/* $NetBSD: ds1307.c,v 1.31 2018/12/20 21:36:53 macallan Exp $ */ /* * Copyright (c) 2003 Wasabi Systems, Inc. * All rights reserved. * * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.31 2018/12/20 21:36:53 macallan Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include "ioconf.h" #include "opt_dsrtc.h" struct dsrtc_model { const i2c_addr_t *dm_valid_addrs; uint16_t dm_model; uint8_t dm_ch_reg; uint8_t dm_ch_value; uint8_t dm_vbaten_reg; uint8_t dm_vbaten_value; uint8_t dm_rtc_start; uint8_t dm_rtc_size; uint8_t dm_nvram_start; uint8_t dm_nvram_size; uint8_t dm_flags; #define DSRTC_FLAG_CLOCK_HOLD 0x01 #define DSRTC_FLAG_BCD 0x02 #define DSRTC_FLAG_TEMP 0x04 #define DSRTC_FLAG_VBATEN 0x08 #define DSRTC_FLAG_YEAR_START_2K 0x10 #define DSRTC_FLAG_CLOCK_HOLD_REVERSED 0x20 }; static const i2c_addr_t ds1307_valid_addrs[] = { DS1307_ADDR, 0 }; static const struct dsrtc_model ds1307_model = { .dm_valid_addrs = ds1307_valid_addrs, .dm_model = 1307, .dm_ch_reg = DSXXXX_SECONDS, .dm_ch_value = DS1307_SECONDS_CH, .dm_rtc_start = DS1307_RTC_START, .dm_rtc_size = DS1307_RTC_SIZE, .dm_nvram_start = DS1307_NVRAM_START, .dm_nvram_size = DS1307_NVRAM_SIZE, .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD, }; static const struct dsrtc_model ds1339_model = { .dm_valid_addrs = ds1307_valid_addrs, .dm_model = 1339, .dm_rtc_start = DS1339_RTC_START, .dm_rtc_size = DS1339_RTC_SIZE, .dm_flags = DSRTC_FLAG_BCD, }; static const struct dsrtc_model ds1340_model = { .dm_valid_addrs = ds1307_valid_addrs, .dm_model = 1340, .dm_ch_reg = DSXXXX_SECONDS, .dm_ch_value = DS1340_SECONDS_EOSC, .dm_rtc_start = DS1340_RTC_START, .dm_rtc_size = DS1340_RTC_SIZE, .dm_flags = DSRTC_FLAG_BCD, }; static const struct dsrtc_model ds1672_model = { .dm_valid_addrs = ds1307_valid_addrs, .dm_model = 1672, .dm_rtc_start = DS1672_RTC_START, .dm_rtc_size = DS1672_RTC_SIZE, .dm_ch_reg = DS1672_CONTROL, .dm_ch_value = DS1672_CONTROL_CH, .dm_flags = 0, }; static const struct dsrtc_model ds3231_model = { .dm_valid_addrs = ds1307_valid_addrs, .dm_model = 3231, .dm_rtc_start = DS3232_RTC_START, .dm_rtc_size = DS3232_RTC_SIZE, .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP, }; static const struct dsrtc_model ds3232_model = { .dm_valid_addrs = ds1307_valid_addrs, .dm_model = 3232, .dm_rtc_start = DS3232_RTC_START, .dm_rtc_size = DS3232_RTC_SIZE, .dm_nvram_start = DS3232_NVRAM_START, .dm_nvram_size = DS3232_NVRAM_SIZE, /* * XXX * the DS3232 likely has the temperature sensor too but I can't * easily verify or test that right now */ .dm_flags = DSRTC_FLAG_BCD, }; static const i2c_addr_t mcp7940_valid_addrs[] = { MCP7940_ADDR, 0 }; static const struct dsrtc_model mcp7940_model = { .dm_valid_addrs = mcp7940_valid_addrs, .dm_model = 7940, .dm_rtc_start = DS1307_RTC_START, .dm_rtc_size = DS1307_RTC_SIZE, .dm_ch_reg = DSXXXX_SECONDS, .dm_ch_value = DS1307_SECONDS_CH, .dm_vbaten_reg = DSXXXX_DAY, .dm_vbaten_value = MCP7940_TOD_DAY_VBATEN, .dm_nvram_start = MCP7940_NVRAM_START, .dm_nvram_size = MCP7940_NVRAM_SIZE, .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD | DSRTC_FLAG_VBATEN | DSRTC_FLAG_CLOCK_HOLD_REVERSED, }; static const struct device_compatible_entry compat_data[] = { { "dallas,ds1307", (uintptr_t)&ds1307_model }, { "maxim,ds1307", (uintptr_t)&ds1307_model }, { "dallas,ds1339", (uintptr_t)&ds1339_model }, { "maxim,ds1339", (uintptr_t)&ds1339_model }, { "dallas,ds1340", (uintptr_t)&ds1340_model }, { "maxim,ds1340", (uintptr_t)&ds1340_model }, { "dallas,ds1672", (uintptr_t)&ds1672_model }, { "maxim,ds1672", (uintptr_t)&ds1672_model }, { "dallas,ds3231", (uintptr_t)&ds3231_model }, { "maxim,ds3231", (uintptr_t)&ds3231_model }, { "dallas,ds3232", (uintptr_t)&ds3232_model }, { "maxim,ds3232", (uintptr_t)&ds3232_model }, { "microchip,mcp7940", (uintptr_t)&mcp7940_model }, { NULL, 0 } }; struct dsrtc_softc { device_t sc_dev; i2c_tag_t sc_tag; uint8_t sc_address; bool sc_open; struct dsrtc_model sc_model; struct todr_chip_handle sc_todr; struct sysmon_envsys *sc_sme; envsys_data_t sc_sensor; }; static void dsrtc_attach(device_t, device_t, void *); static int dsrtc_match(device_t, cfdata_t, void *); CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc), dsrtc_match, dsrtc_attach, NULL, NULL); dev_type_open(dsrtc_open); dev_type_close(dsrtc_close); dev_type_read(dsrtc_read); dev_type_write(dsrtc_write); const struct cdevsw dsrtc_cdevsw = { .d_open = dsrtc_open, .d_close = dsrtc_close, .d_read = dsrtc_read, .d_write = dsrtc_write, .d_ioctl = noioctl, .d_stop = nostop, .d_tty = notty, .d_poll = nopoll, .d_mmap = nommap, .d_kqfilter = nokqfilter, .d_discard = nodiscard, .d_flag = D_OTHER }; static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *); static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *); static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *); static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *); static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *); static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *); static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *); static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t); static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *); static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *); static const struct dsrtc_model * dsrtc_model_by_number(u_int model) { const struct device_compatible_entry *dce; const struct dsrtc_model *dm; /* no model given, assume it's a DS1307 */ if (model == 0) return &ds1307_model; for (dce = compat_data; dce->compat != NULL; dce++) { dm = (void *)dce->data; if (dm->dm_model == model) return dm; } return NULL; } static const struct dsrtc_model * dsrtc_model_by_compat(const struct i2c_attach_args *ia) { const struct dsrtc_model *dm = NULL; const struct device_compatible_entry *dce; if (iic_compatible_match(ia, compat_data, &dce)) dm = (void *)dce->data; return dm; } static bool dsrtc_is_valid_addr_for_model(const struct dsrtc_model *dm, i2c_addr_t addr) { for (int i = 0; dm->dm_valid_addrs[i] != 0; i++) { if (addr == dm->dm_valid_addrs[i]) return true; } return false; } static int dsrtc_match(device_t parent, cfdata_t cf, void *arg) { struct i2c_attach_args *ia = arg; const struct dsrtc_model *dm; int match_result; if (iic_use_direct_match(ia, cf, compat_data, &match_result)) return match_result; dm = dsrtc_model_by_number(cf->cf_flags & 0xffff); if (dm == NULL) return 0; if (dsrtc_is_valid_addr_for_model(dm, ia->ia_addr)) return I2C_MATCH_ADDRESS_ONLY; return 0; } static void dsrtc_attach(device_t parent, device_t self, void *arg) { struct dsrtc_softc *sc = device_private(self); struct i2c_attach_args *ia = arg; const struct dsrtc_model *dm; prop_dictionary_t dict = device_properties(self); bool base_2k = FALSE; if ((dm = dsrtc_model_by_compat(ia)) == NULL) dm = dsrtc_model_by_number(device_cfdata(self)->cf_flags); if (dm == NULL) { aprint_error(": unable to determine model!\n"); return; } aprint_naive(": Real-time Clock%s\n", dm->dm_nvram_size > 0 ? "/NVRAM" : ""); aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model, dm->dm_nvram_size > 0 ? "/NVRAM" : ""); sc->sc_tag = ia->ia_tag; sc->sc_address = ia->ia_addr; sc->sc_model = *dm; sc->sc_dev = self; sc->sc_open = 0; sc->sc_todr.cookie = sc; if (dm->dm_flags & DSRTC_FLAG_BCD) { sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms; sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms; } else { sc->sc_todr.todr_gettime = dsrtc_gettime_timeval; sc->sc_todr.todr_settime = dsrtc_settime_timeval; } sc->sc_todr.todr_setwen = NULL; #ifdef DSRTC_YEAR_START_2K sc->sc_model.dm_flags |= DSRTC_FLAG_YEAR_START_2K; #endif prop_dictionary_get_bool(dict, "base_year_is_2000", &base_2k); if (base_2k) sc->sc_model.dm_flags |= DSRTC_FLAG_YEAR_START_2K; todr_attach(&sc->sc_todr); if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) { int error; sc->sc_sme = sysmon_envsys_create(); sc->sc_sme->sme_name = device_xname(self); sc->sc_sme->sme_cookie = sc; sc->sc_sme->sme_refresh = dsrtc_refresh; sc->sc_sensor.units = ENVSYS_STEMP; sc->sc_sensor.state = ENVSYS_SINVALID; sc->sc_sensor.flags = 0; (void)strlcpy(sc->sc_sensor.desc, "temperature", sizeof(sc->sc_sensor.desc)); if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) { aprint_error_dev(self, "unable to attach sensor\n"); goto bad; } error = sysmon_envsys_register(sc->sc_sme); if (error) { aprint_error_dev(self, "error %d registering with sysmon\n", error); goto bad; } } return; bad: sysmon_envsys_destroy(sc->sc_sme); } /*ARGSUSED*/ int dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l) { struct dsrtc_softc *sc; if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL) return ENXIO; /* XXX: Locking */ if (sc->sc_open) return EBUSY; sc->sc_open = true; return 0; } /*ARGSUSED*/ int dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l) { struct dsrtc_softc *sc; if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL) return ENXIO; sc->sc_open = false; return 0; } /*ARGSUSED*/ int dsrtc_read(dev_t dev, struct uio *uio, int flags) { struct dsrtc_softc *sc; int error; if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL) return ENXIO; const struct dsrtc_model * const dm = &sc->sc_model; if (uio->uio_offset >= dm->dm_nvram_size) return EINVAL; if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) return error; KASSERT(uio->uio_offset >= 0); while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) { uint8_t ch, cmd; const u_int a = uio->uio_offset; cmd = a + dm->dm_nvram_start; if ((error = iic_exec(sc->sc_tag, uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP, sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) { iic_release_bus(sc->sc_tag, 0); aprint_error_dev(sc->sc_dev, "%s: read failed at 0x%x: %d\n", __func__, a, error); return error; } if ((error = uiomove(&ch, 1, uio)) != 0) { iic_release_bus(sc->sc_tag, 0); return error; } } iic_release_bus(sc->sc_tag, 0); return 0; } /*ARGSUSED*/ int dsrtc_write(dev_t dev, struct uio *uio, int flags) { struct dsrtc_softc *sc; int error; if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL) return ENXIO; const struct dsrtc_model * const dm = &sc->sc_model; if (uio->uio_offset >= dm->dm_nvram_size) return EINVAL; if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) return error; while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) { uint8_t cmdbuf[2]; const u_int a = (int)uio->uio_offset; cmdbuf[0] = a + dm->dm_nvram_start; if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0) break; if ((error = iic_exec(sc->sc_tag, uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP, sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) { aprint_error_dev(sc->sc_dev, "%s: write failed at 0x%x: %d\n", __func__, a, error); break; } } iic_release_bus(sc->sc_tag, 0); return error; } static int dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt) { struct dsrtc_softc *sc = ch->cookie; struct clock_ymdhms check; int retries; memset(dt, 0, sizeof(*dt)); memset(&check, 0, sizeof(check)); /* * Since we don't support Burst Read, we have to read the clock twice * until we get two consecutive identical results. */ retries = 5; do { dsrtc_clock_read_ymdhms(sc, dt); dsrtc_clock_read_ymdhms(sc, &check); } while (memcmp(dt, &check, sizeof(check)) != 0 && --retries); return 0; } static int dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt) { struct dsrtc_softc *sc = ch->cookie; if (dsrtc_clock_write_ymdhms(sc, dt) == 0) return -1; return 0; } static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt) { struct dsrtc_model * const dm = &sc->sc_model; uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1]; int error; KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size); if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) { aprint_error_dev(sc->sc_dev, "%s: failed to acquire I2C bus: %d\n", __func__, error); return 0; } /* Read each RTC register in order. */ for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) { cmdbuf[0] = dm->dm_rtc_start + i; error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL); } /* Done with I2C */ iic_release_bus(sc->sc_tag, I2C_F_POLL); if (error != 0) { aprint_error_dev(sc->sc_dev, "%s: failed to read rtc at 0x%x: %d\n", __func__, cmdbuf[0], error); return 0; } /* * Convert the RTC's register values into something useable */ dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK); dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK); if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) { dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */ if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM) dt->dt_hour += 12; } else dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] & DSXXXX_HOURS_24MASK); dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK); dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK); /* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */ if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K) dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + 2000; else { dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR; if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY) dt->dt_year += 100; } return 1; } static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt) { struct dsrtc_model * const dm = &sc->sc_model; uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2]; int error, offset; KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size); /* * Convert our time representation into something the DSXXXX * can understand. */ bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec); bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min); bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */ bcd[DSXXXX_DATE] = bintobcd(dt->dt_day); bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday); bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon); if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K) { offset = 2000; } else { offset = POSIX_BASE_YEAR; } bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - offset) % 100); if (dt->dt_year - offset >= 100) bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY; if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) { aprint_error_dev(sc->sc_dev, "%s: failed to acquire I2C bus: %d\n", __func__, error); return 0; } /* Stop the clock */ cmdbuf[0] = dm->dm_ch_reg; if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) { iic_release_bus(sc->sc_tag, I2C_F_POLL); aprint_error_dev(sc->sc_dev, "%s: failed to read Hold Clock: %d\n", __func__, error); return 0; } if (sc->sc_model.dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED) cmdbuf[1] &= ~dm->dm_ch_value; else cmdbuf[1] |= dm->dm_ch_value; if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) { iic_release_bus(sc->sc_tag, I2C_F_POLL); aprint_error_dev(sc->sc_dev, "%s: failed to write Hold Clock: %d\n", __func__, error); return 0; } /* * Write registers in reverse order. The last write (to the Seconds * register) will undo the Clock Hold, above. */ uint8_t op = I2C_OP_WRITE; for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) { cmdbuf[0] = dm->dm_rtc_start + i; if ((dm->dm_flags & DSRTC_FLAG_VBATEN) && dm->dm_rtc_start + i == dm->dm_vbaten_reg) bcd[i] |= dm->dm_vbaten_value; if (dm->dm_rtc_start + i == dm->dm_ch_reg) { op = I2C_OP_WRITE_WITH_STOP; if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED) bcd[i] |= dm->dm_ch_value; } if ((error = iic_exec(sc->sc_tag, op, sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) { iic_release_bus(sc->sc_tag, I2C_F_POLL); aprint_error_dev(sc->sc_dev, "%s: failed to write rtc at 0x%x: %d\n", __func__, i, error); /* XXX: Clock Hold is likely still asserted! */ return 0; } } /* * If the clock hold register isn't the same register as seconds, * we need to reeanble the clock. */ if (op != I2C_OP_WRITE_WITH_STOP) { cmdbuf[0] = dm->dm_ch_reg; if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED) cmdbuf[1] |= dm->dm_ch_value; else cmdbuf[1] &= ~dm->dm_ch_value; if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) { iic_release_bus(sc->sc_tag, I2C_F_POLL); aprint_error_dev(sc->sc_dev, "%s: failed to Hold Clock: %d\n", __func__, error); return 0; } } iic_release_bus(sc->sc_tag, I2C_F_POLL); return 1; } static int dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv) { struct dsrtc_softc *sc = ch->cookie; struct timeval check; int retries; memset(tv, 0, sizeof(*tv)); memset(&check, 0, sizeof(check)); /* * Since we don't support Burst Read, we have to read the clock twice * until we get two consecutive identical results. */ retries = 5; do { dsrtc_clock_read_timeval(sc, &tv->tv_sec); dsrtc_clock_read_timeval(sc, &check.tv_sec); } while (memcmp(tv, &check, sizeof(check)) != 0 && --retries); return 0; } static int dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv) { struct dsrtc_softc *sc = ch->cookie; if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0) return -1; return 0; } /* * The RTC probably has a nice Clock Burst Read/Write command, but we can't use * it, since some I2C controllers don't support anything other than single-byte * transfers. */ static int dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp) { const struct dsrtc_model * const dm = &sc->sc_model; uint8_t buf[4]; int error; if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) { aprint_error_dev(sc->sc_dev, "%s: failed to acquire I2C bus: %d\n", __func__, error); return 0; } /* read all registers: */ uint8_t reg = dm->dm_rtc_start; error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address, ®, 1, buf, 4, I2C_F_POLL); /* Done with I2C */ iic_release_bus(sc->sc_tag, I2C_F_POLL); if (error != 0) { aprint_error_dev(sc->sc_dev, "%s: failed to read rtc at 0x%x: %d\n", __func__, reg, error); return 0; } uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; *tp = v; aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n", __func__, v); return 1; } static int dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t) { const struct dsrtc_model * const dm = &sc->sc_model; size_t buflen = dm->dm_rtc_size + 2; uint8_t buf[buflen]; int error; KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0); KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4); buf[0] = dm->dm_rtc_start; buf[1] = (t >> 0) & 0xff; buf[2] = (t >> 8) & 0xff; buf[3] = (t >> 16) & 0xff; buf[4] = (t >> 24) & 0xff; buf[5] = 0; if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) { aprint_error_dev(sc->sc_dev, "%s: failed to acquire I2C bus: %d\n", __func__, error); return 0; } error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address, &buf, buflen, NULL, 0, I2C_F_POLL); /* Done with I2C */ iic_release_bus(sc->sc_tag, I2C_F_POLL); /* send data */ if (error != 0) { aprint_error_dev(sc->sc_dev, "%s: failed to set time: %d\n", __func__, error); return 0; } return 1; } static int dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp) { int error, tc; uint8_t reg = DS3232_TEMP_MSB; uint8_t buf[2]; if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0) return ENOTSUP; if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) { aprint_error_dev(sc->sc_dev, "%s: failed to acquire I2C bus: %d\n", __func__, error); return 0; } /* read temperature registers: */ error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address, ®, 1, buf, 2, I2C_F_POLL); /* Done with I2C */ iic_release_bus(sc->sc_tag, I2C_F_POLL); if (error != 0) { aprint_error_dev(sc->sc_dev, "%s: failed to read temperature: %d\n", __func__, error); return 0; } /* convert to microkelvin */ tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000; *temp = tc + 273150000; return 1; } static void dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) { struct dsrtc_softc *sc = sme->sme_cookie; uint32_t temp = 0; /* XXX gcc */ if (dsrtc_read_temp(sc, &temp) == 0) { edata->state = ENVSYS_SINVALID; return; } edata->value_cur = temp; edata->state = ENVSYS_SVALID; }