/* $NetBSD: gtmr.c,v 1.40.2.1 2019/08/13 14:57:50 martin Exp $ */ /*- * Copyright (c) 2012 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Matt Thomas * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: gtmr.c,v 1.40.2.1 2019/08/13 14:57:50 martin Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int gtmr_match(device_t, cfdata_t, void *); static void gtmr_attach(device_t, device_t, void *); static u_int gtmr_get_timecount(struct timecounter *); static uint64_t gtmr_read_cntct(struct gtmr_softc *); static uint32_t gtmr_read_ctl(struct gtmr_softc *); static void gtmr_write_ctl(struct gtmr_softc *, uint32_t); static void gtmr_write_tval(struct gtmr_softc *, uint32_t); static void gtmr_write_cval(struct gtmr_softc *, uint64_t); static struct gtmr_softc gtmr_sc; struct gtmr_percpu { uint32_t pc_delta; }; static struct timecounter gtmr_timecounter = { .tc_get_timecount = gtmr_get_timecount, .tc_poll_pps = 0, .tc_counter_mask = ~0u, .tc_frequency = 0, /* set by cpu_initclocks() */ .tc_name = NULL, /* set by attach */ .tc_quality = 500, .tc_priv = >mr_sc, .tc_next = NULL, }; CFATTACH_DECL_NEW(armgtmr, 0, gtmr_match, gtmr_attach, NULL, NULL); /* ARGSUSED */ static int gtmr_match(device_t parent, cfdata_t cf, void *aux) { struct mpcore_attach_args * const mpcaa = aux; if (gtmr_sc.sc_dev != NULL) return 0; /* Generic Timer is always implemented in ARMv8-A */ if (!cpu_gtmr_exists_p()) return 0; if (strcmp(mpcaa->mpcaa_name, cf->cf_name) != 0) return 0; return 1; } static void gtmr_attach(device_t parent, device_t self, void *aux) { struct mpcore_attach_args * const mpcaa = aux; struct gtmr_softc *sc = >mr_sc; prop_dictionary_t dict = device_properties(self); prop_dictionary_t pdict = device_properties(device_parent(self)); char freqbuf[sizeof("X.XXX SHz")]; bool flag; /* * This runs at a fixed frequency of 1 to 50MHz. */ if (!prop_dictionary_get_uint32(dict, "frequency", &sc->sc_freq)) sc->sc_freq = gtmr_cntfrq_read(); if (!prop_dictionary_get_bool(dict, "physical", &sc->sc_physical)) prop_dictionary_get_bool(pdict, "physical", &sc->sc_physical); KASSERT(sc->sc_freq != 0); humanize_number(freqbuf, sizeof(freqbuf), sc->sc_freq, "Hz", 1000); aprint_naive("\n"); aprint_normal(": Generic Timer (%s, %s)\n", freqbuf, sc->sc_physical ? "physical" : "virtual"); if (prop_dictionary_get_bool(dict, "sun50i-a64-unstable-timer", &flag) && flag) { sc->sc_flags |= GTMR_FLAG_SUN50I_A64_UNSTABLE_TIMER; aprint_debug_dev(self, "enabling Allwinner A64 timer workaround\n"); } self->dv_private = sc; sc->sc_dev = self; #ifdef DIAGNOSTIC sc->sc_percpu = percpu_alloc(sizeof(struct gtmr_percpu)); #endif evcnt_attach_dynamic(&sc->sc_ev_missing_ticks, EVCNT_TYPE_MISC, NULL, device_xname(self), "missing interrupts"); if (mpcaa->mpcaa_irq != -1) { sc->sc_global_ih = intr_establish(mpcaa->mpcaa_irq, IPL_CLOCK, IST_LEVEL | IST_MPSAFE, gtmr_intr, NULL); if (sc->sc_global_ih == NULL) panic("%s: unable to register timer interrupt", __func__); aprint_normal_dev(self, "interrupting on irq %d\n", mpcaa->mpcaa_irq); } const uint32_t cnt_frq = gtmr_cntfrq_read(); if (cnt_frq == 0) { aprint_verbose_dev(self, "cp15 CNT_FRQ not set\n"); } else if (cnt_frq != sc->sc_freq) { aprint_verbose_dev(self, "cp15 CNT_FRQ (%u) differs from supplied frequency\n", cnt_frq); } gtmr_timecounter.tc_name = device_xname(sc->sc_dev); gtmr_timecounter.tc_frequency = sc->sc_freq; gtmr_timecounter.tc_priv = sc; tc_init(>mr_timecounter); /* Disable the timer until we are ready */ gtmr_write_ctl(sc, 0); } static uint64_t gtmr_read_cntct(struct gtmr_softc *sc) { arm_isb(); if (ISSET(sc->sc_flags, GTMR_FLAG_SUN50I_A64_UNSTABLE_TIMER)) { /* * The Allwinner A64 SoC has an unstable architectural timer. * To workaround this problem, ignore reads where the lower * 11 bits are all 0s or 1s. */ uint64_t val; u_int bits; do { val = sc->sc_physical ? gtmr_cntpct_read() : gtmr_cntvct_read(); bits = val & __BITS(9,0); } while (bits == 0 || bits == __BITS(9,0)); return val; } return sc->sc_physical ? gtmr_cntpct_read() : gtmr_cntvct_read(); } static uint32_t gtmr_read_ctl(struct gtmr_softc *sc) { if (sc->sc_physical) return gtmr_cntp_ctl_read(); else return gtmr_cntv_ctl_read(); } static void gtmr_write_ctl(struct gtmr_softc *sc, uint32_t val) { if (sc->sc_physical) gtmr_cntp_ctl_write(val); else gtmr_cntv_ctl_write(val); arm_isb(); } static void gtmr_write_tval(struct gtmr_softc *sc, uint32_t val) { if (sc->sc_physical) gtmr_cntp_tval_write(val); else gtmr_cntv_tval_write(val); arm_isb(); } static void gtmr_write_cval(struct gtmr_softc *sc, uint64_t val) { if (sc->sc_physical) gtmr_cntp_cval_write(val); else gtmr_cntv_cval_write(val); arm_isb(); } void gtmr_init_cpu_clock(struct cpu_info *ci) { struct gtmr_softc * const sc = >mr_sc; uint32_t val; KASSERT(ci == curcpu()); int s = splsched(); /* * Allow the virtual and physical counters to be accessed from * usermode. (PL0) */ val = gtmr_cntk_ctl_read(); val &= ~(CNTKCTL_PL0PTEN | CNTKCTL_PL0VTEN | CNTKCTL_EVNTEN); if (sc->sc_physical) { val |= CNTKCTL_PL0PCTEN; val &= ~CNTKCTL_PL0VCTEN; } else { val |= CNTKCTL_PL0VCTEN; val &= ~CNTKCTL_PL0PCTEN; } gtmr_cntk_ctl_write(val); arm_isb(); /* * enable timer and stop masking the timer. */ gtmr_write_ctl(sc, CNTCTL_ENABLE); /* * Get now and update the compare timer. */ ci->ci_lastintr = gtmr_read_cntct(sc); gtmr_write_tval(sc, sc->sc_autoinc); splx(s); KASSERT(gtmr_read_cntct(sc) != 0); } void gtmr_cpu_initclocks(void) { struct gtmr_softc * const sc = >mr_sc; KASSERT(sc->sc_dev != NULL); KASSERT(sc->sc_freq != 0); sc->sc_autoinc = sc->sc_freq / hz; gtmr_init_cpu_clock(curcpu()); } void gtmr_delay(unsigned int n) { struct gtmr_softc * const sc = >mr_sc; KASSERT(sc != NULL); uint32_t freq = sc->sc_freq ? sc->sc_freq : gtmr_cntfrq_read(); KASSERT(freq != 0); const unsigned int incr_per_us = howmany(freq, 1000000); int64_t ticks = (int64_t)n * incr_per_us; uint64_t last = gtmr_read_cntct(sc); while (ticks > 0) { uint64_t curr = gtmr_read_cntct(sc); if (curr >= last) ticks -= (curr - last); else ticks -= (UINT64_MAX - curr + last); last = curr; } } /* * gtmr_intr: * * Handle the hardclock interrupt. */ int gtmr_intr(void *arg) { struct cpu_info * const ci = curcpu(); struct clockframe * const cf = arg; struct gtmr_softc * const sc = >mr_sc; uint32_t ctl; ctl = gtmr_read_ctl(sc); if ((ctl & CNTCTL_ISTATUS) == 0) return 0; ctl |= CNTCTL_IMASK; gtmr_write_ctl(sc, ctl); const uint64_t now = gtmr_read_cntct(sc); uint64_t delta = now - ci->ci_lastintr; #ifdef DIAGNOSTIC struct gtmr_percpu *pc = NULL; if (!ISSET(sc->sc_flags, GTMR_FLAG_SUN50I_A64_UNSTABLE_TIMER)) { const uint64_t then = sc->sc_physical ? gtmr_cntp_cval_read() : gtmr_cntv_cval_read(); pc = percpu_getref(sc->sc_percpu); KASSERTMSG(then <= now, "%"PRId64, now - then); KASSERTMSG(then + pc->pc_delta >= ci->ci_lastintr + sc->sc_autoinc, "%"PRId64, then + pc->pc_delta - ci->ci_lastintr - sc->sc_autoinc); } #endif if (!ISSET(sc->sc_flags, GTMR_FLAG_SUN50I_A64_UNSTABLE_TIMER)) { KASSERTMSG(delta > sc->sc_autoinc / 100, "%s: interrupting too quickly (delta=%"PRIu64") autoinc=%lu", ci->ci_data.cpu_name, delta, sc->sc_autoinc); } /* * If we got interrupted too soon (delta < sc->sc_autoinc) * or we missed (or almost missed) a tick * (delta >= 7 * sc->sc_autoinc / 4), don't try to adjust for jitter. */ if (delta >= sc->sc_autoinc && delta <= 7 * sc->sc_autoinc / 4) { delta -= sc->sc_autoinc; } else { delta = 0; } arm_isb(); if (ISSET(sc->sc_flags, GTMR_FLAG_SUN50I_A64_UNSTABLE_TIMER)) { gtmr_write_cval(sc, now + sc->sc_autoinc - delta); } else { gtmr_write_tval(sc, sc->sc_autoinc - delta); } ctl = gtmr_read_ctl(sc); ctl &= ~CNTCTL_IMASK; ctl |= CNTCTL_ENABLE; gtmr_write_ctl(sc, ctl); ci->ci_lastintr = now; #ifdef DIAGNOSTIC if (!ISSET(sc->sc_flags, GTMR_FLAG_SUN50I_A64_UNSTABLE_TIMER)) { KASSERT(delta == (uint32_t) delta); pc->pc_delta = delta; percpu_putref(sc->sc_percpu); } #endif hardclock(cf); sc->sc_ev_missing_ticks.ev_count += delta / sc->sc_autoinc; return 1; } void setstatclockrate(int newhz) { } static u_int gtmr_get_timecount(struct timecounter *tc) { struct gtmr_softc * const sc = tc->tc_priv; return (u_int) gtmr_read_cntct(sc); }