/* * Copyright (c) 2013 Sughosh Ganu * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain this list of conditions * and the following disclaimer. * 2. Redistributions in binary form must reproduce this list of conditions * and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: omapl1x_timer.c,v 1.1 2013/10/02 16:48:26 matt Exp $"); #include "opt_timer.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef struct timer_factors { uint32_t tf_counts_per_usec; uint32_t tf_period; uint32_t tf_enamode; uint32_t tf_ctr_reg; uint32_t tf_prd_reg; uint32_t tf_enamode_shift; uint32_t tf_intr_prd_en_shift; uint32_t tf_intr_prd_stat_shift; } timer_factors_t; typedef struct omapl1xtmr_softc { struct device sc_dev; uint sc_timerno; uint sc_timer_freq; bus_space_tag_t sc_iot; bus_space_handle_t sc_ioh; bus_addr_t sc_addr; size_t sc_size; int sc_intr; timer_factors_t sc_tf; uint sc_bot; } omapl1xtmr_softc_t; static struct omapl1x_wdt { bus_space_tag_t wdt_iot; /* Bus tag */ bus_addr_t wdt_addr; /* Address */ bus_space_handle_t wdt_ioh; bus_size_t wdt_size; } wdt; static int omapl1xtimer_match(device_t, struct cfdata *, void *); static void omapl1xtimer_attach(device_t, device_t, void *); static int omapl1xtimer_clockintr(void *frame); static int omapl1xtimer_statintr(void *frame); static void omapl1x_microtime_init(void); static inline uint32_t omapl1x_get_timecount(struct timecounter *tc); static inline void omapl1xtimer_stop(struct omapl1xtmr_softc *sc); static inline uint32_t omapl1xtimer_read(struct omapl1xtmr_softc *sc); static void omapl1xtimer_prd_intr_dis(struct omapl1xtmr_softc *sc); static void omapl1xtimer_prd_intr_enb(struct omapl1xtmr_softc *sc); static void omapl1xtimer_prd_intr_clr(struct omapl1xtmr_softc *sc); static void omapl1xtimer_start(struct omapl1xtmr_softc *sc); static void timer_factors(struct omapl1xtmr_softc *sc, int ints_per_sec, uint8_t enamode); static void timer_init(struct omapl1xtmr_softc *sc, int schz, uint8_t enamode, boolean_t intr); static struct timecounter omapl1x_timecounter = { .tc_get_timecount = omapl1x_get_timecount, .tc_counter_mask = 0xffffffff, .tc_name = "gpt", .tc_quality = 100, .tc_priv = NULL }; #ifdef OMAPL1X_TIMER_DEBUG static void tfprint(uint, timer_factors_t *); #endif static uint32_t counts_per_usec; static uint32_t counts_per_hz = ~0; static struct omapl1xtmr_softc *clock_sc; static struct omapl1xtmr_softc *stat_sc; static struct omapl1xtmr_softc *ref_sc; /* Timer modes */ #define TGCR_TIMMODE_64BIT 0x0 #define TGCR_TIMMODE_32BIT_UNCHANINED 0x1 #define TGCR_TIMMODE_64BIT_WDOG 0x2 #define TGCR_TIMMODE_32BIT_CHANINED 0x3 #define TGCR_TIMMODE_SHIFT 2 #define TGCR_RS_STOP 0x0 #define TGCR_RS_RUN 0x1 #define TGCR_RS_MASK 0x3 #define TGCR_RS_12_SHIFT 0 #define TGCR_RS_34_SHIFT 1 #define TCR_ENAMODE_DISABLE 0x0 #define TCR_ENAMODE_ONESHOT 0x1 #define TCR_ENAMODE_CONTINUOUS 0x2 #define TCR_ENAMODE_RELOAD 0x3 #define TCR_ENAMODE_MASK 0x3 #define TCR_ENAMODE_12_SHIFT 6 #define TCR_ENAMODE_34_SHIFT 22 #define INTR_PRD_12_EN_SHIFT 0 #define INTR_PRD_34_EN_SHIFT 16 #define INTR_PRD_12_STAT_SHIFT 1 #define INTR_PRD_34_STAT_SHIFT 17 /* Watchdog related macros */ #define WDTCR_WDTKEY1 0xA5C6 #define WDTCR_WDTKEY2 0xDA7E #define WDTCR_WDKEY_SHIFT 16 #define WDTCR_WDEN_SHIFT 14 #define WDTCR_WDKEY_MASK 0xffff0000 CFATTACH_DECL_NEW(omapl1xtimer, sizeof(struct omapl1xtmr_softc), omapl1xtimer_match, omapl1xtimer_attach, NULL, NULL); static void omapl1xtimer_prd_intr_dis (struct omapl1xtmr_softc *sc) { uint32_t val; timer_factors_t *tfp = &sc->sc_tf; val = bus_space_read_4(sc->sc_iot, sc->sc_ioh, INTCTLSTAT); val &= ~(1 << tfp->tf_intr_prd_en_shift); bus_space_write_4(sc->sc_iot, sc->sc_ioh, INTCTLSTAT, val); } static void omapl1xtimer_prd_intr_enb (struct omapl1xtmr_softc *sc) { uint32_t val; timer_factors_t *tfp = &sc->sc_tf; val = bus_space_read_4(sc->sc_iot, sc->sc_ioh, INTCTLSTAT); val |= 1 << tfp->tf_intr_prd_en_shift; bus_space_write_4(sc->sc_iot, sc->sc_ioh, INTCTLSTAT, val); } static void omapl1xtimer_prd_intr_clr (struct omapl1xtmr_softc *sc) { uint32_t val; timer_factors_t *tfp = &sc->sc_tf; val = bus_space_read_4(sc->sc_iot, sc->sc_ioh, INTCTLSTAT); val |= 1 << tfp->tf_intr_prd_stat_shift; bus_space_write_4(sc->sc_iot, sc->sc_ioh, INTCTLSTAT, val); } static inline uint32_t omapl1xtimer_read (struct omapl1xtmr_softc *sc) { timer_factors_t *tfp = &sc->sc_tf; return bus_space_read_4(sc->sc_iot, sc->sc_ioh, tfp->tf_ctr_reg); } static inline void omapl1xtimer_stop (struct omapl1xtmr_softc *sc) { uint32_t val; timer_factors_t *tfp = &sc->sc_tf; val = bus_space_read_4(sc->sc_iot, sc->sc_ioh, TCR); val &= ~(TCR_ENAMODE_MASK << tfp->tf_enamode_shift); bus_space_write_4(sc->sc_iot, sc->sc_ioh, TCR, val); } static void omapl1xtimer_start (struct omapl1xtmr_softc *sc) { uint32_t val, shift; timer_factors_t *tfp = &sc->sc_tf; /* get the timer to be used out of reset */ shift = sc->sc_bot ? TGCR_RS_12_SHIFT : TGCR_RS_34_SHIFT; val = bus_space_read_4(sc->sc_iot, sc->sc_ioh, TGCR); val |= TGCR_RS_RUN << shift; bus_space_write_4(sc->sc_iot, sc->sc_ioh, TGCR, val); /* set the desired timer period */ bus_space_write_4(sc->sc_iot, sc->sc_ioh, tfp->tf_prd_reg, tfp->tf_period); /* set the selected enamode to get the timer running */ val = bus_space_read_4(sc->sc_iot, sc->sc_ioh, TCR); val |= tfp->tf_enamode << tfp->tf_enamode_shift; bus_space_write_4(sc->sc_iot, sc->sc_ioh, TCR, val); } static inline uint32_t omapl1x_get_timecount (struct timecounter *tc) { return omapl1xtimer_read(ref_sc); } int omapl1xtimer_clockintr (void *frame) { struct omapl1xtmr_softc *sc = clock_sc; omapl1xtimer_prd_intr_clr(sc); hardclock(frame); return 1; } int omapl1xtimer_statintr (void *frame) { struct omapl1xtmr_softc *sc = stat_sc; omapl1xtimer_prd_intr_clr(sc); statclock(frame); return 1; } static void timer_init (struct omapl1xtmr_softc *sc, int schz, uint8_t enamode, boolean_t intr) { int val = 0; timer_factors(sc, schz, enamode); omapl1xtimer_stop(sc); omapl1xtimer_prd_intr_dis(sc); omapl1xtimer_prd_intr_clr(sc); /* Clear tcr, tgcr, timer counters and period registers */ bus_space_write_4(sc->sc_iot, sc->sc_ioh, TCR, 0); bus_space_write_4(sc->sc_iot, sc->sc_ioh, TGCR, 0); bus_space_write_4(sc->sc_iot, sc->sc_ioh, TIM12, 0); bus_space_write_4(sc->sc_iot, sc->sc_ioh, TIM34, 0); bus_space_write_4(sc->sc_iot, sc->sc_ioh, PRD12, 0); bus_space_write_4(sc->sc_iot, sc->sc_ioh, PRD34, 0); if (intr) omapl1xtimer_prd_intr_enb(sc); /* Set timers to 32 bot unchained mode */ val = TGCR_TIMMODE_32BIT_UNCHANINED << TGCR_TIMMODE_SHIFT; bus_space_write_4(sc->sc_iot, sc->sc_ioh, TGCR, val); omapl1xtimer_start(sc); } static void omapl1x_microtime_init (void) { if (ref_sc == NULL) panic("microtime reference timer was not configured."); timer_init(ref_sc, 0, TCR_ENAMODE_CONTINUOUS, FALSE); } void setstatclockrate (int schz) { if (stat_sc == NULL) panic("Statistics timer was not configured."); timer_init(stat_sc, schz, TCR_ENAMODE_CONTINUOUS, TRUE); } /* * clock_sc and stat_sc starts here * ref_sc is initialized already by tipbtimer_attach */ void cpu_initclocks(void) { if (clock_sc == NULL) panic("Clock timer was not configured."); if (stat_sc == NULL) panic("Statistics timer was not configured."); if (ref_sc == NULL) panic("Microtime reference timer was not configured."); /* * We already have the timers running, but not generating interrupts. * In addition, we've set stathz and profhz. */ printf("clock: hz=%d stathz=%d\n", hz, stathz); /* * The "cookie" parameter must be zero to pass the interrupt frame * through to hardclock() and statclock(). */ intr_establish(clock_sc->sc_intr, IPL_CLOCK, IST_LEVEL_HIGH, omapl1xtimer_clockintr, 0); intr_establish(stat_sc->sc_intr, IPL_HIGH, IST_LEVEL_HIGH, omapl1xtimer_statintr, 0); timer_init(clock_sc, hz, TCR_ENAMODE_CONTINUOUS, TRUE); timer_init(stat_sc, stathz, TCR_ENAMODE_CONTINUOUS, TRUE); omapl1x_timecounter.tc_frequency = omapl1x_get_tc_freq(); tc_init(&omapl1x_timecounter); } void delay (u_int n) { struct omapl1xtmr_softc *sc = ref_sc; uint32_t cur, last, delta, usecs; if (sc == NULL) panic("The timer must be initialized sooner."); /* * This works by polling the timer and counting the * number of microseconds that go by. */ last = omapl1xtimer_read(sc); delta = usecs = 0; while (n > usecs) { cur = omapl1xtimer_read(sc); /* Check to see if the timer has wrapped around. */ if (last > cur) delta += (cur + (counts_per_hz - last)); else delta += (cur - last); last = cur; if (delta >= counts_per_usec) { usecs += delta / counts_per_usec; delta %= counts_per_usec; } } } static void timer_factors (struct omapl1xtmr_softc *sc, int ints_per_sec, uint8_t enamode) { timer_factors_t *tfp = &sc->sc_tf; const uint32_t us_per_sec = 1000000; if (ints_per_sec == 0) { tfp->tf_period = ~0U; counts_per_usec = sc->sc_timer_freq / us_per_sec; } else { uint32_t count_freq; count_freq = sc->sc_timer_freq; count_freq /= ints_per_sec; tfp->tf_period = count_freq; } tfp->tf_counts_per_usec = sc->sc_timer_freq / us_per_sec; tfp->tf_enamode = enamode; if (sc->sc_bot) { tfp->tf_ctr_reg = TIM12; tfp->tf_prd_reg = PRD12; tfp->tf_enamode_shift = TCR_ENAMODE_12_SHIFT; tfp->tf_intr_prd_en_shift = INTR_PRD_12_EN_SHIFT; tfp->tf_intr_prd_stat_shift = INTR_PRD_12_STAT_SHIFT; } else { tfp->tf_ctr_reg = TIM34; tfp->tf_prd_reg = PRD34; tfp->tf_enamode_shift = TCR_ENAMODE_34_SHIFT; tfp->tf_intr_prd_en_shift = INTR_PRD_34_EN_SHIFT; tfp->tf_intr_prd_stat_shift = INTR_PRD_34_STAT_SHIFT; } #ifdef OMAPL1X_TIMER_DEBUG tfprint(sc->sc_timerno, tfp); Debugger(); #endif } #ifdef OMAPL1X_TIMER_DEBUG void tfprint (uint n, timer_factors_t *tfp) { printf("%s: timer# %d\n", __func__, n); printf("\ttf_counts_per_usec: %#x\n", tfp->tf_counts_per_usec); printf("\ttf_counter: %#x\n", tfp->period); printf("\ttf_enamode: %#x\n", tfp->tf_enamode); } #endif static int omapl1xtimer_match (device_t parent, struct cfdata *match, void *aux) { return 1; } void omapl1xtimer_attach (device_t parent, device_t self, void *aux) { struct omapl1xtmr_softc *sc = device_private(self); struct tipb_attach_args *tipb = aux; sc->sc_timerno = self->dv_unit; sc->sc_iot = tipb->tipb_iot; sc->sc_intr = tipb->tipb_intr; sc->sc_addr = tipb->tipb_addr; sc->sc_bot = 1; /* use the bottom timer in all cases */ sc->sc_size = OMAPL1X_TIMER_SIZE; if (bus_space_map(sc->sc_iot, sc->sc_addr, sc->sc_size, 0, &sc->sc_ioh)) panic("%s: Cannot map registers", device_xname(self)); aprint_normal("\n"); aprint_naive("\n"); switch (sc->sc_timerno) { case 0: /* * timer #0 is the system clock * it gets started later */ clock_sc = sc; sc->sc_timer_freq = OMAPL1X_TIMER0_FREQ; break; case 1: /* * timer #2 is the stat clock * it gets started later */ profhz = stathz = STATHZ; stat_sc = sc; sc->sc_timer_freq = OMAPL1X_TIMER2_FREQ; break; case 2: /* * Timer #3 is used for microtime reference clock and for delay() * autoloading, non-interrupting, just wraps around as an unsigned int. * we start it now to make delay() available */ ref_sc = sc; sc->sc_timer_freq = OMAPL1X_TIMER3_FREQ; omapl1x_microtime_init(); break; default: panic("bad omapl1x timer number %d\n", sc->sc_timerno); break; } wdt.wdt_iot = tipb->tipb_iot; wdt.wdt_addr = OMAPL1X_WDT_ADDR; wdt.wdt_size = OMAPL1X_WDT_SIZE; /* Map WDT registers. We want to use it for reseting the chip */ if (bus_space_map(wdt.wdt_iot, wdt.wdt_addr, wdt.wdt_size, 0, &wdt.wdt_ioh)) { aprint_error_dev(self, "can't map wdt mem space\n"); return; } } void omapl1x_reset (void) { uint32_t val; printf("\n"); delay(50000); val = bus_space_read_4(wdt.wdt_iot, wdt.wdt_ioh, TGCR); /* * Get the timer out of reset and put it in * watchdog timer mode. */ val |= ((TGCR_RS_RUN << TGCR_RS_12_SHIFT) | (TGCR_RS_RUN << TGCR_RS_34_SHIFT)); val |= (TGCR_TIMMODE_64BIT_WDOG << TGCR_TIMMODE_SHIFT); bus_space_write_4(wdt.wdt_iot, wdt.wdt_ioh, TGCR, val); /* Init the counter and period registers */ bus_space_write_4(wdt.wdt_iot, wdt.wdt_ioh, TIM12, 0x0); bus_space_write_4(wdt.wdt_iot, wdt.wdt_ioh, TIM34, 0x0); bus_space_write_4(wdt.wdt_iot, wdt.wdt_ioh, PRD12, ~0); bus_space_write_4(wdt.wdt_iot, wdt.wdt_ioh, PRD34, ~0); val = bus_space_read_4(wdt.wdt_iot, wdt.wdt_ioh, WDTCR); /* * Now enable the wdt and write the WDKEY1 to get the * wd in the Pre-active state. */ val |= (1 << WDTCR_WDEN_SHIFT); val |= (WDTCR_WDTKEY1 << WDTCR_WDKEY_SHIFT); bus_space_write_4(wdt.wdt_iot, wdt.wdt_ioh, WDTCR, val); /* * Now write the WDKEY2 to get the wd in the Active * state. */ val = bus_space_read_4(wdt.wdt_iot, wdt.wdt_ioh, WDTCR); val &= ~WDTCR_WDKEY_MASK; val |= (WDTCR_WDTKEY2 << WDTCR_WDKEY_SHIFT); bus_space_write_4(wdt.wdt_iot, wdt.wdt_ioh, WDTCR, val); /* * Write an invalid value to the WDKEY to trigger * the wd timeout right away. */ val = bus_space_read_4(wdt.wdt_iot, wdt.wdt_ioh, WDTCR); val &= ~WDTCR_WDKEY_MASK; bus_space_write_4(wdt.wdt_iot, wdt.wdt_ioh, WDTCR, val); while(1); }