/* $NetBSD: sun4i_dma.c,v 1.3 2018/04/20 18:04:12 bouyer Exp $ */ /*- * Copyright (c) 2017 Jared McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_ddb.h" #include __KERNEL_RCSID(0, "$NetBSD: sun4i_dma.c,v 1.3 2018/04/20 18:04:12 bouyer Exp $"); #include #include #include #include #include #include #include #include #include #define DMA_MAX_TYPES 2 #define DMA_TYPE_NORMAL 0 #define DMA_TYPE_DEDICATED 1 #define DMA_MAX_CHANNELS 8 #define DMA_MAX_DRQS 32 #define DRQ_TYPE_SDRAM 0x16 #define DMA_IRQ_EN_REG 0x00 #define DMA_IRQ_PEND_STAS_REG 0x04 #define DMA_IRQ_PEND_STAS_END_MASK 0xaaaaaaaa #define NDMA_CTRL_REG(n) (0x100 + (n) * 0x20) #define NDMA_CTRL_LOAD __BIT(31) #define NDMA_CTRL_CONTI_EN __BIT(30) #define NDMA_CTRL_WAIT_STATE __BITS(29,27) #define NDMA_CTRL_DST_DATA_WIDTH __BITS(26,25) #define NDMA_CTRL_DST_BST_LEN __BITS(24,23) #define NDMA_CTRL_DST_ADDR_TYPE __BIT(21) #define NDMA_CTRL_DST_DRQ_TYPE __BITS(20,16) #define NDMA_CTRL_BC_MODE_SEL __BIT(15) #define NDMA_CTRL_SRC_DATA_WIDTH __BITS(10,9) #define NDMA_CTRL_SRC_BST_LEN __BITS(8,7) #define NDMA_CTRL_SRC_ADDR_TYPE __BIT(5) #define NDMA_CTRL_SRC_DRQ_TYPE __BITS(4,0) #define NDMA_SRC_ADDR_REG(n) (0x100 + (n) * 0x20 + 0x4) #define NDMA_DEST_ADDR_REG(n) (0x100 + (n) * 0x20 + 0x8) #define NDMA_BC_REG(n) (0x100 + (n) * 0x20 + 0xc) #define DDMA_CTRL_REG(n) (0x300 + (n) * 0x20) #define DDMA_CTRL_LOAD __BIT(31) #define DDMA_CTRL_BSY_STA __BIT(30) #define DDMA_CTRL_CONTI_EN __BIT(29) #define DDMA_CTRL_DST_DATA_WIDTH __BITS(26,25) #define DDMA_CTRL_DST_BST_LEN __BITS(24,23) #define DDMA_CTRL_DST_ADDR_MODE __BITS(22,21) #define DDMA_CTRL_DST_DRQ_TYPE __BITS(20,16) #define DDMA_CTRL_BC_MODE_SEL __BIT(15) #define DDMA_CTRL_SRC_DATA_WIDTH __BITS(10,9) #define DDMA_CTRL_SRC_BST_LEN __BITS(8,7) #define DDMA_CTRL_SRC_ADDR_MODE __BITS(6,5) #define DDMA_CTRL_SRC_DRQ_TYPE __BITS(4,0) #define DDMA_SRC_ADDR_REG(n) (0x300 + (n) * 0x20 + 0x4) #define DDMA_DEST_ADDR_REG(n) (0x300 + (n) * 0x20 + 0x8) #define DDMA_BC_REG(n) (0x300 + (n) * 0x20 + 0xc) #define DDMA_PARA_REG(n) (0x300 + (n) * 0x20 + 0x18) #define DDMA_PARA_DST_DATA_BLK_SIZE __BITS(31,24) #define DDMA_PARA_DST_WAIT_CLK_CYC __BITS(23,16) #define DDMA_PARA_SRC_DATA_BLK_SIZE __BITS(15,8) #define DDMA_PARA_SRC_WAIT_CLK_CYC __BITS(7,0) #define DDMA_PARA_VALUE \ (__SHIFTIN(1, DDMA_PARA_DST_DATA_BLK_SIZE) | \ __SHIFTIN(1, DDMA_PARA_SRC_DATA_BLK_SIZE) | \ __SHIFTIN(2, DDMA_PARA_DST_WAIT_CLK_CYC) | \ __SHIFTIN(2, DDMA_PARA_SRC_WAIT_CLK_CYC)) static const struct of_compat_data compat_data[] = { { "allwinner,sun4i-a10-dma", 1 }, { NULL } }; struct sun4idma_channel { uint8_t ch_type; uint8_t ch_index; uint32_t ch_irqmask; void (*ch_callback)(void *); void *ch_callbackarg; u_int ch_drq; }; struct sun4idma_softc { device_t sc_dev; bus_space_tag_t sc_bst; bus_space_handle_t sc_bsh; bus_dma_tag_t sc_dmat; int sc_phandle; void *sc_ih; kmutex_t sc_lock; struct sun4idma_channel sc_chan[DMA_MAX_TYPES][DMA_MAX_CHANNELS]; }; #define DMA_READ(sc, reg) \ bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg)) #define DMA_WRITE(sc, reg, val) \ bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) static void * sun4idma_acquire(device_t dev, const void *data, size_t len, void (*cb)(void *), void *cbarg) { struct sun4idma_softc *sc = device_private(dev); struct sun4idma_channel *ch = NULL; const uint32_t *specifier = data; uint32_t irqen; uint8_t index; if (len != 8) return NULL; const u_int type = be32toh(specifier[0]); const u_int drq = be32toh(specifier[1]); if (type >= DMA_MAX_TYPES || drq >= DMA_MAX_DRQS) return NULL; mutex_enter(&sc->sc_lock); for (index = 0; index < DMA_MAX_CHANNELS; index++) { if (sc->sc_chan[type][index].ch_callback == NULL) { ch = &sc->sc_chan[type][index]; ch->ch_callback = cb; ch->ch_callbackarg = cbarg; ch->ch_drq = drq; irqen = DMA_READ(sc, DMA_IRQ_EN_REG); irqen |= ch->ch_irqmask; DMA_WRITE(sc, DMA_IRQ_EN_REG, irqen); break; } } mutex_exit(&sc->sc_lock); return ch; } static void sun4idma_release(device_t dev, void *priv) { struct sun4idma_softc *sc = device_private(dev); struct sun4idma_channel *ch = priv; uint32_t irqen; mutex_enter(&sc->sc_lock); irqen = DMA_READ(sc, DMA_IRQ_EN_REG); irqen &= ~ch->ch_irqmask; DMA_WRITE(sc, DMA_IRQ_EN_REG, irqen); ch->ch_callback = NULL; ch->ch_callbackarg = NULL; mutex_exit(&sc->sc_lock); } static int sun4idma_transfer_ndma(struct sun4idma_softc *sc, struct sun4idma_channel *ch, struct fdtbus_dma_req *req) { uint32_t cfg, mem_cfg, dev_cfg, src, dst; uint32_t mem_width, dev_width, mem_burst, dev_burst; mem_width = req->dreq_mem_opt.opt_bus_width >> 4; dev_width = req->dreq_dev_opt.opt_bus_width >> 4; mem_burst = req->dreq_mem_opt.opt_burst_len == 1 ? 0 : (req->dreq_mem_opt.opt_burst_len >> 3) + 1; dev_burst = req->dreq_dev_opt.opt_burst_len == 1 ? 0 : (req->dreq_dev_opt.opt_burst_len >> 3) + 1; mem_cfg = __SHIFTIN(mem_width, NDMA_CTRL_SRC_DATA_WIDTH) | __SHIFTIN(mem_burst, NDMA_CTRL_SRC_BST_LEN) | __SHIFTIN(DRQ_TYPE_SDRAM, NDMA_CTRL_SRC_DRQ_TYPE); dev_cfg = __SHIFTIN(dev_width, NDMA_CTRL_SRC_DATA_WIDTH) | __SHIFTIN(dev_burst, NDMA_CTRL_SRC_BST_LEN) | __SHIFTIN(ch->ch_drq, NDMA_CTRL_SRC_DRQ_TYPE) | NDMA_CTRL_SRC_ADDR_TYPE; if (req->dreq_dir == FDT_DMA_READ) { src = req->dreq_dev_phys; dst = req->dreq_segs[0].ds_addr; cfg = mem_cfg << 16 | dev_cfg; } else { src = req->dreq_segs[0].ds_addr; dst = req->dreq_dev_phys; cfg = dev_cfg << 16 | mem_cfg; } DMA_WRITE(sc, NDMA_SRC_ADDR_REG(ch->ch_index), src); DMA_WRITE(sc, NDMA_DEST_ADDR_REG(ch->ch_index), dst); DMA_WRITE(sc, NDMA_BC_REG(ch->ch_index), req->dreq_segs[0].ds_len); DMA_WRITE(sc, NDMA_CTRL_REG(ch->ch_index), cfg | NDMA_CTRL_LOAD); return 0; } static int sun4idma_transfer_ddma(struct sun4idma_softc *sc, struct sun4idma_channel *ch, struct fdtbus_dma_req *req) { uint32_t cfg, mem_cfg, dev_cfg, src, dst; uint32_t mem_width, dev_width, mem_burst, dev_burst; mem_width = req->dreq_mem_opt.opt_bus_width >> 4; dev_width = req->dreq_dev_opt.opt_bus_width >> 4; mem_burst = req->dreq_mem_opt.opt_burst_len == 1 ? 0 : (req->dreq_mem_opt.opt_burst_len >> 3) + 1; dev_burst = req->dreq_dev_opt.opt_burst_len == 1 ? 0 : (req->dreq_dev_opt.opt_burst_len >> 3) + 1; mem_cfg = __SHIFTIN(mem_width, DDMA_CTRL_SRC_DATA_WIDTH) | __SHIFTIN(mem_burst, DDMA_CTRL_SRC_BST_LEN) | __SHIFTIN(DRQ_TYPE_SDRAM, DDMA_CTRL_SRC_DRQ_TYPE) | __SHIFTIN(0, DDMA_CTRL_SRC_ADDR_MODE); dev_cfg = __SHIFTIN(dev_width, DDMA_CTRL_SRC_DATA_WIDTH) | __SHIFTIN(dev_burst, DDMA_CTRL_SRC_BST_LEN) | __SHIFTIN(ch->ch_drq, DDMA_CTRL_SRC_DRQ_TYPE) | __SHIFTIN(1, DDMA_CTRL_SRC_ADDR_MODE); if (req->dreq_dir == FDT_DMA_READ) { src = req->dreq_dev_phys; dst = req->dreq_segs[0].ds_addr; cfg = mem_cfg << 16 | dev_cfg; } else { src = req->dreq_segs[0].ds_addr; dst = req->dreq_dev_phys; cfg = dev_cfg << 16 | mem_cfg; } DMA_WRITE(sc, DDMA_SRC_ADDR_REG(ch->ch_index), src); DMA_WRITE(sc, DDMA_DEST_ADDR_REG(ch->ch_index), dst); DMA_WRITE(sc, DDMA_BC_REG(ch->ch_index), req->dreq_segs[0].ds_len); DMA_WRITE(sc, DDMA_PARA_REG(ch->ch_index), DDMA_PARA_VALUE); DMA_WRITE(sc, DDMA_CTRL_REG(ch->ch_index), cfg | DDMA_CTRL_LOAD); return 0; } static int sun4idma_transfer(device_t dev, void *priv, struct fdtbus_dma_req *req) { struct sun4idma_softc *sc = device_private(dev); struct sun4idma_channel *ch = priv; if (req->dreq_nsegs != 1) return EINVAL; if (ch->ch_type == DMA_TYPE_NORMAL) return sun4idma_transfer_ndma(sc, ch, req); else return sun4idma_transfer_ddma(sc, ch, req); } static void sun4idma_halt(device_t dev, void *priv) { struct sun4idma_softc *sc = device_private(dev); struct sun4idma_channel *ch = priv; uint32_t val; if (ch->ch_type == DMA_TYPE_NORMAL) { val = DMA_READ(sc, NDMA_CTRL_REG(ch->ch_index)); val &= ~NDMA_CTRL_LOAD; DMA_WRITE(sc, NDMA_CTRL_REG(ch->ch_index), val); } else { val = DMA_READ(sc, DDMA_CTRL_REG(ch->ch_index)); val &= ~DDMA_CTRL_LOAD; DMA_WRITE(sc, DDMA_CTRL_REG(ch->ch_index), val); } } static const struct fdtbus_dma_controller_func sun4idma_funcs = { .acquire = sun4idma_acquire, .release = sun4idma_release, .transfer = sun4idma_transfer, .halt = sun4idma_halt }; static int sun4idma_intr(void *priv) { struct sun4idma_softc *sc = priv; uint32_t pend, mask, bit; uint8_t type, index; pend = DMA_READ(sc, DMA_IRQ_PEND_STAS_REG); if (pend == 0) return 0; DMA_WRITE(sc, DMA_IRQ_PEND_STAS_REG, pend); pend &= DMA_IRQ_PEND_STAS_END_MASK; while ((bit = ffs32(pend)) != 0) { mask = __BIT(bit - 1); pend &= ~mask; type = ((bit - 1) / 2) / 8; index = ((bit - 1) / 2) % 8; if (sc->sc_chan[type][index].ch_callback == NULL) continue; sc->sc_chan[type][index].ch_callback( sc->sc_chan[type][index].ch_callbackarg); } return 1; } static int sun4idma_match(device_t parent, cfdata_t cf, void *aux) { struct fdt_attach_args * const faa = aux; return of_match_compat_data(faa->faa_phandle, compat_data); } static void sun4idma_attach(device_t parent, device_t self, void *aux) { struct sun4idma_softc * const sc = device_private(self); struct fdt_attach_args * const faa = aux; const int phandle = faa->faa_phandle; struct clk *clk; char intrstr[128]; bus_addr_t addr; bus_size_t size; u_int index, type; if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) { aprint_error(": couldn't get registers\n"); return; } if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL || clk_enable(clk) != 0) { aprint_error(": couldn't enable clock\n"); return; } sc->sc_dev = self; sc->sc_phandle = phandle; sc->sc_dmat = faa->faa_dmat; sc->sc_bst = faa->faa_bst; if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) { aprint_error(": couldn't map registers\n"); return; } mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SCHED); if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) { aprint_error(": failed to decode interrupt\n"); return; } aprint_naive("\n"); aprint_normal(": DMA controller\n"); DMA_WRITE(sc, DMA_IRQ_EN_REG, 0); DMA_WRITE(sc, DMA_IRQ_PEND_STAS_REG, ~0); for (type = 0; type < DMA_MAX_TYPES; type++) { for (index = 0; index < DMA_MAX_CHANNELS; index++) { struct sun4idma_channel *ch = &sc->sc_chan[type][index]; ch->ch_type = type; ch->ch_index = index; ch->ch_irqmask = __BIT((type * 16) + (index * 2) + 1); ch->ch_callback = NULL; ch->ch_callbackarg = NULL; if (type == DMA_TYPE_NORMAL) DMA_WRITE(sc, NDMA_CTRL_REG(index), 0); else DMA_WRITE(sc, DDMA_CTRL_REG(index), 0); } } sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_SCHED, FDT_INTR_MPSAFE, sun4idma_intr, sc); if (sc->sc_ih == NULL) { aprint_error_dev(sc->sc_dev, "couldn't establish interrupt on %s\n", intrstr); return; } aprint_normal_dev(sc->sc_dev, "interrupting on %s\n", intrstr); fdtbus_register_dma_controller(self, phandle, &sun4idma_funcs); } CFATTACH_DECL_NEW(sun4i_dma, sizeof(struct sun4idma_softc), sun4idma_match, sun4idma_attach, NULL, NULL);