/* $NetBSD: rf_layout.h,v 1.18 2018/06/09 21:18:41 oster Exp $ */ /* * Copyright (c) 1995 Carnegie-Mellon University. * All rights reserved. * * Author: Mark Holland * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* rf_layout.h -- header file defining layout data structures */ #ifndef _RF__RF_LAYOUT_H_ #define _RF__RF_LAYOUT_H_ #include #include "rf_archs.h" #include "rf_alloclist.h" /* enables remapping to spare location under dist sparing */ #define RF_REMAP 1 #define RF_DONT_REMAP 0 /* * Flags values for RF_AccessStripeMapFlags_t */ #define RF_NO_STRIPE_LOCKS 0x0001 /* suppress stripe locks */ #define RF_DISTRIBUTE_SPARE 0x0002 /* distribute spare space in archs * that support it */ #define RF_BD_DECLUSTERED 0x0004 /* declustering uses block designs */ /************************************************************************* * * this structure forms the layout component of the main Raid * structure. It describes everything needed to define and perform * the mapping of logical RAID addresses <-> physical disk addresses. * *************************************************************************/ struct RF_RaidLayout_s { /* configuration parameters */ RF_SectorCount_t sectorsPerStripeUnit; /* number of sectors in one * stripe unit */ RF_StripeCount_t SUsPerPU; /* stripe units per parity unit */ RF_StripeCount_t SUsPerRU; /* stripe units per reconstruction * unit */ /* redundant-but-useful info computed from the above, used in all * layouts */ RF_StripeCount_t numStripe; /* total number of stripes in the * array */ RF_SectorCount_t dataSectorsPerStripe; RF_StripeCount_t dataStripeUnitsPerDisk; RF_StripeCount_t numDataCol; /* number of SUs of data per stripe * (name here is a la RAID4) */ RF_StripeCount_t numParityCol; /* number of SUs of parity per stripe. * Always 1 for now */ RF_StripeCount_t numParityLogCol; /* number of SUs of parity log * per stripe. Always 1 for * now */ RF_StripeCount_t stripeUnitsPerDisk; const RF_LayoutSW_t *map; /* ptr to struct holding mapping fns and * information */ void *layoutSpecificInfo; /* ptr to a structure holding * layout-specific params */ }; /***************************************************************************************** * * The mapping code returns a pointer to a list of AccessStripeMap structures, which * describes all the mapping information about an access. The list contains one * AccessStripeMap structure per stripe touched by the access. Each element in the list * contains a stripe identifier and a pointer to a list of PhysDiskAddr structures. Each * element in this latter list describes the physical location of a stripe unit accessed * within the corresponding stripe. * ****************************************************************************************/ #define RF_PDA_TYPE_DATA 0 #define RF_PDA_TYPE_PARITY 1 #define RF_PDA_TYPE_Q 2 struct RF_PhysDiskAddr_s { RF_RowCol_t col; /* disk identifier */ RF_SectorNum_t startSector; /* sector offset into the disk */ RF_SectorCount_t numSector; /* number of sectors accessed */ int type; /* used by higher levels: currently, data, * parity, or q */ void *bufPtr; /* pointer to buffer supplying/receiving data */ RF_RaidAddr_t raidAddress; /* raid address corresponding to this * physical disk address */ RF_PhysDiskAddr_t *next; }; #define RF_MAX_FAILED_PDA RF_MAXCOL struct RF_AccessStripeMap_s { RF_StripeNum_t stripeID;/* the stripe index */ RF_RaidAddr_t raidAddress; /* the starting raid address within * this stripe */ RF_RaidAddr_t endRaidAddress; /* raid address one sector past the * end of the access */ RF_SectorCount_t totalSectorsAccessed; /* total num sectors * identified in physInfo list */ RF_StripeCount_t numStripeUnitsAccessed; /* total num elements in * physInfo list */ int numDataFailed; /* number of failed data disks accessed */ int numParityFailed;/* number of failed parity disks accessed (0 * or 1) */ int numQFailed; /* number of failed Q units accessed (0 or 1) */ RF_AccessStripeMapFlags_t flags; /* various flags */ int numFailedPDAs; /* number of failed phys addrs */ RF_PhysDiskAddr_t *failedPDAs[RF_MAX_FAILED_PDA]; /* array of failed phys * addrs */ RF_PhysDiskAddr_t *physInfo; /* a list of PhysDiskAddr structs */ RF_PhysDiskAddr_t *parityInfo; /* list of physical addrs for the * parity (P of P + Q ) */ RF_PhysDiskAddr_t *qInfo; /* list of physical addrs for the Q of * P + Q */ RF_LockReqDesc_t lockReqDesc; /* used for stripe locking */ RF_AccessStripeMap_t *next; }; /* flag values */ #define RF_ASM_REDIR_LARGE_WRITE 0x00000001 /* allows large-write creation * code to redirect failed * accs */ #define RF_ASM_BAILOUT_DAG_USED 0x00000002 /* allows us to detect * recursive calls to the * bailout write dag */ #define RF_ASM_FLAGS_LOCK_TRIED 0x00000004 /* we've acquired the lock on * the first parity range in * this parity stripe */ #define RF_ASM_FLAGS_LOCK_TRIED2 0x00000008 /* we've acquired the lock on * the 2nd parity range in * this parity stripe */ #define RF_ASM_FLAGS_FORCE_TRIED 0x00000010 /* we've done the force-recon * call on this parity stripe */ #define RF_ASM_FLAGS_RECON_BLOCKED 0x00000020 /* we blocked recon => we must * unblock it later */ struct RF_AccessStripeMapHeader_s { RF_StripeCount_t numStripes; /* total number of stripes touched by * this acc */ RF_AccessStripeMap_t *stripeMap; /* pointer to the actual map. * Also used for making lists */ RF_AccessStripeMapHeader_t *next; }; /* A structure to be used in a linked list to keep track of function pointers. */ typedef struct RF_VoidFunctionPointerListElem_s RF_VoidFunctionPointerListElem_t; struct RF_VoidFunctionPointerListElem_s { RF_VoidFuncPtr fn; RF_VoidFunctionPointerListElem_t *next; }; /* We need something to just be a linked list of anonymous pointers to stuff */ typedef struct RF_VoidPointerListElem_s RF_VoidPointerListElem_t; struct RF_VoidPointerListElem_s { void *p; RF_VoidPointerListElem_t *next; }; /* A structure to be used in a linked list to keep track of ASM Headers */ typedef struct RF_ASMHeaderListElem_s RF_ASMHeaderListElem_t; struct RF_ASMHeaderListElem_s { RF_AccessStripeMapHeader_t *asmh; RF_ASMHeaderListElem_t *next; }; /* A structure to keep track of all the data structures associated with a failed stripe. Used for constructing the appropriate DAGs in rf_SelectAlgorithm() in rf_aselect.c */ typedef struct RF_FailedStripe_s RF_FailedStripe_t; struct RF_FailedStripe_s { RF_VoidFunctionPointerListElem_t *vfple; /* linked list of pointers to DAG creation functions for stripes */ RF_VoidFunctionPointerListElem_t *bvfple; /* linked list of pointers to DAG creation functions for blocks */ RF_ASMHeaderListElem_t *asmh_u; /* Access Stripe Map Headers for regular stripes */ RF_ASMHeaderListElem_t *asmh_b; /* Access Stripe Map Headers used for the block functions */ RF_FailedStripe_t *next; }; /***************************************************************************************** * * various routines mapping addresses in the RAID address space. These work across * all layouts. DON'T PUT ANY LAYOUT-SPECIFIC CODE HERE. * ****************************************************************************************/ /* return the identifier of the stripe containing the given address */ #define rf_RaidAddressToStripeID(_layoutPtr_, _addr_) \ ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) / (_layoutPtr_)->numDataCol ) /* return the raid address of the start of the indicates stripe ID */ #define rf_StripeIDToRaidAddress(_layoutPtr_, _sid_) \ ( ((_sid_) * (_layoutPtr_)->sectorsPerStripeUnit) * (_layoutPtr_)->numDataCol ) /* return the identifier of the stripe containing the given stripe unit id */ #define rf_StripeUnitIDToStripeID(_layoutPtr_, _addr_) \ ( (_addr_) / (_layoutPtr_)->numDataCol ) /* return the identifier of the stripe unit containing the given address */ #define rf_RaidAddressToStripeUnitID(_layoutPtr_, _addr_) \ ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) ) /* return the RAID address of next stripe boundary beyond the given address */ #define rf_RaidAddressOfNextStripeBoundary(_layoutPtr_, _addr_) \ ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+1) * (_layoutPtr_)->dataSectorsPerStripe ) /* return the RAID address of the start of the stripe containing the given address */ #define rf_RaidAddressOfPrevStripeBoundary(_layoutPtr_, _addr_) \ ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+0) * (_layoutPtr_)->dataSectorsPerStripe ) /* return the RAID address of next stripe unit boundary beyond the given address */ #define rf_RaidAddressOfNextStripeUnitBoundary(_layoutPtr_, _addr_) \ ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+1L)*(_layoutPtr_)->sectorsPerStripeUnit ) /* return the RAID address of the start of the stripe unit containing RAID address _addr_ */ #define rf_RaidAddressOfPrevStripeUnitBoundary(_layoutPtr_, _addr_) \ ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+0)*(_layoutPtr_)->sectorsPerStripeUnit ) /* returns the offset into the stripe. used by RaidAddressStripeAligned */ #define rf_RaidAddressStripeOffset(_layoutPtr_, _addr_) \ ( (_addr_) % ((_layoutPtr_)->dataSectorsPerStripe) ) /* returns the offset into the stripe unit. */ #define rf_StripeUnitOffset(_layoutPtr_, _addr_) \ ( (_addr_) % ((_layoutPtr_)->sectorsPerStripeUnit) ) /* returns nonzero if the given RAID address is stripe-aligned */ #define rf_RaidAddressStripeAligned( __layoutPtr__, __addr__ ) \ ( rf_RaidAddressStripeOffset(__layoutPtr__, __addr__) == 0 ) /* returns nonzero if the given address is stripe-unit aligned */ #define rf_StripeUnitAligned( __layoutPtr__, __addr__ ) \ ( rf_StripeUnitOffset(__layoutPtr__, __addr__) == 0 ) /* convert an address expressed in RAID blocks to/from an addr expressed in bytes */ #define rf_RaidAddressToByte(_raidPtr_, _addr_) \ ( (_addr_) << ( (_raidPtr_)->logBytesPerSector ) ) #define rf_ByteToRaidAddress(_raidPtr_, _addr_) \ ( (_addr_) >> ( (_raidPtr_)->logBytesPerSector ) ) /* convert a raid address to/from a parity stripe ID. Conversion to raid address is easy, * since we're asking for the address of the first sector in the parity stripe. Conversion to a * parity stripe ID is more complex, since stripes are not contiguously allocated in * parity stripes. */ #define rf_RaidAddressToParityStripeID(_layoutPtr_, _addr_, _ru_num_) \ rf_MapStripeIDToParityStripeID( (_layoutPtr_), rf_RaidAddressToStripeID( (_layoutPtr_), (_addr_) ), (_ru_num_) ) #define rf_ParityStripeIDToRaidAddress(_layoutPtr_, _psid_) \ ( (_psid_) * (_layoutPtr_)->SUsPerPU * (_layoutPtr_)->numDataCol * (_layoutPtr_)->sectorsPerStripeUnit ) const RF_LayoutSW_t *rf_GetLayout(RF_ParityConfig_t parityConfig); int rf_ConfigureLayout(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, RF_Config_t * cfgPtr); RF_StripeNum_t rf_MapStripeIDToParityStripeID(RF_RaidLayout_t * layoutPtr, RF_StripeNum_t stripeID, RF_ReconUnitNum_t * which_ru); #endif /* !_RF__RF_LAYOUT_H_ */