/* $NetBSD: mesongx_mmc.c,v 1.5 2019/04/21 13:08:48 jmcneill Exp $ */ /*- * Copyright (c) 2019 Jared McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: mesongx_mmc.c,v 1.5 2019/04/21 13:08:48 jmcneill Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #define SD_EMMC_CLOCK 0x00 #define CLOCK_CFG_IRQ_SDIO_SLEEP __BIT(25) #define CLOCK_CFG_ALWAYS_ON __BIT(24) #define CLOCK_CFG_RX_DELAY __BITS(23,20) #define CLOCK_CFG_TX_DELAY __BITS(19,16) #define CLOCK_CFG_SRAM_PD __BITS(15,14) #define CLOCK_CFG_RX_PHASE __BITS(13,12) #define CLOCK_CFG_TX_PHASE __BITS(11,10) #define CLOCK_CFG_CO_PHASE __BITS(9,8) #define CLOCK_CFG_SRC __BITS(7,6) #define CLOCK_CFG_DIV __BITS(5,0) #define SD_EMMC_DELAY 0x04 #define SD_EMMC_ADJUST 0x08 #define ADJUST_ADJ_DELAY __BITS(21,16) #define ADJUST_CALI_RISE __BIT(14) #define ADJUST_ADJ_ENABLE __BIT(13) #define ADJUST_CALI_ENABLE __BIT(12) #define ADJUST_CALI_SEL __BITS(11,8) #define SD_EMMC_CALOUT 0x10 #define CALOUT_CALI_SETUP __BITS(15,8) #define CALOUT_CALI_VLD __BIT(7) #define CALOUT_CALI_IDX __BITS(5,0) #define SD_EMMC_START 0x40 #define START_DESC_ADDR __BITS(31,2) #define START_DESC_BUSY __BIT(1) #define START_DESC_INT __BIT(0) #define SD_EMMC_CFG 0x44 #define CFG_IP_TXD_ADJ __BITS(31,28) #define CFG_ERR_ABORT __BIT(27) #define CFG_IRQ_DS __BIT(26) #define CFG_TXD_RETRY __BIT(25) #define CFG_TXD_ADD_ERR __BIT(24) #define CFG_AUTO_CLK __BIT(23) #define CFG_STOP_CLK __BIT(22) #define CFG_CMD_LOW __BIT(21) #define CFG_CHK_DS __BIT(20) #define CFG_IGNORE_OWNER __BIT(19) #define CFG_SDCLK_ALWAYS_ON __BIT(18) #define CFG_BLK_GAP_IP __BIT(17) #define CFG_OUT_FALL __BIT(16) #define CFG_RC_CC __BITS(15,12) #define CFG_RESP_TIMEOUT __BIT(11,8) #define CFG_BL_LEN __BITS(7,4) #define CFG_DC_UGT __BIT(3) #define CFG_DDR __BIT(2) #define CFG_BUS_WIDTH __BITS(1,0) #define CFG_BUS_WIDTH_1 0 #define CFG_BUS_WIDTH_4 1 #define CFG_BUS_WIDTH_8 2 #define SD_EMMC_STATUS 0x48 #define STATUS_CORE_BUSY __BIT(31) #define STATUS_DESC_BUSY __BIT(30) #define STATUS_BUS_FSM __BIT(29,26) #define STATUS_DS __BIT(25) #define STATUS_CMD_I __BIT(24) #define STATUS_DAT_I __BITS(23,16) #define STATUS_IRQ_SDIO __BIT(15) #define STATUS_RESP_STATUS __BIT(14) #define STATUS_END_OF_CHAIN __BIT(13) #define STATUS_DESC_TIMEOUT __BIT(12) #define STATUS_RESP_TIMEOUT __BIT(11) #define STATUS_RESP_ERR __BIT(10) #define STATUS_DESC_ERR __BIT(9) #define STATUS_TXD_ERR __BIT(8) #define STATUS_RXD_ERR __BITS(7,0) #define STATUS_TIMEOUT (STATUS_DESC_TIMEOUT | STATUS_RESP_TIMEOUT) #define STATUS_ERROR (STATUS_RESP_ERR | STATUS_DESC_ERR | STATUS_RXD_ERR | STATUS_TXD_ERR) #define SD_EMMC_IRQ_EN 0x4c #define IRQ_EN_CFG_SECURE __BIT(16) #define IRQ_EN_IRQ_SDIO __BIT(15) #define IRQ_EN_RESP_STATUS __BIT(14) #define IRQ_EN_END_OF_CHAIN __BIT(13) #define IRQ_EN_DESC_TIMEOUT __BIT(12) #define IRQ_EN_RESP_TIMEOUT __BIT(11) #define IRQ_EN_RESP_ERR __BIT(10) #define IRQ_EN_DESC_ERR __BIT(9) #define IRQ_EN_TXD_ERR __BIT(8) #define IRQ_EN_RXD_ERR __BITS(7,0) #define SD_EMMC_CMD_CFG 0x50 #define SD_EMMC_CMD_ARG 0x54 #define SD_EMMC_CMD_DAT 0x58 #define SD_EMMC_CMD_RSP 0x5c #define SD_EMMC_CMD_RSP1 0x60 #define SD_EMMC_CMD_RSP2 0x64 #define SD_EMMC_CMD_RSP3 0x68 struct mesongx_mmc_desc { uint32_t flags; #define MESONGX_MMC_FLAGS_OWNER __BIT(31) #define MESONGX_MMC_FLAGS_ERROR __BIT(30) #define MESONGX_MMC_FLAGS_CMD_INDEX __BITS(29,24) #define MESONGX_MMC_FLAGS_DATA_NUM __BIT(23) #define MESONGX_MMC_FLAGS_RESP_NUM __BIT(22) #define MESONGX_MMC_FLAGS_RESP_128 __BIT(21) #define MESONGX_MMC_FLAGS_RESP_NOCRC __BIT(20) #define MESONGX_MMC_FLAGS_DATA_WR __BIT(19) #define MESONGX_MMC_FLAGS_DATA_IO __BIT(18) #define MESONGX_MMC_FLAGS_NO_CMD __BIT(17) #define MESONGX_MMC_FLAGS_NO_RESP __BIT(16) #define MESONGX_MMC_FLAGS_TIMEOUT __BITS(15,12) #define MESONGX_MMC_FLAGS_END_OF_CHAIN __BIT(11) #define MESONGX_MMC_FLAGS_R1B __BIT(10) #define MESONGX_MMC_FLAGS_BLOCK_MODE __BIT(9) #define MESONGX_MMC_FLAGS_LENGTH __BITS(8,0) uint32_t arg; uint32_t data; #define MESONGX_MMC_DATA_BIG_ENDIAN __BIT(1) #define MESONGX_MMC_DATA_SRAM __BIT(0) uint32_t resp; #define MESONGX_MMC_RESP_SRAM __BIT(0) } __packed; #define MESONGX_MMC_NDESC 256 struct mesongx_mmc_softc; static int mesongx_mmc_match(device_t, cfdata_t, void *); static void mesongx_mmc_attach(device_t, device_t, void *); static void mesongx_mmc_attach_i(device_t); static int mesongx_mmc_intr(void *); static int mesongx_mmc_dma_setup(struct mesongx_mmc_softc *); static int mesongx_mmc_dmabounce_setup(struct mesongx_mmc_softc *); static int mesongx_mmc_host_reset(sdmmc_chipset_handle_t); static uint32_t mesongx_mmc_host_ocr(sdmmc_chipset_handle_t); static int mesongx_mmc_host_maxblklen(sdmmc_chipset_handle_t); static int mesongx_mmc_card_detect(sdmmc_chipset_handle_t); static int mesongx_mmc_write_protect(sdmmc_chipset_handle_t); static int mesongx_mmc_bus_power(sdmmc_chipset_handle_t, uint32_t); static int mesongx_mmc_bus_clock(sdmmc_chipset_handle_t, int, bool); static int mesongx_mmc_bus_width(sdmmc_chipset_handle_t, int); static int mesongx_mmc_bus_rod(sdmmc_chipset_handle_t, int); static int mesongx_mmc_signal_voltage(sdmmc_chipset_handle_t, int); static int mesongx_mmc_execute_tuning(sdmmc_chipset_handle_t, int); static void mesongx_mmc_exec_command(sdmmc_chipset_handle_t, struct sdmmc_command *); static void mesongx_mmc_card_enable_intr(sdmmc_chipset_handle_t, int); static void mesongx_mmc_card_intr_ack(sdmmc_chipset_handle_t); static struct sdmmc_chip_functions mesongx_mmc_chip_functions = { .host_reset = mesongx_mmc_host_reset, .host_ocr = mesongx_mmc_host_ocr, .host_maxblklen = mesongx_mmc_host_maxblklen, .card_detect = mesongx_mmc_card_detect, .write_protect = mesongx_mmc_write_protect, .bus_power = mesongx_mmc_bus_power, .bus_clock_ddr = mesongx_mmc_bus_clock, .bus_width = mesongx_mmc_bus_width, .bus_rod = mesongx_mmc_bus_rod, .signal_voltage = mesongx_mmc_signal_voltage, .execute_tuning = mesongx_mmc_execute_tuning, .exec_command = mesongx_mmc_exec_command, .card_enable_intr = mesongx_mmc_card_enable_intr, .card_intr_ack = mesongx_mmc_card_intr_ack, }; struct mesongx_mmc_softc { device_t sc_dev; bus_space_tag_t sc_bst; bus_space_handle_t sc_bsh; bus_dma_tag_t sc_dmat; int sc_phandle; void *sc_ih; kmutex_t sc_intr_lock; kcondvar_t sc_intr_cv; device_t sc_sdmmc_dev; uint32_t sc_host_ocr; struct sdmmc_command *sc_cmd; bus_dma_segment_t sc_desc_segs[1]; int sc_desc_nsegs; bus_size_t sc_desc_size; bus_dmamap_t sc_desc_map; int sc_desc_ndesc; void *sc_desc_desc; bus_dmamap_t sc_dmabounce_map; void *sc_dmabounce_buf; size_t sc_dmabounce_buflen; struct clk *sc_clk_core; struct clk *sc_clk_clkin[2]; struct fdtbus_reset *sc_rst; struct fdtbus_gpio_pin *sc_gpio_cd; int sc_gpio_cd_inverted; struct fdtbus_gpio_pin *sc_gpio_wp; int sc_gpio_wp_inverted; struct fdtbus_regulator *sc_reg_vmmc; struct fdtbus_regulator *sc_reg_vqmmc; struct fdtbus_mmc_pwrseq *sc_pwrseq; u_int sc_max_frequency; bool sc_non_removable; bool sc_broken_cd; }; CFATTACH_DECL_NEW(mesongx_mmc, sizeof(struct mesongx_mmc_softc), mesongx_mmc_match, mesongx_mmc_attach, NULL, NULL); #define MMC_WRITE(sc, reg, val) \ bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) #define MMC_READ(sc, reg) \ bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg)) static const struct of_compat_data compat_data[] = { { "amlogic,meson-gx-mmc", 1 }, { "amlogic,meson-gxbb-mmc", 1 }, { NULL } }; static int mesongx_mmc_match(device_t parent, cfdata_t cf, void *aux) { struct fdt_attach_args * const faa = aux; return of_match_compat_data(faa->faa_phandle, compat_data); } static void mesongx_mmc_attach(device_t parent, device_t self, void *aux) { struct mesongx_mmc_softc * const sc = device_private(self); struct fdt_attach_args * const faa = aux; const int phandle = faa->faa_phandle; char intrstr[128]; bus_addr_t addr; bus_size_t size; if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) { aprint_error(": couldn't get registers\n"); return; } sc->sc_clk_core = fdtbus_clock_get(phandle, "core"); sc->sc_clk_clkin[0] = fdtbus_clock_get(phandle, "clkin0"); sc->sc_clk_clkin[1] = fdtbus_clock_get(phandle, "clkin1"); if (sc->sc_clk_core == NULL || sc->sc_clk_clkin[0] == NULL || sc->sc_clk_clkin[1] == NULL) { aprint_error(": couldn't get clocks\n"); return; } sc->sc_rst = fdtbus_reset_get_index(phandle, 0); if (sc->sc_rst == NULL) { aprint_error(": couldn't get reset\n"); return; } sc->sc_pwrseq = fdtbus_mmc_pwrseq_get(phandle); if (clk_enable(sc->sc_clk_core) != 0) { aprint_error(": couldn't enable core clock\n"); return; } if (clk_enable(sc->sc_clk_clkin[0]) != 0 || clk_enable(sc->sc_clk_clkin[1]) != 0) { aprint_error(": couldn't enable clkin clocks\n"); return; } if (fdtbus_reset_deassert(sc->sc_rst) != 0) { aprint_error(": couldn't de-assert reset\n"); return; } sc->sc_dev = self; sc->sc_phandle = phandle; sc->sc_bst = faa->faa_bst; sc->sc_dmat = faa->faa_dmat; mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_BIO); cv_init(&sc->sc_intr_cv, "gxmmcirq"); if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) { aprint_error(": couldn't map registers\n"); return; } aprint_naive("\n"); aprint_normal(": eMMC/SD/SDIO controller\n"); sc->sc_reg_vmmc = fdtbus_regulator_acquire(phandle, "vmmc-supply"); sc->sc_reg_vqmmc = fdtbus_regulator_acquire(phandle, "vqmmc-supply"); sc->sc_gpio_cd = fdtbus_gpio_acquire(phandle, "cd-gpios", GPIO_PIN_INPUT); sc->sc_gpio_wp = fdtbus_gpio_acquire(phandle, "wp-gpios", GPIO_PIN_INPUT); sc->sc_gpio_cd_inverted = of_hasprop(phandle, "cd-inverted") ? 1 : 0; sc->sc_gpio_wp_inverted = of_hasprop(phandle, "wp-inverted") ? 1 : 0; sc->sc_non_removable = of_hasprop(phandle, "non-removable"); sc->sc_broken_cd = of_hasprop(phandle, "broken-cd"); if (of_getprop_uint32(phandle, "max-frequency", &sc->sc_max_frequency)) sc->sc_max_frequency = 52000000; if (mesongx_mmc_dma_setup(sc) != 0 || mesongx_mmc_dmabounce_setup(sc) != 0) { aprint_error_dev(self, "failed to setup DMA\n"); return; } if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) { aprint_error_dev(self, "failed to decode interrupt\n"); return; } sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_BIO, FDT_INTR_MPSAFE, mesongx_mmc_intr, sc); if (sc->sc_ih == NULL) { aprint_error_dev(self, "failed to establish interrupt on %s\n", intrstr); return; } aprint_normal_dev(self, "interrupting on %s\n", intrstr); if (sc->sc_pwrseq) fdtbus_mmc_pwrseq_reset(sc->sc_pwrseq); config_interrupts(self, mesongx_mmc_attach_i); } static int mesongx_mmc_dma_setup(struct mesongx_mmc_softc *sc) { int error; sc->sc_desc_ndesc = MESONGX_MMC_NDESC; sc->sc_desc_size = sizeof(struct mesongx_mmc_desc) * sc->sc_desc_ndesc; error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_size, sizeof(struct mesongx_mmc_desc), sc->sc_desc_size, sc->sc_desc_segs, 1, &sc->sc_desc_nsegs, BUS_DMA_WAITOK); if (error) return error; error = bus_dmamem_map(sc->sc_dmat, sc->sc_desc_segs, sc->sc_desc_nsegs, sc->sc_desc_size, &sc->sc_desc_desc, BUS_DMA_WAITOK); if (error) goto free; error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_size, 1, sc->sc_desc_size, 0, BUS_DMA_WAITOK, &sc->sc_desc_map); if (error) goto unmap; error = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_map, sc->sc_desc_desc, sc->sc_desc_size, NULL, BUS_DMA_WAITOK); if (error) goto destroy; return 0; destroy: bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_map); unmap: bus_dmamem_unmap(sc->sc_dmat, sc->sc_desc_desc, sc->sc_desc_size); free: bus_dmamem_free(sc->sc_dmat, sc->sc_desc_segs, sc->sc_desc_nsegs); return error; } static int mesongx_mmc_dmabounce_setup(struct mesongx_mmc_softc *sc) { bus_dma_segment_t ds[1]; int error, rseg; sc->sc_dmabounce_buflen = MAXPHYS; error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_dmabounce_buflen, 0, sc->sc_dmabounce_buflen, ds, 1, &rseg, BUS_DMA_WAITOK); if (error) return error; error = bus_dmamem_map(sc->sc_dmat, ds, 1, sc->sc_dmabounce_buflen, &sc->sc_dmabounce_buf, BUS_DMA_WAITOK); if (error) goto free; error = bus_dmamap_create(sc->sc_dmat, sc->sc_dmabounce_buflen, 1, sc->sc_dmabounce_buflen, 0, BUS_DMA_WAITOK, &sc->sc_dmabounce_map); if (error) goto unmap; error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmabounce_map, sc->sc_dmabounce_buf, sc->sc_dmabounce_buflen, NULL, BUS_DMA_WAITOK); if (error) goto destroy; return 0; destroy: bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmabounce_map); unmap: bus_dmamem_unmap(sc->sc_dmat, sc->sc_dmabounce_buf, sc->sc_dmabounce_buflen); free: bus_dmamem_free(sc->sc_dmat, ds, rseg); return error; } static int mesongx_mmc_set_clock(struct mesongx_mmc_softc *sc, u_int freq, bool ddr) { int best_diff, best_sel, best_div, sel, div; uint32_t val; if (freq == 0) freq = SDMMC_SDCLK_400K; best_diff = INT_MAX; best_sel = 0; best_div = 0; const u_int target_rate = (freq * 1000) << ddr; for (sel = 0; sel <= 1; sel++) { const u_int parent_rate = clk_get_rate(sc->sc_clk_clkin[sel]); for (div = 1; div <= 63; div++) { const u_int rate = parent_rate / div; if (rate > target_rate) continue; const int diff = target_rate - rate; if (diff < best_diff) { best_diff = diff; best_sel = sel; best_div = div; } } } if (best_diff == INT_MAX) return ERANGE; val = MMC_READ(sc, SD_EMMC_CLOCK); val |= CLOCK_CFG_ALWAYS_ON; val &= ~CLOCK_CFG_RX_PHASE; val |= __SHIFTIN(0, CLOCK_CFG_RX_PHASE); val &= ~CLOCK_CFG_TX_PHASE; val |= __SHIFTIN(2, CLOCK_CFG_TX_PHASE); val &= ~CLOCK_CFG_CO_PHASE; val |= __SHIFTIN(3, CLOCK_CFG_CO_PHASE); val &= ~CLOCK_CFG_SRC; val |= __SHIFTIN(best_sel, CLOCK_CFG_SRC); val &= ~CLOCK_CFG_DIV; val |= __SHIFTIN(best_div, CLOCK_CFG_DIV); MMC_WRITE(sc, SD_EMMC_CLOCK, val); return 0; } static void mesongx_mmc_attach_i(device_t self) { struct mesongx_mmc_softc * const sc = device_private(self); struct sdmmcbus_attach_args saa; uint32_t width; if (sc->sc_pwrseq) fdtbus_mmc_pwrseq_pre_power_on(sc->sc_pwrseq); mesongx_mmc_bus_clock(sc, SDMMC_SDCLK_400K, false); mesongx_mmc_host_reset(sc); mesongx_mmc_bus_width(sc, 1); if (sc->sc_pwrseq) fdtbus_mmc_pwrseq_post_power_on(sc->sc_pwrseq); if (of_getprop_uint32(sc->sc_phandle, "bus-width", &width) != 0) width = 4; memset(&saa, 0, sizeof(saa)); saa.saa_busname = "sdmmc"; saa.saa_sct = &mesongx_mmc_chip_functions; saa.saa_sch = sc; saa.saa_dmat = sc->sc_dmat; saa.saa_clkmin = SDMMC_SDCLK_400K; saa.saa_clkmax = sc->sc_max_frequency / 1000; saa.saa_caps = SMC_CAPS_DMA; #if notyet /* XXX causes init to die when using root on eMMC with ODROID-C2 */ saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA; #endif sc->sc_host_ocr = MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V; if (of_getprop_bool(sc->sc_phandle, "cap-sd-highspeed")) { saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED; sc->sc_host_ocr |= MMC_OCR_HCS; } if (of_getprop_bool(sc->sc_phandle, "cap-mmc-highspeed")) saa.saa_caps |= SMC_CAPS_MMC_HIGHSPEED; if (of_getprop_bool(sc->sc_phandle, "mmc-ddr-3_3v")) { saa.saa_caps |= SMC_CAPS_MMC_DDR52; } if (of_getprop_bool(sc->sc_phandle, "mmc-ddr-1_8v")) { saa.saa_caps |= SMC_CAPS_MMC_DDR52; sc->sc_host_ocr |= MMC_OCR_1_65V_1_95V; } if (of_getprop_bool(sc->sc_phandle, "mmc-hs200-1_8v")) { saa.saa_caps |= SMC_CAPS_MMC_HS200; sc->sc_host_ocr |= MMC_OCR_1_65V_1_95V; } if (width == 4) saa.saa_caps |= SMC_CAPS_4BIT_MODE; if (width == 8) saa.saa_caps |= SMC_CAPS_8BIT_MODE; if (sc->sc_gpio_cd) saa.saa_caps |= SMC_CAPS_POLL_CARD_DET; sc->sc_sdmmc_dev = config_found(self, &saa, NULL); } static int mesongx_mmc_intr(void *priv) { struct mesongx_mmc_softc * const sc = priv; struct sdmmc_command *cmd; int rv = 0; mutex_enter(&sc->sc_intr_lock); const uint32_t irq_en = MMC_READ(sc, SD_EMMC_IRQ_EN); const uint32_t status = MMC_READ(sc, SD_EMMC_STATUS) & irq_en; if ((status & STATUS_IRQ_SDIO) != 0) { rv = 1; sdmmc_card_intr(sc->sc_sdmmc_dev); } cmd = sc->sc_cmd; if (cmd == NULL) { device_printf(sc->sc_dev, "WARNING: IRQ with no active command, status %#x\n", status); goto done; } if ((status & STATUS_TIMEOUT) != 0) { rv = 1; cmd->c_error = ETIMEDOUT; goto done; } if ((status & STATUS_ERROR) != 0) { rv = 1; cmd->c_error = EIO; goto done; } if ((status & STATUS_END_OF_CHAIN) != 0 && (cmd->c_flags & SCF_ITSDONE) == 0) { rv = 1; if ((cmd->c_flags & SCF_RSP_PRESENT) != 0) { if (cmd->c_flags & SCF_RSP_136) { cmd->c_resp[0] = MMC_READ(sc, SD_EMMC_CMD_RSP); cmd->c_resp[1] = MMC_READ(sc, SD_EMMC_CMD_RSP1); cmd->c_resp[2] = MMC_READ(sc, SD_EMMC_CMD_RSP2); cmd->c_resp[3] = MMC_READ(sc, SD_EMMC_CMD_RSP3); if (cmd->c_flags & SCF_RSP_CRC) { cmd->c_resp[0] = (cmd->c_resp[0] >> 8) | (cmd->c_resp[1] << 24); cmd->c_resp[1] = (cmd->c_resp[1] >> 8) | (cmd->c_resp[2] << 24); cmd->c_resp[2] = (cmd->c_resp[2] >> 8) | (cmd->c_resp[3] << 24); cmd->c_resp[3] = (cmd->c_resp[3] >> 8); } } else { cmd->c_resp[0] = MMC_READ(sc, SD_EMMC_CMD_RSP); } } cmd->c_flags |= SCF_ITSDONE; cmd->c_error = 0; goto done; } done: if (rv) { cv_broadcast(&sc->sc_intr_cv); MMC_WRITE(sc, SD_EMMC_STATUS, irq_en); } mutex_exit(&sc->sc_intr_lock); return rv; } static int mesongx_mmc_host_reset(sdmmc_chipset_handle_t sch) { struct mesongx_mmc_softc * const sc = sch; uint32_t val; MMC_WRITE(sc, SD_EMMC_START, 0); val = MMC_READ(sc, SD_EMMC_CFG); val &= ~CFG_RC_CC; val |= __SHIFTIN(ilog2(16), CFG_RC_CC); val |= CFG_SDCLK_ALWAYS_ON; MMC_WRITE(sc, SD_EMMC_CFG, val); return 0; } static uint32_t mesongx_mmc_host_ocr(sdmmc_chipset_handle_t sch) { struct mesongx_mmc_softc * const sc = sch; return sc->sc_host_ocr; } static int mesongx_mmc_host_maxblklen(sdmmc_chipset_handle_t sch) { return 512; } static int mesongx_mmc_card_detect(sdmmc_chipset_handle_t sch) { struct mesongx_mmc_softc * const sc = sch; int val; if (sc->sc_non_removable || sc->sc_broken_cd) { /* * Non-removable or broken card detect flag set in * DT, assume always present */ return 1; } else if (sc->sc_gpio_cd != NULL) { val = fdtbus_gpio_read(sc->sc_gpio_cd); if (sc->sc_gpio_cd_inverted) val = !val; return val; } else { return 1; } } static int mesongx_mmc_write_protect(sdmmc_chipset_handle_t sch) { struct mesongx_mmc_softc * const sc = sch; int val; if (sc->sc_gpio_wp != NULL) { val = fdtbus_gpio_read(sc->sc_gpio_wp); if (sc->sc_gpio_wp_inverted) val = !val; return val; } return 0; } static int mesongx_mmc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr) { return 0; } static int mesongx_mmc_bus_clock(sdmmc_chipset_handle_t sch, int freq, bool ddr) { struct mesongx_mmc_softc * const sc = sch; uint32_t val; int error; error = mesongx_mmc_set_clock(sc, freq, ddr); if (error != 0) return error; val = MMC_READ(sc, SD_EMMC_CFG); if (ddr) val |= CFG_DDR; else val &= ~CFG_DDR; MMC_WRITE(sc, SD_EMMC_CFG, val); return 0; } static int mesongx_mmc_bus_width(sdmmc_chipset_handle_t sch, int width) { struct mesongx_mmc_softc *sc = sch; uint32_t val; val = MMC_READ(sc, SD_EMMC_CFG); val &= ~CFG_BUS_WIDTH; switch (width) { case 1: val |= __SHIFTIN(CFG_BUS_WIDTH_1, CFG_BUS_WIDTH); break; case 4: val |= __SHIFTIN(CFG_BUS_WIDTH_4, CFG_BUS_WIDTH); break; case 8: val |= __SHIFTIN(CFG_BUS_WIDTH_8, CFG_BUS_WIDTH); break; default: return EINVAL; } MMC_WRITE(sc, SD_EMMC_CFG, val); return 0; } static int mesongx_mmc_bus_rod(sdmmc_chipset_handle_t sch, int on) { return -1; } static int mesongx_mmc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage) { struct mesongx_mmc_softc *sc = sch; u_int uvol; int error; if (sc->sc_reg_vqmmc == NULL) return 0; switch (signal_voltage) { case SDMMC_SIGNAL_VOLTAGE_330: uvol = 3300000; break; case SDMMC_SIGNAL_VOLTAGE_180: uvol = 1800000; break; default: return EINVAL; } error = fdtbus_regulator_supports_voltage(sc->sc_reg_vqmmc, uvol, uvol); if (error != 0) return 0; error = fdtbus_regulator_set_voltage(sc->sc_reg_vqmmc, uvol, uvol); if (error != 0) return error; return fdtbus_regulator_enable(sc->sc_reg_vqmmc); } static int mesongx_mmc_execute_tuning(sdmmc_chipset_handle_t sch, int timing) { switch (timing) { case SDMMC_TIMING_MMC_HS200: break; default: return EINVAL; } return 0; } static int mesongx_mmc_dma_prepare(struct mesongx_mmc_softc *sc, struct sdmmc_command *cmd, uint32_t cmdflags) { struct mesongx_mmc_desc *dma = sc->sc_desc_desc; bus_dmamap_t map = cmd->c_dmamap; u_int xferlen, blen, resid; bus_size_t off; uint32_t flags; int desc, seg; if (cmd->c_blklen > 512) { device_printf(sc->sc_dev, "block length %d not supported\n", cmd->c_blklen); return EINVAL; } for (seg = 0; seg < map->dm_nsegs; seg++) { if (map->dm_segs[seg].ds_len % cmd->c_blklen != 0) { /* Force DMA bounce for unaligned transfers */ map = NULL; break; } } if (map == NULL) { map = sc->sc_dmabounce_map; cmd->c_flags |= SCF_NEED_BOUNCE; if ((cmd->c_flags & SCF_CMD_READ) != 0) { memset(sc->sc_dmabounce_buf, 0, cmd->c_datalen); bus_dmamap_sync(sc->sc_dmat, sc->sc_dmabounce_map, 0, cmd->c_datalen, BUS_DMASYNC_PREREAD); } else { memcpy(sc->sc_dmabounce_buf, cmd->c_data, cmd->c_datalen); bus_dmamap_sync(sc->sc_dmat, sc->sc_dmabounce_map, 0, cmd->c_datalen, BUS_DMASYNC_PREWRITE); } } desc = 0; for (seg = 0; seg < map->dm_nsegs; seg++) { bus_addr_t paddr = map->dm_segs[seg].ds_addr; bus_size_t len = map->dm_segs[seg].ds_len; resid = uimin(len, cmd->c_resid); off = 0; while (resid > 0) { if (desc == sc->sc_desc_ndesc) break; flags = cmdflags; if (resid >= cmd->c_blklen) { xferlen = (resid / cmd->c_blklen) * cmd->c_blklen; blen = xferlen / cmd->c_blklen; flags |= MESONGX_MMC_FLAGS_BLOCK_MODE; } else { blen = xferlen = resid; } KASSERT(xferlen > 0); KASSERT(blen <= 512); flags |= __SHIFTIN(blen % 512, MESONGX_MMC_FLAGS_LENGTH); if (desc > 0) flags |= MESONGX_MMC_FLAGS_NO_CMD; if (cmd->c_resid == xferlen) flags |= MESONGX_MMC_FLAGS_END_OF_CHAIN; dma[desc].flags = htole32(flags); dma[desc].arg = htole32(cmd->c_arg); dma[desc].data = htole32(paddr + off); dma[desc].resp = 0; cmd->c_resid -= xferlen; resid -= xferlen; off += xferlen; if (cmd->c_resid == 0) break; ++desc; } } if (desc == sc->sc_desc_ndesc) { device_printf(sc->sc_dev, "not enough descriptors for %d byte transfer (%d segs)!\n", cmd->c_datalen, map->dm_nsegs); return EIO; } bus_dmamap_sync(sc->sc_dmat, sc->sc_desc_map, 0, sc->sc_desc_size, BUS_DMASYNC_PREWRITE); return 0; } static void mesongx_mmc_dma_complete(struct mesongx_mmc_softc *sc, struct sdmmc_command *cmd) { bus_dmamap_sync(sc->sc_dmat, sc->sc_desc_map, 0, sc->sc_desc_size, BUS_DMASYNC_POSTWRITE); if ((cmd->c_flags & SCF_NEED_BOUNCE) != 0) { if ((cmd->c_flags & SCF_CMD_READ) != 0) { bus_dmamap_sync(sc->sc_dmat, sc->sc_dmabounce_map, 0, cmd->c_datalen, BUS_DMASYNC_POSTREAD); memcpy(cmd->c_data, sc->sc_dmabounce_buf, cmd->c_datalen); } else { bus_dmamap_sync(sc->sc_dmat, sc->sc_dmabounce_map, 0, cmd->c_datalen, BUS_DMASYNC_POSTWRITE); } } } static void mesongx_mmc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd) { struct mesongx_mmc_softc *sc = sch; uint32_t cmdflags, val; int error; const uint32_t irq_mask = IRQ_EN_RESP_STATUS | IRQ_EN_END_OF_CHAIN | IRQ_EN_DESC_TIMEOUT | IRQ_EN_RESP_TIMEOUT | IRQ_EN_RESP_ERR | IRQ_EN_DESC_ERR | IRQ_EN_TXD_ERR | IRQ_EN_RXD_ERR; mutex_enter(&sc->sc_intr_lock); while (sc->sc_cmd != NULL) cv_wait(&sc->sc_intr_cv, &sc->sc_intr_lock); sc->sc_cmd = cmd; MMC_WRITE(sc, SD_EMMC_START, 0); MMC_WRITE(sc, SD_EMMC_STATUS, MMC_READ(sc, SD_EMMC_STATUS)); val = MMC_READ(sc, SD_EMMC_IRQ_EN); MMC_WRITE(sc, SD_EMMC_IRQ_EN, val | irq_mask); cmdflags = MESONGX_MMC_FLAGS_OWNER; cmdflags |= __SHIFTIN(12, MESONGX_MMC_FLAGS_TIMEOUT); /* 2^12 = 4096 ms timeout */ cmdflags |= __SHIFTIN(cmd->c_opcode, MESONGX_MMC_FLAGS_CMD_INDEX); if ((cmd->c_flags & SCF_RSP_PRESENT) == 0) { cmdflags |= MESONGX_MMC_FLAGS_NO_RESP; } else { cmdflags |= MESONGX_MMC_FLAGS_RESP_NUM; if ((cmd->c_flags & SCF_RSP_136) != 0) cmdflags |= MESONGX_MMC_FLAGS_RESP_128; if ((cmd->c_flags & SCF_RSP_CRC) == 0) cmdflags |= MESONGX_MMC_FLAGS_RESP_NOCRC; if ((cmd->c_flags & SCF_RSP_MASK) == SCF_RSP_R1B) cmdflags |= MESONGX_MMC_FLAGS_R1B; } if (cmd->c_datalen > 0) { cmdflags |= MESONGX_MMC_FLAGS_DATA_IO; if ((cmd->c_flags & SCF_CMD_READ) == 0) cmdflags |= MESONGX_MMC_FLAGS_DATA_WR; val = MMC_READ(sc, SD_EMMC_CFG); val &= ~CFG_BL_LEN; val |= __SHIFTIN(ilog2(cmd->c_blklen), CFG_BL_LEN); MMC_WRITE(sc, SD_EMMC_CFG, val); cmd->c_resid = cmd->c_datalen; cmd->c_error = mesongx_mmc_dma_prepare(sc, cmd, cmdflags); if (cmd->c_error != 0) goto done; const bus_addr_t desc_paddr = sc->sc_desc_map->dm_segs[0].ds_addr; MMC_WRITE(sc, SD_EMMC_START, desc_paddr | START_DESC_BUSY); /* starts transfer */ } else { MMC_WRITE(sc, SD_EMMC_CMD_CFG, cmdflags | MESONGX_MMC_FLAGS_END_OF_CHAIN); MMC_WRITE(sc, SD_EMMC_CMD_DAT, 0); MMC_WRITE(sc, SD_EMMC_CMD_ARG, cmd->c_arg); /* starts transfer */ } struct bintime timeout = { .sec = 5, .frac = 0 }; const struct bintime epsilon = { .sec = 1, .frac = 0 }; while ((cmd->c_flags & SCF_ITSDONE) == 0 && cmd->c_error == 0) { error = cv_timedwaitbt(&sc->sc_intr_cv, &sc->sc_intr_lock, &timeout, &epsilon); if (error != 0) { cmd->c_error = error; goto done; } } if (cmd->c_error == 0 && cmd->c_datalen > 0) mesongx_mmc_dma_complete(sc, cmd); done: MMC_WRITE(sc, SD_EMMC_START, 0); val = MMC_READ(sc, SD_EMMC_IRQ_EN); MMC_WRITE(sc, SD_EMMC_IRQ_EN, val & ~irq_mask); sc->sc_cmd = NULL; cv_broadcast(&sc->sc_intr_cv); #ifdef MESONGX_MMC_DEBUG if (cmd->c_error != 0) { for (u_int reg = 0x00; reg < 0x100; reg += 0x10) { device_printf(sc->sc_dev, " %02x: %08x %08x %08x %08x\n", reg, MMC_READ(sc, reg + 0), MMC_READ(sc, reg + 4), MMC_READ(sc, reg + 8), MMC_READ(sc, reg + 12)); } } #endif mutex_exit(&sc->sc_intr_lock); } static void mesongx_mmc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable) { struct mesongx_mmc_softc * const sc = sch; uint32_t val; mutex_enter(&sc->sc_intr_lock); val = MMC_READ(sc, SD_EMMC_IRQ_EN); MMC_WRITE(sc, SD_EMMC_IRQ_EN, val | IRQ_EN_IRQ_SDIO); mutex_exit(&sc->sc_intr_lock); } static void mesongx_mmc_card_intr_ack(sdmmc_chipset_handle_t sch) { struct mesongx_mmc_softc *sc = sch; MMC_WRITE(sc, SD_EMMC_STATUS, STATUS_IRQ_SDIO); }