43 #include "Teuchos_CommandLineProcessor.hpp" 44 #include "Teuchos_ParameterList.hpp" 45 #include "Teuchos_toString.hpp" 63 "complete",
"tensor",
"total",
"smolyak" };
71 "total",
"lexicographic" };
83 using Teuchos::ParameterList;
85 using Teuchos::toString;
89 RCP<const Stokhos::ProductBasis<int,double> >
basis;
90 RCP<const Stokhos::Sparse3Tensor<int,double> >
Cijk;
105 return td->
basis->size();
110 ZOLTAN_ID_PTR globalID, ZOLTAN_ID_PTR localID,
111 int wgt_dim,
float *obj_wgts,
int *ierr) {
115 int n = td->
basis->size();
116 for (
int i=0; i<n; ++i) {
126 int *format,
int *ierr) {
131 *num_lists = td->
Cijk->num_k();
139 num_pins += td->
Cijk->num_j(k_it);
140 *num_nonzeroes = num_pins;
143 *format = ZOLTAN_COMPRESSED_EDGE;
148 int format, ZOLTAN_ID_PTR edgeGID,
int *vtxPtr,
149 ZOLTAN_ID_PTR vtxGID,
int *ierr) {
157 int kdx = 0, jdx = 0;
165 vtxPtr[kdx] = num_pins;
166 num_pins += td->
Cijk->num_j(k_it);
185 int rc = Zoltan_Initialize(argc,
argv,&version);
186 TEUCHOS_ASSERT(rc == 0);
189 Teuchos::CommandLineProcessor
CLP;
191 "This example generates the sparsity pattern for the block stochastic Galerkin matrix.\n");
193 CLP.setOption(
"dimension", &d,
"Stochastic dimension");
195 CLP.setOption(
"order", &p,
"Polynomial order");
196 double drop = 1.0e-12;
197 CLP.setOption(
"drop", &drop,
"Drop tolerance");
198 bool symmetric =
true;
199 CLP.setOption(
"symmetric",
"asymmetric", &symmetric,
"Use basis polynomials with symmetric PDF");
201 CLP.setOption(
"growth", &growth_type,
205 CLP.setOption(
"product_basis", &prod_basis_type,
208 "Product basis type");
210 CLP.setOption(
"ordering", &ordering_type,
213 "Product basis ordering");
215 CLP.setOption(
"partitioning", &partitioning_type,
218 "Partitioning Method");
219 double imbalance_tol = 1.2;
220 CLP.setOption(
"imbalance", &imbalance_tol,
"Imbalance tolerance");
222 CLP.setOption(
"full",
"linear", &
full,
"Use full or linear expansion");
224 CLP.setOption(
"tile_size", &tile_size,
"Tile size");
225 bool save_3tensor =
false;
226 CLP.setOption(
"save_3tensor",
"no-save_3tensor", &save_3tensor,
227 "Save full 3tensor to file");
228 std::string file_3tensor =
"Cijk.dat";
229 CLP.setOption(
"filename_3tensor", &file_3tensor,
230 "Filename to store full 3-tensor");
236 Array< RCP<const Stokhos::OneDOrthogPolyBasis<int,double> > > bases(d);
237 const double alpha = 1.0;
238 const double beta = symmetric ? 1.0 : 2.0 ;
239 for (
int i=0; i<d; i++) {
241 p, alpha, beta,
true, growth_type));
243 RCP<const Stokhos::ProductBasis<int,double> > basis;
250 else if (prod_basis_type ==
TENSOR) {
260 else if (prod_basis_type ==
TOTAL) {
270 else if (prod_basis_type ==
SMOLYAK) {
275 bases, index_set, drop));
279 bases, index_set, drop));
286 Cijk = basis->computeTripleProductTensor();
288 Cijk = basis->computeLinearTripleProductTensor();
290 int basis_size = basis->size();
291 std::cout <<
"basis size = " << basis_size
292 <<
" num nonzero Cijk entries = " << Cijk->
num_entries()
296 std::ofstream cijk_file;
298 cijk_file.open(file_3tensor.c_str());
299 cijk_file.precision(14);
300 cijk_file.setf(std::ios::scientific);
301 cijk_file <<
"i, j, k, part" << std::endl;
305 Zoltan_Struct *zz = Zoltan_Create(MPI_COMM_WORLD);
308 Zoltan_Set_Param(zz,
"DEBUG_LEVEL",
"2");
311 Zoltan_Set_Param(zz,
"LB_METHOD",
"HYPERGRAPH");
312 Zoltan_Set_Param(zz,
"HYPERGRAPH_PACKAGE",
"PHG");
313 Zoltan_Set_Param(zz,
"NUM_GID_ENTRIES",
"1");
314 Zoltan_Set_Param(zz,
"NUM_LID_ENTRIES",
"1");
316 Zoltan_Set_Param(zz,
"RETURN_LISTS",
"PARTS");
317 Zoltan_Set_Param(zz,
"OBJ_WEIGHT_DIM",
"0");
318 Zoltan_Set_Param(zz,
"EDGE_WEIGHT_DIM",
"0");
319 int num_parts = basis_size / tile_size;
320 Zoltan_Set_Param(zz,
"NUM_GLOBAL_PARTS", toString(num_parts).c_str());
321 Zoltan_Set_Param(zz,
"NUM_LOCAL_PARTS", toString(num_parts).c_str());
322 Zoltan_Set_Param(zz,
"IMBALANCE_TOL", toString(imbalance_tol).c_str());
332 int changes, numGidEntries, numLidEntries, numImport, numExport;
333 ZOLTAN_ID_PTR importGlobalGids, importLocalGids, exportGlobalGids, exportLocalGids;
334 int *importProcs, *importToPart, *exportProcs, *exportToPart;
351 TEUCHOS_ASSERT(rc == 0);
353 std::cout <<
"num parts requested = " << num_parts
354 <<
" changes= " << changes
355 <<
" num import = " << numImport
356 <<
" num export = " << numExport << std::endl;
362 Array< Array<int> > part_map(num_parts);
363 for (
int i=0; i<numExport; ++i) {
364 part_map[ exportToPart[i] ].push_back( exportGlobalGids[i] );
368 Array<int> perm_new_to_old;
369 for (
int part=0; part<num_parts; ++part) {
370 int num_vtx = part_map[part].size();
371 for (
int i=0; i<num_vtx; ++i)
372 perm_new_to_old.push_back(part_map[part][i]);
374 TEUCHOS_ASSERT(perm_new_to_old.size() == basis_size);
377 Array<int> perm_old_to_new(basis_size);
378 for (
int i=0; i<basis_size; ++i)
379 perm_old_to_new[ perm_new_to_old[i] ] = i;
382 Cijk_type::k_iterator k_begin = Cijk->k_begin();
383 Cijk_type::k_iterator k_end = Cijk->k_end();
384 for (Cijk_type::k_iterator k_it=k_begin; k_it!=k_end; ++k_it) {
386 Cijk_type::kj_iterator j_begin = Cijk->j_begin(k_it);
387 Cijk_type::kj_iterator j_end = Cijk->j_end(k_it);
388 for (Cijk_type::kj_iterator j_it = j_begin; j_it != j_end; ++j_it) {
390 Cijk_type::kji_iterator i_begin = Cijk->i_begin(j_it);
391 Cijk_type::kji_iterator i_end = Cijk->i_end(j_it);
392 for (Cijk_type::kji_iterator i_it = i_begin; i_it != i_end; ++i_it) {
394 cijk_file << perm_old_to_new[i] <<
", " 395 << perm_old_to_new[
j] <<
", " 396 << perm_old_to_new[k] <<
", " 397 << exportToPart[i] << std::endl;
405 Zoltan_LB_Free_Part(&importGlobalGids, &importLocalGids,
406 &importProcs, &importToPart);
407 Zoltan_LB_Free_Part(&exportGlobalGids, &exportLocalGids,
408 &exportProcs, &exportToPart);
414 catch (std::exception& e) {
415 std::cout << e.what() << std::endl;
int main(int argc, char **argv)
const ProductBasisType prod_basis_type_values[]
const int num_partitioning_types
const char * ordering_type_names[]
SparseArrayIterator< index_iterator, value_iterator >::value_type index(const SparseArrayIterator< index_iterator, value_iterator > &it)
Multivariate orthogonal polynomial basis generated from a total order tensor product of univariate po...
void get_vertex_list(void *data, int sizeGID, int sizeLID, ZOLTAN_ID_PTR globalID, ZOLTAN_ID_PTR localID, int wgt_dim, float *obj_wgts, int *ierr)
const int num_growth_types
const Stokhos::GrowthPolicy growth_type_values[]
const char * prod_basis_type_names[]
GrowthPolicy
Enumerated type for determining Smolyak growth policies.
A comparison functor implementing a strict weak ordering based total-order ordering, recursive on the dimension.
Bi-directional iterator for traversing a sparse array.
RCP< const Stokhos::ProductBasis< int, double > > basis
const char * partitioning_type_names[]
const OrderingType ordering_type_values[]
const char * growth_type_names[]
int get_number_of_vertices(void *data, int *ierr)
ordinal_type num_entries() const
Return number of non-zero entries.
const PartitioningType partitioning_type_values[]
Multivariate orthogonal polynomial basis generated from a total-order complete-polynomial tensor prod...
Multivariate orthogonal polynomial basis generated from a Smolyak sparse grid.
Multivariate orthogonal polynomial basis generated from a tensor product of univariate polynomials...
Stokhos::Sparse3Tensor< int, double > Cijk_type
An isotropic total order index set.
A comparison functor implementing a strict weak ordering based lexographic ordering.
const int num_ordering_types
Stokhos::Sparse3Tensor< int, double > Cijk_type
void get_hypergraph_size(void *data, int *num_lists, int *num_nonzeroes, int *format, int *ierr)
RCP< const Stokhos::Sparse3Tensor< int, double > > Cijk
void get_hypergraph(void *data, int sizeGID, int num_edges, int num_nonzeroes, int format, ZOLTAN_ID_PTR edgeGID, int *vtxPtr, ZOLTAN_ID_PTR vtxGID, int *ierr)
const int num_prod_basis_types