/* $NetBSD: at91emac.c,v 1.29 2019/05/28 07:41:46 msaitoh Exp $ */ /* * Copyright (c) 2007 Embedtronics Oy * All rights reserved. * * Based on arch/arm/ep93xx/epe.c * * Copyright (c) 2004 Jesse Off * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: at91emac.c,v 1.29 2019/05/28 07:41:46 msaitoh Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #include #include #define DEFAULT_MDCDIV 32 #ifndef EMAC_FAST #define EMAC_FAST #endif #ifndef EMAC_FAST #define EMAC_READ(x) \ bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x)) #define EMAC_WRITE(x, y) \ bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y)) #else #define EMAC_READ(x) ETHREG(x) #define EMAC_WRITE(x, y) ETHREG(x) = (y) #endif /* ! EMAC_FAST */ static int emac_match(device_t, cfdata_t, void *); static void emac_attach(device_t, device_t, void *); static void emac_init(struct emac_softc *); static int emac_intr(void* arg); static int emac_gctx(struct emac_softc *); static int emac_mediachange(struct ifnet *); static void emac_mediastatus(struct ifnet *, struct ifmediareq *); int emac_mii_readreg (device_t, int, int, uint16_t *); int emac_mii_writereg (device_t, int, int, uint16_t); void emac_statchg (struct ifnet *); void emac_tick (void *); static int emac_ifioctl (struct ifnet *, u_long, void *); static void emac_ifstart (struct ifnet *); static void emac_ifwatchdog (struct ifnet *); static int emac_ifinit (struct ifnet *); static void emac_ifstop (struct ifnet *, int); static void emac_setaddr (struct ifnet *); CFATTACH_DECL_NEW(at91emac, sizeof(struct emac_softc), emac_match, emac_attach, NULL, NULL); #ifdef EMAC_DEBUG int emac_debug = EMAC_DEBUG; #define DPRINTFN(n, fmt) if (emac_debug >= (n)) printf fmt #else #define DPRINTFN(n, fmt) #endif static int emac_match(device_t parent, cfdata_t match, void *aux) { if (strcmp(match->cf_name, "at91emac") == 0) return 2; return 0; } static void emac_attach(device_t parent, device_t self, void *aux) { struct emac_softc *sc = device_private(self); struct at91bus_attach_args *sa = aux; prop_data_t enaddr; uint32_t u; printf("\n"); sc->sc_dev = self; sc->sc_iot = sa->sa_iot; sc->sc_pid = sa->sa_pid; sc->sc_dmat = sa->sa_dmat; if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size, 0, &sc->sc_ioh)) panic("%s: Cannot map registers", device_xname(self)); /* enable peripheral clock */ at91_peripheral_clock(sc->sc_pid, 1); /* configure emac: */ EMAC_WRITE(ETH_CTL, 0); // disable everything EMAC_WRITE(ETH_IDR, -1); // disable interrupts EMAC_WRITE(ETH_RBQP, 0); // clear receive EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); EMAC_WRITE(ETH_TCR, 0); // send nothing //(void)EMAC_READ(ETH_ISR); u = EMAC_READ(ETH_TSR); EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ | ETH_TSR_IDLE | ETH_TSR_RLE | ETH_TSR_COL | ETH_TSR_OVR))); u = EMAC_READ(ETH_RSR); EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA))); /* Fetch the Ethernet address from property if set. */ enaddr = prop_dictionary_get(device_properties(self), "mac-address"); if (enaddr != NULL) { KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA); KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN); memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr), ETHER_ADDR_LEN); } else { static const uint8_t hardcoded[ETHER_ADDR_LEN] = { 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94 }; memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN); } at91_intr_establish(sc->sc_pid, IPL_NET, INTR_HIGH_LEVEL, emac_intr, sc); emac_init(sc); } static int emac_gctx(struct emac_softc *sc) { struct ifnet * ifp = &sc->sc_ec.ec_if; uint32_t tsr; tsr = EMAC_READ(ETH_TSR); if (!(tsr & ETH_TSR_BNQ)) { // no space left return 0; } // free sent frames while (sc->txqc > (tsr & ETH_TSR_IDLE ? 0 : 1)) { int i = sc->txqi % TX_QLEN; bus_dmamap_sync(sc->sc_dmat, sc->txq[i].m_dmamap, 0, sc->txq[i].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, sc->txq[i].m_dmamap); m_freem(sc->txq[i].m); DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n", __FUNCTION__, i, sc->txq[i].m, sc->txqc)); sc->txq[i].m = NULL; sc->txqi = (i + 1) % TX_QLEN; sc->txqc--; } // mark we're free if (ifp->if_flags & IFF_OACTIVE) { ifp->if_flags &= ~IFF_OACTIVE; /* Disable transmit-buffer-free interrupt */ /*EMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/ } return 1; } static int emac_intr(void *arg) { struct emac_softc *sc = (struct emac_softc *)arg; struct ifnet * ifp = &sc->sc_ec.ec_if; uint32_t imr, isr, ctl; int bi; imr = ~EMAC_READ(ETH_IMR); if (!(imr & (ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE | ETH_ISR_RBNA | ETH_ISR_ROVR))) { // interrupt not enabled, can't be us return 0; } isr = EMAC_READ(ETH_ISR) & imr; #ifdef EMAC_DEBUG uint32_t rsr = #endif EMAC_READ(ETH_RSR); // get receive status register DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__, isr, rsr, imr)); if (isr & ETH_ISR_RBNA) { // out of receive buffers EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear interrupt ctl = EMAC_READ(ETH_CTL); // get current control register value EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); // disable receiver EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear BNA bit EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); // re-enable receiver ifp->if_ierrors++; ifp->if_ipackets++; DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__)); } if (isr & ETH_ISR_ROVR) { EMAC_WRITE(ETH_RSR, ETH_RSR_OVR); // clear interrupt ifp->if_ierrors++; ifp->if_ipackets++; DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__)); } if (isr & ETH_ISR_RCOM) { // packet has been received! uint32_t nfo; // @@@ if memory is NOT coherent, then we're in trouble @@@@ // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); // printf("## RDSC[%i].ADDR=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Addr); DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Info)); while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) { int fl; struct mbuf *m; nfo = sc->RDSC[bi].Info; fl = (nfo & ETH_RDSC_I_LEN) - 4; DPRINTFN(2,("## nfo=0x%08X\n", nfo)); MGETHDR(m, M_DONTWAIT, MT_DATA); if (m != NULL) MCLGET(m, M_DONTWAIT); if (m != NULL && (m->m_flags & M_EXT)) { bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0, MCLBYTES, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, sc->rxq[bi].m_dmamap); m_set_rcvif(sc->rxq[bi].m, ifp); sc->rxq[bi].m->m_pkthdr.len = sc->rxq[bi].m->m_len = fl; DPRINTFN(2,("received %u bytes packet\n", fl)); if_percpuq_enqueue(ifp->if_percpuq, sc->rxq[bi].m); if (mtod(m, intptr_t) & 3) { m_adj(m, mtod(m, intptr_t) & 3); } sc->rxq[bi].m = m; bus_dmamap_load(sc->sc_dmat, sc->rxq[bi].m_dmamap, m->m_ext.ext_buf, MCLBYTES, NULL, BUS_DMA_NOWAIT); bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0, MCLBYTES, BUS_DMASYNC_PREREAD); sc->RDSC[bi].Info = 0; sc->RDSC[bi].Addr = sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0); } else { /* Drop packets until we can get replacement * empty mbufs for the RXDQ. */ if (m != NULL) { m_freem(m); } ifp->if_ierrors++; } sc->rxqi++; } // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } if (emac_gctx(sc) > 0) if_schedule_deferred_start(ifp); #if 0 // reloop irq = EMAC_READ(IntStsC); if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0) goto begin; #endif return (1); } static void emac_init(struct emac_softc *sc) { bus_dma_segment_t segs; void *addr; int rsegs, err, i; struct ifnet * ifp = &sc->sc_ec.ec_if; struct mii_data * const mii = &sc->sc_mii; uint32_t u; #if 0 int mdcdiv = DEFAULT_MDCDIV; #endif callout_init(&sc->emac_tick_ch, 0); // ok... EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything EMAC_WRITE(ETH_IDR, -1); // disable interrupts EMAC_WRITE(ETH_RBQP, 0); // clear receive EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); EMAC_WRITE(ETH_TCR, 0); // send nothing // (void)EMAC_READ(ETH_ISR); u = EMAC_READ(ETH_TSR); EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ | ETH_TSR_IDLE | ETH_TSR_RLE | ETH_TSR_COL | ETH_TSR_OVR))); u = EMAC_READ(ETH_RSR); EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA))); /* configure EMAC */ EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); #if 0 if (device_cfdata(sc->sc_dev)->cf_flags) mdcdiv = device_cfdata(sc->sc_dev)->cf_flags; #endif /* set ethernet address */ EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24) | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8) | (sc->sc_enaddr[0])); EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8) | (sc->sc_enaddr[4])); EMAC_WRITE(ETH_SA2L, 0); EMAC_WRITE(ETH_SA2H, 0); EMAC_WRITE(ETH_SA3L, 0); EMAC_WRITE(ETH_SA3H, 0); EMAC_WRITE(ETH_SA4L, 0); EMAC_WRITE(ETH_SA4H, 0); /* Allocate a page of memory for receive queue descriptors */ sc->rbqlen = (ETH_RDSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE; sc->rbqlen *= PAGE_SIZE; DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen)); err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0, MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary &segs, 1, &rsegs, BUS_DMA_WAITOK); if (err == 0) { DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__)); err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen, &sc->rbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT)); } if (err == 0) { DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__)); err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1, sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK, &sc->rbqpage_dmamap); } if (err == 0) { DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__)); err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap, sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK); } if (err != 0) { panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev)); } sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr; memset(sc->rbqpage, 0, sc->rbqlen); /* Set up pointers to start of each queue in kernel addr space. * Each descriptor queue or status queue entry uses 2 words */ sc->RDSC = (void*)sc->rbqpage; /* Populate the RXQ with mbufs */ sc->rxqi = 0; for (i = 0; i < RX_QLEN; i++) { struct mbuf *m; err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, PAGE_SIZE, BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap); if (err) panic("%s: dmamap_create failed: %i\n", __FUNCTION__, err); MGETHDR(m, M_WAIT, MT_DATA); MCLGET(m, M_WAIT); sc->rxq[i].m = m; if (mtod(m, intptr_t) & 3) { m_adj(m, mtod(m, intptr_t) & 3); } err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap, m->m_ext.ext_buf, MCLBYTES, NULL, BUS_DMA_WAITOK); if (err) panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err); sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0); sc->RDSC[i].Info = 0; bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0, MCLBYTES, BUS_DMASYNC_PREREAD); } /* prepare transmit queue */ for (i = 0; i < TX_QLEN; i++) { err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW), &sc->txq[i].m_dmamap); if (err) panic("ARGH #1"); sc->txq[i].m = NULL; } /* Program each queue's start addr, cur addr, and len registers * with the physical addresses. */ bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_PREREAD); addr = (void *)sc->rbqpage_dmamap->dm_segs[0].ds_addr; EMAC_WRITE(ETH_RBQP, (uint32_t)addr); /* Divide HCLK by 32 for MDC clock */ mii->mii_ifp = ifp; mii->mii_readreg = emac_mii_readreg; mii->mii_writereg = emac_mii_writereg; mii->mii_statchg = emac_statchg; sc->sc_ec.ec_mii = mii; ifmedia_init(&mii->mii_media, IFM_IMASK, emac_mediachange, emac_mediastatus); mii_attach((device_t )sc, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); // enable / disable interrupts #if 0 // enable / disable interrupts EMAC_WRITE(ETH_IDR, -1); EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE | ETH_ISR_RBNA | ETH_ISR_ROVR); // (void)EMAC_READ(ETH_ISR); // why // enable transmitter / receiver EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR | ETH_CTL_CSR | ETH_CTL_MPE); #endif /* * We can support 802.1Q VLAN-sized frames. */ sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU; strcpy(ifp->if_xname, device_xname(sc->sc_dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = emac_ifioctl; ifp->if_start = emac_ifstart; ifp->if_watchdog = emac_ifwatchdog; ifp->if_init = emac_ifinit; ifp->if_stop = emac_ifstop; ifp->if_timer = 0; ifp->if_softc = sc; IFQ_SET_READY(&ifp->if_snd); if_attach(ifp); if_deferred_start_init(ifp, NULL); ether_ifattach(ifp, (sc)->sc_enaddr); } static int emac_mediachange(struct ifnet *ifp) { if (ifp->if_flags & IFF_UP) emac_ifinit(ifp); return (0); } static void emac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct emac_softc *sc = ifp->if_softc; mii_pollstat(&sc->sc_mii); ifmr->ifm_active = sc->sc_mii.mii_media_active; ifmr->ifm_status = sc->sc_mii.mii_media_status; } int emac_mii_readreg(device_t self, int phy, int reg, uint16_t *val) { #ifndef EMAC_FAST struct emac_softc *sc = device_private(self); #endif EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA) | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA) | ETH_MAN_CODE_IEEE802_3)); while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ; *val = EMAC_READ(ETH_MAN) & ETH_MAN_DATA; return 0; } int emac_mii_writereg(device_t self, int phy, int reg, uint16_t val) { #ifndef EMAC_FAST struct emac_softc *sc = device_private(self); #endif EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA) | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA) | ETH_MAN_CODE_IEEE802_3 | (val & ETH_MAN_DATA))); while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ; return 0; } void emac_statchg(struct ifnet *ifp) { struct emac_softc *sc = ifp->if_softc; uint32_t reg; /* * We must keep the MAC and the PHY in sync as * to the status of full-duplex! */ reg = EMAC_READ(ETH_CFG); if (sc->sc_mii.mii_media_active & IFM_FDX) reg |= ETH_CFG_FD; else reg &= ~ETH_CFG_FD; EMAC_WRITE(ETH_CFG, reg); } void emac_tick(void *arg) { struct emac_softc* sc = (struct emac_softc *)arg; struct ifnet * ifp = &sc->sc_ec.ec_if; int s; uint32_t misses; ifp->if_collisions += EMAC_READ(ETH_SCOL) + EMAC_READ(ETH_MCOL); /* These misses are ok, they will happen if the RAM/CPU can't keep up */ misses = EMAC_READ(ETH_DRFC); if (misses > 0) printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses); s = splnet(); if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) { emac_ifstart(ifp); } splx(s); mii_tick(&sc->sc_mii); callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc); } static int emac_ifioctl(struct ifnet *ifp, u_long cmd, void *data) { int s, error; s = splnet(); switch (cmd) { default: error = ether_ioctl(ifp, cmd, data); if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) emac_setaddr(ifp); error = 0; } } splx(s); return error; } static void emac_ifstart(struct ifnet *ifp) { struct emac_softc *sc = (struct emac_softc *)ifp->if_softc; struct mbuf *m; bus_dma_segment_t *segs; int s, bi, err, nsegs; s = splnet(); start: if (emac_gctx(sc) == 0) { /* Enable transmit-buffer-free interrupt */ EMAC_WRITE(ETH_IER, ETH_ISR_TBRE); ifp->if_flags |= IFF_OACTIVE; ifp->if_timer = 10; splx(s); return; } ifp->if_timer = 0; IFQ_POLL(&ifp->if_snd, m); if (m == NULL) { splx(s); return; } //more: bi = (sc->txqi + sc->txqc) % TX_QLEN; if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m, BUS_DMA_NOWAIT)) || sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 || sc->txq[bi].m_dmamap->dm_nsegs > 1) { /* Copy entire mbuf chain to new single */ struct mbuf *mn; if (err == 0) bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap); MGETHDR(mn, M_DONTWAIT, MT_DATA); if (mn == NULL) goto stop; if (m->m_pkthdr.len > MHLEN) { MCLGET(mn, M_DONTWAIT); if ((mn->m_flags & M_EXT) == 0) { m_freem(mn); goto stop; } } m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *)); mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len; IFQ_DEQUEUE(&ifp->if_snd, m); m_freem(m); m = mn; bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m, BUS_DMA_NOWAIT); } else { IFQ_DEQUEUE(&ifp->if_snd, m); } bpf_mtap(ifp, m, BPF_D_OUT); nsegs = sc->txq[bi].m_dmamap->dm_nsegs; segs = sc->txq[bi].m_dmamap->dm_segs; if (nsegs > 1) { panic("#### ARGH #2"); } sc->txq[bi].m = m; sc->txqc++; DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr, (unsigned)m->m_pkthdr.len)); #ifdef DIAGNOSTIC if (sc->txqc > TX_QLEN) { panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN); } #endif bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0, sc->txq[bi].m_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); EMAC_WRITE(ETH_TAR, segs->ds_addr); EMAC_WRITE(ETH_TCR, m->m_pkthdr.len); if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) goto start; stop: splx(s); return; } static void emac_ifwatchdog(struct ifnet *ifp) { struct emac_softc *sc = (struct emac_softc *)ifp->if_softc; if ((ifp->if_flags & IFF_RUNNING) == 0) return; printf("%s: device timeout, CTL = 0x%08x, CFG = 0x%08x\n", device_xname(sc->sc_dev), EMAC_READ(ETH_CTL), EMAC_READ(ETH_CFG)); } static int emac_ifinit(struct ifnet *ifp) { struct emac_softc *sc = ifp->if_softc; int s = splnet(); callout_stop(&sc->emac_tick_ch); // enable interrupts EMAC_WRITE(ETH_IDR, -1); EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE | ETH_ISR_RBNA | ETH_ISR_ROVR); // enable transmitter / receiver EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR | ETH_CTL_CSR | ETH_CTL_MPE); mii_mediachg(&sc->sc_mii); callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc); ifp->if_flags |= IFF_RUNNING; splx(s); return 0; } static void emac_ifstop(struct ifnet *ifp, int disable) { // uint32_t u; struct emac_softc *sc = ifp->if_softc; #if 0 EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything EMAC_WRITE(ETH_IDR, -1); // disable interrupts // EMAC_WRITE(ETH_RBQP, 0); // clear receive EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); EMAC_WRITE(ETH_TCR, 0); // send nothing // (void)EMAC_READ(ETH_ISR); u = EMAC_READ(ETH_TSR); EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ | ETH_TSR_IDLE | ETH_TSR_RLE | ETH_TSR_COL | ETH_TSR_OVR))); u = EMAC_READ(ETH_RSR); EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA))); #endif callout_stop(&sc->emac_tick_ch); /* Down the MII. */ mii_down(&sc->sc_mii); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; sc->sc_mii.mii_media_status &= ~IFM_ACTIVE; } static void emac_setaddr(struct ifnet *ifp) { struct emac_softc *sc = ifp->if_softc; struct ethercom *ec = &sc->sc_ec; struct ether_multi *enm; struct ether_multistep step; uint8_t ias[3][ETHER_ADDR_LEN]; uint32_t h, nma = 0, hashes[2] = { 0, 0 }; uint32_t ctl = EMAC_READ(ETH_CTL); uint32_t cfg = EMAC_READ(ETH_CFG); /* disable receiver temporarily */ EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI); if (ifp->if_flags & IFF_PROMISC) { cfg |= ETH_CFG_CAF; } else { cfg &= ~ETH_CFG_CAF; } // ETH_CFG_BIG? ifp->if_flags &= ~IFF_ALLMULTI; ETHER_LOCK(ec); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ cfg |= ETH_CFG_CAF; hashes[0] = 0xffffffffUL; hashes[1] = 0xffffffffUL; ifp->if_flags |= IFF_ALLMULTI; nma = 0; break; } if (nma < 3) { /* We can program 3 perfect address filters for mcast */ memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN); } else { /* * XXX: Datasheet is not very clear here, I'm not sure * if I'm doing this right. --joff */ h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); /* Just want the 6 most-significant bits. */ h = h >> 26; hashes[ h / 32 ] |= (1 << (h % 32)); cfg |= ETH_CFG_MTI; } ETHER_NEXT_MULTI(step, enm); nma++; } ETHER_UNLOCK(ec); // program... DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2], sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5])); EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24) | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8) | (sc->sc_enaddr[0])); EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8) | (sc->sc_enaddr[4])); if (nma > 1) { DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, ias[0][0], ias[0][1], ias[0][2], ias[0][3], ias[0][4], ias[0][5])); EMAC_WRITE(ETH_SA2L, (ias[0][3] << 24) | (ias[0][2] << 16) | (ias[0][1] << 8) | (ias[0][0])); EMAC_WRITE(ETH_SA2H, (ias[0][4] << 8) | (ias[0][5])); } if (nma > 2) { DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, ias[1][0], ias[1][1], ias[1][2], ias[1][3], ias[1][4], ias[1][5])); EMAC_WRITE(ETH_SA3L, (ias[1][3] << 24) | (ias[1][2] << 16) | (ias[1][1] << 8) | (ias[1][0])); EMAC_WRITE(ETH_SA3H, (ias[1][4] << 8) | (ias[1][5])); } if (nma > 3) { DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, ias[2][0], ias[2][1], ias[2][2], ias[2][3], ias[2][4], ias[2][5])); EMAC_WRITE(ETH_SA3L, (ias[2][3] << 24) | (ias[2][2] << 16) | (ias[2][1] << 8) | (ias[2][0])); EMAC_WRITE(ETH_SA3H, (ias[2][4] << 8) | (ias[2][5])); } EMAC_WRITE(ETH_HSH, hashes[0]); EMAC_WRITE(ETH_HSL, hashes[1]); EMAC_WRITE(ETH_CFG, cfg); EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); }