/* $NetBSD: fcu.c,v 1.9 2019/06/15 02:00:21 macallan Exp $ */ /*- * Copyright (c) 2018 Michael Lorenz * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: fcu.c,v 1.9 2019/06/15 02:00:21 macallan Exp $"); #include #include #include #include #include #include #include #include #include //#define FCU_DEBUG #ifdef FCU_DEBUG #define DPRINTF printf #else #define DPRINTF if (0) printf #endif /* FCU registers, from OpenBSD's fcu.c */ #define FCU_FAN_FAIL 0x0b /* fans states in bits 0<1-6>7 */ #define FCU_FAN_ACTIVE 0x0d #define FCU_FANREAD(x) 0x11 + (x)*2 #define FCU_FANSET(x) 0x10 + (x)*2 #define FCU_PWM_FAIL 0x2b #define FCU_PWM_ACTIVE 0x2d #define FCU_PWMREAD(x) 0x30 + (x)*2 #define FCU_MAX_FANS 10 typedef struct _fcu_zone { bool (*filter)(const envsys_data_t *); int nfans; int fans[FCU_MAX_FANS]; int threshold; } fcu_zone_t; typedef struct _fcu_fan { int target; int reg; int base_rpm, max_rpm; int step; int duty; /* for pwm fans */ } fcu_fan_t; #define FCU_ZONE_CPU_A 0 #define FCU_ZONE_CPU_B 1 #define FCU_ZONE_CASE 2 #define FCU_ZONE_DRIVEBAY 3 #define FCU_ZONE_COUNT 4 struct fcu_softc { device_t sc_dev; i2c_tag_t sc_i2c; i2c_addr_t sc_addr; struct sysmon_envsys *sc_sme; envsys_data_t sc_sensors[32]; int sc_nsensors; fcu_zone_t sc_zones[FCU_ZONE_COUNT]; fcu_fan_t sc_fans[FCU_MAX_FANS]; int sc_nfans; lwp_t *sc_thread; bool sc_dying, sc_pwm; uint8_t sc_eeprom0[160]; uint8_t sc_eeprom1[160]; }; static int fcu_match(device_t, cfdata_t, void *); static void fcu_attach(device_t, device_t, void *); static void fcu_sensors_refresh(struct sysmon_envsys *, envsys_data_t *); static bool is_cpu_a(const envsys_data_t *); static bool is_cpu_b(const envsys_data_t *); static bool is_case(const envsys_data_t *); static bool is_drive(const envsys_data_t *); static void fcu_set_fan_rpm(struct fcu_softc *, fcu_fan_t *, int); static void fcu_adjust_zone(struct fcu_softc *, int); static void fcu_adjust(void *); CFATTACH_DECL_NEW(fcu, sizeof(struct fcu_softc), fcu_match, fcu_attach, NULL, NULL); static const struct device_compatible_entry compat_data[] = { { "fcu", 0 }, { NULL, 0 } }; static int fcu_match(device_t parent, cfdata_t match, void *aux) { struct i2c_attach_args *ia = aux; int match_result; if (iic_use_direct_match(ia, match, compat_data, &match_result)) return match_result; if (ia->ia_addr == 0x2f) return I2C_MATCH_ADDRESS_ONLY; return 0; } static void fcu_attach(device_t parent, device_t self, void *aux) { struct fcu_softc *sc = device_private(self); struct i2c_attach_args *ia = aux; int have_eeprom1 = 1; sc->sc_dev = self; sc->sc_i2c = ia->ia_tag; sc->sc_addr = ia->ia_addr; aprint_naive("\n"); aprint_normal(": Fan Control Unit\n"); if (get_cpuid(0, sc->sc_eeprom0) < 160) { /* * XXX this should never happen, we depend on the EEPROM for * calibration data to make sense of temperature and voltage * sensors elsewhere, and fan parameters here. */ aprint_error_dev(self, "no EEPROM data for CPU 0\n"); return; } if (get_cpuid(1, sc->sc_eeprom1) < 160) have_eeprom1 = 0; /* init zones */ sc->sc_zones[FCU_ZONE_CPU_A].filter = is_cpu_a; sc->sc_zones[FCU_ZONE_CPU_A].threshold = 50; sc->sc_zones[FCU_ZONE_CPU_A].nfans = 0; sc->sc_zones[FCU_ZONE_CPU_B].filter = is_cpu_b; sc->sc_zones[FCU_ZONE_CPU_B].threshold = 50; sc->sc_zones[FCU_ZONE_CPU_B].nfans = 0; sc->sc_zones[FCU_ZONE_CASE].filter = is_case; sc->sc_zones[FCU_ZONE_CASE].threshold = 50; sc->sc_zones[FCU_ZONE_CASE].nfans = 0; sc->sc_zones[FCU_ZONE_DRIVEBAY].filter = is_drive; sc->sc_zones[FCU_ZONE_DRIVEBAY].threshold = 30; sc->sc_zones[FCU_ZONE_DRIVEBAY].nfans = 0; sc->sc_sme = sysmon_envsys_create(); sc->sc_sme->sme_name = device_xname(self); sc->sc_sme->sme_cookie = sc; sc->sc_sme->sme_refresh = fcu_sensors_refresh; sc->sc_sensors[0].units = ENVSYS_SFANRPM; sc->sc_sensors[1].state = ENVSYS_SINVALID; sc->sc_nfans = 0; /* round up sensors */ int ch; sc->sc_nsensors = 0; ch = OF_child(ia->ia_cookie); while (ch != 0) { char type[32], descr[32]; uint32_t reg; envsys_data_t *s = &sc->sc_sensors[sc->sc_nsensors]; s->state = ENVSYS_SINVALID; if (OF_getprop(ch, "device_type", type, 32) <= 0) goto next; if (strcmp(type, "fan-rpm-control") == 0) { s->units = ENVSYS_SFANRPM; } else if (strcmp(type, "fan-pwm-control") == 0) { /* XXX we get the type from the register number */ s->units = ENVSYS_SFANRPM; /* skip those for now since we don't really know how to interpret them */ #if 0 } else if (strcmp(type, "power-sensor") == 0) { s->units = ENVSYS_SVOLTS_DC; #endif } else if (strcmp(type, "gpi-sensor") == 0) { s->units = ENVSYS_INDICATOR; } else { /* ignore other types for now */ goto next; } if (OF_getprop(ch, "reg", ®, sizeof(reg)) <= 0) goto next; s->private = reg; if (OF_getprop(ch, "location", descr, 32) <= 0) goto next; strcpy(s->desc, descr); if (s->units == ENVSYS_SFANRPM) { fcu_fan_t *fan = &sc->sc_fans[sc->sc_nfans]; uint8_t *eeprom = NULL; uint16_t rmin, rmax; if (strstr(descr, "CPU A") != NULL) eeprom = sc->sc_eeprom0; if (strstr(descr, "CPU B") != NULL) { /* * XXX * this should never happen */ if (have_eeprom1 == 0) { eeprom = sc->sc_eeprom0; } else eeprom = sc->sc_eeprom1; } fan->reg = reg; fan->target = 0; fan->duty = 0x80; /* speed settings from EEPROM */ if (strstr(descr, "PUMP") != NULL) { KASSERT(eeprom != NULL); memcpy(&rmin, &eeprom[0x54], 2); memcpy(&rmax, &eeprom[0x56], 2); fan->base_rpm = rmin; fan->max_rpm = rmax; fan->step = (rmax - rmin) / 30; } else if (strstr(descr, "INTAKE") != NULL) { KASSERT(eeprom != NULL); memcpy(&rmin, &eeprom[0x4c], 2); memcpy(&rmax, &eeprom[0x4e], 2); fan->base_rpm = rmin; fan->max_rpm = rmax; fan->step = (rmax - rmin) / 30; } else if (strstr(descr, "EXHAUST") != NULL) { KASSERT(eeprom != NULL); memcpy(&rmin, &eeprom[0x50], 2); memcpy(&rmax, &eeprom[0x52], 2); fan->base_rpm = rmin; fan->max_rpm = rmax; fan->step = (rmax - rmin) / 30; } else if (strstr(descr, "DRIVE") != NULL ) { fan->base_rpm = 1000; fan->max_rpm = 3000; fan->step = 100; } else { fan->base_rpm = 1000; fan->max_rpm = 3000; fan->step = 100; } DPRINTF("fan %s: %d - %d rpm, step %d\n", descr, fan->base_rpm, fan->max_rpm, fan->step); /* now stuff them into zones */ if (strstr(descr, "CPU A") != NULL) { fcu_zone_t *z = &sc->sc_zones[FCU_ZONE_CPU_A]; z->fans[z->nfans] = sc->sc_nfans; z->nfans++; } else if (strstr(descr, "CPU B") != NULL) { fcu_zone_t *z = &sc->sc_zones[FCU_ZONE_CPU_B]; z->fans[z->nfans] = sc->sc_nfans; z->nfans++; } else if ((strstr(descr, "BACKSIDE") != NULL) || (strstr(descr, "SLOT") != NULL)) { fcu_zone_t *z = &sc->sc_zones[FCU_ZONE_CASE]; z->fans[z->nfans] = sc->sc_nfans; z->nfans++; } else if (strstr(descr, "DRIVE") != NULL) { fcu_zone_t *z = &sc->sc_zones[FCU_ZONE_DRIVEBAY]; z->fans[z->nfans] = sc->sc_nfans; z->nfans++; } sc->sc_nfans++; } sysmon_envsys_sensor_attach(sc->sc_sme, s); sc->sc_nsensors++; next: ch = OF_peer(ch); } sysmon_envsys_register(sc->sc_sme); sc->sc_dying = FALSE; kthread_create(PRI_NONE, 0, curcpu(), fcu_adjust, sc, &sc->sc_thread, "fan control"); } static void fcu_sensors_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) { struct fcu_softc *sc = sme->sme_cookie; uint8_t cmd; uint16_t data = -1; int error; if (edata->units == ENVSYS_SFANRPM) { cmd = edata->private + 1; } else cmd = edata->private; /* fcu is a macppc only thing so we can safely assume big endian */ iic_acquire_bus(sc->sc_i2c, 0); error = iic_exec(sc->sc_i2c, I2C_OP_READ_WITH_STOP, sc->sc_addr, &cmd, 1, &data, 2, 0); iic_release_bus(sc->sc_i2c, 0); if (error) { edata->state = ENVSYS_SINVALID; return; } edata->state = ENVSYS_SVALID; switch (edata->units) { case ENVSYS_SFANRPM: edata->value_cur = data >> 3; break; case ENVSYS_SVOLTS_DC: /* XXX this reads bogus */ edata->value_cur = data * 1000; break; case ENVSYS_INDICATOR: /* guesswork for now */ edata->value_cur = data >> 8; break; default: edata->state = ENVSYS_SINVALID; } } static bool is_cpu_a(const envsys_data_t *edata) { if (edata->units != ENVSYS_STEMP) return false; if (strstr(edata->desc, "CPU A") != NULL) return TRUE; return false; } static bool is_cpu_b(const envsys_data_t *edata) { if (edata->units != ENVSYS_STEMP) return false; if (strstr(edata->desc, "CPU B") != NULL) return TRUE; return false; } static bool is_case(const envsys_data_t *edata) { if (edata->units != ENVSYS_STEMP) return false; if ((strstr(edata->desc, "MLB") != NULL) || (strstr(edata->desc, "BACKSIDE") != NULL) || (strstr(edata->desc, "U3") != NULL)) return TRUE; return false; } static bool is_drive(const envsys_data_t *edata) { if (edata->units != ENVSYS_STEMP) return false; if (strstr(edata->desc, "DRIVE") != NULL) return TRUE; return false; } static void fcu_set_fan_rpm(struct fcu_softc *sc, fcu_fan_t *f, int speed) { int error; uint8_t cmd; if (speed > f->max_rpm) speed = f->max_rpm; if (speed < f->base_rpm) speed = f->base_rpm; if (f->reg < 0x30) { uint16_t data; /* simple rpm fan, just poke the register */ if (f->target == speed) return; iic_acquire_bus(sc->sc_i2c, 0); cmd = f->reg; data = (speed << 3); error = iic_exec(sc->sc_i2c, I2C_OP_WRITE_WITH_STOP, sc->sc_addr, &cmd, 1, &data, 2, 0); iic_release_bus(sc->sc_i2c, 0); } else { int diff; int nduty = f->duty; uint16_t data; /* pwm fan, measure speed, then adjust duty cycle */ DPRINTF("pwm fan "); iic_acquire_bus(sc->sc_i2c, 0); cmd = f->reg + 1; error = iic_exec(sc->sc_i2c, I2C_OP_READ_WITH_STOP, sc->sc_addr, &cmd, 1, &data, 2, 0); data = data >> 3; diff = data - speed; DPRINTF("d %d s %d t %d diff %d ", f->duty, data, speed, diff); if (diff > 100) { nduty = uimax(20, nduty - 1); } if (diff < -100) { nduty = uimin(0xd0, nduty + 1); } cmd = f->reg; DPRINTF("%s nduty %d", __func__, nduty); if (nduty != f->duty) { uint8_t arg = nduty; error = iic_exec(sc->sc_i2c, I2C_OP_WRITE_WITH_STOP, sc->sc_addr, &cmd, 1, &arg, 1, 0); f->duty = nduty; sc->sc_pwm = TRUE; } iic_release_bus(sc->sc_i2c, 0); DPRINTF("ok\n"); } if (error) printf("boo\n"); f->target = speed; } static void fcu_adjust_zone(struct fcu_softc *sc, int which) { fcu_zone_t *z = &sc->sc_zones[which]; fcu_fan_t *f; int temp, i, speed, diff; if (z->nfans <= 0) return; temp = sysmon_envsys_get_max_value(z->filter, true); if (temp == 0) { /* no sensor data - leave fan alone */ DPRINTF("nodata\n"); return; } temp = (temp - 273150000) / 1000000; diff = temp - z->threshold; if (diff < 0) diff = 0; /* now adjust each fan to the new duty cycle */ for (i = 0; i < z->nfans; i++) { if (z->fans[i] > 8) { printf("wtf?!\n"); continue; } f = &sc->sc_fans[z->fans[i]]; speed = f->base_rpm + diff * f->step; DPRINTF("diff %d base %d sp %d\n", diff, f->base_rpm, speed); fcu_set_fan_rpm(sc, f, speed); } } static void fcu_adjust(void *cookie) { struct fcu_softc *sc = cookie; int i; uint8_t cmd, data; while (!sc->sc_dying) { /* poke the FCU so we don't go 747 */ iic_acquire_bus(sc->sc_i2c, 0); cmd = FCU_FAN_ACTIVE; iic_exec(sc->sc_i2c, I2C_OP_READ_WITH_STOP, sc->sc_addr, &cmd, 1, &data, 1, 0); iic_release_bus(sc->sc_i2c, 0); sc->sc_pwm = FALSE; for (i = 0; i < FCU_ZONE_COUNT; i++) fcu_adjust_zone(sc, i); kpause("fanctrl", true, mstohz(sc->sc_pwm ? 1000 : 5000), NULL); } kthread_exit(0); }