_do_getnewspi (const struct sadb_spirange *, const struct secasindex *); static int key_handle_natt_info (struct secasvar *, const struct sadb_msghdr *); static int key_set_natt_ports (union sockaddr_union *, union sockaddr_union *, const struct sadb_msghdr *); static int key_api_update(struct socket *, struct mbuf *, const struct sadb_msghdr *); #ifdef IPSEC_DOSEQCHECK static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t); #endif static int key_api_add(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_setident (struct secashead *, struct mbuf *, const struct sadb_msghdr *); static struct mbuf *key_getmsgbuf_x1 (struct mbuf *, const struct sadb_msghdr *); static int key_api_delete(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_api_get(struct socket *, struct mbuf *, const struct sadb_msghdr *); static void key_getcomb_setlifetime (struct sadb_comb *); static struct mbuf *key_getcomb_esp(int); static struct mbuf *key_getcomb_ah(int); static struct mbuf *key_getcomb_ipcomp(int); static struct mbuf *key_getprop(const struct secasindex *, int); static int key_acquire(const struct secasindex *, const struct secpolicy *, int); static int key_acquire_sendup_mbuf_later(struct mbuf *); static void key_acquire_sendup_pending_mbuf(void); #ifndef IPSEC_NONBLOCK_ACQUIRE static struct secacq *key_newacq (const struct secasindex *); static struct secacq *key_getacq (const struct secasindex *); static struct secacq *key_getacqbyseq (u_int32_t); #endif #ifdef notyet static struct secspacq *key_newspacq (const struct secpolicyindex *); static struct secspacq *key_getspacq (const struct secpolicyindex *); #endif static int key_api_acquire(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_api_register(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_expire (struct secasvar *); static int key_api_flush(struct socket *, struct mbuf *, const struct sadb_msghdr *); static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp, int *lenp, pid_t pid); static int key_api_dump(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_api_promisc(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_senderror (struct socket *, struct mbuf *, int); static int key_validate_ext (const struct sadb_ext *, int); static int key_align (struct mbuf *, struct sadb_msghdr *); #if 0 static const char *key_getfqdn (void); static const char *key_getuserfqdn (void); #endif static void key_sa_chgstate (struct secasvar *, u_int8_t); static struct mbuf *key_alloc_mbuf(int, int); static struct mbuf *key_alloc_mbuf_simple(int, int); static void key_timehandler(void *); static void key_timehandler_work(struct work *, void *); static struct callout key_timehandler_ch; static struct workqueue *key_timehandler_wq; static struct work key_timehandler_wk; static inline void key_savlut_writer_insert_head(struct secasvar *sav); static inline uint32_t key_saidxhash(const struct secasindex *, u_long); static inline uint32_t key_savluthash(const struct sockaddr *, uint32_t, uint32_t, u_long); /* * Utilities for percpu counters for sadb_lifetime_allocations and * sadb_lifetime_bytes. */ #define LIFETIME_COUNTER_ALLOCATIONS 0 #define LIFETIME_COUNTER_BYTES 1 #define LIFETIME_COUNTER_SIZE 2 typedef uint64_t lifetime_counters_t[LIFETIME_COUNTER_SIZE]; static void key_sum_lifetime_counters(void *p, void *arg, struct cpu_info *ci __unused) { lifetime_counters_t *one = p; lifetime_counters_t *sum = arg; (*sum)[LIFETIME_COUNTER_ALLOCATIONS] += (*one)[LIFETIME_COUNTER_ALLOCATIONS]; (*sum)[LIFETIME_COUNTER_BYTES] += (*one)[LIFETIME_COUNTER_BYTES]; } u_int key_sp_refcnt(const struct secpolicy *sp) { /* FIXME */ return 0; } void key_sp_touch(struct secpolicy *sp) { sp->lastused = time_uptime; } static void key_spd_pserialize_perform(void) { KASSERT(mutex_owned(&key_spd.lock)); while (key_spd.psz_performing) cv_wait(&key_spd.cv_psz, &key_spd.lock); key_spd.psz_performing = true; mutex_exit(&key_spd.lock); pserialize_perform(key_spd.psz); mutex_enter(&key_spd.lock); key_spd.psz_performing = false; cv_broadcast(&key_spd.cv_psz); } /* * Remove the sp from the key_spd.splist and wait for references to the sp * to be released. key_spd.lock must be held. */ static void key_unlink_sp(struct secpolicy *sp) { KASSERT(mutex_owned(&key_spd.lock)); sp->state = IPSEC_SPSTATE_DEAD; SPLIST_WRITER_REMOVE(sp); /* Invalidate all cached SPD pointers in the PCBs. */ ipsec_invalpcbcacheall(); KDASSERT(mutex_ownable(softnet_lock)); key_spd_pserialize_perform(); localcount_drain(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); } /* * Return 0 when there are known to be no SP's for the specified * direction. Otherwise return 1. This is used by IPsec code * to optimize performance. */ int key_havesp(u_int dir) { return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? !SPLIST_READER_EMPTY(dir) : 1); } /* %%% IPsec policy management */ /* * allocating a SP for OUTBOUND or INBOUND packet. * Must call key_freesp() later. * OUT: NULL: not found * others: found and return the pointer. */ struct secpolicy * key_lookup_sp_byspidx(const struct secpolicyindex *spidx, u_int dir, const char* where, int tag) { struct secpolicy *sp; int s; KASSERT(spidx != NULL); KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir); KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); /* get a SP entry */ if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { kdebug_secpolicyindex("objects", spidx); } s = pserialize_read_enter(); SPLIST_READER_FOREACH(sp, dir) { if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { kdebug_secpolicyindex("in SPD", &sp->spidx); } if (sp->state == IPSEC_SPSTATE_DEAD) continue; if (key_spidx_match_withmask(&sp->spidx, spidx)) goto found; } sp = NULL; found: if (sp) { /* sanity check */ KEY_CHKSPDIR(sp->spidx.dir, dir); /* found a SPD entry */ key_sp_touch(sp); key_sp_ref(sp, where, tag); } pserialize_read_exit(s); KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP return SP:%p (ID=%u) refcnt %u\n", sp, sp ? sp->id : 0, key_sp_refcnt(sp)); return sp; } /* * return a policy that matches this particular inbound packet. * XXX slow */ struct secpolicy * key_gettunnel(const struct sockaddr *osrc, const struct sockaddr *odst, const struct sockaddr *isrc, const struct sockaddr *idst, const char* where, int tag) { struct secpolicy *sp; const int dir = IPSEC_DIR_INBOUND; int s; struct ipsecrequest *r1, *r2, *p; struct secpolicyindex spidx; KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); if (isrc->sa_family != idst->sa_family) { IPSECLOG(LOG_ERR, "address family mismatched src %u, dst %u.\n", isrc->sa_family, idst->sa_family); sp = NULL; goto done; } s = pserialize_read_enter(); SPLIST_READER_FOREACH(sp, dir) { if (sp->state == IPSEC_SPSTATE_DEAD) continue; r1 = r2 = NULL; for (p = sp->req; p; p = p->next) { if (p->saidx.mode != IPSEC_MODE_TUNNEL) continue; r1 = r2; r2 = p; if (!r1) { /* here we look at address matches only */ spidx = sp->spidx; if (isrc->sa_len > sizeof(spidx.src) || idst->sa_len > sizeof(spidx.dst)) continue; memcpy(&spidx.src, isrc, isrc->sa_len); memcpy(&spidx.dst, idst, idst->sa_len); if (!key_spidx_match_withmask(&sp->spidx, &spidx)) continue; } else { if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) || !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE)) continue; } if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) || !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE)) continue; goto found; } } sp = NULL; found: if (sp) { key_sp_touch(sp); key_sp_ref(sp, where, tag); } pserialize_read_exit(s); done: KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP return SP:%p (ID=%u) refcnt %u\n", sp, sp ? sp->id : 0, key_sp_refcnt(sp)); return sp; } /* * allocating an SA entry for an *OUTBOUND* packet. * checking each request entries in SP, and acquire an SA if need. * OUT: 0: there are valid requests. * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. */ int key_checkrequest(const struct ipsecrequest *isr, const struct secasindex *saidx, struct secasvar **ret) { u_int level; int error; struct secasvar *sav; KASSERT(isr != NULL); KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT || saidx->mode == IPSEC_MODE_TUNNEL, "unexpected policy %u", saidx->mode); /* get current level */ level = ipsec_get_reqlevel(isr); /* * XXX guard against protocol callbacks from the crypto * thread as they reference ipsecrequest.sav which we * temporarily null out below. Need to rethink how we * handle bundled SA's in the callback thread. */ sav = key_lookup_sa_bysaidx(saidx); if (sav != NULL) { *ret = sav; return 0; } /* there is no SA */ error = key_acquire(saidx, isr->sp, M_NOWAIT); if (error != 0) { /* XXX What should I do ? */ IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", error); return error; } if (level != IPSEC_LEVEL_REQUIRE) { /* XXX sigh, the interface to this routine is botched */ *ret = NULL; return 0; } else { return ENOENT; } } /* * looking up a SA for policy entry from SAD. * NOTE: searching SAD of aliving state. * OUT: NULL: not found. * others: found and return the pointer. */ struct secasvar * key_lookup_sa_bysaidx(const struct secasindex *saidx) { struct secashead *sah; struct secasvar *sav = NULL; u_int stateidx, state; const u_int *saorder_state_valid; int arraysize; int s; s = pserialize_read_enter(); sah = key_getsah(saidx, CMP_MODE_REQID); if (sah == NULL) goto out; /* * search a valid state list for outbound packet. * This search order is important. */ if (key_prefered_oldsa) { saorder_state_valid = saorder_state_valid_prefer_old; arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); } else { saorder_state_valid = saorder_state_valid_prefer_new; arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); } /* search valid state */ for (stateidx = 0; stateidx < arraysize; stateidx++) { state = saorder_state_valid[stateidx]; if (key_prefered_oldsa) sav = SAVLIST_READER_FIRST(sah, state); else { /* XXX need O(1) lookup */ struct secasvar *last = NULL; SAVLIST_READER_FOREACH(sav, sah, state) last = sav; sav = last; } if (sav != NULL) { KEY_SA_REF(sav); KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP cause refcnt++:%d SA:%p\n", key_sa_refcnt(sav), sav); break; } } out: pserialize_read_exit(s); return sav; } #if 0 static void key_sendup_message_delete(struct secasvar *sav) { struct mbuf *m, *result = 0; uint8_t satype; satype = key_proto2satype(sav->sah->saidx.proto); if (satype == 0) goto msgfail; m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1); if (m == NULL) goto msgfail; result = m; /* set sadb_address for saidx's. */ m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, _BITS(sav->sah->saidx.src.sa.sa_len), IPSEC_ULPROTO_ANY); if (m == NULL) goto msgfail; m_cat(result, m); /* set sadb_address for saidx's. */ m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa, _BITS(sav->sah->saidx.src.sa.sa_len), IPSEC_ULPROTO_ANY); if (m == NULL) goto msgfail; m_cat(result, m); /* create SA extension */ m = key_setsadbsa(sav); if (m == NULL) goto msgfail; m_cat(result, m); if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) goto msgfail; } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); result = NULL; msgfail: if (result) m_freem(result); } #endif /* * allocating a usable SA entry for a *INBOUND* packet. * Must call key_freesav() later. * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). * NULL: not found, or error occurred. * * In the comparison, no source address is used--for RFC2401 conformance. * To quote, from section 4.1: * A security association is uniquely identified by a triple consisting * of a Security Parameter Index (SPI), an IP Destination Address, and a * security protocol (AH or ESP) identifier. * Note that, however, we do need to keep source address in IPsec SA. * IKE specification and PF_KEY specification do assume that we * keep source address in IPsec SA. We see a tricky situation here. * * sport and dport are used for NAT-T. network order is always used. */ struct secasvar * key_lookup_sa( const union sockaddr_union *dst, u_int proto, u_int32_t spi, u_int16_t sport, u_int16_t dport, const char* where, int tag) { struct secasvar *sav; int chkport; int s; int must_check_spi = 1; int must_check_alg = 0; u_int16_t cpi = 0; u_int8_t algo = 0; uint32_t hash_key = spi; if ((sport != 0) && (dport != 0)) chkport = PORT_STRICT; else chkport = PORT_NONE; KASSERT(dst != NULL); /* * XXX IPCOMP case * We use cpi to define spi here. In the case where cpi <= * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not * the real spi. In this case, don't check the spi but check the * algorithm */ if (proto == IPPROTO_IPCOMP) { u_int32_t tmp; tmp = ntohl(spi); cpi = (u_int16_t) tmp; if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) { algo = (u_int8_t) cpi; hash_key = algo; must_check_spi = 0; must_check_alg = 1; } } KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u check_spi=%d(%#x), check_alg=%d(%d), proto=%d\n", where, tag, must_check_spi, ntohl(spi), must_check_alg, algo, proto); /* * searching SAD. * XXX: to be checked internal IP header somewhere. Also when * IPsec tunnel packet is received. But ESP tunnel mode is * encrypted so we can't check internal IP header. */ s = pserialize_read_enter(); SAVLUT_READER_FOREACH(sav, &dst->sa, proto, hash_key) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "try match spi %#x, %#x\n", ntohl(spi), ntohl(sav->spi)); /* do not return entries w/ unusable state */ if (!SADB_SASTATE_USABLE_P(sav)) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "bad state %d\n", sav->state); continue; } if (proto != sav->sah->saidx.proto) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "proto fail %d != %d\n", proto, sav->sah->saidx.proto); continue; } if (must_check_spi && spi != sav->spi) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "spi fail %#x != %#x\n", ntohl(spi), ntohl(sav->spi)); continue; } /* XXX only on the ipcomp case */ if (must_check_alg && algo != sav->alg_comp) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "algo fail %d != %d\n", algo, sav->alg_comp); continue; } #if 0 /* don't check src */ /* Fix port in src->sa */ /* check src address */ if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE)) continue; #endif /* fix port of dst address XXX*/ key_porttosaddr(__UNCONST(dst), dport); /* check dst address */ if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport)) continue; key_sa_ref(sav, where, tag); goto done; } sav = NULL; done: pserialize_read_exit(s); KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav)); return sav; } static void key_validate_savlist(const struct secashead *sah, const u_int state) { #ifdef DEBUG struct secasvar *sav, *next; int s; /* * The list should be sorted by lft_c->sadb_lifetime_addtime * in ascending order. */ s = pserialize_read_enter(); SAVLIST_READER_FOREACH(sav, sah, state) { next = SAVLIST_READER_NEXT(sav); if (next != NULL && sav->lft_c != NULL && next->lft_c != NULL) { KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <= next->lft_c->sadb_lifetime_addtime, "savlist is not sorted: sah=%p, state=%d, " "sav=%" PRIu64 ", next=%" PRIu64, sah, state, sav->lft_c->sadb_lifetime_addtime, next->lft_c->sadb_lifetime_addtime); } } pserialize_read_exit(s); #endif } void key_init_sp(struct secpolicy *sp) { ASSERT_SLEEPABLE(); sp->state = IPSEC_SPSTATE_ALIVE; if (sp->policy == IPSEC_POLICY_IPSEC) KASSERT(sp->req != NULL); localcount_init(&sp->localcount); SPLIST_ENTRY_INIT(sp); } /* * Must be called in a pserialize read section. A held SP * must be released by key_sp_unref after use. */ void key_sp_ref(struct secpolicy *sp, const char* where, int tag) { localcount_acquire(&sp->localcount); KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n", sp, sp->id, where, tag, key_sp_refcnt(sp)); } /* * Must be called without holding key_spd.lock because the lock * would be held in localcount_release. */ void key_sp_unref(struct secpolicy *sp, const char* where, int tag) { KDASSERT(mutex_ownable(&key_spd.lock)); KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n", sp, sp->id, where, tag, key_sp_refcnt(sp)); localcount_release(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); } static void key_init_sav(struct secasvar *sav) { ASSERT_SLEEPABLE(); localcount_init(&sav->localcount); SAVLIST_ENTRY_INIT(sav); SAVLUT_ENTRY_INIT(sav); } u_int key_sa_refcnt(const struct secasvar *sav) { /* FIXME */ return 0; } void key_sa_ref(struct secasvar *sav, const char* where, int tag) { localcount_acquire(&sav->localcount); KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP cause refcnt++: SA:%p from %s:%u\n", sav, where, tag); } void key_sa_unref(struct secasvar *sav, const char* where, int tag) { KDASSERT(mutex_ownable(&key_sad.lock)); KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP cause refcnt--: SA:%p from %s:%u\n", sav, where, tag); localcount_release(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); } #if 0 /* * Must be called after calling key_lookup_sp*(). * For the packet with socket. */ static void key_freeso(struct socket *so) { /* sanity check */ KASSERT(so != NULL); switch (so->so_proto->pr_domain->dom_family) { #ifdef INET case PF_INET: { struct inpcb *pcb = sotoinpcb(so); /* Does it have a PCB ? */ if (pcb == NULL) return; struct inpcbpolicy *sp = pcb->inp_sp; key_freesp_so(&sp->sp_in); key_freesp_so(&sp->sp_out); } break; #endif #ifdef INET6 case PF_INET6: { #ifdef HAVE_NRL_INPCB struct inpcb *pcb = sotoinpcb(so); struct inpcbpolicy *sp = pcb->inp_sp; /* Does it have a PCB ? */ if (pcb == NULL) return; key_freesp_so(&sp->sp_in); key_freesp_so(&sp->sp_out); #else struct in6pcb *pcb = sotoin6pcb(so); /* Does it have a PCB ? */ if (pcb == NULL) return; key_freesp_so(&pcb->in6p_sp->sp_in); key_freesp_so(&pcb->in6p_sp->sp_out); #endif } break; #endif /* INET6 */ default: IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n", so->so_proto->pr_domain->dom_family); return; } } static void key_freesp_so(struct secpolicy **sp) { KASSERT(sp != NULL); KASSERT(*sp != NULL); if ((*sp)->policy == IPSEC_POLICY_ENTRUST || (*sp)->policy == IPSEC_POLICY_BYPASS) return; KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC, "invalid policy %u", (*sp)->policy); KEY_SP_UNREF(&sp); } #endif static void key_sad_pserialize_perform(void) { KASSERT(mutex_owned(&key_sad.lock)); while (key_sad.psz_performing) cv_wait(&key_sad.cv_psz, &key_sad.lock); key_sad.psz_performing = true; mutex_exit(&key_sad.lock); pserialize_perform(key_sad.psz); mutex_enter(&key_sad.lock); key_sad.psz_performing = false; cv_broadcast(&key_sad.cv_psz); } /* * Remove the sav from the savlist of its sah and wait for references to the sav * to be released. key_sad.lock must be held. */ static void key_unlink_sav(struct secasvar *sav) { KASSERT(mutex_owned(&key_sad.lock)); SAVLIST_WRITER_REMOVE(sav); SAVLUT_WRITER_REMOVE(sav); KDASSERT(mutex_ownable(softnet_lock)); key_sad_pserialize_perform(); localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); } /* * Destroy an sav where the sav must be unlinked from an sah * by say key_unlink_sav. */ static void key_destroy_sav(struct secasvar *sav) { ASSERT_SLEEPABLE(); localcount_fini(&sav->localcount); SAVLIST_ENTRY_DESTROY(sav); key_delsav(sav); } /* * Wait for references of a passed sav to go away. */ static void key_wait_sav(struct secasvar *sav) { ASSERT_SLEEPABLE(); mutex_enter(&key_sad.lock); KASSERT(sav->state == SADB_SASTATE_DEAD); KDASSERT(mutex_ownable(softnet_lock)); key_sad_pserialize_perform(); localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); mutex_exit(&key_sad.lock); } /* %%% SPD management */ /* * free security policy entry. */ static void key_destroy_sp(struct secpolicy *sp) { SPLIST_ENTRY_DESTROY(sp); localcount_fini(&sp->localcount); key_free_sp(sp); key_update_used(); } void key_free_sp(struct secpolicy *sp) { struct ipsecrequest *isr = sp->req, *nextisr; while (isr != NULL) { nextisr = isr->next; kmem_free(isr, sizeof(*isr)); isr = nextisr; } kmem_free(sp, sizeof(*sp)); } void key_socksplist_add(struct secpolicy *sp) { mutex_enter(&key_spd.lock); PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry); mutex_exit(&key_spd.lock); key_update_used(); } /* * search SPD * OUT: NULL : not found * others : found, pointer to a SP. */ static struct secpolicy * key_getsp(const struct secpolicyindex *spidx) { struct secpolicy *sp; int s; KASSERT(spidx != NULL); s = pserialize_read_enter(); SPLIST_READER_FOREACH(sp, spidx->dir) { if (sp->state == IPSEC_SPSTATE_DEAD) continue; if (key_spidx_match_exactly(spidx, &sp->spidx)) { KEY_SP_REF(sp); pserialize_read_exit(s); return sp; } } pserialize_read_exit(s); return NULL; } /* * search SPD and remove found SP * OUT: NULL : not found * others : found, pointer to a SP. */ static struct secpolicy * key_lookup_and_remove_sp(const struct secpolicyindex *spidx, bool from_kernel) { struct secpolicy *sp = NULL; mutex_enter(&key_spd.lock); SPLIST_WRITER_FOREACH(sp, spidx->dir) { KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u", sp->state); /* * SPs created in kernel(e.g. ipsec(4) I/F) must not be * removed by userland programs. */ if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) continue; if (key_spidx_match_exactly(spidx, &sp->spidx)) { key_unlink_sp(sp); goto out; } } sp = NULL; out: mutex_exit(&key_spd.lock); return sp; } /* * get SP by index. * OUT: NULL : not found * others : found, pointer to a SP. */ static struct secpolicy * key_getspbyid(u_int32_t id) { struct secpolicy *sp; int s; s = pserialize_read_enter(); SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { if (sp->state == IPSEC_SPSTATE_DEAD) continue; if (sp->id == id) { KEY_SP_REF(sp); goto out; } } SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { if (sp->state == IPSEC_SPSTATE_DEAD) continue; if (sp->id == id) { KEY_SP_REF(sp); goto out; } } out: pserialize_read_exit(s); return sp; } /* * get SP by index, remove and return it. * OUT: NULL : not found * others : found, pointer to a SP. */ static struct secpolicy * key_lookupbyid_and_remove_sp(u_int32_t id, bool from_kernel) { struct secpolicy *sp; mutex_enter(&key_spd.lock); SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u", sp->state); /* * SPs created in kernel(e.g. ipsec(4) I/F) must not be * removed by userland programs. */ if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) continue; if (sp->id == id) goto out; } SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u", sp->state); /* * SPs created in kernel(e.g. ipsec(4) I/F) must not be * removed by userland programs. */ if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) continue; if (sp->id == id) goto out; } out: if (sp != NULL) key_unlink_sp(sp); mutex_exit(&key_spd.lock); return sp; } struct secpolicy * key_newsp(const char* where, int tag) { struct secpolicy *newsp = NULL; newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP); KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u return SP:%p\n", where, tag, newsp); return newsp; } /* * create secpolicy structure from sadb_x_policy structure. * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, * so must be set properly later. */ static struct secpolicy * _key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error, bool from_kernel) { struct secpolicy *newsp; KASSERT(!cpu_softintr_p()); KASSERT(xpl0 != NULL); KASSERT(len >= sizeof(*xpl0)); if (len != PFKEY_EXTLEN(xpl0)) { IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); *error = EINVAL; return NULL; } newsp = KEY_NEWSP(); if (newsp == NULL) { *error = ENOBUFS; return NULL; } newsp->spidx.dir = xpl0->sadb_x_policy_dir; newsp->policy = xpl0->sadb_x_policy_type; /* check policy */ switch (xpl0->sadb_x_policy_type) { case IPSEC_POLICY_DISCARD: case IPSEC_POLICY_NONE: case IPSEC_POLICY_ENTRUST: case IPSEC_POLICY_BYPASS: newsp->req = NULL; *error = 0; return newsp; case IPSEC_POLICY_IPSEC: /* Continued */ break; default: IPSECLOG(LOG_DEBUG, "invalid policy type.\n"); key_free_sp(newsp); *error = EINVAL; return NULL; } /* IPSEC_POLICY_IPSEC */ { int tlen; const struct sadb_x_ipsecrequest *xisr; uint16_t xisr_reqid; struct ipsecrequest **p_isr = &newsp->req; /* validity check */ if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); *error = EINVAL; goto free_exit; } tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1); while (tlen > 0) { /* length check */ if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n"); *error = EINVAL; goto free_exit; } /* allocate request buffer */ *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP); /* set values */ (*p_isr)->next = NULL; switch (xisr->sadb_x_ipsecrequest_proto) { case IPPROTO_ESP: case IPPROTO_AH: case IPPROTO_IPCOMP: break; default: IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n", xisr->sadb_x_ipsecrequest_proto); *error = EPROTONOSUPPORT; goto free_exit; } (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; switch (xisr->sadb_x_ipsecrequest_mode) { case IPSEC_MODE_TRANSPORT: case IPSEC_MODE_TUNNEL: break; case IPSEC_MODE_ANY: default: IPSECLOG(LOG_DEBUG, "invalid mode=%u\n", xisr->sadb_x_ipsecrequest_mode); *error = EINVAL; goto free_exit; } (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; switch (xisr->sadb_x_ipsecrequest_level) { case IPSEC_LEVEL_DEFAULT: case IPSEC_LEVEL_USE: case IPSEC_LEVEL_REQUIRE: break; case IPSEC_LEVEL_UNIQUE: xisr_reqid = xisr->sadb_x_ipsecrequest_reqid; /* validity check */ /* * case 1) from_kernel == false * That means the request comes from userland. * If range violation of reqid, kernel will * update it, don't refuse it. * * case 2) from_kernel == true * That means the request comes from kernel * (e.g. ipsec(4) I/F). * Use thre requested reqid to avoid inconsistency * between kernel's reqid and the reqid in pf_key * message sent to userland. The pf_key message is * built by diverting request mbuf. */ if (!from_kernel && xisr_reqid > IPSEC_MANUAL_REQID_MAX) { IPSECLOG(LOG_DEBUG, "reqid=%d range " "violation, updated by kernel.\n", xisr_reqid); xisr_reqid = 0; } /* allocate new reqid id if reqid is zero. */ if (xisr_reqid == 0) { u_int16_t reqid = key_newreqid(); if (reqid == 0) { *error = ENOBUFS; goto free_exit; } (*p_isr)->saidx.reqid = reqid; } else { /* set it for manual keying. */ (*p_isr)->saidx.reqid = xisr_reqid; } break; default: IPSECLOG(LOG_DEBUG, "invalid level=%u\n", xisr->sadb_x_ipsecrequest_level); *error = EINVAL; goto free_exit; } (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; /* set IP addresses if there */ /* * NOTE: * MOBIKE Extensions for PF_KEY draft says: * If tunnel mode is specified, the sadb_x_ipsecrequest * structure is followed by two sockaddr structures that * define the tunnel endpoint addresses. In the case that * transport mode is used, no additional addresses are * specified. * see: https://tools.ietf.org/html/draft-schilcher-mobike-pfkey-extension-01 * * And then, the IP addresses will be set by * ipsec_fill_saidx_bymbuf() from packet in transport mode. * This behavior is used by NAT-T enabled ipsecif(4). */ if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { const struct sockaddr *paddr; paddr = (const struct sockaddr *)(xisr + 1); /* validity check */ if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) { IPSECLOG(LOG_DEBUG, "invalid request " "address length.\n"); *error = EINVAL; goto free_exit; } memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len); paddr = (const struct sockaddr *)((const char *)paddr + paddr->sa_len); /* validity check */ if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) { IPSECLOG(LOG_DEBUG, "invalid request " "address length.\n"); *error = EINVAL; goto free_exit; } memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len); } (*p_isr)->sp = newsp; /* initialization for the next. */ p_isr = &(*p_isr)->next; tlen -= xisr->sadb_x_ipsecrequest_len; /* validity check */ if (tlen < 0) { IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n"); *error = EINVAL; goto free_exit; } xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr + xisr->sadb_x_ipsecrequest_len); } } *error = 0; return newsp; free_exit: key_free_sp(newsp); return NULL; } struct secpolicy * key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error) { return _key_msg2sp(xpl0, len, error, false); } u_int16_t key_newreqid(void) { static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; auto_reqid = (auto_reqid == 0xffff ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); /* XXX should be unique check */ return auto_reqid; } /* * copy secpolicy struct to sadb_x_policy structure indicated. */ struct mbuf * key_sp2msg(const struct secpolicy *sp, int mflag) { struct sadb_x_policy *xpl; int tlen; char *p; struct mbuf *m; KASSERT(sp != NULL); tlen = key_getspreqmsglen(sp); m = key_alloc_mbuf(tlen, mflag); if (!m || m->m_next) { /*XXX*/ if (m) m_freem(m); return NULL; } m->m_len = tlen; m->m_next = NULL; xpl = mtod(m, struct sadb_x_policy *); memset(xpl, 0, tlen); xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; xpl->sadb_x_policy_type = sp->policy; xpl->sadb_x_policy_dir = sp->spidx.dir; xpl->sadb_x_policy_id = sp->id; if (sp->origin == IPSEC_SPORIGIN_KERNEL) xpl->sadb_x_policy_flags |= IPSEC_POLICY_FLAG_ORIGIN_KERNEL; p = (char *)xpl + sizeof(*xpl); /* if is the policy for ipsec ? */ if (sp->policy == IPSEC_POLICY_IPSEC) { struct sadb_x_ipsecrequest *xisr; struct ipsecrequest *isr; for (isr = sp->req; isr != NULL; isr = isr->next) { xisr = (struct sadb_x_ipsecrequest *)p; xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; xisr->sadb_x_ipsecrequest_level = isr->level; xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; p += sizeof(*xisr); memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len); p += isr->saidx.src.sa.sa_len; memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len); p += isr->saidx.src.sa.sa_len; xisr->sadb_x_ipsecrequest_len = PFKEY_ALIGN8(sizeof(*xisr) + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len); } } return m; } /* * m will not be freed nor modified. It never return NULL. * If it returns a mbuf of M_PKTHDR, the mbuf ensures to have * contiguous length at least sizeof(struct sadb_msg). */ static struct mbuf * key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, int ndeep, int nitem, ...) { va_list ap; int idx; int i; struct mbuf *result = NULL, *n; int len; KASSERT(m != NULL); KASSERT(mhp != NULL); KASSERT(!cpu_softintr_p()); va_start(ap, nitem); for (i = 0; i < nitem; i++) { idx = va_arg(ap, int); KASSERT(idx >= 0); KASSERT(idx <= SADB_EXT_MAX); /* don't attempt to pull empty extension */ if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) continue; if (idx != SADB_EXT_RESERVED && (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) continue; if (idx == SADB_EXT_RESERVED) { CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN); len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); MGETHDR(n, M_WAITOK, MT_DATA); n->m_len = len; n->m_next = NULL; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, void *)); } else if (i < ndeep) { len = mhp->extlen[idx]; n = key_alloc_mbuf(len, M_WAITOK); KASSERT(n->m_next == NULL); m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], mtod(n, void *)); } else { n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], M_WAITOK); } KASSERT(n != NULL); if (result) m_cat(result, n); else result = n; } va_end(ap); KASSERT(result != NULL); if ((result->m_flags & M_PKTHDR) != 0) { result->m_pkthdr.len = 0; for (n = result; n; n = n->m_next) result->m_pkthdr.len += n->m_len; KASSERT(result->m_len >= sizeof(struct sadb_msg)); } return result; } /* * The argument _sp must not overwrite until SP is created and registered * successfully. */ static int key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp, struct secpolicy **_sp, bool from_kernel) { const struct sockaddr *src, *dst; const struct sadb_x_policy *xpl0; struct sadb_x_policy *xpl; const struct sadb_lifetime *lft = NULL; struct secpolicyindex spidx; struct secpolicy *newsp; int error; uint32_t sadb_x_policy_id; if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || mhp->ext[SADB_X_EXT_POLICY] == NULL) { IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(struct sadb_lifetime)) { IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } lft = mhp->ext[SADB_EXT_LIFETIME_HARD]; } xpl0 = mhp->ext[SADB_X_EXT_POLICY]; /* checking the direciton. */ switch (xpl0->sadb_x_policy_dir) { case IPSEC_DIR_INBOUND: case IPSEC_DIR_OUTBOUND: break; default: IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); return key_senderror(so, m, EINVAL); } /* check policy */ /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */ if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { IPSECLOG(LOG_DEBUG, "Invalid policy type.\n"); return key_senderror(so, m, EINVAL); } /* policy requests are mandatory when action is ipsec. */ if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { IPSECLOG(LOG_DEBUG, "some policy requests part required.\n"); return key_senderror(so, m, EINVAL); } src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); /* sanity check on addr pair */ if (src->sa_family != dst->sa_family) return key_senderror(so, m, EINVAL); if (src->sa_len != dst->sa_len) return key_senderror(so, m, EINVAL); key_init_spidx_bymsghdr(&spidx, mhp); /* * checking there is SP already or not. * SPDUPDATE doesn't depend on whether there is a SP or not. * If the type is either SPDADD or SPDSETIDX AND a SP is found, * then error. */ { struct secpolicy *sp; if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { sp = key_lookup_and_remove_sp(&spidx, from_kernel); if (sp != NULL) key_destroy_sp(sp); } else { sp = key_getsp(&spidx); if (sp != NULL) { KEY_SP_UNREF(&sp); IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n"); return key_senderror(so, m, EEXIST); } } } /* allocation new SP entry */ newsp = _key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error, from_kernel); if (newsp == NULL) { return key_senderror(so, m, error); } newsp->id = key_getnewspid(); if (newsp->id == 0) { kmem_free(newsp, sizeof(*newsp)); return key_senderror(so, m, ENOBUFS); } newsp->spidx = spidx; newsp->created = time_uptime; newsp->lastused = newsp->created; newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; if (from_kernel) newsp->origin = IPSEC_SPORIGIN_KERNEL; else newsp->origin = IPSEC_SPORIGIN_USER; key_init_sp(newsp); if (from_kernel) KEY_SP_REF(newsp); sadb_x_policy_id = newsp->id; if (_sp != NULL) *_sp = newsp; mutex_enter(&key_spd.lock); SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp); mutex_exit(&key_spd.lock); /* * We don't have a reference to newsp, so we must not touch newsp from * now on. If you want to do, you must take a reference beforehand. */ newsp = NULL; #ifdef notyet /* delete the entry in key_misc.spacqlist */ if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { struct secspacq *spacq = key_getspacq(&spidx); if (spacq != NULL) { /* reset counter in order to deletion by timehandler. */ spacq->created = time_uptime; spacq->count = 0; } } #endif /* Invalidate all cached SPD pointers in the PCBs. */ ipsec_invalpcbcacheall(); #if defined(GATEWAY) /* Invalidate the ipflow cache, as well. */ ipflow_invalidate_all(0); #ifdef INET6 if (in6_present) ip6flow_invalidate_all(0); #endif /* INET6 */ #endif /* GATEWAY */ key_update_used(); { struct mbuf *n, *mpolicy; int off; /* create new sadb_msg to reply. */ if (lft) { n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); } else { n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); } key_fill_replymsg(n, 0); off = 0; mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), sizeof(*xpl), &off); if (mpolicy == NULL) { /* n is already freed */ /* * valid sp has been created, so we does not overwrite _sp * NULL here. let caller decide to use the sp or not. */ return key_senderror(so, m, ENOBUFS); } xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off); if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { m_freem(n); /* ditto */ return key_senderror(so, m, EINVAL); } xpl->sadb_x_policy_id = sadb_x_policy_id; m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing * add an entry to SP database, when received * * from the user(?). * Adding to SP database, * and send * * to the socket which was send. * * SPDADD set a unique policy entry. * SPDSETIDX like SPDADD without a part of policy requests. * SPDUPDATE replace a unique policy entry. * * m will always be freed. */ static int key_api_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { return key_spdadd(so, m, mhp, NULL, false); } struct secpolicy * key_kpi_spdadd(struct mbuf *m) { struct sadb_msghdr mh; int error; struct secpolicy *sp = NULL; error = key_align(m, &mh); if (error) return NULL; error = key_spdadd(NULL, m, &mh, &sp, true); if (error) { /* * Currently, when key_spdadd() cannot send a PFKEY message * which means SP has been created, key_spdadd() returns error * although SP is created successfully. * Kernel components would not care PFKEY messages, so return * the "sp" regardless of error code. key_spdadd() overwrites * the argument only if SP is created successfully. */ } return sp; } /* * get new policy id. * OUT: * 0: failure. * others: success. */ static u_int32_t key_getnewspid(void) { u_int32_t newid = 0; int count = key_spi_trycnt; /* XXX */ struct secpolicy *sp; /* when requesting to allocate spi ranged */ while (count--) { newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); sp = key_getspbyid(newid); if (sp == NULL) break; KEY_SP_UNREF(&sp); } if (count == 0 || newid == 0) { IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n"); return 0; } return newid; } /* * SADB_SPDDELETE processing * receive * * from the user(?), and set SADB_SASTATE_DEAD, * and send, * * to the ikmpd. * policy(*) including direction of policy. * * m will always be freed. */ static int key_api_spddelete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_x_policy *xpl0; struct secpolicyindex spidx; struct secpolicy *sp; if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || mhp->ext[SADB_X_EXT_POLICY] == NULL) { IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } xpl0 = mhp->ext[SADB_X_EXT_POLICY]; /* checking the direction. */ switch (xpl0->sadb_x_policy_dir) { case IPSEC_DIR_INBOUND: case IPSEC_DIR_OUTBOUND: break; default: IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); return key_senderror(so, m, EINVAL); } /* make secindex */ key_init_spidx_bymsghdr(&spidx, mhp); /* Is there SP in SPD ? */ sp = key_lookup_and_remove_sp(&spidx, false); if (sp == NULL) { IPSECLOG(LOG_DEBUG, "no SP found.\n"); return key_senderror(so, m, EINVAL); } /* save policy id to buffer to be returned. */ xpl0->sadb_x_policy_id = sp->id; key_destroy_sp(sp); /* We're deleting policy; no need to invalidate the ipflow cache. */ { struct mbuf *n; /* create new sadb_msg to reply. */ n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); key_fill_replymsg(n, 0); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } static struct mbuf * key_alloc_mbuf_simple(int len, int mflag) { struct mbuf *n; KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); MGETHDR(n, mflag, MT_DATA); if (n && len > MHLEN) { MCLGET(n, mflag); if ((n->m_flags & M_EXT) == 0) { m_freem(n); n = NULL; } } return n; } /* * SADB_SPDDELETE2 processing * receive * * from the user(?), and set SADB_SASTATE_DEAD, * and send, * * to the ikmpd. * policy(*) including direction of policy. * * m will always be freed. */ static int key_spddelete2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp, bool from_kernel) { u_int32_t id; struct secpolicy *sp; const struct sadb_x_policy *xpl; if (mhp->ext[SADB_X_EXT_POLICY] == NULL || mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } xpl = mhp->ext[SADB_X_EXT_POLICY]; id = xpl->sadb_x_policy_id; /* Is there SP in SPD ? */ sp = key_lookupbyid_and_remove_sp(id, from_kernel); if (sp == NULL) { IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); return key_senderror(so, m, EINVAL); } key_destroy_sp(sp); /* We're deleting policy; no need to invalidate the ipflow cache. */ { struct mbuf *n, *nn; int off, len; CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); /* create new sadb_msg to reply. */ len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); n = key_alloc_mbuf_simple(len, M_WAITOK); n->m_len = len; n->m_next = NULL; off = 0; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); KASSERTMSG(off == len, "length inconsistency"); n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], mhp->extlen[SADB_X_EXT_POLICY], M_WAITOK); n->m_pkthdr.len = 0; for (nn = n; nn; nn = nn->m_next) n->m_pkthdr.len += nn->m_len; key_fill_replymsg(n, 0); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * SADB_SPDDELETE2 processing * receive * * from the user(?), and set SADB_SASTATE_DEAD, * and send, * * to the ikmpd. * policy(*) including direction of policy. * * m will always be freed. */ static int key_api_spddelete2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { return key_spddelete2(so, m, mhp, false); } int key_kpi_spddelete2(struct mbuf *m) { struct sadb_msghdr mh; int error; error = key_align(m, &mh); if (error) return EINVAL; return key_spddelete2(NULL, m, &mh, true); } /* * SADB_X_GET processing * receive * * from the user(?), * and send, * * to the ikmpd. * policy(*) including direction of policy. * * m will always be freed. */ static int key_api_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { u_int32_t id; struct secpolicy *sp; struct mbuf *n; const struct sadb_x_policy *xpl; if (mhp->ext[SADB_X_EXT_POLICY] == NULL || mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } xpl = mhp->ext[SADB_X_EXT_POLICY]; id = xpl->sadb_x_policy_id; /* Is there SP in SPD ? */ sp = key_getspbyid(id); if (sp == NULL) { IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); return key_senderror(so, m, ENOENT); } n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, mhp->msg->sadb_msg_pid); KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */ m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } #ifdef notyet /* * SADB_X_SPDACQUIRE processing. * Acquire policy and SA(s) for a *OUTBOUND* packet. * send * * to KMD, and expect to receive * with SADB_X_SPDACQUIRE if error occurred, * or * * with SADB_X_SPDUPDATE from KMD by PF_KEY. * policy(*) is without policy requests. * * 0 : succeed * others: error number */ int key_spdacquire(const struct secpolicy *sp) { struct mbuf *result = NULL, *m; struct secspacq *newspacq; int error; KASSERT(sp != NULL); KASSERTMSG(sp->req == NULL, "called but there is request"); KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC, "policy mismathed. IPsec is expected"); /* Get an entry to check whether sent message or not. */ newspacq = key_getspacq(&sp->spidx); if (newspacq != NULL) { if (key_blockacq_count < newspacq->count) { /* reset counter and do send message. */ newspacq->count = 0; } else { /* increment counter and do nothing. */ newspacq->count++; return 0; } } else { /* make new entry for blocking to send SADB_ACQUIRE. */ newspacq = key_newspacq(&sp->spidx); if (newspacq == NULL) return ENOBUFS; /* add to key_misc.acqlist */ LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain); } /* create new sadb_msg to reply. */ m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); if (!m) { error = ENOBUFS; goto fail; } result = m; result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); fail: if (result) m_freem(result); return error; } #endif /* notyet */ /* * SADB_SPDFLUSH processing * receive * * from the user, and free all entries in secpctree. * and send, * * to the user. * NOTE: what to do is only marking SADB_SASTATE_DEAD. * * m will always be freed. */ static int key_api_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_msg *newmsg; struct secpolicy *sp; u_int dir; if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) return key_senderror(so, m, EINVAL); for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { retry: mutex_enter(&key_spd.lock); SPLIST_WRITER_FOREACH(sp, dir) { KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u", sp->state); /* * Userlang programs can remove SPs created by userland * probrams only, that is, they cannot remove SPs * created in kernel(e.g. ipsec(4) I/F). */ if (sp->origin == IPSEC_SPORIGIN_USER) { key_unlink_sp(sp); mutex_exit(&key_spd.lock); key_destroy_sp(sp); goto retry; } } mutex_exit(&key_spd.lock); } /* We're deleting policy; no need to invalidate the ipflow cache. */ if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { IPSECLOG(LOG_DEBUG, "No more memory.\n"); return key_senderror(so, m, ENOBUFS); } if (m->m_next) m_freem(m->m_next); m->m_next = NULL; m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); newmsg = mtod(m, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } static struct sockaddr key_src = { .sa_len = 2, .sa_family = PF_KEY, }; static struct mbuf * key_setspddump_chain(int *errorp, int *lenp, pid_t pid) { struct secpolicy *sp; int cnt; u_int dir; struct mbuf *m, *n, *prev; int totlen; KASSERT(mutex_owned(&key_spd.lock)); *lenp = 0; /* search SPD entry and get buffer size. */ cnt = 0; for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { SPLIST_WRITER_FOREACH(sp, dir) { cnt++; } } if (cnt == 0) { *errorp = ENOENT; return (NULL); } m = NULL; prev = m; totlen = 0; for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { SPLIST_WRITER_FOREACH(sp, dir) { --cnt; n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); totlen += n->m_pkthdr.len; if (!m) { m = n; } else { prev->m_nextpkt = n; } prev = n; } } *lenp = totlen; *errorp = 0; return (m); } /* * SADB_SPDDUMP processing * receive * * from the user, and dump all SP leaves * and send, * ..... * to the ikmpd. * * m will always be freed. */ static int key_api_spddump(struct socket *so, struct mbuf *m0, const struct sadb_msghdr *mhp) { struct mbuf *n; int error, len; int ok; pid_t pid; pid = mhp->msg->sadb_msg_pid; /* * If the requestor has insufficient socket-buffer space * for the entire chain, nobody gets any response to the DUMP. * XXX For now, only the requestor ever gets anything. * Moreover, if the requestor has any space at all, they receive * the entire chain, otherwise the request is refused with ENOBUFS. */ if (sbspace(&so->so_rcv) <= 0) { return key_senderror(so, m0, ENOBUFS); } mutex_enter(&key_spd.lock); n = key_setspddump_chain(&error, &len, pid); mutex_exit(&key_spd.lock); if (n == NULL) { return key_senderror(so, m0, ENOENT); } { uint64_t *ps = PFKEY_STAT_GETREF(); ps[PFKEY_STAT_IN_TOTAL]++; ps[PFKEY_STAT_IN_BYTES] += len; PFKEY_STAT_PUTREF(); } /* * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. * The requestor receives either the entire chain, or an * error message with ENOBUFS. */ /* * sbappendchainwith record takes the chain of entries, one * packet-record per SPD entry, prepends the key_src sockaddr * to each packet-record, links the sockaddr mbufs into a new * list of records, then appends the entire resulting * list to the requesting socket. */ ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, SB_PRIO_ONESHOT_OVERFLOW); if (!ok) { PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); m_freem(n); return key_senderror(so, m0, ENOBUFS); } m_freem(m0); return error; } /* * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23 */ static int key_api_nat_map(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_x_nat_t_type *type; struct sadb_x_nat_t_port *sport; struct sadb_x_nat_t_port *dport; struct sadb_address *iaddr, *raddr; struct sadb_x_nat_t_frag *frag; if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) { IPSECLOG(LOG_DEBUG, "invalid message.\n"); return key_senderror(so, m, EINVAL); } if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { IPSECLOG(LOG_DEBUG, "invalid message.\n"); return key_senderror(so, m, EINVAL); } if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) && (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) { IPSECLOG(LOG_DEBUG, "invalid message\n"); return key_senderror(so, m, EINVAL); } if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) && (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) { IPSECLOG(LOG_DEBUG, "invalid message\n"); return key_senderror(so, m, EINVAL); } if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) && (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) { IPSECLOG(LOG_DEBUG, "invalid message\n"); return key_senderror(so, m, EINVAL); } type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; /* * XXX handle that, it should also contain a SA, or anything * that enable to update the SA information. */ return 0; } /* * Never return NULL. */ static struct mbuf * key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid) { struct mbuf *result = NULL, *m; KASSERT(!cpu_softintr_p()); m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, key_sp_refcnt(sp), M_WAITOK); result = m; m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); m_cat(result, m); m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); m_cat(result, m); m = key_sp2msg(sp, M_WAITOK); m_cat(result, m); KASSERT(result->m_flags & M_PKTHDR); KASSERT(result->m_len >= sizeof(struct sadb_msg)); result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return result; } /* * get PFKEY message length for security policy and request. */ static u_int key_getspreqmsglen(const struct secpolicy *sp) { u_int tlen; tlen = sizeof(struct sadb_x_policy); /* if is the policy for ipsec ? */ if (sp->policy != IPSEC_POLICY_IPSEC) return tlen; /* get length of ipsec requests */ { const struct ipsecrequest *isr; int len; for (isr = sp->req; isr != NULL; isr = isr->next) { len = sizeof(struct sadb_x_ipsecrequest) + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len; tlen += PFKEY_ALIGN8(len); } } return tlen; } /* * SADB_SPDEXPIRE processing * send * * to KMD by PF_KEY. * * OUT: 0 : succeed * others : error number */ static int key_spdexpire(struct secpolicy *sp) { int s; struct mbuf *result = NULL, *m; int len; int error = -1; struct sadb_lifetime *lt; /* XXX: Why do we lock ? */ s = splsoftnet(); /*called from softclock()*/ KASSERT(sp != NULL); /* set msg header */ m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0, M_WAITOK); result = m; /* create lifetime extension (current and hard) */ len = PFKEY_ALIGN8(sizeof(*lt)) * 2; m = key_alloc_mbuf(len, M_WAITOK); KASSERT(m->m_next == NULL); memset(mtod(m, void *), 0, len); lt = mtod(m, struct sadb_lifetime *); lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; lt->sadb_lifetime_allocations = 0; lt->sadb_lifetime_bytes = 0; lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created); lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused); lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; lt->sadb_lifetime_allocations = 0; lt->sadb_lifetime_bytes = 0; lt->sadb_lifetime_addtime = sp->lifetime; lt->sadb_lifetime_usetime = sp->validtime; m_cat(result, m); /* set sadb_address for source */ m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); m_cat(result, m); /* set sadb_address for destination */ m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); m_cat(result, m); /* set secpolicy */ m = key_sp2msg(sp, M_WAITOK); m_cat(result, m); KASSERT(result->m_flags & M_PKTHDR); KASSERT(result->m_len >= sizeof(struct sadb_msg)); result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); error = key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); splx(s); return error; } /* %%% SAD management */ /* * allocating a memory for new SA head, and copy from the values of mhp. * OUT: NULL : failure due to the lack of memory. * others : pointer to new SA head. */ static struct secashead * key_newsah(const struct secasindex *saidx) { struct secashead *newsah; int i; KASSERT(saidx != NULL); newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP); for (i = 0; i < __arraycount(newsah->savlist); i++) PSLIST_INIT(&newsah->savlist[i]); newsah->saidx = *saidx; localcount_init(&newsah->localcount); /* Take a reference for the caller */ localcount_acquire(&newsah->localcount); /* Add to the sah list */ SAHLIST_ENTRY_INIT(newsah); newsah->state = SADB_SASTATE_MATURE; mutex_enter(&key_sad.lock); SAHLIST_WRITER_INSERT_HEAD(newsah); mutex_exit(&key_sad.lock); return newsah; } static bool key_sah_has_sav(struct secashead *sah) { u_int state; KASSERT(mutex_owned(&key_sad.lock)); SASTATE_ANY_FOREACH(state) { if (!SAVLIST_WRITER_EMPTY(sah, state)) return true; } return false; } static void key_unlink_sah(struct secashead *sah) { KASSERT(!cpu_softintr_p()); KASSERT(mutex_owned(&key_sad.lock)); KASSERTMSG(sah->state == SADB_SASTATE_DEAD, "sah->state=%u", sah->state); /* Remove from the sah list */ SAHLIST_WRITER_REMOVE(sah); KDASSERT(mutex_ownable(softnet_lock)); key_sad_pserialize_perform(); localcount_drain(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); } static void key_destroy_sah(struct secashead *sah) { rtcache_free(&sah->sa_route); SAHLIST_ENTRY_DESTROY(sah); localcount_fini(&sah->localcount); if (sah->idents != NULL) kmem_free(sah->idents, sah->idents_len); if (sah->identd != NULL) kmem_free(sah->identd, sah->identd_len); kmem_free(sah, sizeof(*sah)); } /* * allocating a new SA with LARVAL state. * key_api_add() and key_api_getspi() call, * and copy the values of mhp into new buffer. * When SAD message type is GETSPI: * to set sequence number from acq_seq++, * to set zero to SPI. * not to call key_setsaval(). * OUT: NULL : fail * others : pointer to new secasvar. * * does not modify mbuf. does not free mbuf on error. */ static struct secasvar * key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, int *errp, int proto, const char* where, int tag) { struct secasvar *newsav; const struct sadb_sa *xsa; KASSERT(!cpu_softintr_p()); KASSERT(m != NULL); KASSERT(mhp != NULL); KASSERT(mhp->msg != NULL); newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); switch (mhp->msg->sadb_msg_type) { case SADB_GETSPI: newsav->spi = 0; #ifdef IPSEC_DOSEQCHECK /* sync sequence number */ if (mhp->msg->sadb_msg_seq == 0) newsav->seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); else #endif newsav->seq = mhp->msg->sadb_msg_seq; break; case SADB_ADD: /* sanity check */ if (mhp->ext[SADB_EXT_SA] == NULL) { IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); *errp = EINVAL; goto error; } xsa = mhp->ext[SADB_EXT_SA]; newsav->spi = xsa->sadb_sa_spi; newsav->seq = mhp->msg->sadb_msg_seq; break; default: *errp = EINVAL; goto error; } /* copy sav values */ if (mhp->msg->sadb_msg_type != SADB_GETSPI) { *errp = key_setsaval(newsav, m, mhp); if (*errp) goto error; } else { /* We don't allow lft_c to be NULL */ newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime), KM_SLEEP); newsav->lft_c_counters_percpu = percpu_alloc(sizeof(lifetime_counters_t)); } /* reset created */ newsav->created = time_uptime; newsav->pid = mhp->msg->sadb_msg_pid; KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u return SA:%p spi=%#x proto=%d\n", where, tag, newsav, ntohl(newsav->spi), proto); return newsav; error: KASSERT(*errp != 0); kmem_free(newsav, sizeof(*newsav)); KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u return SA:NULL\n", where, tag); return NULL; } static void key_clear_xform(struct secasvar *sav) { /* * Cleanup xform state. Note that zeroize'ing causes the * keys to be cleared; otherwise we must do it ourself. */ if (sav->tdb_xform != NULL) { sav->tdb_xform->xf_zeroize(sav); sav->tdb_xform = NULL; } else { if (sav->key_auth != NULL) explicit_memset(_KEYBUF(sav->key_auth), 0, _KEYLEN(sav->key_auth)); if (sav->key_enc != NULL) explicit_memset(_KEYBUF(sav->key_enc), 0, _KEYLEN(sav->key_enc)); } } /* * free() SA variable entry. */ static void key_delsav(struct secasvar *sav) { key_clear_xform(sav); key_freesaval(sav); kmem_free(sav, sizeof(*sav)); } /* * Must be called in a pserialize read section. A held sah * must be released by key_sah_unref after use. */ static void key_sah_ref(struct secashead *sah) { localcount_acquire(&sah->localcount); } /* * Must be called without holding key_sad.lock because the lock * would be held in localcount_release. */ static void key_sah_unref(struct secashead *sah) { KDASSERT(mutex_ownable(&key_sad.lock)); localcount_release(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); } /* * Search SAD and return sah. Must be called in a pserialize * read section. * OUT: * NULL : not found * others : found, pointer to a SA. */ static struct secashead * key_getsah(const struct secasindex *saidx, int flag) { struct secashead *sah; SAHLIST_READER_FOREACH_SAIDX(sah, saidx) { if (sah->state == SADB_SASTATE_DEAD) continue; if (key_saidx_match(&sah->saidx, saidx, flag)) return sah; } return NULL; } /* * Search SAD and return sah. If sah is returned, the caller must call * key_sah_unref to releaset a reference. * OUT: * NULL : not found * others : found, pointer to a SA. */ static struct secashead * key_getsah_ref(const struct secasindex *saidx, int flag) { struct secashead *sah; int s; s = pserialize_read_enter(); sah = key_getsah(saidx, flag); if (sah != NULL) key_sah_ref(sah); pserialize_read_exit(s); return sah; } /* * check not to be duplicated SPI. * NOTE: this function is too slow due to searching all SAD. * OUT: * NULL : not found * others : found, pointer to a SA. */ static bool key_checkspidup(const struct secasindex *saidx, u_int32_t spi) { struct secashead *sah; struct secasvar *sav; /* check address family */ if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { IPSECLOG(LOG_DEBUG, "address family mismatched src %u, dst %u.\n", saidx->src.sa.sa_family, saidx->dst.sa.sa_family); return false; } /* check all SAD */ /* key_ismyaddr may sleep, so use mutex, not pserialize, here. */ mutex_enter(&key_sad.lock); SAHLIST_WRITER_FOREACH(sah) { if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) continue; sav = key_getsavbyspi(sah, spi); if (sav != NULL) { KEY_SA_UNREF(&sav); mutex_exit(&key_sad.lock); return true; } } mutex_exit(&key_sad.lock); return false; } /* * search SAD litmited alive SA, protocol, SPI. * OUT: * NULL : not found * others : found, pointer to a SA. */ static struct secasvar * key_getsavbyspi(struct secashead *sah, u_int32_t spi) { struct secasvar *sav = NULL; u_int state; int s; /* search all status */ s = pserialize_read_enter(); SASTATE_ALIVE_FOREACH(state) { SAVLIST_READER_FOREACH(sav, sah, state) { /* sanity check */ if (sav->state != state) { IPSECLOG(LOG_DEBUG, "invalid sav->state (queue: %d SA: %d)\n", state, sav->state); continue; } if (sav->spi == spi) { KEY_SA_REF(sav); goto out; } } } out: pserialize_read_exit(s); return sav; } /* * Search SAD litmited alive SA by an SPI and remove it from a list. * OUT: * NULL : not found * others : found, pointer to a SA. */ static struct secasvar * key_lookup_and_remove_sav(struct secashead *sah, u_int32_t spi, const struct secasvar *hint) { struct secasvar *sav = NULL; u_int state; /* search all status */ mutex_enter(&key_sad.lock); SASTATE_ALIVE_FOREACH(state) { SAVLIST_WRITER_FOREACH(sav, sah, state) { KASSERT(sav->state == state); if (sav->spi == spi) { if (hint != NULL && hint != sav) continue; sav->state = SADB_SASTATE_DEAD; SAVLIST_WRITER_REMOVE(sav); SAVLUT_WRITER_REMOVE(sav); goto out; } } } out: mutex_exit(&key_sad.lock); return sav; } /* * Free allocated data to member variables of sav: * sav->replay, sav->key_* and sav->lft_*. */ static void key_freesaval(struct secasvar *sav) { KASSERTMSG(key_sa_refcnt(sav) == 0, "key_sa_refcnt(sav)=%u", key_sa_refcnt(sav)); if (sav->replay != NULL) kmem_free(sav->replay, sav->replay_len); if (sav->key_auth != NULL) kmem_free(sav->key_auth, sav->key_auth_len); if (sav->key_enc != NULL) kmem_free(sav->key_enc, sav->key_enc_len); if (sav->lft_c_counters_percpu != NULL) { percpu_free(sav->lft_c_counters_percpu, sizeof(lifetime_counters_t)); } if (sav->lft_c != NULL) kmem_free(sav->lft_c, sizeof(*(sav->lft_c))); if (sav->lft_h != NULL) kmem_free(sav->lft_h, sizeof(*(sav->lft_h))); if (sav->lft_s != NULL) kmem_free(sav->lft_s, sizeof(*(sav->lft_s))); } /* * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. * You must update these if need. * OUT: 0: success. * !0: failure. * * does not modify mbuf. does not free mbuf on error. */ static int key_setsaval(struct secasvar *sav, struct mbuf *m, const struct sadb_msghdr *mhp) { int error = 0; KASSERT(!cpu_softintr_p()); KASSERT(m != NULL); KASSERT(mhp != NULL); KASSERT(mhp->msg != NULL); /* We shouldn't initialize sav variables while someone uses it. */ KASSERTMSG(key_sa_refcnt(sav) == 0, "key_sa_refcnt(sav)=%u", key_sa_refcnt(sav)); /* SA */ if (mhp->ext[SADB_EXT_SA] != NULL) { const struct sadb_sa *sa0; sa0 = mhp->ext[SADB_EXT_SA]; if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { error = EINVAL; goto fail; } sav->alg_auth = sa0->sadb_sa_auth; sav->alg_enc = sa0->sadb_sa_encrypt; sav->flags = sa0->sadb_sa_flags; /* replay window */ if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { size_t len = sizeof(struct secreplay) + sa0->sadb_sa_replay; sav->replay = kmem_zalloc(len, KM_SLEEP); sav->replay_len = len; if (sa0->sadb_sa_replay != 0) sav->replay->bitmap = (char*)(sav->replay+1); sav->replay->wsize = sa0->sadb_sa_replay; } } /* Authentication keys */ if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { const struct sadb_key *key0; int len; key0 = mhp->ext[SADB_EXT_KEY_AUTH]; len = mhp->extlen[SADB_EXT_KEY_AUTH]; error = 0; if (len < sizeof(*key0)) { error = EINVAL; goto fail; } switch (mhp->msg->sadb_msg_satype) { case SADB_SATYPE_AH: case SADB_SATYPE_ESP: case SADB_X_SATYPE_TCPSIGNATURE: if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && sav->alg_auth != SADB_X_AALG_NULL) error = EINVAL; break; case SADB_X_SATYPE_IPCOMP: default: error = EINVAL; break; } if (error) { IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n"); goto fail; } sav->key_auth = key_newbuf(key0, len); sav->key_auth_len = len; } /* Encryption key */ if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { const struct sadb_key *key0; int len; key0 = mhp->ext[SADB_EXT_KEY_ENCRYPT]; len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; error = 0; if (len < sizeof(*key0)) { error = EINVAL; goto fail; } switch (mhp->msg->sadb_msg_satype) { case SADB_SATYPE_ESP: if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && sav->alg_enc != SADB_EALG_NULL) { error = EINVAL; break; } sav->key_enc = key_newbuf(key0, len); sav->key_enc_len = len; break; case SADB_X_SATYPE_IPCOMP: if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) error = EINVAL; sav->key_enc = NULL; /*just in case*/ break; case SADB_SATYPE_AH: case SADB_X_SATYPE_TCPSIGNATURE: default: error = EINVAL; break; } if (error) { IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n"); goto fail; } } /* set iv */ sav->ivlen = 0; switch (mhp->msg->sadb_msg_satype) { case SADB_SATYPE_AH: error = xform_init(sav, XF_AH); break; case SADB_SATYPE_ESP: error = xform_init(sav, XF_ESP); break; case SADB_X_SATYPE_IPCOMP: error = xform_init(sav, XF_IPCOMP); break; case SADB_X_SATYPE_TCPSIGNATURE: error = xform_init(sav, XF_TCPSIGNATURE); break; default: error = EOPNOTSUPP; break; } if (error) { IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u (%d)\n", mhp->msg->sadb_msg_satype, error); goto fail; } /* reset created */ sav->created = time_uptime; /* make lifetime for CURRENT */ sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP); sav->lft_c->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; sav->lft_c->sadb_lifetime_allocations = 0; sav->lft_c->sadb_lifetime_bytes = 0; sav->lft_c->sadb_lifetime_addtime = time_uptime; sav->lft_c->sadb_lifetime_usetime = 0; sav->lft_c_counters_percpu = percpu_alloc(sizeof(lifetime_counters_t)); /* lifetimes for HARD and SOFT */ { const struct sadb_lifetime *lft0; lft0 = mhp->ext[SADB_EXT_LIFETIME_HARD]; if (lft0 != NULL) { if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { error = EINVAL; goto fail; } sav->lft_h = key_newbuf(lft0, sizeof(*lft0)); } lft0 = mhp->ext[SADB_EXT_LIFETIME_SOFT]; if (lft0 != NULL) { if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { error = EINVAL; goto fail; } sav->lft_s = key_newbuf(lft0, sizeof(*lft0)); /* to be initialize ? */ } } return 0; fail: key_clear_xform(sav); key_freesaval(sav); return error; } /* * validation with a secasvar entry, and set SADB_SATYPE_MATURE. * OUT: 0: valid * other: errno */ static int key_init_xform(struct secasvar *sav) { int error; /* We shouldn't initialize sav variables while someone uses it. */ KASSERTMSG(key_sa_refcnt(sav) == 0, "key_sa_refcnt(sav)=%u", key_sa_refcnt(sav)); /* check SPI value */ switch (sav->sah->saidx.proto) { case IPPROTO_ESP: case IPPROTO_AH: if (ntohl(sav->spi) <= 255) { IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n", (u_int32_t)ntohl(sav->spi)); return EINVAL; } break; } /* check algo */ switch (sav->sah->saidx.proto) { case IPPROTO_AH: case IPPROTO_TCP: if (sav->alg_enc != SADB_EALG_NONE) { IPSECLOG(LOG_DEBUG, "protocol %u and algorithm mismatched %u != %u.\n", sav->sah->saidx.proto, sav->alg_enc, SADB_EALG_NONE); return EINVAL; } break; case IPPROTO_IPCOMP: if (sav->alg_auth != SADB_AALG_NONE) { IPSECLOG(LOG_DEBUG, "protocol %u and algorithm mismatched %d != %d.\n", sav->sah->saidx.proto, sav->alg_auth, SADB_AALG_NONE); return(EINVAL); } break; default: break; } /* check satype */ switch (sav->sah->saidx.proto) { case IPPROTO_ESP: /* check flags */ if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { IPSECLOG(LOG_DEBUG, "invalid flag (derived) given to old-esp.\n"); return EINVAL; } error = xform_init(sav, XF_ESP); break; case IPPROTO_AH: /* check flags */ if (sav->flags & SADB_X_EXT_DERIV) { IPSECLOG(LOG_DEBUG, "invalid flag (derived) given to AH SA.\n"); return EINVAL; } error = xform_init(sav, XF_AH); break; case IPPROTO_IPCOMP: if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 && ntohl(sav->spi) >= 0x10000) { IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n"); return(EINVAL); } error = xform_init(sav, XF_IPCOMP); break; case IPPROTO_TCP: error = xform_init(sav, XF_TCPSIGNATURE); break; default: IPSECLOG(LOG_DEBUG, "Invalid satype.\n"); error = EPROTONOSUPPORT; break; } return error; } /* * subroutine for SADB_GET and SADB_DUMP. It never return NULL. */ static struct mbuf * key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, u_int32_t seq, u_int32_t pid) { struct mbuf *result = NULL, *tres = NULL, *m; int l = 0; int i; void *p; struct sadb_lifetime lt; int dumporder[] = { SADB_EXT_SA, SADB_X_EXT_SA2, SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG, }; m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav), M_WAITOK); result = m; for (i = __arraycount(dumporder) - 1; i >= 0; i--) { m = NULL; p = NULL; switch (dumporder[i]) { case SADB_EXT_SA: m = key_setsadbsa(sav); break; case SADB_X_EXT_SA2: m = key_setsadbxsa2(sav->sah->saidx.mode, sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid); break; case SADB_EXT_ADDRESS_SRC: m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); break; case SADB_EXT_ADDRESS_DST: m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa, FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); break; case SADB_EXT_KEY_AUTH: if (!sav->key_auth) continue; l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); p = sav->key_auth; break; case SADB_EXT_KEY_ENCRYPT: if (!sav->key_enc) continue; l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); p = sav->key_enc; break; case SADB_EXT_LIFETIME_CURRENT: { lifetime_counters_t sum = {0}; KASSERT(sav->lft_c != NULL); l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len); memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime)); lt.sadb_lifetime_addtime = time_mono_to_wall(lt.sadb_lifetime_addtime); lt.sadb_lifetime_usetime = time_mono_to_wall(lt.sadb_lifetime_usetime); percpu_foreach_xcall(sav->lft_c_counters_percpu, XC_HIGHPRI_IPL(IPL_SOFTNET), key_sum_lifetime_counters, sum); lt.sadb_lifetime_allocations = sum[LIFETIME_COUNTER_ALLOCATIONS]; lt.sadb_lifetime_bytes = sum[LIFETIME_COUNTER_BYTES]; p = < break; } case SADB_EXT_LIFETIME_HARD: if (!sav->lft_h) continue; l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); p = sav->lft_h; break; case SADB_EXT_LIFETIME_SOFT: if (!sav->lft_s) continue; l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); p = sav->lft_s; break; case SADB_X_EXT_NAT_T_TYPE: m = key_setsadbxtype(sav->natt_type); break; case SADB_X_EXT_NAT_T_DPORT: if (sav->natt_type == 0) continue; m = key_setsadbxport( key_portfromsaddr(&sav->sah->saidx.dst), SADB_X_EXT_NAT_T_DPORT); break; case SADB_X_EXT_NAT_T_SPORT: if (sav->natt_type == 0) continue; m = key_setsadbxport( key_portfromsaddr(&sav->sah->saidx.src), SADB_X_EXT_NAT_T_SPORT); break; case SADB_X_EXT_NAT_T_FRAG: /* don't send frag info if not set */ if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET) continue; m = key_setsadbxfrag(sav->esp_frag); break; case SADB_X_EXT_NAT_T_OAI: case SADB_X_EXT_NAT_T_OAR: continue; case SADB_EXT_ADDRESS_PROXY: case SADB_EXT_IDENTITY_SRC: case SADB_EXT_IDENTITY_DST: /* XXX: should we brought from SPD ? */ case SADB_EXT_SENSITIVITY: default: continue; } KASSERT(!(m && p)); KASSERT(m != NULL || p != NULL); if (p && tres) { M_PREPEND(tres, l, M_WAITOK); memcpy(mtod(tres, void *), p, l); continue; } if (p) { m = key_alloc_mbuf(l, M_WAITOK); m_copyback(m, 0, l, p); } if (tres) m_cat(m, tres); tres = m; } m_cat(result, tres); tres = NULL; /* avoid free on error below */ KASSERT(result->m_len >= sizeof(struct sadb_msg)); result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return result; } /* * set a type in sadb_x_nat_t_type */ static struct mbuf * key_setsadbxtype(u_int16_t type) { struct mbuf *m; size_t len; struct sadb_x_nat_t_type *p; len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); m = key_alloc_mbuf(len, M_WAITOK); KASSERT(m->m_next == NULL); p = mtod(m, struct sadb_x_nat_t_type *); memset(p, 0, len); p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; p->sadb_x_nat_t_type_type = type; return m; } /* * set a port in sadb_x_nat_t_port. port is in network order */ static struct mbuf * key_setsadbxport(u_int16_t port, u_int16_t type) { struct mbuf *m; size_t len; struct sadb_x_nat_t_port *p; len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); m = key_alloc_mbuf(len, M_WAITOK); KASSERT(m->m_next == NULL); p = mtod(m, struct sadb_x_nat_t_port *); memset(p, 0, len); p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); p->sadb_x_nat_t_port_exttype = type; p->sadb_x_nat_t_port_port = port; return m; } /* * set fragmentation info in sadb_x_nat_t_frag */ static struct mbuf * key_setsadbxfrag(u_int16_t flen) { struct mbuf *m; size_t len; struct sadb_x_nat_t_frag *p; len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag)); m = key_alloc_mbuf(len, M_WAITOK); KASSERT(m->m_next == NULL); p = mtod(m, struct sadb_x_nat_t_frag *); memset(p, 0, len); p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len); p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG; p->sadb_x_nat_t_frag_fraglen = flen; return m; } /* * Get port from sockaddr, port is in network order */ u_int16_t key_portfromsaddr(const union sockaddr_union *saddr) { u_int16_t port; switch (saddr->sa.sa_family) { case AF_INET: { port = saddr->sin.sin_port; break; } #ifdef INET6 case AF_INET6: { port = saddr->sin6.sin6_port; break; } #endif default: printf("%s: unexpected address family\n", __func__); port = 0; break; } return port; } /* * Set port is struct sockaddr. port is in network order */ static void key_porttosaddr(union sockaddr_union *saddr, u_int16_t port) { switch (saddr->sa.sa_family) { case AF_INET: { saddr->sin.sin_port = port; break; } #ifdef INET6 case AF_INET6: { saddr->sin6.sin6_port = port; break; } #endif default: printf("%s: unexpected address family %d\n", __func__, saddr->sa.sa_family); break; } return; } /* * Safety check sa_len */ static int key_checksalen(const union sockaddr_union *saddr) { switch (saddr->sa.sa_family) { case AF_INET: if (saddr->sa.sa_len != sizeof(struct sockaddr_in)) return -1; break; #ifdef INET6 case AF_INET6: if (saddr->sa.sa_len != sizeof(struct sockaddr_in6)) return -1; break; #endif default: printf("%s: unexpected sa_family %d\n", __func__, saddr->sa.sa_family); return -1; break; } return 0; } /* * set data into sadb_msg. */ static struct mbuf * key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, pid_t pid, u_int16_t reserved, int mflag) { struct mbuf *m; struct sadb_msg *p; int len; CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); m = key_alloc_mbuf_simple(len, mflag); if (!m) return NULL; m->m_pkthdr.len = m->m_len = len; m->m_next = NULL; p = mtod(m, struct sadb_msg *); memset(p, 0, len); p->sadb_msg_version = PF_KEY_V2; p->sadb_msg_type = type; p->sadb_msg_errno = 0; p->sadb_msg_satype = satype; p->sadb_msg_len = PFKEY_UNIT64(tlen); p->sadb_msg_reserved = reserved; p->sadb_msg_seq = seq; p->sadb_msg_pid = (u_int32_t)pid; return m; } /* * copy secasvar data into sadb_address. */ static struct mbuf * key_setsadbsa(struct secasvar *sav) { struct mbuf *m; struct sadb_sa *p; int len; len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); m = key_alloc_mbuf(len, M_WAITOK); KASSERT(m->m_next == NULL); p = mtod(m, struct sadb_sa *); memset(p, 0, len); p->sadb_sa_len = PFKEY_UNIT64(len); p->sadb_sa_exttype = SADB_EXT_SA; p->sadb_sa_spi = sav->spi; p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); p->sadb_sa_state = sav->state; p->sadb_sa_auth = sav->alg_auth; p->sadb_sa_encrypt = sav->alg_enc; p->sadb_sa_flags = sav->flags; return m; } static uint8_t key_sabits(const struct sockaddr *saddr) { switch (saddr->sa_family) { case AF_INET: return _BITS(sizeof(struct in_addr)); case AF_INET6: return _BITS(sizeof(struct in6_addr)); default: return FULLMASK; } } /* * set data into sadb_address. */ static struct mbuf * key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto, int mflag) { struct mbuf *m; struct sadb_address *p; size_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + PFKEY_ALIGN8(saddr->sa_len); m = key_alloc_mbuf(len, mflag); if (!m || m->m_next) { /*XXX*/ if (m) m_freem(m); return NULL; } p = mtod(m, struct sadb_address *); memset(p, 0, len); p->sadb_address_len = PFKEY_UNIT64(len); p->sadb_address_exttype = exttype; p->sadb_address_proto = ul_proto; if (prefixlen == FULLMASK) { prefixlen = key_sabits(saddr); } p->sadb_address_prefixlen = prefixlen; p->sadb_address_reserved = 0; memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)), saddr, saddr->sa_len); return m; } #if 0 /* * set data into sadb_ident. */ static struct mbuf * key_setsadbident(u_int16_t exttype, u_int16_t idtype, void *string, int stringlen, u_int64_t id) { struct mbuf *m; struct sadb_ident *p; size_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen); m = key_alloc_mbuf(len); if (!m || m->m_next) { /*XXX*/ if (m) m_freem(m); return NULL; } p = mtod(m, struct sadb_ident *); memset(p, 0, len); p->sadb_ident_len = PFKEY_UNIT64(len); p->sadb_ident_exttype = exttype; p->sadb_ident_type = idtype; p->sadb_ident_reserved = 0; p->sadb_ident_id = id; memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)), string, stringlen); return m; } #endif /* * set data into sadb_x_sa2. */ static struct mbuf * key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid) { struct mbuf *m; struct sadb_x_sa2 *p; size_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); m = key_alloc_mbuf(len, M_WAITOK); KASSERT(m->m_next == NULL); p = mtod(m, struct sadb_x_sa2 *); memset(p, 0, len); p->sadb_x_sa2_len = PFKEY_UNIT64(len); p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; p->sadb_x_sa2_mode = mode; p->sadb_x_sa2_reserved1 = 0; p->sadb_x_sa2_reserved2 = 0; p->sadb_x_sa2_sequence = seq; p->sadb_x_sa2_reqid = reqid; return m; } /* * set data into sadb_x_policy */ static struct mbuf * key_setsadbxpolicy(const u_int16_t type, const u_int8_t dir, const u_int32_t id, int mflag) { struct mbuf *m; struct sadb_x_policy *p; size_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); m = key_alloc_mbuf(len, mflag); if (!m || m->m_next) { /*XXX*/ if (m) m_freem(m); return NULL; } p = mtod(m, struct sadb_x_policy *); memset(p, 0, len); p->sadb_x_policy_len = PFKEY_UNIT64(len); p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; p->sadb_x_policy_type = type; p->sadb_x_policy_dir = dir; p->sadb_x_policy_id = id; return m; } /* %%% utilities */ /* * copy a buffer into the new buffer allocated. */ static void * key_newbuf(const void *src, u_int len) { void *new; new = kmem_alloc(len, KM_SLEEP); memcpy(new, src, len); return new; } /* compare my own address * OUT: 1: true, i.e. my address. * 0: false */ int key_ismyaddr(const struct sockaddr *sa) { #ifdef INET const struct sockaddr_in *sin; const struct in_ifaddr *ia; int s; #endif KASSERT(sa != NULL); switch (sa->sa_family) { #ifdef INET case AF_INET: sin = (const struct sockaddr_in *)sa; s = pserialize_read_enter(); IN_ADDRLIST_READER_FOREACH(ia) { if (sin->sin_family == ia->ia_addr.sin_family && sin->sin_len == ia->ia_addr.sin_len && sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) { pserialize_read_exit(s); return 1; } } pserialize_read_exit(s); break; #endif #ifdef INET6 case AF_INET6: return key_ismyaddr6((const struct sockaddr_in6 *)sa); #endif } return 0; } #ifdef INET6 /* * compare my own address for IPv6. * 1: ours * 0: other * NOTE: derived ip6_input() in KAME. This is necessary to modify more. */ #include static int key_ismyaddr6(const struct sockaddr_in6 *sin6) { struct in6_ifaddr *ia; int s; struct psref psref; int bound; int ours = 1; bound = curlwp_bind(); s = pserialize_read_enter(); IN6_ADDRLIST_READER_FOREACH(ia) { if (key_sockaddr_match((const struct sockaddr *)&sin6, (const struct sockaddr *)&ia->ia_addr, 0)) { pserialize_read_exit(s); goto ours; } if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { bool ingroup; ia6_acquire(ia, &psref); pserialize_read_exit(s); /* * XXX Multicast * XXX why do we care about multlicast here while we don't care * about IPv4 multicast?? * XXX scope */ ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp); if (ingroup) { ia6_release(ia, &psref); goto ours; } s = pserialize_read_enter(); ia6_release(ia, &psref); } } pserialize_read_exit(s); /* loopback, just for safety */ if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) goto ours; ours = 0; ours: curlwp_bindx(bound); return ours; } #endif /*INET6*/ /* * compare two secasindex structure. * flag can specify to compare 2 saidxes. * compare two secasindex structure without both mode and reqid. * don't compare port. * IN: * saidx0: source, it can be in SAD. * saidx1: object. * OUT: * 1 : equal * 0 : not equal */ static int key_saidx_match( const struct secasindex *saidx0, const struct secasindex *saidx1, int flag) { int chkport; const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst; KASSERT(saidx0 != NULL); KASSERT(saidx1 != NULL); /* sanity */ if (saidx0->proto != saidx1->proto) return 0; if (flag == CMP_EXACTLY) { if (saidx0->mode != saidx1->mode) return 0; if (saidx0->reqid != saidx1->reqid) return 0; if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) return 0; } else { /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ if (flag == CMP_MODE_REQID ||flag == CMP_REQID) { /* * If reqid of SPD is non-zero, unique SA is required. * The result must be of same reqid in this case. */ if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) return 0; } if (flag == CMP_MODE_REQID) { if (saidx0->mode != IPSEC_MODE_ANY && saidx0->mode != saidx1->mode) return 0; } sa0src = &saidx0->src.sa; sa0dst = &saidx0->dst.sa; sa1src = &saidx1->src.sa; sa1dst = &saidx1->dst.sa; /* * If NAT-T is enabled, check ports for tunnel mode. * For ipsecif(4), check ports for transport mode, too. * Don't check ports if they are set to zero * in the SPD: This means we have a non-generated * SPD which can't know UDP ports. */ if (saidx1->mode == IPSEC_MODE_TUNNEL || saidx1->mode == IPSEC_MODE_TRANSPORT) chkport = PORT_LOOSE; else chkport = PORT_NONE; if (!key_sockaddr_match(sa0src, sa1src, chkport)) { return 0; } if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) { return 0; } } return 1; } /* * compare two secindex structure exactly. * IN: * spidx0: source, it is often in SPD. * spidx1: object, it is often from PFKEY message. * OUT: * 1 : equal * 0 : not equal */ static int key_spidx_match_exactly( const struct secpolicyindex *spidx0, const struct secpolicyindex *spidx1) { KASSERT(spidx0 != NULL); KASSERT(spidx1 != NULL); /* sanity */ if (spidx0->prefs != spidx1->prefs || spidx0->prefd != spidx1->prefd || spidx0->ul_proto != spidx1->ul_proto) return 0; return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) && key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT); } /* * compare two secindex structure with mask. * IN: * spidx0: source, it is often in SPD. * spidx1: object, it is often from IP header. * OUT: * 1 : equal * 0 : not equal */ static int key_spidx_match_withmask( const struct secpolicyindex *spidx0, const struct secpolicyindex *spidx1) { KASSERT(spidx0 != NULL); KASSERT(spidx1 != NULL); if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, ".sa wrong\n"); return 0; } /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY && spidx0->ul_proto != spidx1->ul_proto) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "proto wrong\n"); return 0; } switch (spidx0->src.sa.sa_family) { case AF_INET: if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 src port wrong\n"); return 0; } if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr, &spidx1->src.sin.sin_addr, spidx0->prefs)) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 src addr wrong\n"); return 0; } break; case AF_INET6: if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 src port wrong\n"); return 0; } /* * scope_id check. if sin6_scope_id is 0, we regard it * as a wildcard scope, which matches any scope zone ID. */ if (spidx0->src.sin6.sin6_scope_id && spidx1->src.sin6.sin6_scope_id && spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 src scope wrong\n"); return 0; } if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr, &spidx1->src.sin6.sin6_addr, spidx0->prefs)) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 src addr wrong\n"); return 0; } break; default: /* XXX */ if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "src memcmp wrong\n"); return 0; } break; } switch (spidx0->dst.sa.sa_family) { case AF_INET: if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 dst port wrong\n"); return 0; } if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr, &spidx1->dst.sin.sin_addr, spidx0->prefd)) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 dst addr wrong\n"); return 0; } break; case AF_INET6: if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 dst port wrong\n"); return 0; } /* * scope_id check. if sin6_scope_id is 0, we regard it * as a wildcard scope, which matches any scope zone ID. */ if (spidx0->src.sin6.sin6_scope_id && spidx1->src.sin6.sin6_scope_id && spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "DP v6 dst scope wrong\n"); return 0; } if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr, &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 dst addr wrong\n"); return 0; } break; default: /* XXX */ if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "dst memcmp wrong\n"); return 0; } break; } /* XXX Do we check other field ? e.g. flowinfo */ return 1; } /* returns 0 on match */ static int key_portcomp(in_port_t port1, in_port_t port2, int howport) { switch (howport) { case PORT_NONE: return 0; case PORT_LOOSE: if (port1 == 0 || port2 == 0) return 0; /*FALLTHROUGH*/ case PORT_STRICT: if (port1 != port2) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "port fail %d != %d\n", ntohs(port1), ntohs(port2)); return 1; } return 0; default: KASSERT(0); return 1; } } /* returns 1 on match */ static int key_sockaddr_match( const struct sockaddr *sa1, const struct sockaddr *sa2, int howport) { const struct sockaddr_in *sin1, *sin2; const struct sockaddr_in6 *sin61, *sin62; char s1[IPSEC_ADDRSTRLEN], s2[IPSEC_ADDRSTRLEN]; if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "fam/len fail %d != %d || %d != %d\n", sa1->sa_family, sa2->sa_family, sa1->sa_len, sa2->sa_len); return 0; } switch (sa1->sa_family) { case AF_INET: if (sa1->sa_len != sizeof(struct sockaddr_in)) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "len fail %d != %zu\n", sa1->sa_len, sizeof(struct sockaddr_in)); return 0; } sin1 = (const struct sockaddr_in *)sa1; sin2 = (const struct sockaddr_in *)sa2; if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) { KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "addr fail %s != %s\n", (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), (in_print(s2, sizeof(s2), &sin2->sin_addr), s2)); return 0; } if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) { return 0; } KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "addr success %s[%d] == %s[%d]\n", (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), ntohs(sin1->sin_port), (in_print(s2, sizeof(s2), &sin2->sin_addr), s2), ntohs(sin2->sin_port)); break; case AF_INET6: sin61 = (const struct sockaddr_in6 *)sa1; sin62 = (const struct sockaddr_in6 *)sa2; if (sa1->sa_len != sizeof(struct sockaddr_in6)) return 0; /*EINVAL*/ if (sin61->sin6_scope_id != sin62->sin6_scope_id) { return 0; } if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) { return 0; } if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) { return 0; } break; default: if (memcmp(sa1, sa2, sa1->sa_len) != 0) return 0; break; } return 1; } /* * compare two buffers with mask. * IN: * addr1: source * addr2: object * bits: Number of bits to compare * OUT: * 1 : equal * 0 : not equal */ static int key_bb_match_withmask(const void *a1, const void *a2, u_int bits) { const unsigned char *p1 = a1; const unsigned char *p2 = a2; /* XXX: This could be considerably faster if we compare a word * at a time, but it is complicated on LSB Endian machines */ /* Handle null pointers */ if (p1 == NULL || p2 == NULL) return (p1 == p2); while (bits >= 8) { if (*p1++ != *p2++) return 0; bits -= 8; } if (bits > 0) { u_int8_t mask = ~((1<<(8-bits))-1); if ((*p1 & mask) != (*p2 & mask)) return 0; } return 1; /* Match! */ } static void key_timehandler_spd(void) { u_int dir; struct secpolicy *sp; volatile time_t now; for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { retry: mutex_enter(&key_spd.lock); /* * To avoid for sp->created to overtake "now" because of * waiting mutex, set time_uptime here. */ now = time_uptime; SPLIST_WRITER_FOREACH(sp, dir) { KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u", sp->state); if (sp->lifetime == 0 && sp->validtime == 0) continue; if ((sp->lifetime && now - sp->created > sp->lifetime) || (sp->validtime && now - sp->lastused > sp->validtime)) { key_unlink_sp(sp); mutex_exit(&key_spd.lock); key_spdexpire(sp); key_destroy_sp(sp); goto retry; } } mutex_exit(&key_spd.lock); } retry_socksplist: mutex_enter(&key_spd.lock); SOCKSPLIST_WRITER_FOREACH(sp) { if (sp->state != IPSEC_SPSTATE_DEAD) continue; key_unlink_sp(sp); mutex_exit(&key_spd.lock); key_destroy_sp(sp); goto retry_socksplist; } mutex_exit(&key_spd.lock); } static void key_timehandler_sad(void) { struct secashead *sah; int s; volatile time_t now; restart: mutex_enter(&key_sad.lock); SAHLIST_WRITER_FOREACH(sah) { /* If sah has been dead and has no sav, then delete it */ if (sah->state == SADB_SASTATE_DEAD && !key_sah_has_sav(sah)) { key_unlink_sah(sah); mutex_exit(&key_sad.lock); key_destroy_sah(sah); goto restart; } } mutex_exit(&key_sad.lock); s = pserialize_read_enter(); SAHLIST_READER_FOREACH(sah) { struct secasvar *sav; key_sah_ref(sah); pserialize_read_exit(s); /* if LARVAL entry doesn't become MATURE, delete it. */ mutex_enter(&key_sad.lock); restart_sav_LARVAL: /* * Same as key_timehandler_spd(), set time_uptime here. */ now = time_uptime; SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) { if (now - sav->created > key_larval_lifetime) { key_sa_chgstate(sav, SADB_SASTATE_DEAD); goto restart_sav_LARVAL; } } mutex_exit(&key_sad.lock); /* * check MATURE entry to start to send expire message * whether or not. */ restart_sav_MATURE: mutex_enter(&key_sad.lock); /* * ditto */ now = time_uptime; SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) { /* we don't need to check. */ if (sav->lft_s == NULL) continue; /* sanity check */ KASSERT(sav->lft_c != NULL); /* check SOFT lifetime */ if (sav->lft_s->sadb_lifetime_addtime != 0 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { /* * check SA to be used whether or not. * when SA hasn't been used, delete it. */ if (sav->lft_c->sadb_lifetime_usetime == 0) { key_sa_chgstate(sav, SADB_SASTATE_DEAD); mutex_exit(&key_sad.lock); } else { key_sa_chgstate(sav, SADB_SASTATE_DYING); mutex_exit(&key_sad.lock); /* * XXX If we keep to send expire * message in the status of * DYING. Do remove below code. */ key_expire(sav); } goto restart_sav_MATURE; } /* check SOFT lifetime by bytes */ /* * XXX I don't know the way to delete this SA * when new SA is installed. Caution when it's * installed too big lifetime by time. */ else { uint64_t lft_c_bytes = 0; lifetime_counters_t sum = {0}; percpu_foreach_xcall(sav->lft_c_counters_percpu, XC_HIGHPRI_IPL(IPL_SOFTNET), key_sum_lifetime_counters, sum); lft_c_bytes = sum[LIFETIME_COUNTER_BYTES]; if (sav->lft_s->sadb_lifetime_bytes == 0 || sav->lft_s->sadb_lifetime_bytes >= lft_c_bytes) continue; key_sa_chgstate(sav, SADB_SASTATE_DYING); mutex_exit(&key_sad.lock); /* * XXX If we keep to send expire * message in the status of * DYING. Do remove below code. */ key_expire(sav); goto restart_sav_MATURE; } } mutex_exit(&key_sad.lock); /* check DYING entry to change status to DEAD. */ mutex_enter(&key_sad.lock); restart_sav_DYING: /* * ditto */ now = time_uptime; SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) { /* we don't need to check. */ if (sav->lft_h == NULL) continue; /* sanity check */ KASSERT(sav->lft_c != NULL); if (sav->lft_h->sadb_lifetime_addtime != 0 && now - sav->created > sav->lft_h->sadb_lifetime_addtime) { key_sa_chgstate(sav, SADB_SASTATE_DEAD); goto restart_sav_DYING; } #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ else if (sav->lft_s != NULL && sav->lft_s->sadb_lifetime_addtime != 0 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { /* * XXX: should be checked to be * installed the valid SA. */ /* * If there is no SA then sending * expire message. */ key_expire(sav); } #endif /* check HARD lifetime by bytes */ else { uint64_t lft_c_bytes = 0; lifetime_counters_t sum = {0}; percpu_foreach_xcall(sav->lft_c_counters_percpu, XC_HIGHPRI_IPL(IPL_SOFTNET), key_sum_lifetime_counters, sum); lft_c_bytes = sum[LIFETIME_COUNTER_BYTES]; if (sav->lft_h->sadb_lifetime_bytes == 0 || sav->lft_h->sadb_lifetime_bytes >= lft_c_bytes) continue; key_sa_chgstate(sav, SADB_SASTATE_DEAD); goto restart_sav_DYING; } } mutex_exit(&key_sad.lock); /* delete entry in DEAD */ restart_sav_DEAD: mutex_enter(&key_sad.lock); SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) { key_unlink_sav(sav); mutex_exit(&key_sad.lock); key_destroy_sav(sav); goto restart_sav_DEAD; } mutex_exit(&key_sad.lock); s = pserialize_read_enter(); key_sah_unref(sah); } pserialize_read_exit(s); } static void key_timehandler_acq(void) { #ifndef IPSEC_NONBLOCK_ACQUIRE struct secacq *acq, *nextacq; volatile time_t now; restart: mutex_enter(&key_misc.lock); /* * Same as key_timehandler_spd(), set time_uptime here. */ now = time_uptime; LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) { if (now - acq->created > key_blockacq_lifetime) { LIST_REMOVE(acq, chain); mutex_exit(&key_misc.lock); kmem_free(acq, sizeof(*acq)); goto restart; } } mutex_exit(&key_misc.lock); #endif } static void key_timehandler_spacq(void) { #ifdef notyet struct secspacq *acq, *nextacq; time_t now = time_uptime; LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) { if (now - acq->created > key_blockacq_lifetime) { KASSERT(__LIST_CHAINED(acq)); LIST_REMOVE(acq, chain); kmem_free(acq, sizeof(*acq)); } } #endif } static unsigned int key_timehandler_work_enqueued = 0; /* * time handler. * scanning SPD and SAD to check status for each entries, * and do to remove or to expire. */ static void key_timehandler_work(struct work *wk, void *arg) { /* We can allow enqueuing another work at this point */ atomic_swap_uint(&key_timehandler_work_enqueued, 0); key_timehandler_spd(); key_timehandler_sad(); key_timehandler_acq(); key_timehandler_spacq(); key_acquire_sendup_pending_mbuf(); /* do exchange to tick time !! */ callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); return; } static void key_timehandler(void *arg) { /* Avoid enqueuing another work when one is already enqueued */ if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1) return; workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL); } u_long key_random(void) { u_long value; key_randomfill(&value, sizeof(value)); return value; } void key_randomfill(void *p, size_t l) { cprng_fast(p, l); } /* * map SADB_SATYPE_* to IPPROTO_*. * if satype == SADB_SATYPE then satype is mapped to ~0. * OUT: * 0: invalid satype. */ static u_int16_t key_satype2proto(u_int8_t satype) { switch (satype) { case SADB_SATYPE_UNSPEC: return IPSEC_PROTO_ANY; case SADB_SATYPE_AH: return IPPROTO_AH; case SADB_SATYPE_ESP: return IPPROTO_ESP; case SADB_X_SATYPE_IPCOMP: return IPPROTO_IPCOMP; case SADB_X_SATYPE_TCPSIGNATURE: return IPPROTO_TCP; default: return 0; } /* NOTREACHED */ } /* * map IPPROTO_* to SADB_SATYPE_* * OUT: * 0: invalid protocol type. */ static u_int8_t key_proto2satype(u_int16_t proto) { switch (proto) { case IPPROTO_AH: return SADB_SATYPE_AH; case IPPROTO_ESP: return SADB_SATYPE_ESP; case IPPROTO_IPCOMP: return SADB_X_SATYPE_IPCOMP; case IPPROTO_TCP: return SADB_X_SATYPE_TCPSIGNATURE; default: return 0; } /* NOTREACHED */ } static int key_setsecasidx(int proto, int mode, int reqid, const struct sockaddr *src, const struct sockaddr *dst, struct secasindex * saidx) { const union sockaddr_union *src_u = (const union sockaddr_union *)src; const union sockaddr_union *dst_u = (const union sockaddr_union *)dst; /* sa len safety check */ if (key_checksalen(src_u) != 0) return -1; if (key_checksalen(dst_u) != 0) return -1; memset(saidx, 0, sizeof(*saidx)); saidx->proto = proto; saidx->mode = mode; saidx->reqid = reqid; memcpy(&saidx->src, src_u, src_u->sa.sa_len); memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len); key_porttosaddr(&((saidx)->src), 0); key_porttosaddr(&((saidx)->dst), 0); return 0; } static void key_init_spidx_bymsghdr(struct secpolicyindex *spidx, const struct sadb_msghdr *mhp) { const struct sadb_address *src0, *dst0; const struct sockaddr *src, *dst; const struct sadb_x_policy *xpl0; src0 = mhp->ext[SADB_EXT_ADDRESS_SRC]; dst0 = mhp->ext[SADB_EXT_ADDRESS_DST]; src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); xpl0 = mhp->ext[SADB_X_EXT_POLICY]; memset(spidx, 0, sizeof(*spidx)); spidx->dir = xpl0->sadb_x_policy_dir; spidx->prefs = src0->sadb_address_prefixlen; spidx->prefd = dst0->sadb_address_prefixlen; spidx->ul_proto = src0->sadb_address_proto; /* XXX boundary check against sa_len */ memcpy(&spidx->src, src, src->sa_len); memcpy(&spidx->dst, dst, dst->sa_len); } /* %%% PF_KEY */ /* * SADB_GETSPI processing is to receive * * from the IKMPd, to assign a unique spi value, to hang on the INBOUND * tree with the status of LARVAL, and send * * to the IKMPd. * * IN: mhp: pointer to the pointer to each header. * OUT: NULL if fail. * other if success, return pointer to the message to send. */ static int key_api_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { const struct sockaddr *src, *dst; struct secasindex saidx; struct secashead *sah; struct secasvar *newsav; u_int8_t proto; u_int32_t spi; u_int8_t mode; u_int16_t reqid; int error; if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_X_EXT_SA2] != NULL) { const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; mode = sa2->sadb_x_sa2_mode; reqid = sa2->sadb_x_sa2_reqid; } else { mode = IPSEC_MODE_ANY; reqid = 0; } src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); /* map satype to proto */ proto = key_satype2proto(mhp->msg->sadb_msg_satype); if (proto == 0) { IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); return key_senderror(so, m, EINVAL); } error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); if (error != 0) return key_senderror(so, m, EINVAL); error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); if (error != 0) return key_senderror(so, m, EINVAL); /* SPI allocation */ spi = key_do_getnewspi(mhp->ext[SADB_EXT_SPIRANGE], &saidx); if (spi == 0) return key_senderror(so, m, EINVAL); /* get a SA index */ sah = key_getsah_ref(&saidx, CMP_REQID); if (sah == NULL) { /* create a new SA index */ sah = key_newsah(&saidx); if (sah == NULL) { IPSECLOG(LOG_DEBUG, "No more memory.\n"); return key_senderror(so, m, ENOBUFS); } } /* get a new SA */ /* XXX rewrite */ newsav = KEY_NEWSAV(m, mhp, &error, proto); if (newsav == NULL) { key_sah_unref(sah); /* XXX don't free new SA index allocated in above. */ return key_senderror(so, m, error); } /* set spi */ newsav->spi = htonl(spi); /* Add to sah#savlist */ key_init_sav(newsav); newsav->sah = sah; newsav->state = SADB_SASTATE_LARVAL; mutex_enter(&key_sad.lock); SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav); mutex_exit(&key_sad.lock); key_validate_savlist(sah, SADB_SASTATE_LARVAL); key_sah_unref(sah); #ifndef IPSEC_NONBLOCK_ACQUIRE /* delete the entry in key_misc.acqlist */ if (mhp->msg->sadb_msg_seq != 0) { struct secacq *acq; mutex_enter(&key_misc.lock); acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); if (acq != NULL) { /* reset counter in order to deletion by timehandler. */ acq->created = time_uptime; acq->count = 0; } mutex_exit(&key_misc.lock); } #endif { struct mbuf *n, *nn; struct sadb_sa *m_sa; int off, len; CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) + PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES); /* create new sadb_msg to reply. */ len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + PFKEY_ALIGN8(sizeof(struct sadb_sa)); n = key_alloc_mbuf_simple(len, M_WAITOK); n->m_len = len; n->m_next = NULL; off = 0; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); m_sa = (struct sadb_sa *)(mtod(n, char *) + off); m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); m_sa->sadb_sa_exttype = SADB_EXT_SA; m_sa->sadb_sa_spi = htonl(spi); off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); KASSERTMSG(off == len, "length inconsistency"); n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); KASSERT(n->m_len >= sizeof(struct sadb_msg)); n->m_pkthdr.len = 0; for (nn = n; nn; nn = nn->m_next) n->m_pkthdr.len += nn->m_len; key_fill_replymsg(n, newsav->seq); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } } /* * allocating new SPI * called by key_api_getspi(). * OUT: * 0: failure. * others: success. */ static u_int32_t key_do_getnewspi(const struct sadb_spirange *spirange, const struct secasindex *saidx) { u_int32_t newspi; u_int32_t spmin, spmax; int count = key_spi_trycnt; /* set spi range to allocate */ if (spirange != NULL) { spmin = spirange->sadb_spirange_min; spmax = spirange->sadb_spirange_max; } else { spmin = key_spi_minval; spmax = key_spi_maxval; } /* IPCOMP needs 2-byte SPI */ if (saidx->proto == IPPROTO_IPCOMP) { u_int32_t t; if (spmin >= 0x10000) spmin = 0xffff; if (spmax >= 0x10000) spmax = 0xffff; if (spmin > spmax) { t = spmin; spmin = spmax; spmax = t; } } if (spmin == spmax) { if (key_checkspidup(saidx, htonl(spmin))) { IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin); return 0; } count--; /* taking one cost. */ newspi = spmin; } else { /* init SPI */ newspi = 0; /* when requesting to allocate spi ranged */ while (count--) { /* generate pseudo-random SPI value ranged. */ newspi = spmin + (key_random() % (spmax - spmin + 1)); if (!key_checkspidup(saidx, htonl(newspi))) break; } if (count == 0 || newspi == 0) { IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n"); return 0; } } /* statistics */ keystat.getspi_count = (keystat.getspi_count + key_spi_trycnt - count) / 2; return newspi; } static int key_handle_natt_info(struct secasvar *sav, const struct sadb_msghdr *mhp) { const char *msg = "?" ; struct sadb_x_nat_t_type *type; struct sadb_x_nat_t_port *sport, *dport; struct sadb_address *iaddr, *raddr; struct sadb_x_nat_t_frag *frag; if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) return 0; if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) { msg = "TYPE"; goto bad; } if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) { msg = "SPORT"; goto bad; } if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { msg = "DPORT"; goto bad; } if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) { IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) { msg = "OAI"; goto bad; } } if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { msg = "OAR"; goto bad; } } if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { msg = "FRAG"; goto bad; } } type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", type->sadb_x_nat_t_type_type, ntohs(sport->sadb_x_nat_t_port_port), ntohs(dport->sadb_x_nat_t_port_port)); sav->natt_type = type->sadb_x_nat_t_type_type; key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port); key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port); if (frag) sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen; else sav->esp_frag = IP_MAXPACKET; return 0; bad: IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg); __USE(msg); return -1; } /* Just update the IPSEC_NAT_T ports if present */ static int key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst, const struct sadb_msghdr *mhp) { if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) && (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) && (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) { struct sadb_x_nat_t_type *type; struct sadb_x_nat_t_port *sport; struct sadb_x_nat_t_port *dport; if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { IPSECLOG(LOG_DEBUG, "invalid message\n"); return -1; } type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; key_porttosaddr(src, sport->sadb_x_nat_t_port_port); key_porttosaddr(dst, dport->sadb_x_nat_t_port_port); IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", type->sadb_x_nat_t_type_type, ntohs(sport->sadb_x_nat_t_port_port), ntohs(dport->sadb_x_nat_t_port_port)); } return 0; } /* * SADB_UPDATE processing * receive * * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. * and send * * to the ikmpd. * * m will always be freed. */ static int key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_sa *sa0; const struct sockaddr *src, *dst; struct secasindex saidx; struct secashead *sah; struct secasvar *sav, *newsav, *oldsav; u_int16_t proto; u_int8_t mode; u_int16_t reqid; int error; /* map satype to proto */ proto = key_satype2proto(mhp->msg->sadb_msg_satype); if (proto == 0) { IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_SA] == NULL || mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_X_EXT_SA2] != NULL) { const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; mode = sa2->sadb_x_sa2_mode; reqid = sa2->sadb_x_sa2_reqid; } else { mode = IPSEC_MODE_ANY; reqid = 0; } /* XXX boundary checking for other extensions */ sa0 = mhp->ext[SADB_EXT_SA]; src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); if (error != 0) return key_senderror(so, m, EINVAL); error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); if (error != 0) return key_senderror(so, m, EINVAL); /* get a SA header */ sah = key_getsah_ref(&saidx, CMP_REQID); if (sah == NULL) { IPSECLOG(LOG_DEBUG, "no SA index found.\n"); return key_senderror(so, m, ENOENT); } /* set spidx if there */ /* XXX rewrite */ error = key_setident(sah, m, mhp); if (error) goto error_sah; /* find a SA with sequence number. */ #ifdef IPSEC_DOSEQCHECK if (mhp->msg->sadb_msg_seq != 0) { sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq); if (sav == NULL) { IPSECLOG(LOG_DEBUG, "no larval SA with sequence %u exists.\n", mhp->msg->sadb_msg_seq); error = ENOENT; goto error_sah; } } #else sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); if (sav == NULL) { IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n", (u_int32_t)ntohl(sa0->sadb_sa_spi)); error = EINVAL; goto error_sah; } #endif /* validity check */ if (sav->sah->saidx.proto != proto) { IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n", sav->sah->saidx.proto, proto); error = EINVAL; goto error; } #ifdef IPSEC_DOSEQCHECK if (sav->spi != sa0->sadb_sa_spi) { IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n", (u_int32_t)ntohl(sav->spi), (u_int32_t)ntohl(sa0->sadb_sa_spi)); error = EINVAL; goto error; } #endif if (sav->pid != mhp->msg->sadb_msg_pid) { IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n", sav->pid, mhp->msg->sadb_msg_pid); error = EINVAL; goto error; } /* * Allocate a new SA instead of modifying the existing SA directly * to avoid race conditions. */ newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); /* copy sav values */ newsav->spi = sav->spi; newsav->seq = sav->seq; newsav->created = sav->created; newsav->pid = sav->pid; newsav->sah = sav->sah; KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u update SA:%p to SA:%p spi=%#x proto=%d\n", __func__, __LINE__, sav, newsav, ntohl(newsav->spi), proto); error = key_setsaval(newsav, m, mhp); if (error) { kmem_free(newsav, sizeof(*newsav)); goto error; } error = key_handle_natt_info(newsav, mhp); if (error != 0) { key_delsav(newsav); goto error; } error = key_init_xform(newsav); if (error != 0) { key_delsav(newsav); goto error; } /* Add to sah#savlist */ key_init_sav(newsav); newsav->state = SADB_SASTATE_MATURE; mutex_enter(&key_sad.lock); SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); SAVLUT_WRITER_INSERT_HEAD(newsav); mutex_exit(&key_sad.lock); key_validate_savlist(sah, SADB_SASTATE_MATURE); /* * We need to lookup and remove the sav atomically, so get it again * here by a special API while we have a reference to it. */ oldsav = key_lookup_and_remove_sav(sah, sa0->sadb_sa_spi, sav); KASSERT(oldsav == NULL || oldsav == sav); /* We can release the reference because of oldsav */ KEY_SA_UNREF(&sav); if (oldsav == NULL) { /* Someone has already removed the sav. Nothing to do. */ } else { key_wait_sav(oldsav); key_destroy_sav(oldsav); oldsav = NULL; } sav = NULL; key_sah_unref(sah); sah = NULL; { struct mbuf *n; /* set msg buf from mhp */ n = key_getmsgbuf_x1(m, mhp); if (n == NULL) { IPSECLOG(LOG_DEBUG, "No more memory.\n"); return key_senderror(so, m, ENOBUFS); } m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } error: KEY_SA_UNREF(&sav); error_sah: key_sah_unref(sah); return key_senderror(so, m, error); } /* * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. * only called by key_api_update(). * OUT: * NULL : not found * others : found, pointer to a SA. */ #ifdef IPSEC_DOSEQCHECK static struct secasvar * key_getsavbyseq(struct secashead *sah, u_int32_t seq) { struct secasvar *sav; u_int state; int s; state = SADB_SASTATE_LARVAL; /* search SAD with sequence number ? */ s = pserialize_read_enter(); SAVLIST_READER_FOREACH(sav, sah, state) { KEY_CHKSASTATE(state, sav->state); if (sav->seq == seq) { SA_ADDREF(sav); KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP cause refcnt++:%d SA:%p\n", key_sa_refcnt(sav), sav); break; } } pserialize_read_exit(s); return sav; } #endif /* * SADB_ADD processing * add an entry to SA database, when received * * from the ikmpd, * and send * * to the ikmpd. * * IGNORE identity and sensitivity messages. * * m will always be freed. */ static int key_api_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_sa *sa0; const struct sockaddr *src, *dst; struct secasindex saidx; struct secashead *sah; struct secasvar *newsav; u_int16_t proto; u_int8_t mode; u_int16_t reqid; int error; /* map satype to proto */ proto = key_satype2proto(mhp->msg->sadb_msg_satype); if (proto == 0) { IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_SA] == NULL || mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { /* XXX need more */ IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_X_EXT_SA2] != NULL) { const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; mode = sa2->sadb_x_sa2_mode; reqid = sa2->sadb_x_sa2_reqid; } else { mode = IPSEC_MODE_ANY; reqid = 0; } sa0 = mhp->ext[SADB_EXT_SA]; src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); if (error != 0) return key_senderror(so, m, EINVAL); error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); if (error != 0) return key_senderror(so, m, EINVAL); /* get a SA header */ sah = key_getsah_ref(&saidx, CMP_REQID); if (sah == NULL) { /* create a new SA header */ sah = key_newsah(&saidx); if (sah == NULL) { IPSECLOG(LOG_DEBUG, "No more memory.\n"); return key_senderror(so, m, ENOBUFS); } } /* set spidx if there */ /* XXX rewrite */ error = key_setident(sah, m, mhp); if (error) goto error; { struct secasvar *sav; /* We can create new SA only if SPI is differenct. */ sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); if (sav != NULL) { KEY_SA_UNREF(&sav); IPSECLOG(LOG_DEBUG, "SA already exists.\n"); error = EEXIST; goto error; } } /* create new SA entry. */ newsav = KEY_NEWSAV(m, mhp, &error, proto); if (newsav == NULL) goto error; newsav->sah = sah; error = key_handle_natt_info(newsav, mhp); if (error != 0) { key_delsav(newsav); error = EINVAL; goto error; } error = key_init_xform(newsav); if (error != 0) { key_delsav(newsav); goto error; } /* Add to sah#savlist */ key_init_sav(newsav); newsav->state = SADB_SASTATE_MATURE; mutex_enter(&key_sad.lock); SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); SAVLUT_WRITER_INSERT_HEAD(newsav); mutex_exit(&key_sad.lock); key_validate_savlist(sah, SADB_SASTATE_MATURE); key_sah_unref(sah); sah = NULL; /* * don't call key_freesav() here, as we would like to keep the SA * in the database on success. */ { struct mbuf *n; /* set msg buf from mhp */ n = key_getmsgbuf_x1(m, mhp); if (n == NULL) { IPSECLOG(LOG_DEBUG, "No more memory.\n"); return key_senderror(so, m, ENOBUFS); } m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } error: key_sah_unref(sah); return key_senderror(so, m, error); } /* m is retained */ static int key_setident(struct secashead *sah, struct mbuf *m, const struct sadb_msghdr *mhp) { const struct sadb_ident *idsrc, *iddst; int idsrclen, iddstlen; KASSERT(!cpu_softintr_p()); KASSERT(sah != NULL); KASSERT(m != NULL); KASSERT(mhp != NULL); KASSERT(mhp->msg != NULL); /* * Can be called with an existing sah from key_api_update(). */ if (sah->idents != NULL) { kmem_free(sah->idents, sah->idents_len); sah->idents = NULL; sah->idents_len = 0; } if (sah->identd != NULL) { kmem_free(sah->identd, sah->identd_len); sah->identd = NULL; sah->identd_len = 0; } /* don't make buffer if not there */ if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { sah->idents = NULL; sah->identd = NULL; return 0; } if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { IPSECLOG(LOG_DEBUG, "invalid identity.\n"); return EINVAL; } idsrc = mhp->ext[SADB_EXT_IDENTITY_SRC]; iddst = mhp->ext[SADB_EXT_IDENTITY_DST]; idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; /* validity check */ if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { IPSECLOG(LOG_DEBUG, "ident type mismatched src %u, dst %u.\n", idsrc->sadb_ident_type, iddst->sadb_ident_type); /* * Some VPN appliances(e.g. NetScreen) can send different * identifier types on IDii and IDir, so be able to allow * such message. */ if (!ipsec_allow_different_idtype) { return EINVAL; } } switch (idsrc->sadb_ident_type) { case SADB_IDENTTYPE_PREFIX: case SADB_IDENTTYPE_FQDN: case SADB_IDENTTYPE_USERFQDN: default: /* XXX do nothing */ sah->idents = NULL; sah->identd = NULL; return 0; } /* make structure */ sah->idents = kmem_alloc(idsrclen, KM_SLEEP); sah->idents_len = idsrclen; sah->identd = kmem_alloc(iddstlen, KM_SLEEP); sah->identd_len = iddstlen; memcpy(sah->idents, idsrc, idsrclen); memcpy(sah->identd, iddst, iddstlen); return 0; } /* * m will not be freed on return. It never return NULL. * it is caller's responsibility to free the result. */ static struct mbuf * key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) { struct mbuf *n; KASSERT(m != NULL); KASSERT(mhp != NULL); KASSERT(mhp->msg != NULL); /* create new sadb_msg to reply. */ n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED, SADB_EXT_SA, SADB_X_EXT_SA2, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG); KASSERT(n->m_len >= sizeof(struct sadb_msg)); mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; mtod(n, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); return n; } static int key_delete_all (struct socket *, struct mbuf *, const struct sadb_msghdr *, u_int16_t); /* * SADB_DELETE processing * receive * * from the ikmpd, and set SADB_SASTATE_DEAD, * and send, * * to the ikmpd. * * m will always be freed. */ static int key_api_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_sa *sa0; const struct sockaddr *src, *dst; struct secasindex saidx; struct secashead *sah; struct secasvar *sav = NULL; u_int16_t proto; int error; /* map satype to proto */ proto = key_satype2proto(mhp->msg->sadb_msg_satype); if (proto == 0) { IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_SA] == NULL) { /* * Caller wants us to delete all non-LARVAL SAs * that match the src/dst. This is used during * IKE INITIAL-CONTACT. */ IPSECLOG(LOG_DEBUG, "doing delete all.\n"); return key_delete_all(so, m, mhp, proto); } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } sa0 = mhp->ext[SADB_EXT_SA]; src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); if (error != 0) return key_senderror(so, m, EINVAL); error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); if (error != 0) return key_senderror(so, m, EINVAL); /* get a SA header */ sah = key_getsah_ref(&saidx, CMP_HEAD); if (sah != NULL) { /* get a SA with SPI. */ sav = key_lookup_and_remove_sav(sah, sa0->sadb_sa_spi, NULL); key_sah_unref(sah); } if (sav == NULL) { IPSECLOG(LOG_DEBUG, "no SA found.\n"); return key_senderror(so, m, ENOENT); } key_wait_sav(sav); key_destroy_sav(sav); sav = NULL; { struct mbuf *n; /* create new sadb_msg to reply. */ n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); key_fill_replymsg(n, 0); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * delete all SAs for src/dst. Called from key_api_delete(). */ static int key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp, u_int16_t proto) { const struct sockaddr *src, *dst; struct secasindex saidx; struct secashead *sah; struct secasvar *sav; u_int state; int error; src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); if (error != 0) return key_senderror(so, m, EINVAL); error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); if (error != 0) return key_senderror(so, m, EINVAL); sah = key_getsah_ref(&saidx, CMP_HEAD); if (sah != NULL) { /* Delete all non-LARVAL SAs. */ SASTATE_ALIVE_FOREACH(state) { if (state == SADB_SASTATE_LARVAL) continue; restart: mutex_enter(&key_sad.lock); SAVLIST_WRITER_FOREACH(sav, sah, state) { sav->state = SADB_SASTATE_DEAD; key_unlink_sav(sav); mutex_exit(&key_sad.lock); key_destroy_sav(sav); goto restart; } mutex_exit(&key_sad.lock); } key_sah_unref(sah); } { struct mbuf *n; /* create new sadb_msg to reply. */ n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); key_fill_replymsg(n, 0); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * SADB_GET processing * receive * * from the ikmpd, and get a SP and a SA to respond, * and send, * * to the ikmpd. * * m will always be freed. */ static int key_api_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_sa *sa0; const struct sockaddr *src, *dst; struct secasindex saidx; struct secasvar *sav = NULL; u_int16_t proto; int error; /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_SA] == NULL || mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } sa0 = mhp->ext[SADB_EXT_SA]; src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); if (error != 0) return key_senderror(so, m, EINVAL); error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); if (error != 0) return key_senderror(so, m, EINVAL); /* get a SA header */ { struct secashead *sah; int s = pserialize_read_enter(); sah = key_getsah(&saidx, CMP_HEAD); if (sah != NULL) { /* get a SA with SPI. */ sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); } pserialize_read_exit(s); } if (sav == NULL) { IPSECLOG(LOG_DEBUG, "no SA found.\n"); return key_senderror(so, m, ENOENT); } { struct mbuf *n; u_int8_t satype; /* map proto to satype */ satype = key_proto2satype(sav->sah->saidx.proto); if (satype == 0) { KEY_SA_UNREF(&sav); IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n"); return key_senderror(so, m, EINVAL); } /* create new sadb_msg to reply. */ n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, mhp->msg->sadb_msg_pid); KEY_SA_UNREF(&sav); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } } /* XXX make it sysctl-configurable? */ static void key_getcomb_setlifetime(struct sadb_comb *comb) { comb->sadb_comb_soft_allocations = 1; comb->sadb_comb_hard_allocations = 1; comb->sadb_comb_soft_bytes = 0; comb->sadb_comb_hard_bytes = 0; comb->sadb_comb_hard_addtime = 86400; /* 1 day */ comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100; comb->sadb_comb_hard_usetime = 28800; /* 8 hours */ comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100; } /* * XXX reorder combinations by preference * XXX no idea if the user wants ESP authentication or not */ static struct mbuf * key_getcomb_esp(int mflag) { struct sadb_comb *comb; const struct enc_xform *algo; struct mbuf *result = NULL, *m, *n; int encmin; int i, off, o; int totlen; const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); m = NULL; for (i = 1; i <= SADB_EALG_MAX; i++) { algo = esp_algorithm_lookup(i); if (algo == NULL) continue; /* discard algorithms with key size smaller than system min */ if (_BITS(algo->maxkey) < ipsec_esp_keymin) continue; if (_BITS(algo->minkey) < ipsec_esp_keymin) encmin = ipsec_esp_keymin; else encmin = _BITS(algo->minkey); if (ipsec_esp_auth) m = key_getcomb_ah(mflag); else { KASSERTMSG(l <= MLEN, "l=%u > MLEN=%lu", l, (u_long) MLEN); MGET(m, mflag, MT_DATA); if (m) { m_align(m, l); m->m_len = l; m->m_next = NULL; memset(mtod(m, void *), 0, m->m_len); } } if (!m) goto fail; totlen = 0; for (n = m; n; n = n->m_next) totlen += n->m_len; KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l); for (off = 0; off < totlen; off += l) { n = m_pulldown(m, off, l, &o); if (!n) { /* m is already freed */ goto fail; } comb = (struct sadb_comb *)(mtod(n, char *) + o); memset(comb, 0, sizeof(*comb)); key_getcomb_setlifetime(comb); comb->sadb_comb_encrypt = i; comb->sadb_comb_encrypt_minbits = encmin; comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); } if (!result) result = m; else m_cat(result, m); } return result; fail: if (result) m_freem(result); return NULL; } static void key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* ksmin, u_int16_t* ksmax) { *ksmin = *ksmax = ah->keysize; if (ah->keysize == 0) { /* * Transform takes arbitrary key size but algorithm * key size is restricted. Enforce this here. */ switch (alg) { case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break; case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break; case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break; default: IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg); break; } } } /* * XXX reorder combinations by preference */ static struct mbuf * key_getcomb_ah(int mflag) { struct sadb_comb *comb; const struct auth_hash *algo; struct mbuf *m; u_int16_t minkeysize, maxkeysize; int i; const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); m = NULL; for (i = 1; i <= SADB_AALG_MAX; i++) { #if 1 /* we prefer HMAC algorithms, not old algorithms */ if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC && i != SADB_X_AALG_SHA2_256 && i != SADB_X_AALG_SHA2_384 && i != SADB_X_AALG_SHA2_512) continue; #endif algo = ah_algorithm_lookup(i); if (!algo) continue; key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); /* discard algorithms with key size smaller than system min */ if (_BITS(minkeysize) < ipsec_ah_keymin) continue; if (!m) { KASSERTMSG(l <= MLEN, "l=%u > MLEN=%lu", l, (u_long) MLEN); MGET(m, mflag, MT_DATA); if (m) { m_align(m, l); m->m_len = l; m->m_next = NULL; } } else M_PREPEND(m, l, mflag); if (!m) return NULL; if (m->m_len < sizeof(struct sadb_comb)) { m = m_pullup(m, sizeof(struct sadb_comb)); if (m == NULL) return NULL; } comb = mtod(m, struct sadb_comb *); memset(comb, 0, sizeof(*comb)); key_getcomb_setlifetime(comb); comb->sadb_comb_auth = i; comb->sadb_comb_auth_minbits = _BITS(minkeysize); comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); } return m; } /* * not really an official behavior. discussed in pf_key@inner.net in Sep2000. * XXX reorder combinations by preference */ static struct mbuf * key_getcomb_ipcomp(int mflag) { struct sadb_comb *comb; const struct comp_algo *algo; struct mbuf *m; int i; const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); m = NULL; for (i = 1; i <= SADB_X_CALG_MAX; i++) { algo = ipcomp_algorithm_lookup(i); if (!algo) continue; if (!m) { KASSERTMSG(l <= MLEN, "l=%u > MLEN=%lu", l, (u_long) MLEN); MGET(m, mflag, MT_DATA); if (m) { m_align(m, l); m->m_len = l; m->m_next = NULL; } } else M_PREPEND(m, l, mflag); if (!m) return NULL; if (m->m_len < sizeof(struct sadb_comb)) { m = m_pullup(m, sizeof(struct sadb_comb)); if (m == NULL) return NULL; } comb = mtod(m, struct sadb_comb *); memset(comb, 0, sizeof(*comb)); key_getcomb_setlifetime(comb); comb->sadb_comb_encrypt = i; /* what should we set into sadb_comb_*_{min,max}bits? */ } return m; } /* * XXX no way to pass mode (transport/tunnel) to userland * XXX replay checking? * XXX sysctl interface to ipsec_{ah,esp}_keymin */ static struct mbuf * key_getprop(const struct secasindex *saidx, int mflag) { struct sadb_prop *prop; struct mbuf *m, *n; const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); int totlen; switch (saidx->proto) { case IPPROTO_ESP: m = key_getcomb_esp(mflag); break; case IPPROTO_AH: m = key_getcomb_ah(mflag); break; case IPPROTO_IPCOMP: m = key_getcomb_ipcomp(mflag); break; default: return NULL; } if (!m) return NULL; M_PREPEND(m, l, mflag); if (!m) return NULL; totlen = 0; for (n = m; n; n = n->m_next) totlen += n->m_len; prop = mtod(m, struct sadb_prop *); memset(prop, 0, sizeof(*prop)); prop->sadb_prop_len = PFKEY_UNIT64(totlen); prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; prop->sadb_prop_replay = 32; /* XXX */ return m; } /* * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire(). * send * * to KMD, and expect to receive * with SADB_ACQUIRE if error occurred, * or * with SADB_GETSPI * from KMD by PF_KEY. * * XXX x_policy is outside of RFC2367 (KAME extension). * XXX sensitivity is not supported. * XXX for ipcomp, RFC2367 does not define how to fill in proposal. * see comment for key_getcomb_ipcomp(). * * OUT: * 0 : succeed * others: error number */ static int key_acquire(const struct secasindex *saidx, const struct secpolicy *sp, int mflag) { struct mbuf *result = NULL, *m; #ifndef IPSEC_NONBLOCK_ACQUIRE struct secacq *newacq; #endif u_int8_t satype; int error = -1; u_int32_t seq; /* sanity check */ KASSERT(saidx != NULL); satype = key_proto2satype(saidx->proto); KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto); #ifndef IPSEC_NONBLOCK_ACQUIRE /* * We never do anything about acquiring SA. There is another * solution that kernel blocks to send SADB_ACQUIRE message until * getting something message from IKEd. In later case, to be * managed with ACQUIRING list. */ /* Get an entry to check whether sending message or not. */ mutex_enter(&key_misc.lock); newacq = key_getacq(saidx); if (newacq != NULL) { if (key_blockacq_count < newacq->count) { /* reset counter and do send message. */ newacq->count = 0; } else { /* increment counter and do nothing. */ newacq->count++; mutex_exit(&key_misc.lock); return 0; } } else { /* make new entry for blocking to send SADB_ACQUIRE. */ newacq = key_newacq(saidx); if (newacq == NULL) { mutex_exit(&key_misc.lock); return ENOBUFS; } /* add to key_misc.acqlist */ LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain); } seq = newacq->seq; mutex_exit(&key_misc.lock); #else seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); #endif m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0, mflag); if (!m) { error = ENOBUFS; goto fail; } result = m; /* set sadb_address for saidx's. */ m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY, mflag); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY, mflag); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* XXX proxy address (optional) */ /* set sadb_x_policy */ if (sp) { m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id, mflag); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); } /* XXX identity (optional) */ #if 0 if (idexttype && fqdn) { /* create identity extension (FQDN) */ struct sadb_ident *id; int fqdnlen; fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ id = (struct sadb_ident *)p; memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); id->sadb_ident_exttype = idexttype; id->sadb_ident_type = SADB_IDENTTYPE_FQDN; memcpy(id + 1, fqdn, fqdnlen); p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); } if (idexttype) { /* create identity extension (USERFQDN) */ struct sadb_ident *id; int userfqdnlen; if (userfqdn) { /* +1 for terminating-NUL */ userfqdnlen = strlen(userfqdn) + 1; } else userfqdnlen = 0; id = (struct sadb_ident *)p; memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); id->sadb_ident_exttype = idexttype; id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; /* XXX is it correct? */ if (curlwp) id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred); if (userfqdn && userfqdnlen) memcpy(id + 1, userfqdn, userfqdnlen); p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); } #endif /* XXX sensitivity (optional) */ /* create proposal/combination extension */ m = key_getprop(saidx, mflag); #if 0 /* * spec conformant: always attach proposal/combination extension, * the problem is that we have no way to attach it for ipcomp, * due to the way sadb_comb is declared in RFC2367. */ if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); #else /* * outside of spec; make proposal/combination extension optional. */ if (m) m_cat(result, m); #endif KASSERT(result->m_flags & M_PKTHDR); KASSERT(result->m_len >= sizeof(struct sadb_msg)); result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); /* * Called from key_api_acquire that must come from userland, so * we can call key_sendup_mbuf immediately. */ if (mflag == M_WAITOK) return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); /* * XXX we cannot call key_sendup_mbuf directly here because * it can cause a deadlock: * - We have a reference to an SP (and an SA) here * - key_sendup_mbuf will try to take key_so_mtx * - Some other thread may try to localcount_drain to the SP with * holding key_so_mtx in say key_api_spdflush * - In this case localcount_drain never return because key_sendup_mbuf * that has stuck on key_so_mtx never release a reference to the SP * * So defer key_sendup_mbuf to the timer. */ return key_acquire_sendup_mbuf_later(result); fail: if (result) m_freem(result); return error; } static struct mbuf *key_acquire_mbuf_head = NULL; static unsigned key_acquire_mbuf_count = 0; #define KEY_ACQUIRE_MBUF_MAX 10 static void key_acquire_sendup_pending_mbuf(void) { struct mbuf *m, *prev; int error; again: prev = NULL; mutex_enter(&key_misc.lock); m = key_acquire_mbuf_head; /* Get an earliest mbuf (one at the tail of the list) */ while (m != NULL) { if (m->m_nextpkt == NULL) { if (prev != NULL) prev->m_nextpkt = NULL; if (m == key_acquire_mbuf_head) key_acquire_mbuf_head = NULL; key_acquire_mbuf_count--; break; } prev = m; m = m->m_nextpkt; } mutex_exit(&key_misc.lock); if (m == NULL) return; m->m_nextpkt = NULL; error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); if (error != 0) IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n", error); if (prev != NULL) goto again; } static int key_acquire_sendup_mbuf_later(struct mbuf *m) { mutex_enter(&key_misc.lock); /* Avoid queuing too much mbufs */ if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) { mutex_exit(&key_misc.lock); m_freem(m); return ENOBUFS; /* XXX */ } /* Enqueue mbuf at the head of the list */ m->m_nextpkt = key_acquire_mbuf_head; key_acquire_mbuf_head = m; key_acquire_mbuf_count++; mutex_exit(&key_misc.lock); /* Kick the timer */ key_timehandler(NULL); return 0; } #ifndef IPSEC_NONBLOCK_ACQUIRE static struct secacq * key_newacq(const struct secasindex *saidx) { struct secacq *newacq; /* get new entry */ newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP); if (newacq == NULL) { IPSECLOG(LOG_DEBUG, "No more memory.\n"); return NULL; } /* copy secindex */ memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx)); newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); newacq->created = time_uptime; newacq->count = 0; return newacq; } static struct secacq * key_getacq(const struct secasindex *saidx) { struct secacq *acq; KASSERT(mutex_owned(&key_misc.lock)); LIST_FOREACH(acq, &key_misc.acqlist, chain) { if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY)) return acq; } return NULL; } static struct secacq * key_getacqbyseq(u_int32_t seq) { struct secacq *acq; KASSERT(mutex_owned(&key_misc.lock)); LIST_FOREACH(acq, &key_misc.acqlist, chain) { if (acq->seq == seq) return acq; } return NULL; } #endif #ifdef notyet static struct secspacq * key_newspacq(const struct secpolicyindex *spidx) { struct secspacq *acq; /* get new entry */ acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP); if (acq == NULL) { IPSECLOG(LOG_DEBUG, "No more memory.\n"); return NULL; } /* copy secindex */ memcpy(&acq->spidx, spidx, sizeof(acq->spidx)); acq->created = time_uptime; acq->count = 0; return acq; } static struct secspacq * key_getspacq(const struct secpolicyindex *spidx) { struct secspacq *acq; LIST_FOREACH(acq, &key_misc.spacqlist, chain) { if (key_spidx_match_exactly(spidx, &acq->spidx)) return acq; } return NULL; } #endif /* notyet */ /* * SADB_ACQUIRE processing, * in first situation, is receiving * * from the ikmpd, and clear sequence of its secasvar entry. * * In second situation, is receiving * * from a user land process, and return * * to the socket. * * m will always be freed. */ static int key_api_acquire(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { const struct sockaddr *src, *dst; struct secasindex saidx; u_int16_t proto; int error; /* * Error message from KMd. * We assume that if error was occurred in IKEd, the length of PFKEY * message is equal to the size of sadb_msg structure. * We do not raise error even if error occurred in this function. */ if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { #ifndef IPSEC_NONBLOCK_ACQUIRE struct secacq *acq; /* check sequence number */ if (mhp->msg->sadb_msg_seq == 0) { IPSECLOG(LOG_DEBUG, "must specify sequence number.\n"); m_freem(m); return 0; } mutex_enter(&key_misc.lock); acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); if (acq == NULL) { mutex_exit(&key_misc.lock); /* * the specified larval SA is already gone, or we got * a bogus sequence number. we can silently ignore it. */ m_freem(m); return 0; } /* reset acq counter in order to deletion by timehander. */ acq->created = time_uptime; acq->count = 0; mutex_exit(&key_misc.lock); #endif m_freem(m); return 0; } /* * This message is from user land. */ /* map satype to proto */ proto = key_satype2proto(mhp->msg->sadb_msg_satype); if (proto == 0) { IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || mhp->ext[SADB_EXT_PROPOSAL] == NULL) { /* error */ IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { /* error */ IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); return key_senderror(so, m, EINVAL); } src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); if (error != 0) return key_senderror(so, m, EINVAL); error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); if (error != 0) return key_senderror(so, m, EINVAL); /* get a SA index */ { struct secashead *sah; int s = pserialize_read_enter(); sah = key_getsah(&saidx, CMP_MODE_REQID); if (sah != NULL) { pserialize_read_exit(s); IPSECLOG(LOG_DEBUG, "a SA exists already.\n"); return key_senderror(so, m, EEXIST); } pserialize_read_exit(s); } error = key_acquire(&saidx, NULL, M_WAITOK); if (error != 0) { IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", error); return key_senderror(so, m, error); } return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); } /* * SADB_REGISTER processing. * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. * receive * * from the ikmpd, and register a socket to send PF_KEY messages, * and send * * to KMD by PF_KEY. * If socket is detached, must free from regnode. * * m will always be freed. */ static int key_api_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct secreg *reg, *newreg = 0; /* check for invalid register message */ if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist)) return key_senderror(so, m, EINVAL); /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) goto setmsg; /* Allocate regnode in advance, out of mutex */ newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP); /* check whether existing or not */ mutex_enter(&key_misc.lock); LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) { if (reg->so == so) { IPSECLOG(LOG_DEBUG, "socket exists already.\n"); mutex_exit(&key_misc.lock); kmem_free(newreg, sizeof(*newreg)); return key_senderror(so, m, EEXIST); } } newreg->so = so; ((struct keycb *)sotorawcb(so))->kp_registered++; /* add regnode to key_misc.reglist. */ LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain); mutex_exit(&key_misc.lock); setmsg: { struct mbuf *n; struct sadb_supported *sup; u_int len, alen, elen; int off; int i; struct sadb_alg *alg; /* create new sadb_msg to reply. */ alen = 0; for (i = 1; i <= SADB_AALG_MAX; i++) { if (ah_algorithm_lookup(i)) alen += sizeof(struct sadb_alg); } if (alen) alen += sizeof(struct sadb_supported); elen = 0; for (i = 1; i <= SADB_EALG_MAX; i++) { if (esp_algorithm_lookup(i)) elen += sizeof(struct sadb_alg); } if (elen) elen += sizeof(struct sadb_supported); len = sizeof(struct sadb_msg) + alen + elen; if (len > MCLBYTES) return key_senderror(so, m, ENOBUFS); n = key_alloc_mbuf_simple(len, M_WAITOK); n->m_pkthdr.len = n->m_len = len; n->m_next = NULL; off = 0; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); key_fill_replymsg(n, 0); off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); /* for authentication algorithm */ if (alen) { sup = (struct sadb_supported *)(mtod(n, char *) + off); sup->sadb_supported_len = PFKEY_UNIT64(alen); sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; sup->sadb_supported_reserved = 0; off += PFKEY_ALIGN8(sizeof(*sup)); for (i = 1; i <= SADB_AALG_MAX; i++) { const struct auth_hash *aalgo; u_int16_t minkeysize, maxkeysize; aalgo = ah_algorithm_lookup(i); if (!aalgo) continue; alg = (struct sadb_alg *)(mtod(n, char *) + off); alg->sadb_alg_id = i; alg->sadb_alg_ivlen = 0; key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); alg->sadb_alg_minbits = _BITS(minkeysize); alg->sadb_alg_maxbits = _BITS(maxkeysize); alg->sadb_alg_reserved = 0; off += PFKEY_ALIGN8(sizeof(*alg)); } } /* for encryption algorithm */ if (elen) { sup = (struct sadb_supported *)(mtod(n, char *) + off); sup->sadb_supported_len = PFKEY_UNIT64(elen); sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; sup->sadb_supported_reserved = 0; off += PFKEY_ALIGN8(sizeof(*sup)); for (i = 1; i <= SADB_EALG_MAX; i++) { const struct enc_xform *ealgo; ealgo = esp_algorithm_lookup(i); if (!ealgo) continue; alg = (struct sadb_alg *)(mtod(n, char *) + off); alg->sadb_alg_id = i; alg->sadb_alg_ivlen = ealgo->blocksize; alg->sadb_alg_minbits = _BITS(ealgo->minkey); alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); alg->sadb_alg_reserved = 0; off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); } } KASSERTMSG(off == len, "length inconsistency"); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); } } /* * free secreg entry registered. * XXX: I want to do free a socket marked done SADB_RESIGER to socket. */ void key_freereg(struct socket *so) { struct secreg *reg; int i; KASSERT(!cpu_softintr_p()); KASSERT(so != NULL); /* * check whether existing or not. * check all type of SA, because there is a potential that * one socket is registered to multiple type of SA. */ for (i = 0; i <= SADB_SATYPE_MAX; i++) { mutex_enter(&key_misc.lock); LIST_FOREACH(reg, &key_misc.reglist[i], chain) { if (reg->so == so) { LIST_REMOVE(reg, chain); break; } } mutex_exit(&key_misc.lock); if (reg != NULL) kmem_free(reg, sizeof(*reg)); } return; } /* * SADB_EXPIRE processing * send * * to KMD by PF_KEY. * NOTE: We send only soft lifetime extension. * * OUT: 0 : succeed * others : error number */ static int key_expire(struct secasvar *sav) { int s; int satype; struct mbuf *result = NULL, *m; int len; int error = -1; struct sadb_lifetime *lt; lifetime_counters_t sum = {0}; /* XXX: Why do we lock ? */ s = splsoftnet(); /*called from softclock()*/ KASSERT(sav != NULL); satype = key_proto2satype(sav->sah->saidx.proto); KASSERTMSG(satype != 0, "invalid proto is passed"); /* set msg header */ m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav), M_WAITOK); result = m; /* create SA extension */ m = key_setsadbsa(sav); m_cat(result, m); /* create SA extension */ m = key_setsadbxsa2(sav->sah->saidx.mode, sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid); m_cat(result, m); /* create lifetime extension (current and soft) */ len = PFKEY_ALIGN8(sizeof(*lt)) * 2; m = key_alloc_mbuf(len, M_WAITOK); KASSERT(m->m_next == NULL); memset(mtod(m, void *), 0, len); lt = mtod(m, struct sadb_lifetime *); lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; percpu_foreach_xcall(sav->lft_c_counters_percpu, XC_HIGHPRI_IPL(IPL_SOFTNET), key_sum_lifetime_counters, sum); lt->sadb_lifetime_allocations = sum[LIFETIME_COUNTER_ALLOCATIONS]; lt->sadb_lifetime_bytes = sum[LIFETIME_COUNTER_BYTES]; lt->sadb_lifetime_addtime = time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime); lt->sadb_lifetime_usetime = time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime); lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); memcpy(lt, sav->lft_s, sizeof(*lt)); m_cat(result, m); /* set sadb_address for source */ m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); m_cat(result, m); /* set sadb_address for destination */ m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa, FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); m_cat(result, m); if ((result->m_flags & M_PKTHDR) == 0) { error = EINVAL; goto fail; } if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) { error = ENOBUFS; goto fail; } } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); splx(s); return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); fail: if (result) m_freem(result); splx(s); return error; } /* * SADB_FLUSH processing * receive * * from the ikmpd, and free all entries in secastree. * and send, * * to the ikmpd. * NOTE: to do is only marking SADB_SASTATE_DEAD. * * m will always be freed. */ static int key_api_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_msg *newmsg; struct secashead *sah; struct secasvar *sav; u_int16_t proto; u_int8_t state; int s; /* map satype to proto */ proto = key_satype2proto(mhp->msg->sadb_msg_satype); if (proto == 0) { IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); return key_senderror(so, m, EINVAL); } /* no SATYPE specified, i.e. flushing all SA. */ s = pserialize_read_enter(); SAHLIST_READER_FOREACH(sah) { if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && proto != sah->saidx.proto) continue; key_sah_ref(sah); pserialize_read_exit(s); SASTATE_ALIVE_FOREACH(state) { restart: mutex_enter(&key_sad.lock); SAVLIST_WRITER_FOREACH(sav, sah, state) { sav->state = SADB_SASTATE_DEAD; key_unlink_sav(sav); mutex_exit(&key_sad.lock); key_destroy_sav(sav); goto restart; } mutex_exit(&key_sad.lock); } s = pserialize_read_enter(); sah->state = SADB_SASTATE_DEAD; key_sah_unref(sah); } pserialize_read_exit(s); if (m->m_len < sizeof(struct sadb_msg) || sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { IPSECLOG(LOG_DEBUG, "No more memory.\n"); return key_senderror(so, m, ENOBUFS); } if (m->m_next) m_freem(m->m_next); m->m_next = NULL; m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); newmsg = mtod(m, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } static struct mbuf * key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid) { struct secashead *sah; struct secasvar *sav; u_int16_t proto; u_int8_t satype; u_int8_t state; int cnt; struct mbuf *m, *n, *prev; KASSERT(mutex_owned(&key_sad.lock)); *lenp = 0; /* map satype to proto */ proto = key_satype2proto(req_satype); if (proto == 0) { *errorp = EINVAL; return (NULL); } /* count sav entries to be sent to userland. */ cnt = 0; SAHLIST_WRITER_FOREACH(sah) { if (req_satype != SADB_SATYPE_UNSPEC && proto != sah->saidx.proto) continue; SASTATE_ANY_FOREACH(state) { SAVLIST_WRITER_FOREACH(sav, sah, state) { cnt++; } } } if (cnt == 0) { *errorp = ENOENT; return (NULL); } /* send this to the userland, one at a time. */ m = NULL; prev = m; SAHLIST_WRITER_FOREACH(sah) { if (req_satype != SADB_SATYPE_UNSPEC && proto != sah->saidx.proto) continue; /* map proto to satype */ satype = key_proto2satype(sah->saidx.proto); if (satype == 0) { m_freem(m); *errorp = EINVAL; return (NULL); } SASTATE_ANY_FOREACH(state) { SAVLIST_WRITER_FOREACH(sav, sah, state) { n = key_setdumpsa(sav, SADB_DUMP, satype, --cnt, pid); if (!m) m = n; else prev->m_nextpkt = n; prev = n; } } } if (!m) { *errorp = EINVAL; return (NULL); } if ((m->m_flags & M_PKTHDR) != 0) { m->m_pkthdr.len = 0; for (n = m; n; n = n->m_next) m->m_pkthdr.len += n->m_len; } *errorp = 0; return (m); } /* * SADB_DUMP processing * dump all entries including status of DEAD in SAD. * receive * * from the ikmpd, and dump all secasvar leaves * and send, * ..... * to the ikmpd. * * m will always be freed. */ static int key_api_dump(struct socket *so, struct mbuf *m0, const struct sadb_msghdr *mhp) { u_int16_t proto; u_int8_t satype; struct mbuf *n; int error, len, ok; /* map satype to proto */ satype = mhp->msg->sadb_msg_satype; proto = key_satype2proto(satype); if (proto == 0) { IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); return key_senderror(so, m0, EINVAL); } /* * If the requestor has insufficient socket-buffer space * for the entire chain, nobody gets any response to the DUMP. * XXX For now, only the requestor ever gets anything. * Moreover, if the requestor has any space at all, they receive * the entire chain, otherwise the request is refused with ENOBUFS. */ if (sbspace(&so->so_rcv) <= 0) { return key_senderror(so, m0, ENOBUFS); } mutex_enter(&key_sad.lock); n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid); mutex_exit(&key_sad.lock); if (n == NULL) { return key_senderror(so, m0, ENOENT); } { uint64_t *ps = PFKEY_STAT_GETREF(); ps[PFKEY_STAT_IN_TOTAL]++; ps[PFKEY_STAT_IN_BYTES] += len; PFKEY_STAT_PUTREF(); } /* * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. * The requestor receives either the entire chain, or an * error message with ENOBUFS. * * sbappendaddrchain() takes the chain of entries, one * packet-record per SPD entry, prepends the key_src sockaddr * to each packet-record, links the sockaddr mbufs into a new * list of records, then appends the entire resulting * list to the requesting socket. */ ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, SB_PRIO_ONESHOT_OVERFLOW); if (!ok) { PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); m_freem(n); return key_senderror(so, m0, ENOBUFS); } m_freem(m0); return 0; } /* * SADB_X_PROMISC processing * * m will always be freed. */ static int key_api_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { int olen; olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); if (olen < sizeof(struct sadb_msg)) { #if 1 return key_senderror(so, m, EINVAL); #else m_freem(m); return 0; #endif } else if (olen == sizeof(struct sadb_msg)) { /* enable/disable promisc mode */ struct keycb *kp = (struct keycb *)sotorawcb(so); if (kp == NULL) return key_senderror(so, m, EINVAL); mhp->msg->sadb_msg_errno = 0; switch (mhp->msg->sadb_msg_satype) { case 0: case 1: kp->kp_promisc = mhp->msg->sadb_msg_satype; break; default: return key_senderror(so, m, EINVAL); } /* send the original message back to everyone */ mhp->msg->sadb_msg_errno = 0; return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } else { /* send packet as is */ m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); /* TODO: if sadb_msg_seq is specified, send to specific pid */ return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } } static int (*key_api_typesw[]) (struct socket *, struct mbuf *, const struct sadb_msghdr *) = { NULL, /* SADB_RESERVED */ key_api_getspi, /* SADB_GETSPI */ key_api_update, /* SADB_UPDATE */ key_api_add, /* SADB_ADD */ key_api_delete, /* SADB_DELETE */ key_api_get, /* SADB_GET */ key_api_acquire, /* SADB_ACQUIRE */ key_api_register, /* SADB_REGISTER */ NULL, /* SADB_EXPIRE */ key_api_flush, /* SADB_FLUSH */ key_api_dump, /* SADB_DUMP */ key_api_promisc, /* SADB_X_PROMISC */ NULL, /* SADB_X_PCHANGE */ key_api_spdadd, /* SADB_X_SPDUPDATE */ key_api_spdadd, /* SADB_X_SPDADD */ key_api_spddelete, /* SADB_X_SPDDELETE */ key_api_spdget, /* SADB_X_SPDGET */ NULL, /* SADB_X_SPDACQUIRE */ key_api_spddump, /* SADB_X_SPDDUMP */ key_api_spdflush, /* SADB_X_SPDFLUSH */ key_api_spdadd, /* SADB_X_SPDSETIDX */ NULL, /* SADB_X_SPDEXPIRE */ key_api_spddelete2, /* SADB_X_SPDDELETE2 */ key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */ }; /* * parse sadb_msg buffer to process PFKEYv2, * and create a data to response if needed. * I think to be dealed with mbuf directly. * IN: * msgp : pointer to pointer to a received buffer pulluped. * This is rewrited to response. * so : pointer to socket. * OUT: * length for buffer to send to user process. */ int key_parse(struct mbuf *m, struct socket *so) { struct sadb_msg *msg; struct sadb_msghdr mh; u_int orglen; int error; KASSERT(m != NULL); KASSERT(so != NULL); #if 0 /*kdebug_sadb assumes msg in linear buffer*/ if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) { kdebug_sadb("passed sadb_msg", msg); } #endif if (m->m_len < sizeof(struct sadb_msg)) { m = m_pullup(m, sizeof(struct sadb_msg)); if (!m) return ENOBUFS; } msg = mtod(m, struct sadb_msg *); orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len != orglen) { IPSECLOG(LOG_DEBUG, "invalid message length.\n"); PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); error = EINVAL; goto senderror; } if (msg->sadb_msg_version != PF_KEY_V2) { IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n", msg->sadb_msg_version); PFKEY_STATINC(PFKEY_STAT_OUT_INVVER); error = EINVAL; goto senderror; } if (msg->sadb_msg_type > SADB_MAX) { IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", msg->sadb_msg_type); PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); error = EINVAL; goto senderror; } /* for old-fashioned code - should be nuked */ if (m->m_pkthdr.len > MCLBYTES) { m_freem(m); return ENOBUFS; } if (m->m_next) { struct mbuf *n; n = key_alloc_mbuf_simple(m->m_pkthdr.len, M_WAITOK); m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *)); n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; n->m_next = NULL; m_freem(m); m = n; } /* align the mbuf chain so that extensions are in contiguous region. */ error = key_align(m, &mh); if (error) return error; if (m->m_next) { /*XXX*/ m_freem(m); return ENOBUFS; } msg = mh.msg; /* check SA type */ switch (msg->sadb_msg_satype) { case SADB_SATYPE_UNSPEC: switch (msg->sadb_msg_type) { case SADB_GETSPI: case SADB_UPDATE: case SADB_ADD: case SADB_DELETE: case SADB_GET: case SADB_ACQUIRE: case SADB_EXPIRE: IPSECLOG(LOG_DEBUG, "must specify satype when msg type=%u.\n", msg->sadb_msg_type); PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); error = EINVAL; goto senderror; } break; case SADB_SATYPE_AH: case SADB_SATYPE_ESP: case SADB_X_SATYPE_IPCOMP: case SADB_X_SATYPE_TCPSIGNATURE: switch (msg->sadb_msg_type) { case SADB_X_SPDADD: case SADB_X_SPDDELETE: case SADB_X_SPDGET: case SADB_X_SPDDUMP: case SADB_X_SPDFLUSH: case SADB_X_SPDSETIDX: case SADB_X_SPDUPDATE: case SADB_X_SPDDELETE2: IPSECLOG(LOG_DEBUG, "illegal satype=%u\n", msg->sadb_msg_type); PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); error = EINVAL; goto senderror; } break; case SADB_SATYPE_RSVP: case SADB_SATYPE_OSPFV2: case SADB_SATYPE_RIPV2: case SADB_SATYPE_MIP: IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n", msg->sadb_msg_satype); PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); error = EOPNOTSUPP; goto senderror; case 1: /* XXX: What does it do? */ if (msg->sadb_msg_type == SADB_X_PROMISC) break; /*FALLTHROUGH*/ default: IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", msg->sadb_msg_satype); PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); error = EINVAL; goto senderror; } /* check field of upper layer protocol and address family */ if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { const struct sadb_address *src0, *dst0; const struct sockaddr *sa0, *da0; u_int plen; src0 = mh.ext[SADB_EXT_ADDRESS_SRC]; dst0 = mh.ext[SADB_EXT_ADDRESS_DST]; sa0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_SRC); da0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_DST); /* check upper layer protocol */ if (src0->sadb_address_proto != dst0->sadb_address_proto) { IPSECLOG(LOG_DEBUG, "upper layer protocol mismatched src %u, dst %u.\n", src0->sadb_address_proto, dst0->sadb_address_proto); goto invaddr; } /* check family */ if (sa0->sa_family != da0->sa_family) { IPSECLOG(LOG_DEBUG, "address family mismatched src %u, dst %u.\n", sa0->sa_family, da0->sa_family); goto invaddr; } if (sa0->sa_len != da0->sa_len) { IPSECLOG(LOG_DEBUG, "address size mismatched src %u, dst %u.\n", sa0->sa_len, da0->sa_len); goto invaddr; } switch (sa0->sa_family) { case AF_INET: if (sa0->sa_len != sizeof(struct sockaddr_in)) { IPSECLOG(LOG_DEBUG, "address size mismatched %u != %zu.\n", sa0->sa_len, sizeof(struct sockaddr_in)); goto invaddr; } break; case AF_INET6: if (sa0->sa_len != sizeof(struct sockaddr_in6)) { IPSECLOG(LOG_DEBUG, "address size mismatched %u != %zu.\n", sa0->sa_len, sizeof(struct sockaddr_in6)); goto invaddr; } break; default: IPSECLOG(LOG_DEBUG, "unsupported address family %u.\n", sa0->sa_family); error = EAFNOSUPPORT; goto senderror; } plen = key_sabits(sa0); /* check max prefix length */ if (src0->sadb_address_prefixlen > plen || dst0->sadb_address_prefixlen > plen) { IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n"); goto invaddr; } /* * prefixlen == 0 is valid because there can be a case when * all addresses are matched. */ } if (msg->sadb_msg_type >= __arraycount(key_api_typesw) || key_api_typesw[msg->sadb_msg_type] == NULL) { PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); error = EINVAL; goto senderror; } return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh); invaddr: error = EINVAL; senderror: PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); return key_senderror(so, m, error); } static int key_senderror(struct socket *so, struct mbuf *m, int code) { struct sadb_msg *msg; KASSERT(m->m_len >= sizeof(struct sadb_msg)); if (so == NULL) { /* * This means the request comes from kernel. * As the request comes from kernel, it is unnecessary to * send message to userland. Just return errcode directly. */ m_freem(m); return code; } msg = mtod(m, struct sadb_msg *); msg->sadb_msg_errno = code; return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); } /* * set the pointer to each header into message buffer. * m will be freed on error. * XXX larger-than-MCLBYTES extension? */ static int key_align(struct mbuf *m, struct sadb_msghdr *mhp) { struct mbuf *n; struct sadb_ext *ext; size_t off, end; int extlen; int toff; KASSERT(m != NULL); KASSERT(mhp != NULL); KASSERT(m->m_len >= sizeof(struct sadb_msg)); /* initialize */ memset(mhp, 0, sizeof(*mhp)); mhp->msg = mtod(m, struct sadb_msg *); mhp->ext[0] = mhp->msg; /*XXX backward compat */ end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); extlen = end; /*just in case extlen is not updated*/ for (off = sizeof(struct sadb_msg); off < end; off += extlen) { n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); if (!n) { /* m is already freed */ return ENOBUFS; } ext = (struct sadb_ext *)(mtod(n, char *) + toff); /* set pointer */ switch (ext->sadb_ext_type) { case SADB_EXT_SA: case SADB_EXT_ADDRESS_SRC: case SADB_EXT_ADDRESS_DST: case SADB_EXT_ADDRESS_PROXY: case SADB_EXT_LIFETIME_CURRENT: case SADB_EXT_LIFETIME_HARD: case SADB_EXT_LIFETIME_SOFT: case SADB_EXT_KEY_AUTH: case SADB_EXT_KEY_ENCRYPT: case SADB_EXT_IDENTITY_SRC: case SADB_EXT_IDENTITY_DST: case SADB_EXT_SENSITIVITY: case SADB_EXT_PROPOSAL: case SADB_EXT_SUPPORTED_AUTH: case SADB_EXT_SUPPORTED_ENCRYPT: case SADB_EXT_SPIRANGE: case SADB_X_EXT_POLICY: case SADB_X_EXT_SA2: case SADB_X_EXT_NAT_T_TYPE: case SADB_X_EXT_NAT_T_SPORT: case SADB_X_EXT_NAT_T_DPORT: case SADB_X_EXT_NAT_T_OAI: case SADB_X_EXT_NAT_T_OAR: case SADB_X_EXT_NAT_T_FRAG: /* duplicate check */ /* * XXX Are there duplication payloads of either * KEY_AUTH or KEY_ENCRYPT ? */ if (mhp->ext[ext->sadb_ext_type] != NULL) { IPSECLOG(LOG_DEBUG, "duplicate ext_type %u is passed.\n", ext->sadb_ext_type); m_freem(m); PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT); return EINVAL; } break; default: IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n", ext->sadb_ext_type); m_freem(m); PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE); return EINVAL; } extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); if (key_validate_ext(ext, extlen)) { m_freem(m); PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); return EINVAL; } n = m_pulldown(m, off, extlen, &toff); if (!n) { /* m is already freed */ return ENOBUFS; } ext = (struct sadb_ext *)(mtod(n, char *) + toff); mhp->ext[ext->sadb_ext_type] = ext; mhp->extoff[ext->sadb_ext_type] = off; mhp->extlen[ext->sadb_ext_type] = extlen; } if (off != end) { m_freem(m); PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); return EINVAL; } return 0; } static int key_validate_ext(const struct sadb_ext *ext, int len) { const struct sockaddr *sa; enum { NONE, ADDR } checktype = NONE; int baselen = 0; const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) return EINVAL; /* if it does not match minimum/maximum length, bail */ if (ext->sadb_ext_type >= __arraycount(minsize) || ext->sadb_ext_type >= __arraycount(maxsize)) return EINVAL; if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) return EINVAL; if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) return EINVAL; /* more checks based on sadb_ext_type XXX need more */ switch (ext->sadb_ext_type) { case SADB_EXT_ADDRESS_SRC: case SADB_EXT_ADDRESS_DST: case SADB_EXT_ADDRESS_PROXY: baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); checktype = ADDR; break; case SADB_EXT_IDENTITY_SRC: case SADB_EXT_IDENTITY_DST: if (((const struct sadb_ident *)ext)->sadb_ident_type == SADB_X_IDENTTYPE_ADDR) { baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); checktype = ADDR; } else checktype = NONE; break; default: checktype = NONE; break; } switch (checktype) { case NONE: break; case ADDR: sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); if (len < baselen + sal) return EINVAL; if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) return EINVAL; break; } return 0; } static int key_do_init(void) { int i, error; mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE); mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE); cv_init(&key_spd.cv_lc, "key_sp_lc"); key_spd.psz = pserialize_create(); cv_init(&key_spd.cv_psz, "key_sp_psz"); key_spd.psz_performing = false; mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE); cv_init(&key_sad.cv_lc, "key_sa_lc"); key_sad.psz = pserialize_create(); cv_init(&key_sad.cv_psz, "key_sa_psz"); key_sad.psz_performing = false; pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS); callout_init(&key_timehandler_ch, CALLOUT_MPSAFE); error = workqueue_create(&key_timehandler_wq, "key_timehandler", key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE); if (error != 0) panic("%s: workqueue_create failed (%d)\n", __func__, error); for (i = 0; i < IPSEC_DIR_MAX; i++) { PSLIST_INIT(&key_spd.splist[i]); } PSLIST_INIT(&key_spd.socksplist); key_sad.sahlists = hashinit(SAHHASH_NHASH, HASH_PSLIST, true, &key_sad.sahlistmask); key_sad.savlut = hashinit(SAVLUT_NHASH, HASH_PSLIST, true, &key_sad.savlutmask); for (i = 0; i <= SADB_SATYPE_MAX; i++) { LIST_INIT(&key_misc.reglist[i]); } #ifndef IPSEC_NONBLOCK_ACQUIRE LIST_INIT(&key_misc.acqlist); #endif #ifdef notyet LIST_INIT(&key_misc.spacqlist); #endif /* system default */ ip4_def_policy.policy = IPSEC_POLICY_NONE; ip4_def_policy.state = IPSEC_SPSTATE_ALIVE; localcount_init(&ip4_def_policy.localcount); #ifdef INET6 ip6_def_policy.policy = IPSEC_POLICY_NONE; ip6_def_policy.state = IPSEC_SPSTATE_ALIVE; localcount_init(&ip6_def_policy.localcount); #endif callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); /* initialize key statistics */ keystat.getspi_count = 1; aprint_verbose("IPsec: Initialized Security Association Processing.\n"); return (0); } void key_init(void) { static ONCE_DECL(key_init_once); sysctl_net_keyv2_setup(NULL); sysctl_net_key_compat_setup(NULL); RUN_ONCE(&key_init_once, key_do_init); key_init_so(); } /* * XXX: maybe This function is called after INBOUND IPsec processing. * * Special check for tunnel-mode packets. * We must make some checks for consistency between inner and outer IP header. * * xxx more checks to be provided */ int key_checktunnelsanity( struct secasvar *sav, u_int family, void *src, void *dst ) { /* XXX: check inner IP header */ return 1; } #if 0 #define hostnamelen strlen(hostname) /* * Get FQDN for the host. * If the administrator configured hostname (by hostname(1)) without * domain name, returns nothing. */ static const char * key_getfqdn(void) { int i; int hasdot; static char fqdn[MAXHOSTNAMELEN + 1]; if (!hostnamelen) return NULL; /* check if it comes with domain name. */ hasdot = 0; for (i = 0; i < hostnamelen; i++) { if (hostname[i] == '.') hasdot++; } if (!hasdot) return NULL; /* NOTE: hostname may not be NUL-terminated. */ memset(fqdn, 0, sizeof(fqdn)); memcpy(fqdn, hostname, hostnamelen); fqdn[hostnamelen] = '\0'; return fqdn; } /* * get username@FQDN for the host/user. */ static const char * key_getuserfqdn(void) { const char *host; static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2]; struct proc *p = curproc; char *q; if (!p || !p->p_pgrp || !p->p_pgrp->pg_session) return NULL; if (!(host = key_getfqdn())) return NULL; /* NOTE: s_login may not be-NUL terminated. */ memset(userfqdn, 0, sizeof(userfqdn)); memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME); userfqdn[MAXLOGNAME] = '\0'; /* safeguard */ q = userfqdn + strlen(userfqdn); *q++ = '@'; memcpy(q, host, strlen(host)); q += strlen(host); *q++ = '\0'; return userfqdn; } #endif /* record data transfer on SA, and update timestamps */ void key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) { lifetime_counters_t *counters; KASSERT(sav != NULL); KASSERT(sav->lft_c != NULL); KASSERT(m != NULL); counters = percpu_getref(sav->lft_c_counters_percpu); /* * XXX Currently, there is a difference of bytes size * between inbound and outbound processing. */ (*counters)[LIFETIME_COUNTER_BYTES] += m->m_pkthdr.len; /* to check bytes lifetime is done in key_timehandler(). */ /* * We use the number of packets as the unit of * sadb_lifetime_allocations. We increment the variable * whenever {esp,ah}_{in,out}put is called. */ (*counters)[LIFETIME_COUNTER_ALLOCATIONS]++; /* XXX check for expires? */ percpu_putref(sav->lft_c_counters_percpu); /* * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock, * in seconds. HARD and SOFT lifetime are measured by the time * difference (again in seconds) from sadb_lifetime_usetime. * * usetime * v expire expire * -----+-----+--------+---> t * <--------------> HARD * <-----> SOFT */ sav->lft_c->sadb_lifetime_usetime = time_uptime; /* XXX check for expires? */ return; } /* dumb version */ void key_sa_routechange(struct sockaddr *dst) { struct secashead *sah; int s; s = pserialize_read_enter(); SAHLIST_READER_FOREACH(sah) { struct route *ro; const struct sockaddr *sa; key_sah_ref(sah); pserialize_read_exit(s); ro = &sah->sa_route; sa = rtcache_getdst(ro); if (sa != NULL && dst->sa_len == sa->sa_len && memcmp(dst, sa, dst->sa_len) == 0) rtcache_free(ro); s = pserialize_read_enter(); key_sah_unref(sah); } pserialize_read_exit(s); return; } static void key_sa_chgstate(struct secasvar *sav, u_int8_t state) { struct secasvar *_sav; ASSERT_SLEEPABLE(); KASSERT(mutex_owned(&key_sad.lock)); if (sav->state == state) return; key_unlink_sav(sav); localcount_fini(&sav->localcount); SAVLIST_ENTRY_DESTROY(sav); key_init_sav(sav); sav->state = state; if (!SADB_SASTATE_USABLE_P(sav)) { /* We don't need to care about the order */ SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav); return; } /* * Sort the list by lft_c->sadb_lifetime_addtime * in ascending order. */ SAVLIST_WRITER_FOREACH(_sav, sav->sah, state) { if (_sav->lft_c->sadb_lifetime_addtime > sav->lft_c->sadb_lifetime_addtime) { SAVLIST_WRITER_INSERT_BEFORE(_sav, sav); break; } } if (_sav == NULL) { SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav); } SAVLUT_WRITER_INSERT_HEAD(sav); key_validate_savlist(sav->sah, state); } /* XXX too much? */ static struct mbuf * key_alloc_mbuf(int l, int mflag) { struct mbuf *m = NULL, *n; int len, t; KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); len = l; while (len > 0) { MGET(n, mflag, MT_DATA); if (n && len > MLEN) { MCLGET(n, mflag); if ((n->m_flags & M_EXT) == 0) { m_freem(n); n = NULL; } } if (!n) { m_freem(m); return NULL; } n->m_next = NULL; n->m_len = 0; n->m_len = M_TRAILINGSPACE(n); /* use the bottom of mbuf, hoping we can prepend afterwards */ if (n->m_len > len) { t = (n->m_len - len) & ~(sizeof(long) - 1); n->m_data += t; n->m_len = len; } len -= n->m_len; if (m) m_cat(m, n); else m = n; } return m; } static struct mbuf * key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid) { struct secashead *sah; struct secasvar *sav; u_int16_t proto; u_int8_t satype; u_int8_t state; int cnt; struct mbuf *m, *n; KASSERT(mutex_owned(&key_sad.lock)); /* map satype to proto */ proto = key_satype2proto(req_satype); if (proto == 0) { *errorp = EINVAL; return (NULL); } /* count sav entries to be sent to the userland. */ cnt = 0; SAHLIST_WRITER_FOREACH(sah) { if (req_satype != SADB_SATYPE_UNSPEC && proto != sah->saidx.proto) continue; SASTATE_ANY_FOREACH(state) { SAVLIST_WRITER_FOREACH(sav, sah, state) { cnt++; } } } if (cnt == 0) { *errorp = ENOENT; return (NULL); } /* send this to the userland, one at a time. */ m = NULL; SAHLIST_WRITER_FOREACH(sah) { if (req_satype != SADB_SATYPE_UNSPEC && proto != sah->saidx.proto) continue; /* map proto to satype */ satype = key_proto2satype(sah->saidx.proto); if (satype == 0) { m_freem(m); *errorp = EINVAL; return (NULL); } SASTATE_ANY_FOREACH(state) { SAVLIST_WRITER_FOREACH(sav, sah, state) { n = key_setdumpsa(sav, SADB_DUMP, satype, --cnt, pid); if (!m) m = n; else m_cat(m, n); } } } if (!m) { *errorp = EINVAL; return (NULL); } if ((m->m_flags & M_PKTHDR) != 0) { m->m_pkthdr.len = 0; for (n = m; n; n = n->m_next) m->m_pkthdr.len += n->m_len; } *errorp = 0; return (m); } static struct mbuf * key_setspddump(int *errorp, pid_t pid) { struct secpolicy *sp; int cnt; u_int dir; struct mbuf *m, *n; KASSERT(mutex_owned(&key_spd.lock)); /* search SPD entry and get buffer size. */ cnt = 0; for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { SPLIST_WRITER_FOREACH(sp, dir) { cnt++; } } if (cnt == 0) { *errorp = ENOENT; return (NULL); } m = NULL; for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { SPLIST_WRITER_FOREACH(sp, dir) { --cnt; n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); if (!m) m = n; else { m->m_pkthdr.len += n->m_pkthdr.len; m_cat(m, n); } } } *errorp = 0; return (m); } int key_get_used(void) { return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) || !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) || !SOCKSPLIST_READER_EMPTY(); } void key_update_used(void) { switch (ipsec_enabled) { default: case 0: #ifdef notyet /* XXX: racy */ ipsec_used = 0; #endif break; case 1: #ifndef notyet /* XXX: racy */ if (!ipsec_used) #endif ipsec_used = key_get_used(); break; case 2: ipsec_used = 1; break; } } static inline void key_savlut_writer_insert_head(struct secasvar *sav) { uint32_t hash_key; uint32_t hash; KASSERT(mutex_owned(&key_sad.lock)); KASSERT(!sav->savlut_added); hash_key = sav->spi; hash = key_savluthash(&sav->sah->saidx.dst.sa, sav->sah->saidx.proto, hash_key, key_sad.savlutmask); PSLIST_WRITER_INSERT_HEAD(&key_sad.savlut[hash], sav, pslist_entry_savlut); sav->savlut_added = true; } /* * Calculate hash using protocol, source address, * and destination address included in saidx. */ static inline uint32_t key_saidxhash(const struct secasindex *saidx, u_long mask) { uint32_t hash32; const struct sockaddr_in *sin; const struct sockaddr_in6 *sin6; hash32 = saidx->proto; switch (saidx->src.sa.sa_family) { case AF_INET: sin = &saidx->src.sin; hash32 = hash32_buf(&sin->sin_addr, sizeof(sin->sin_addr), hash32); sin = &saidx->dst.sin; hash32 = hash32_buf(&sin->sin_addr, sizeof(sin->sin_addr), hash32 << 1); break; case AF_INET6: sin6 = &saidx->src.sin6; hash32 = hash32_buf(&sin6->sin6_addr, sizeof(sin6->sin6_addr), hash32); sin6 = &saidx->dst.sin6; hash32 = hash32_buf(&sin6->sin6_addr, sizeof(sin6->sin6_addr), hash32 << 1); break; default: hash32 = 0; break; } return hash32 & mask; } /* * Calculate hash using destination address, protocol, * and spi. Those parameter depend on the search of * key_lookup_sa(). */ static uint32_t key_savluthash(const struct sockaddr *dst, uint32_t proto, uint32_t spi, u_long mask) { uint32_t hash32; const struct sockaddr_in *sin; const struct sockaddr_in6 *sin6; hash32 = hash32_buf(&proto, sizeof(proto), spi); switch(dst->sa_family) { case AF_INET: sin = satocsin(dst); hash32 = hash32_buf(&sin->sin_addr, sizeof(sin->sin_addr), hash32); break; case AF_INET6: sin6 = satocsin6(dst); hash32 = hash32_buf(&sin6->sin6_addr, sizeof(sin6->sin6_addr), hash32); break; default: hash32 = 0; } return hash32 & mask; } static int sysctl_net_key_dumpsa(SYSCTLFN_ARGS) { struct mbuf *m, *n; int err2 = 0; char *p, *ep; size_t len; int error; if (newp) return (EPERM); if (namelen != 1) return (EINVAL); mutex_enter(&key_sad.lock); m = key_setdump(name[0], &error, l->l_proc->p_pid); mutex_exit(&key_sad.lock); if (!m) return (error); if (!oldp) *oldlenp = m->m_pkthdr.len; else { p = oldp; if (*oldlenp < m->m_pkthdr.len) { err2 = ENOMEM; ep = p + *oldlenp; } else { *oldlenp = m->m_pkthdr.len; ep = p + m->m_pkthdr.len; } for (n = m; n; n = n->m_next) { len = (ep - p < n->m_len) ? ep - p : n->m_len; error = copyout(mtod(n, const void *), p, len); p += len; if (error) break; } if (error == 0) error = err2; } m_freem(m); return (error); } static int sysctl_net_key_dumpsp(SYSCTLFN_ARGS) { struct mbuf *m, *n; int err2 = 0; char *p, *ep; size_t len; int error; if (newp) return (EPERM); if (namelen != 0) return (EINVAL); mutex_enter(&key_spd.lock); m = key_setspddump(&error, l->l_proc->p_pid); mutex_exit(&key_spd.lock); if (!m) return (error); if (!oldp) *oldlenp = m->m_pkthdr.len; else { p = oldp; if (*oldlenp < m->m_pkthdr.len) { err2 = ENOMEM; ep = p + *oldlenp; } else { *oldlenp = m->m_pkthdr.len; ep = p + m->m_pkthdr.len; } for (n = m; n; n = n->m_next) { len = (ep - p < n->m_len) ? ep - p : n->m_len; error = copyout(mtod(n, const void *), p, len); p += len; if (error) break; } if (error == 0) error = err2; } m_freem(m); return (error); } /* * Create sysctl tree for native IPSEC key knobs, originally * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }. * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 }; * and in any case the part of our sysctl namespace used for dumping the * SPD and SA database *HAS* to be compatible with the KAME sysctl * namespace, for API reasons. * * Pending a consensus on the right way to fix this, add a level of * indirection in how we number the `native' IPSEC key nodes; * and (as requested by Andrew Brown) move registration of the * KAME-compatible names to a separate function. */ #if 0 # define IPSEC_PFKEY PF_KEY_V2 # define IPSEC_PFKEY_NAME "keyv2" #else # define IPSEC_PFKEY PF_KEY # define IPSEC_PFKEY_NAME "key" #endif static int sysctl_net_key_stats(SYSCTLFN_ARGS) { return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS)); } static void sysctl_net_keyv2_setup(struct sysctllog **clog) { sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL, NULL, 0, NULL, 0, CTL_NET, IPSEC_PFKEY, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "debug", NULL, NULL, 0, &key_debug_level, 0, CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "spi_try", NULL, NULL, 0, &key_spi_trycnt, 0, CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "spi_min_value", NULL, NULL, 0, &key_spi_minval, 0, CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "spi_max_value", NULL, NULL, 0, &key_spi_maxval, 0, CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "random_int", NULL, NULL, 0, &key_int_random, 0, CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "larval_lifetime", NULL, NULL, 0, &key_larval_lifetime, 0, CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "blockacq_count", NULL, NULL, 0, &key_blockacq_count, 0, CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "blockacq_lifetime", NULL, NULL, 0, &key_blockacq_lifetime, 0, CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "esp_keymin", NULL, NULL, 0, &ipsec_esp_keymin, 0, CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "prefered_oldsa", NULL, NULL, 0, &key_prefered_oldsa, 0, CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "esp_auth", NULL, NULL, 0, &ipsec_esp_auth, 0, CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "ah_keymin", NULL, NULL, 0, &ipsec_ah_keymin, 0, CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "stats", SYSCTL_DESCR("PF_KEY statistics"), sysctl_net_key_stats, 0, NULL, 0, CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "allow_different_idtype", NULL, NULL, 0, &ipsec_allow_different_idtype, 0, CTL_NET, IPSEC_PFKEY, KEYCTL_ALLOW_DIFFERENT_IDTYPE, CTL_EOL); } /* * Register sysctl names used by setkey(8). For historical reasons, * and to share a single API, these names appear under { CTL_NET, PF_KEY } * for both IPSEC and KAME IPSEC. */ static void sysctl_net_key_compat_setup(struct sysctllog **clog) { sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "key", NULL, NULL, 0, NULL, 0, CTL_NET, PF_KEY, CTL_EOL); /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */ sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "dumpsa", NULL, sysctl_net_key_dumpsa, 0, NULL, 0, CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "dumpsp", NULL, sysctl_net_key_dumpsp, 0, NULL, 0, CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL); }