#include "BelosEpetraAdapter.hpp"
#include "EpetraExt_readEpetraLinearSystem.h"
#include "Epetra_Map.h"
#ifdef EPETRA_MPI
#include "Epetra_MpiComm.h"
#else
#include "Epetra_SerialComm.h"
#endif
#include "Epetra_CrsMatrix.h"
#include "Teuchos_CommandLineProcessor.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_StandardCatchMacros.hpp"
int main(int argc, char *argv[]) {
int MyPID = 0;
#ifdef EPETRA_MPI
MPI_Init(&argc,&argv);
#else
#endif
typedef double ST;
typedef Teuchos::ScalarTraits<ST> SCT;
typedef SCT::magnitudeType MT;
using Teuchos::ParameterList;
using Teuchos::RCP;
using Teuchos::rcp;
bool verbose = false;
bool success = true;
try {
bool proc_verbose = false;
int frequency = -1;
int blocksize = 1;
int numrhs = 1;
int maxiters = -1;
int maxsubspace = 50;
int maxrestarts = 15;
std::string filename("orsirr1.hb");
MT tol = 1.0e-5;
Teuchos::CommandLineProcessor cmdp(false,true);
cmdp.setOption("verbose","quiet",&verbose,"Print messages and results.");
cmdp.setOption("frequency",&frequency,"Solvers frequency for printing residuals (#iters).");
cmdp.setOption("filename",&filename,"Filename for test matrix. Acceptable file extensions: *.hb,*.mtx,*.triU,*.triS");
cmdp.setOption("tol",&tol,"Relative residual tolerance used by GMRES solver.");
cmdp.setOption("num-rhs",&numrhs,"Number of right-hand sides to be solved for.");
cmdp.setOption("block-size",&blocksize,"Block size used by GMRES.");
cmdp.setOption("max-iters",&maxiters,"Maximum number of iterations per linear system (-1 = adapted to problem/block size).");
cmdp.setOption("max-subspace",&maxsubspace,"Maximum number of blocks the solver can use for the subspace.");
cmdp.setOption("max-restarts",&maxrestarts,"Maximum number of restarts allowed for GMRES solver.");
if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL) {
return -1;
}
if (!verbose)
frequency = -1;
RCP<Epetra_Map> Map;
RCP<Epetra_CrsMatrix> A;
RCP<Epetra_MultiVector> B, X;
RCP<Epetra_Vector> vecB, vecX;
EpetraExt::readEpetraLinearSystem(filename, Comm, &A, &Map, &vecX, &vecB);
A->OptimizeStorage();
proc_verbose = verbose && (MyPID==0);
if (numrhs>1) {
X->Random();
OPT::Apply( *A, *X, *B );
X->PutScalar( 0.0 );
}
else {
}
if (maxiters == -1)
maxiters = NumGlobalElements - 1;
ParameterList belosList;
belosList.set( "Num Blocks", maxsubspace);
belosList.set( "Block Size", blocksize );
belosList.set( "Maximum Iterations", maxiters );
belosList.set( "Maximum Restarts", maxrestarts );
belosList.set( "Convergence Tolerance", tol );
if (verbose) {
if (frequency > 0)
belosList.set( "Output Frequency", frequency );
}
else
if (set == false) {
if (proc_verbose)
std::cout << std::endl << "ERROR: Belos::LinearProblem failed to set up correctly!" << std::endl;
return -1;
}
RCP< Belos::SolverManager<double,MV,OP> > newSolver
if (proc_verbose) {
std::cout << std::endl << std::endl;
std::cout << "Dimension of matrix: " << NumGlobalElements << std::endl;
std::cout << "Number of right-hand sides: " << numrhs << std::endl;
std::cout << "Block size used by solver: " << blocksize << std::endl;
std::cout << "Max number of restarts allowed: " << maxrestarts << std::endl;
std::cout << "Max number of Gmres iterations per restart cycle: " << maxiters << std::endl;
std::cout << "Relative residual tolerance: " << tol << std::endl;
std::cout << std::endl;
}
bool badRes = false;
std::vector<double> actual_resids( numrhs );
std::vector<double> rhs_norm( numrhs );
OPT::Apply( *A, *X, resid );
MVT::MvAddMv( -1.0, resid, 1.0, *B, resid );
MVT::MvNorm( resid, actual_resids );
MVT::MvNorm( *B, rhs_norm );
if (proc_verbose) {
std::cout<< "---------- Actual Residuals (normalized) ----------"<<std::endl<<std::endl;
for ( int i=0; i<numrhs; i++) {
double actRes = actual_resids[i]/rhs_norm[i];
std::cout<<"Problem "<<i<<" : \t"<< actRes <<std::endl;
if (actRes > tol) badRes = true;
}
}
success = false;
if (proc_verbose)
std::cout << std::endl << "ERROR: Belos did not converge!" << std::endl;
} else {
success = true;
if (proc_verbose)
std::cout << std::endl << "SUCCESS: Belos converged!" << std::endl;
}
}
TEUCHOS_STANDARD_CATCH_STATEMENTS(verbose, std::cerr, success);
#ifdef EPETRA_MPI
MPI_Finalize();
#endif
return success ? EXIT_SUCCESS : EXIT_FAILURE;
}