/* $NetBSD: in.c,v 1.234.2.1 2020/10/08 18:04:59 martin Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /*- * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Public Access Networks Corporation ("Panix"). It was developed under * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in.c 8.4 (Berkeley) 1/9/95 */ #include __KERNEL_RCSID(0, "$NetBSD: in.c,v 1.234.2.1 2020/10/08 18:04:59 martin Exp $"); #include "arp.h" #ifdef _KERNEL_OPT #include "opt_inet.h" #include "opt_inet_conf.h" #include "opt_mrouting.h" #include "opt_net_mpsafe.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IPSELSRC #include #endif static u_int in_mask2len(struct in_addr *); static void in_len2mask(struct in_addr *, u_int); static int in_lifaddr_ioctl(struct socket *, u_long, void *, struct ifnet *); static void in_addrhash_insert_locked(struct in_ifaddr *); static void in_addrhash_remove_locked(struct in_ifaddr *); static int in_addprefix(struct in_ifaddr *, int); static void in_scrubaddr(struct in_ifaddr *); static int in_scrubprefix(struct in_ifaddr *); static void in_sysctl_init(struct sysctllog **); #ifndef SUBNETSARELOCAL #define SUBNETSARELOCAL 1 #endif #ifndef HOSTZEROBROADCAST #define HOSTZEROBROADCAST 0 #endif /* Note: 61, 127, 251, 509, 1021, 2039 are good. */ #ifndef IN_MULTI_HASH_SIZE #define IN_MULTI_HASH_SIZE 509 #endif static int subnetsarelocal = SUBNETSARELOCAL; static int hostzeroisbroadcast = HOSTZEROBROADCAST; /* * This list is used to keep track of in_multi chains which belong to * deleted interface addresses. We use in_ifaddr so that a chain head * won't be deallocated until all multicast address record are deleted. */ LIST_HEAD(in_multihashhead, in_multi); /* Type of the hash head */ static struct pool inmulti_pool; static u_int in_multientries; static struct in_multihashhead *in_multihashtbl; static u_long in_multihash; static krwlock_t in_multilock; #define IN_MULTI_HASH(x, ifp) \ (in_multihashtbl[(u_long)((x) ^ (ifp->if_index)) % IN_MULTI_HASH_SIZE]) /* XXX DEPRECATED. Keep them to avoid breaking kvm(3) users. */ struct in_ifaddrhashhead * in_ifaddrhashtbl; u_long in_ifaddrhash; struct in_ifaddrhead in_ifaddrhead; static kmutex_t in_ifaddr_lock; pserialize_t in_ifaddrhash_psz; struct pslist_head * in_ifaddrhashtbl_pslist; u_long in_ifaddrhash_pslist; struct pslist_head in_ifaddrhead_pslist; void in_init(void) { pool_init(&inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL, IPL_SOFTNET); TAILQ_INIT(&in_ifaddrhead); PSLIST_INIT(&in_ifaddrhead_pslist); in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true, &in_ifaddrhash); in_ifaddrhash_psz = pserialize_create(); in_ifaddrhashtbl_pslist = hashinit(IN_IFADDR_HASH_SIZE, HASH_PSLIST, true, &in_ifaddrhash_pslist); mutex_init(&in_ifaddr_lock, MUTEX_DEFAULT, IPL_NONE); in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true, &in_multihash); rw_init(&in_multilock); in_sysctl_init(NULL); } /* * Return 1 if an internet address is for a ``local'' host * (one to which we have a connection). If subnetsarelocal * is true, this includes other subnets of the local net. * Otherwise, it includes only the directly-connected (sub)nets. */ int in_localaddr(struct in_addr in) { struct in_ifaddr *ia; int localaddr = 0; int s = pserialize_read_enter(); if (subnetsarelocal) { IN_ADDRLIST_READER_FOREACH(ia) { if ((in.s_addr & ia->ia_netmask) == ia->ia_net) { localaddr = 1; break; } } } else { IN_ADDRLIST_READER_FOREACH(ia) { if ((in.s_addr & ia->ia_subnetmask) == ia->ia_subnet) { localaddr = 1; break; } } } pserialize_read_exit(s); return localaddr; } /* * like in_localaddr() but can specify ifp. */ int in_direct(struct in_addr in, struct ifnet *ifp) { struct ifaddr *ifa; int localaddr = 0; int s; KASSERT(ifp != NULL); #define ia (ifatoia(ifa)) s = pserialize_read_enter(); if (subnetsarelocal) { IFADDR_READER_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family == AF_INET && ((in.s_addr & ia->ia_netmask) == ia->ia_net)) { localaddr = 1; break; } } } else { IFADDR_READER_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family == AF_INET && (in.s_addr & ia->ia_subnetmask) == ia->ia_subnet) { localaddr = 1; break; } } } pserialize_read_exit(s); return localaddr; #undef ia } /* * Determine whether an IP address is in a reserved set of addresses * that may not be forwarded, or whether datagrams to that destination * may be forwarded. */ int in_canforward(struct in_addr in) { u_int32_t net; if (IN_EXPERIMENTAL(in.s_addr) || IN_MULTICAST(in.s_addr)) return (0); if (IN_CLASSA(in.s_addr)) { net = in.s_addr & IN_CLASSA_NET; if (net == 0 || net == htonl(IN_LOOPBACKNET << IN_CLASSA_NSHIFT)) return (0); } return (1); } /* * Trim a mask in a sockaddr */ void in_socktrim(struct sockaddr_in *ap) { char *cplim = (char *) &ap->sin_addr; char *cp = (char *) (&ap->sin_addr + 1); ap->sin_len = 0; while (--cp >= cplim) if (*cp) { (ap)->sin_len = cp - (char *) (ap) + 1; break; } } /* * Maintain the "in_maxmtu" variable, which is the largest * mtu for non-local interfaces with AF_INET addresses assigned * to them that are up. */ unsigned long in_maxmtu; void in_setmaxmtu(void) { struct in_ifaddr *ia; struct ifnet *ifp; unsigned long maxmtu = 0; int s = pserialize_read_enter(); IN_ADDRLIST_READER_FOREACH(ia) { if ((ifp = ia->ia_ifp) == 0) continue; if ((ifp->if_flags & (IFF_UP|IFF_LOOPBACK)) != IFF_UP) continue; if (ifp->if_mtu > maxmtu) maxmtu = ifp->if_mtu; } if (maxmtu) in_maxmtu = maxmtu; pserialize_read_exit(s); } static u_int in_mask2len(struct in_addr *mask) { u_int x, y; u_char *p; p = (u_char *)mask; for (x = 0; x < sizeof(*mask); x++) { if (p[x] != 0xff) break; } y = 0; if (x < sizeof(*mask)) { for (y = 0; y < NBBY; y++) { if ((p[x] & (0x80 >> y)) == 0) break; } } return x * NBBY + y; } static void in_len2mask(struct in_addr *mask, u_int len) { u_int i; u_char *p; p = (u_char *)mask; memset(mask, 0, sizeof(*mask)); for (i = 0; i < len / NBBY; i++) p[i] = 0xff; if (len % NBBY) p[i] = (0xff00 >> (len % NBBY)) & 0xff; } /* * Generic internet control operations (ioctl's). * Ifp is 0 if not an interface-specific ioctl. */ /* ARGSUSED */ static int in_control0(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) { struct ifreq *ifr = (struct ifreq *)data; struct in_ifaddr *ia = NULL; struct in_aliasreq *ifra = (struct in_aliasreq *)data; struct sockaddr_in oldaddr, *new_dstaddr; int error, hostIsNew, maskIsNew; int newifaddr = 0; bool run_hook = false; bool need_reinsert = false; struct psref psref; int bound; switch (cmd) { case SIOCALIFADDR: case SIOCDLIFADDR: case SIOCGLIFADDR: if (ifp == NULL) return EINVAL; return in_lifaddr_ioctl(so, cmd, data, ifp); case SIOCGIFADDRPREF: case SIOCSIFADDRPREF: if (ifp == NULL) return EINVAL; return ifaddrpref_ioctl(so, cmd, data, ifp); } bound = curlwp_bind(); /* * Find address for this interface, if it exists. */ if (ifp != NULL) ia = in_get_ia_from_ifp_psref(ifp, &psref); hostIsNew = 1; /* moved here to appease gcc */ switch (cmd) { case SIOCAIFADDR: case SIOCDIFADDR: case SIOCGIFALIAS: case SIOCGIFAFLAG_IN: if (ifra->ifra_addr.sin_family == AF_INET) { int s; if (ia != NULL) ia4_release(ia, &psref); s = pserialize_read_enter(); IN_ADDRHASH_READER_FOREACH(ia, ifra->ifra_addr.sin_addr.s_addr) { if (ia->ia_ifp == ifp && in_hosteq(ia->ia_addr.sin_addr, ifra->ifra_addr.sin_addr)) break; } if (ia != NULL) ia4_acquire(ia, &psref); pserialize_read_exit(s); } if ((cmd == SIOCDIFADDR || cmd == SIOCGIFALIAS || cmd == SIOCGIFAFLAG_IN) && ia == NULL) { error = EADDRNOTAVAIL; goto out; } if (cmd == SIOCDIFADDR && ifra->ifra_addr.sin_family == AF_UNSPEC) { ifra->ifra_addr.sin_family = AF_INET; } /* FALLTHROUGH */ case SIOCSIFADDR: if (ia == NULL || ia->ia_addr.sin_family != AF_INET) ; else if (ifra->ifra_addr.sin_len == 0) { ifra->ifra_addr = ia->ia_addr; hostIsNew = 0; } else if (in_hosteq(ia->ia_addr.sin_addr, ifra->ifra_addr.sin_addr)) hostIsNew = 0; if (ifra->ifra_addr.sin_family != AF_INET) { error = EAFNOSUPPORT; goto out; } /* FALLTHROUGH */ case SIOCSIFDSTADDR: if (cmd == SIOCSIFDSTADDR && ifreq_getaddr(cmd, ifr)->sa_family != AF_INET) { error = EAFNOSUPPORT; goto out; } /* FALLTHROUGH */ case SIOCSIFNETMASK: if (ifp == NULL) panic("in_control"); if (cmd == SIOCGIFALIAS || cmd == SIOCGIFAFLAG_IN) break; if (ia == NULL && (cmd == SIOCSIFNETMASK || cmd == SIOCSIFDSTADDR)) { error = EADDRNOTAVAIL; goto out; } if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE, KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, NULL) != 0) { error = EPERM; goto out; } if (ia == NULL) { ia = malloc(sizeof(*ia), M_IFADDR, M_WAITOK|M_ZERO); if (ia == NULL) { error = ENOBUFS; goto out; } ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr); ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr); ia->ia_ifa.ifa_netmask = sintosa(&ia->ia_sockmask); #ifdef IPSELSRC ia->ia_ifa.ifa_getifa = in_getifa; #else /* IPSELSRC */ ia->ia_ifa.ifa_getifa = NULL; #endif /* IPSELSRC */ ia->ia_sockmask.sin_len = 8; ia->ia_sockmask.sin_family = AF_INET; if (ifp->if_flags & IFF_BROADCAST) { ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr); ia->ia_broadaddr.sin_family = AF_INET; } ia->ia_ifp = ifp; ia->ia_idsalt = cprng_fast32() % 65535; LIST_INIT(&ia->ia_multiaddrs); IN_ADDRHASH_ENTRY_INIT(ia); IN_ADDRLIST_ENTRY_INIT(ia); ifa_psref_init(&ia->ia_ifa); /* * We need a reference to make ia survive over in_ifinit * that does ifaref and ifafree. */ ifaref(&ia->ia_ifa); newifaddr = 1; } break; case SIOCSIFBRDADDR: if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE, KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, NULL) != 0) { error = EPERM; goto out; } /* FALLTHROUGH */ case SIOCGIFADDR: case SIOCGIFNETMASK: case SIOCGIFDSTADDR: case SIOCGIFBRDADDR: if (ia == NULL) { error = EADDRNOTAVAIL; goto out; } break; } error = 0; switch (cmd) { case SIOCGIFADDR: ifreq_setaddr(cmd, ifr, sintocsa(&ia->ia_addr)); break; case SIOCGIFBRDADDR: if ((ifp->if_flags & IFF_BROADCAST) == 0) { error = EINVAL; goto out; } ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_broadaddr)); break; case SIOCGIFDSTADDR: if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { error = EINVAL; goto out; } ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_dstaddr)); break; case SIOCGIFNETMASK: /* * We keep the number of trailing zero bytes the sin_len field * of ia_sockmask, so we fix this before we pass it back to * userland. */ oldaddr = ia->ia_sockmask; oldaddr.sin_len = sizeof(struct sockaddr_in); ifreq_setaddr(cmd, ifr, (const void *)&oldaddr); break; case SIOCSIFDSTADDR: if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { error = EINVAL; goto out; } oldaddr = ia->ia_dstaddr; ia->ia_dstaddr = *satocsin(ifreq_getdstaddr(cmd, ifr)); if ((error = if_addr_init(ifp, &ia->ia_ifa, false)) != 0) { ia->ia_dstaddr = oldaddr; goto out; } if (ia->ia_flags & IFA_ROUTE) { ia->ia_ifa.ifa_dstaddr = sintosa(&oldaddr); rtinit(&ia->ia_ifa, RTM_DELETE, RTF_HOST); ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr); rtinit(&ia->ia_ifa, RTM_ADD, RTF_HOST|RTF_UP); } break; case SIOCSIFBRDADDR: if ((ifp->if_flags & IFF_BROADCAST) == 0) { error = EINVAL; goto out; } ia->ia_broadaddr = *satocsin(ifreq_getbroadaddr(cmd, ifr)); break; case SIOCSIFADDR: if (!newifaddr) { in_addrhash_remove(ia); need_reinsert = true; } error = in_ifinit(ifp, ia, satocsin(ifreq_getaddr(cmd, ifr)), NULL, 1); run_hook = true; break; case SIOCSIFNETMASK: in_scrubprefix(ia); ia->ia_sockmask = *satocsin(ifreq_getaddr(cmd, ifr)); ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr; if (!newifaddr) { in_addrhash_remove(ia); need_reinsert = true; } error = in_ifinit(ifp, ia, NULL, NULL, 0); break; case SIOCAIFADDR: maskIsNew = 0; if (ifra->ifra_mask.sin_len) { in_scrubprefix(ia); ia->ia_sockmask = ifra->ifra_mask; ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr; maskIsNew = 1; } if ((ifp->if_flags & IFF_POINTOPOINT) && (ifra->ifra_dstaddr.sin_family == AF_INET)) { new_dstaddr = &ifra->ifra_dstaddr; maskIsNew = 1; /* We lie; but the effect's the same */ } else new_dstaddr = NULL; if (ifra->ifra_addr.sin_family == AF_INET && (hostIsNew || maskIsNew)) { if (!newifaddr) { in_addrhash_remove(ia); need_reinsert = true; } error = in_ifinit(ifp, ia, &ifra->ifra_addr, new_dstaddr, 0); } if ((ifp->if_flags & IFF_BROADCAST) && (ifra->ifra_broadaddr.sin_family == AF_INET)) ia->ia_broadaddr = ifra->ifra_broadaddr; run_hook = true; break; case SIOCGIFALIAS: ifra->ifra_mask = ia->ia_sockmask; if ((ifp->if_flags & IFF_POINTOPOINT) && (ia->ia_dstaddr.sin_family == AF_INET)) ifra->ifra_dstaddr = ia->ia_dstaddr; else if ((ifp->if_flags & IFF_BROADCAST) && (ia->ia_broadaddr.sin_family == AF_INET)) ifra->ifra_broadaddr = ia->ia_broadaddr; else memset(&ifra->ifra_broadaddr, 0, sizeof(ifra->ifra_broadaddr)); break; case SIOCGIFAFLAG_IN: ifr->ifr_addrflags = ia->ia4_flags; break; case SIOCDIFADDR: ia4_release(ia, &psref); ifaref(&ia->ia_ifa); in_purgeaddr(&ia->ia_ifa); pfil_run_addrhooks(if_pfil, cmd, &ia->ia_ifa); ifafree(&ia->ia_ifa); ia = NULL; break; #ifdef MROUTING case SIOCGETVIFCNT: case SIOCGETSGCNT: error = mrt_ioctl(so, cmd, data); break; #endif /* MROUTING */ default: error = ENOTTY; goto out; } /* * XXX insert regardless of error to make in_purgeaddr below work. * Need to improve. */ if (newifaddr) { ifaref(&ia->ia_ifa); ifa_insert(ifp, &ia->ia_ifa); mutex_enter(&in_ifaddr_lock); TAILQ_INSERT_TAIL(&in_ifaddrhead, ia, ia_list); IN_ADDRLIST_WRITER_INSERT_TAIL(ia); in_addrhash_insert_locked(ia); /* Release a reference that is held just after creation. */ ifafree(&ia->ia_ifa); mutex_exit(&in_ifaddr_lock); } else if (need_reinsert) { in_addrhash_insert(ia); } if (error == 0) { if (run_hook) pfil_run_addrhooks(if_pfil, cmd, &ia->ia_ifa); } else if (newifaddr) { KASSERT(ia != NULL); in_purgeaddr(&ia->ia_ifa); ia = NULL; } out: if (!newifaddr && ia != NULL) ia4_release(ia, &psref); curlwp_bindx(bound); return error; } int in_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) { int error; #ifndef NET_MPSAFE KASSERT(KERNEL_LOCKED_P()); #endif error = in_control0(so, cmd, data, ifp); return error; } /* Add ownaddr as loopback rtentry. */ static void in_ifaddlocal(struct ifaddr *ifa) { struct in_ifaddr *ia; ia = (struct in_ifaddr *)ifa; if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY || (ia->ia_ifp->if_flags & IFF_POINTOPOINT && in_hosteq(ia->ia_dstaddr.sin_addr, ia->ia_addr.sin_addr))) { rt_addrmsg(RTM_NEWADDR, ifa); return; } rt_ifa_addlocal(ifa); } /* Remove loopback entry of ownaddr */ static void in_ifremlocal(struct ifaddr *ifa) { struct in_ifaddr *ia, *p; struct ifaddr *alt_ifa = NULL; int ia_count = 0; int s; struct psref psref; int bound = curlwp_bind(); ia = (struct in_ifaddr *)ifa; /* Delete the entry if exactly one ifaddr matches the * address, ifa->ifa_addr. */ s = pserialize_read_enter(); IN_ADDRLIST_READER_FOREACH(p) { if (!in_hosteq(p->ia_addr.sin_addr, ia->ia_addr.sin_addr)) continue; if (p->ia_ifp != ia->ia_ifp) alt_ifa = &p->ia_ifa; if (++ia_count > 1 && alt_ifa != NULL) break; } if (alt_ifa != NULL && ia_count > 1) ifa_acquire(alt_ifa, &psref); pserialize_read_exit(s); if (ia_count == 0) goto out; rt_ifa_remlocal(ifa, ia_count == 1 ? NULL : alt_ifa); if (alt_ifa != NULL && ia_count > 1) ifa_release(alt_ifa, &psref); out: curlwp_bindx(bound); } static void in_scrubaddr(struct in_ifaddr *ia) { /* stop DAD processing */ if (ia->ia_dad_stop != NULL) ia->ia_dad_stop(&ia->ia_ifa); in_scrubprefix(ia); in_ifremlocal(&ia->ia_ifa); mutex_enter(&in_ifaddr_lock); if (ia->ia_allhosts != NULL) { in_delmulti(ia->ia_allhosts); ia->ia_allhosts = NULL; } mutex_exit(&in_ifaddr_lock); } /* * Depends on it isn't called in concurrent. It should be guaranteed * by ifa->ifa_ifp's ioctl lock. The possible callers are in_control * and if_purgeaddrs; the former is called iva ifa->ifa_ifp's ioctl * and the latter is called via ifa->ifa_ifp's if_detach. The functions * never be executed in concurrent. */ void in_purgeaddr(struct ifaddr *ifa) { struct in_ifaddr *ia = (void *) ifa; struct ifnet *ifp = ifa->ifa_ifp; /* KASSERT(!ifa_held(ifa)); XXX need ifa_not_held (psref_not_held) */ ifa->ifa_flags |= IFA_DESTROYING; in_scrubaddr(ia); mutex_enter(&in_ifaddr_lock); in_addrhash_remove_locked(ia); TAILQ_REMOVE(&in_ifaddrhead, ia, ia_list); IN_ADDRLIST_WRITER_REMOVE(ia); ifa_remove(ifp, &ia->ia_ifa); /* Assume ifa_remove called pserialize_perform and psref_destroy */ mutex_exit(&in_ifaddr_lock); IN_ADDRHASH_ENTRY_DESTROY(ia); IN_ADDRLIST_ENTRY_DESTROY(ia); ifafree(&ia->ia_ifa); in_setmaxmtu(); } static void in_addrhash_insert_locked(struct in_ifaddr *ia) { KASSERT(mutex_owned(&in_ifaddr_lock)); LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia, ia_hash); IN_ADDRHASH_ENTRY_INIT(ia); IN_ADDRHASH_WRITER_INSERT_HEAD(ia); } void in_addrhash_insert(struct in_ifaddr *ia) { mutex_enter(&in_ifaddr_lock); in_addrhash_insert_locked(ia); mutex_exit(&in_ifaddr_lock); } static void in_addrhash_remove_locked(struct in_ifaddr *ia) { KASSERT(mutex_owned(&in_ifaddr_lock)); LIST_REMOVE(ia, ia_hash); IN_ADDRHASH_WRITER_REMOVE(ia); } void in_addrhash_remove(struct in_ifaddr *ia) { mutex_enter(&in_ifaddr_lock); in_addrhash_remove_locked(ia); #ifdef NET_MPSAFE pserialize_perform(in_ifaddrhash_psz); #endif mutex_exit(&in_ifaddr_lock); IN_ADDRHASH_ENTRY_DESTROY(ia); } void in_purgeif(struct ifnet *ifp) /* MUST be called at splsoftnet() */ { IFNET_LOCK(ifp); if_purgeaddrs(ifp, AF_INET, in_purgeaddr); igmp_purgeif(ifp); /* manipulates pools */ #ifdef MROUTING ip_mrouter_detach(ifp); #endif IFNET_UNLOCK(ifp); } /* * SIOC[GAD]LIFADDR. * SIOCGLIFADDR: get first address. (???) * SIOCGLIFADDR with IFLR_PREFIX: * get first address that matches the specified prefix. * SIOCALIFADDR: add the specified address. * SIOCALIFADDR with IFLR_PREFIX: * EINVAL since we can't deduce hostid part of the address. * SIOCDLIFADDR: delete the specified address. * SIOCDLIFADDR with IFLR_PREFIX: * delete the first address that matches the specified prefix. * return values: * EINVAL on invalid parameters * EADDRNOTAVAIL on prefix match failed/specified address not found * other values may be returned from in_ioctl() */ static int in_lifaddr_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) { struct if_laddrreq *iflr = (struct if_laddrreq *)data; struct ifaddr *ifa; struct sockaddr *sa; /* sanity checks */ if (data == NULL || ifp == NULL) { panic("invalid argument to in_lifaddr_ioctl"); /*NOTRECHED*/ } switch (cmd) { case SIOCGLIFADDR: /* address must be specified on GET with IFLR_PREFIX */ if ((iflr->flags & IFLR_PREFIX) == 0) break; /*FALLTHROUGH*/ case SIOCALIFADDR: case SIOCDLIFADDR: /* address must be specified on ADD and DELETE */ sa = (struct sockaddr *)&iflr->addr; if (sa->sa_family != AF_INET) return EINVAL; if (sa->sa_len != sizeof(struct sockaddr_in)) return EINVAL; /* XXX need improvement */ sa = (struct sockaddr *)&iflr->dstaddr; if (sa->sa_family != AF_UNSPEC && sa->sa_family != AF_INET) return EINVAL; if (sa->sa_len != 0 && sa->sa_len != sizeof(struct sockaddr_in)) return EINVAL; break; default: /*shouldn't happen*/ #if 0 panic("invalid cmd to in_lifaddr_ioctl"); /*NOTREACHED*/ #else return EOPNOTSUPP; #endif } if (sizeof(struct in_addr) * NBBY < iflr->prefixlen) return EINVAL; switch (cmd) { case SIOCALIFADDR: { struct in_aliasreq ifra; if (iflr->flags & IFLR_PREFIX) return EINVAL; /* copy args to in_aliasreq, perform ioctl(SIOCAIFADDR). */ memset(&ifra, 0, sizeof(ifra)); memcpy(ifra.ifra_name, iflr->iflr_name, sizeof(ifra.ifra_name)); memcpy(&ifra.ifra_addr, &iflr->addr, ((struct sockaddr *)&iflr->addr)->sa_len); if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/ memcpy(&ifra.ifra_dstaddr, &iflr->dstaddr, ((struct sockaddr *)&iflr->dstaddr)->sa_len); } ifra.ifra_mask.sin_family = AF_INET; ifra.ifra_mask.sin_len = sizeof(struct sockaddr_in); in_len2mask(&ifra.ifra_mask.sin_addr, iflr->prefixlen); return in_control(so, SIOCAIFADDR, &ifra, ifp); } case SIOCGLIFADDR: case SIOCDLIFADDR: { struct in_ifaddr *ia; struct in_addr mask, candidate, match; struct sockaddr_in *sin; int cmp, s; memset(&mask, 0, sizeof(mask)); memset(&match, 0, sizeof(match)); /* XXX gcc */ if (iflr->flags & IFLR_PREFIX) { /* lookup a prefix rather than address. */ in_len2mask(&mask, iflr->prefixlen); sin = (struct sockaddr_in *)&iflr->addr; match.s_addr = sin->sin_addr.s_addr; match.s_addr &= mask.s_addr; /* if you set extra bits, that's wrong */ if (match.s_addr != sin->sin_addr.s_addr) return EINVAL; cmp = 1; } else { if (cmd == SIOCGLIFADDR) { /* on getting an address, take the 1st match */ cmp = 0; /*XXX*/ } else { /* on deleting an address, do exact match */ in_len2mask(&mask, 32); sin = (struct sockaddr_in *)&iflr->addr; match.s_addr = sin->sin_addr.s_addr; cmp = 1; } } s = pserialize_read_enter(); IFADDR_READER_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family != AF_INET) continue; if (cmp == 0) break; candidate.s_addr = ((struct sockaddr_in *)ifa->ifa_addr)->sin_addr.s_addr; candidate.s_addr &= mask.s_addr; if (candidate.s_addr == match.s_addr) break; } if (ifa == NULL) { pserialize_read_exit(s); return EADDRNOTAVAIL; } ia = (struct in_ifaddr *)ifa; if (cmd == SIOCGLIFADDR) { /* fill in the if_laddrreq structure */ memcpy(&iflr->addr, &ia->ia_addr, ia->ia_addr.sin_len); if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { memcpy(&iflr->dstaddr, &ia->ia_dstaddr, ia->ia_dstaddr.sin_len); } else memset(&iflr->dstaddr, 0, sizeof(iflr->dstaddr)); iflr->prefixlen = in_mask2len(&ia->ia_sockmask.sin_addr); iflr->flags = 0; /*XXX*/ pserialize_read_exit(s); return 0; } else { struct in_aliasreq ifra; /* fill in_aliasreq and do ioctl(SIOCDIFADDR) */ memset(&ifra, 0, sizeof(ifra)); memcpy(ifra.ifra_name, iflr->iflr_name, sizeof(ifra.ifra_name)); memcpy(&ifra.ifra_addr, &ia->ia_addr, ia->ia_addr.sin_len); if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { memcpy(&ifra.ifra_dstaddr, &ia->ia_dstaddr, ia->ia_dstaddr.sin_len); } memcpy(&ifra.ifra_dstaddr, &ia->ia_sockmask, ia->ia_sockmask.sin_len); pserialize_read_exit(s); return in_control(so, SIOCDIFADDR, &ifra, ifp); } } } return EOPNOTSUPP; /*just for safety*/ } /* * Initialize an interface's internet address * and routing table entry. */ int in_ifinit(struct ifnet *ifp, struct in_ifaddr *ia, const struct sockaddr_in *sin, const struct sockaddr_in *dst, int scrub) { u_int32_t i; struct sockaddr_in oldaddr, olddst; int s, oldflags, flags = RTF_UP, error, hostIsNew; if (sin == NULL) sin = &ia->ia_addr; if (dst == NULL) dst = &ia->ia_dstaddr; /* * Set up new addresses. */ oldaddr = ia->ia_addr; olddst = ia->ia_dstaddr; oldflags = ia->ia4_flags; ia->ia_addr = *sin; ia->ia_dstaddr = *dst; hostIsNew = oldaddr.sin_family != AF_INET || !in_hosteq(ia->ia_addr.sin_addr, oldaddr.sin_addr); if (!scrub) scrub = oldaddr.sin_family != ia->ia_dstaddr.sin_family || !in_hosteq(ia->ia_dstaddr.sin_addr, olddst.sin_addr); /* * Configure address flags. * We need to do this early because they may be adjusted * by if_addr_init depending on the address. */ if (ia->ia4_flags & IN_IFF_DUPLICATED) { ia->ia4_flags &= ~IN_IFF_DUPLICATED; hostIsNew = 1; } if (ifp->if_link_state == LINK_STATE_DOWN) { ia->ia4_flags |= IN_IFF_DETACHED; ia->ia4_flags &= ~IN_IFF_TENTATIVE; } else if (hostIsNew && if_do_dad(ifp) && ip_dad_enabled()) ia->ia4_flags |= IN_IFF_TRYTENTATIVE; /* * Give the interface a chance to initialize * if this is its first address, * and to validate the address if necessary. */ s = splsoftnet(); error = if_addr_init(ifp, &ia->ia_ifa, true); splx(s); /* Now clear the try tentative flag, its job is done. */ ia->ia4_flags &= ~IN_IFF_TRYTENTATIVE; if (error != 0) { ia->ia_addr = oldaddr; ia->ia_dstaddr = olddst; ia->ia4_flags = oldflags; return error; } if (scrub || hostIsNew) { int newflags = ia->ia4_flags; ia->ia_ifa.ifa_addr = sintosa(&oldaddr); ia->ia_ifa.ifa_dstaddr = sintosa(&olddst); ia->ia4_flags = oldflags; if (hostIsNew) in_scrubaddr(ia); else if (scrub) in_scrubprefix(ia); ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr); ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr); ia->ia4_flags = newflags; } i = ia->ia_addr.sin_addr.s_addr; if (ifp->if_flags & IFF_POINTOPOINT) ia->ia_netmask = INADDR_BROADCAST; /* default to /32 */ else if (IN_CLASSA(i)) ia->ia_netmask = IN_CLASSA_NET; else if (IN_CLASSB(i)) ia->ia_netmask = IN_CLASSB_NET; else ia->ia_netmask = IN_CLASSC_NET; /* * The subnet mask usually includes at least the standard network part, * but may may be smaller in the case of supernetting. * If it is set, we believe it. */ if (ia->ia_subnetmask == 0) { ia->ia_subnetmask = ia->ia_netmask; ia->ia_sockmask.sin_addr.s_addr = ia->ia_subnetmask; } else ia->ia_netmask &= ia->ia_subnetmask; ia->ia_net = i & ia->ia_netmask; ia->ia_subnet = i & ia->ia_subnetmask; in_socktrim(&ia->ia_sockmask); /* re-calculate the "in_maxmtu" value */ in_setmaxmtu(); ia->ia_ifa.ifa_metric = ifp->if_metric; if (ifp->if_flags & IFF_BROADCAST) { ia->ia_broadaddr.sin_addr.s_addr = ia->ia_subnet | ~ia->ia_subnetmask; ia->ia_netbroadcast.s_addr = ia->ia_net | ~ia->ia_netmask; } else if (ifp->if_flags & IFF_LOOPBACK) { ia->ia_dstaddr = ia->ia_addr; flags |= RTF_HOST; } else if (ifp->if_flags & IFF_POINTOPOINT) { if (ia->ia_dstaddr.sin_family != AF_INET) return (0); flags |= RTF_HOST; } /* Add the local route to the address */ in_ifaddlocal(&ia->ia_ifa); /* Add the prefix route for the address */ error = in_addprefix(ia, flags); /* * If the interface supports multicast, join the "all hosts" * multicast group on that interface. */ mutex_enter(&in_ifaddr_lock); if ((ifp->if_flags & IFF_MULTICAST) != 0 && ia->ia_allhosts == NULL) { struct in_addr addr; addr.s_addr = INADDR_ALLHOSTS_GROUP; ia->ia_allhosts = in_addmulti(&addr, ifp); } mutex_exit(&in_ifaddr_lock); if (hostIsNew && ia->ia4_flags & IN_IFF_TENTATIVE && if_do_dad(ifp)) ia->ia_dad_start((struct ifaddr *)ia); return error; } #define rtinitflags(x) \ ((((x)->ia_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) != 0) \ ? RTF_HOST : 0) /* * add a route to prefix ("connected route" in cisco terminology). * does nothing if there's some interface address with the same prefix already. */ static int in_addprefix(struct in_ifaddr *target, int flags) { struct in_ifaddr *ia; struct in_addr prefix, mask, p; int error; int s; if ((flags & RTF_HOST) != 0) prefix = target->ia_dstaddr.sin_addr; else { prefix = target->ia_addr.sin_addr; mask = target->ia_sockmask.sin_addr; prefix.s_addr &= mask.s_addr; } s = pserialize_read_enter(); IN_ADDRLIST_READER_FOREACH(ia) { if (rtinitflags(ia)) p = ia->ia_dstaddr.sin_addr; else { p = ia->ia_addr.sin_addr; p.s_addr &= ia->ia_sockmask.sin_addr.s_addr; } if (prefix.s_addr != p.s_addr) continue; /* * if we got a matching prefix route inserted by other * interface address, we don't need to bother * * XXX RADIX_MPATH implications here? -dyoung */ if (ia->ia_flags & IFA_ROUTE) { pserialize_read_exit(s); return 0; } } pserialize_read_exit(s); /* * noone seem to have prefix route. insert it. */ error = rtinit(&target->ia_ifa, RTM_ADD, flags); if (error == 0) target->ia_flags |= IFA_ROUTE; else if (error == EEXIST) { /* * the fact the route already exists is not an error. */ error = 0; } return error; } /* * remove a route to prefix ("connected route" in cisco terminology). * re-installs the route by using another interface address, if there's one * with the same prefix (otherwise we lose the route mistakenly). */ static int in_scrubprefix(struct in_ifaddr *target) { struct in_ifaddr *ia; struct in_addr prefix, mask, p; int error; int s; /* If we don't have IFA_ROUTE we have nothing to do */ if ((target->ia_flags & IFA_ROUTE) == 0) return 0; if (rtinitflags(target)) prefix = target->ia_dstaddr.sin_addr; else { prefix = target->ia_addr.sin_addr; mask = target->ia_sockmask.sin_addr; prefix.s_addr &= mask.s_addr; } s = pserialize_read_enter(); IN_ADDRLIST_READER_FOREACH(ia) { if (rtinitflags(ia)) p = ia->ia_dstaddr.sin_addr; else { p = ia->ia_addr.sin_addr; p.s_addr &= ia->ia_sockmask.sin_addr.s_addr; } if (prefix.s_addr != p.s_addr) continue; /* * if we got a matching prefix route, move IFA_ROUTE to him */ if ((ia->ia_flags & IFA_ROUTE) == 0) { struct psref psref; int bound = curlwp_bind(); ia4_acquire(ia, &psref); pserialize_read_exit(s); rtinit(&target->ia_ifa, RTM_DELETE, rtinitflags(target)); target->ia_flags &= ~IFA_ROUTE; error = rtinit(&ia->ia_ifa, RTM_ADD, rtinitflags(ia) | RTF_UP); if (error == 0) ia->ia_flags |= IFA_ROUTE; ia4_release(ia, &psref); curlwp_bindx(bound); return error; } } pserialize_read_exit(s); /* * noone seem to have prefix route. remove it. */ rtinit(&target->ia_ifa, RTM_DELETE, rtinitflags(target)); target->ia_flags &= ~IFA_ROUTE; return 0; } #undef rtinitflags /* * Return 1 if the address might be a local broadcast address. */ int in_broadcast(struct in_addr in, struct ifnet *ifp) { struct ifaddr *ifa; int s; KASSERT(ifp != NULL); if (in.s_addr == INADDR_BROADCAST || in_nullhost(in)) return 1; if ((ifp->if_flags & IFF_BROADCAST) == 0) return 0; /* * Look through the list of addresses for a match * with a broadcast address. */ #define ia (ifatoia(ifa)) s = pserialize_read_enter(); IFADDR_READER_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family == AF_INET && !in_hosteq(in, ia->ia_addr.sin_addr) && (in_hosteq(in, ia->ia_broadaddr.sin_addr) || in_hosteq(in, ia->ia_netbroadcast) || (hostzeroisbroadcast && /* * Check for old-style (host 0) broadcast. */ (in.s_addr == ia->ia_subnet || in.s_addr == ia->ia_net)))) { pserialize_read_exit(s); return 1; } } pserialize_read_exit(s); return (0); #undef ia } /* * perform DAD when interface becomes IFF_UP. */ void in_if_link_up(struct ifnet *ifp) { struct ifaddr *ifa; struct in_ifaddr *ia; int s, bound; /* Ensure it's sane to run DAD */ if (ifp->if_link_state == LINK_STATE_DOWN) return; if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) return; bound = curlwp_bind(); s = pserialize_read_enter(); IFADDR_READER_FOREACH(ifa, ifp) { struct psref psref; if (ifa->ifa_addr->sa_family != AF_INET) continue; ifa_acquire(ifa, &psref); pserialize_read_exit(s); ia = (struct in_ifaddr *)ifa; /* If detached then mark as tentative */ if (ia->ia4_flags & IN_IFF_DETACHED) { ia->ia4_flags &= ~IN_IFF_DETACHED; if (ip_dad_enabled() && if_do_dad(ifp) && ia->ia_dad_start != NULL) ia->ia4_flags |= IN_IFF_TENTATIVE; else if ((ia->ia4_flags & IN_IFF_TENTATIVE) == 0) rt_addrmsg(RTM_NEWADDR, ifa); } if (ia->ia4_flags & IN_IFF_TENTATIVE) { /* Clear the duplicated flag as we're starting DAD. */ ia->ia4_flags &= ~IN_IFF_DUPLICATED; ia->ia_dad_start(ifa); } s = pserialize_read_enter(); ifa_release(ifa, &psref); } pserialize_read_exit(s); curlwp_bindx(bound); } void in_if_up(struct ifnet *ifp) { /* interface may not support link state, so bring it up also */ in_if_link_up(ifp); } /* * Mark all addresses as detached. */ void in_if_link_down(struct ifnet *ifp) { struct ifaddr *ifa; struct in_ifaddr *ia; int s, bound; bound = curlwp_bind(); s = pserialize_read_enter(); IFADDR_READER_FOREACH(ifa, ifp) { struct psref psref; if (ifa->ifa_addr->sa_family != AF_INET) continue; ifa_acquire(ifa, &psref); pserialize_read_exit(s); ia = (struct in_ifaddr *)ifa; /* Stop DAD processing */ if (ia->ia_dad_stop != NULL) ia->ia_dad_stop(ifa); /* * Mark the address as detached. */ if (!(ia->ia4_flags & IN_IFF_DETACHED)) { ia->ia4_flags |= IN_IFF_DETACHED; ia->ia4_flags &= ~(IN_IFF_TENTATIVE | IN_IFF_DUPLICATED); rt_addrmsg(RTM_NEWADDR, ifa); } s = pserialize_read_enter(); ifa_release(ifa, &psref); } pserialize_read_exit(s); curlwp_bindx(bound); } void in_if_down(struct ifnet *ifp) { in_if_link_down(ifp); #if NARP > 0 lltable_purge_entries(LLTABLE(ifp)); #endif } void in_if_link_state_change(struct ifnet *ifp, int link_state) { /* * Treat LINK_STATE_UNKNOWN as UP. * LINK_STATE_UNKNOWN transitions to LINK_STATE_DOWN when * if_link_state_change() transitions to LINK_STATE_UP. */ if (link_state == LINK_STATE_DOWN) in_if_link_down(ifp); else in_if_link_up(ifp); } /* * in_lookup_multi: look up the in_multi record for a given IP * multicast address on a given interface. If no matching record is * found, return NULL. */ struct in_multi * in_lookup_multi(struct in_addr addr, ifnet_t *ifp) { struct in_multi *inm; KASSERT(rw_lock_held(&in_multilock)); LIST_FOREACH(inm, &IN_MULTI_HASH(addr.s_addr, ifp), inm_list) { if (in_hosteq(inm->inm_addr, addr) && inm->inm_ifp == ifp) break; } return inm; } /* * in_multi_group: check whether the address belongs to an IP multicast * group we are joined on this interface. Returns true or false. */ bool in_multi_group(struct in_addr addr, ifnet_t *ifp, int flags) { bool ingroup; if (__predict_true(flags & IP_IGMP_MCAST) == 0) { rw_enter(&in_multilock, RW_READER); ingroup = in_lookup_multi(addr, ifp) != NULL; rw_exit(&in_multilock); } else { /* XXX Recursive call from ip_output(). */ KASSERT(rw_lock_held(&in_multilock)); ingroup = in_lookup_multi(addr, ifp) != NULL; } return ingroup; } /* * Add an address to the list of IP multicast addresses for a given interface. */ struct in_multi * in_addmulti(struct in_addr *ap, ifnet_t *ifp) { struct sockaddr_in sin; struct in_multi *inm; /* * See if address already in list. */ rw_enter(&in_multilock, RW_WRITER); inm = in_lookup_multi(*ap, ifp); if (inm != NULL) { /* * Found it; just increment the reference count. */ inm->inm_refcount++; rw_exit(&in_multilock); return inm; } /* * New address; allocate a new multicast record. */ inm = pool_get(&inmulti_pool, PR_NOWAIT); if (inm == NULL) { rw_exit(&in_multilock); return NULL; } inm->inm_addr = *ap; inm->inm_ifp = ifp; inm->inm_refcount = 1; /* * Ask the network driver to update its multicast reception * filter appropriately for the new address. */ sockaddr_in_init(&sin, ap, 0); if (if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin)) != 0) { rw_exit(&in_multilock); pool_put(&inmulti_pool, inm); return NULL; } /* * Let IGMP know that we have joined a new IP multicast group. */ if (igmp_joingroup(inm) != 0) { rw_exit(&in_multilock); pool_put(&inmulti_pool, inm); return NULL; } LIST_INSERT_HEAD( &IN_MULTI_HASH(inm->inm_addr.s_addr, ifp), inm, inm_list); in_multientries++; rw_exit(&in_multilock); return inm; } /* * Delete a multicast address record. */ void in_delmulti(struct in_multi *inm) { struct sockaddr_in sin; rw_enter(&in_multilock, RW_WRITER); if (--inm->inm_refcount > 0) { rw_exit(&in_multilock); return; } /* * No remaining claims to this record; let IGMP know that * we are leaving the multicast group. */ igmp_leavegroup(inm); /* * Notify the network driver to update its multicast reception * filter. */ sockaddr_in_init(&sin, &inm->inm_addr, 0); if_mcast_op(inm->inm_ifp, SIOCDELMULTI, sintosa(&sin)); /* * Unlink from list. */ LIST_REMOVE(inm, inm_list); in_multientries--; rw_exit(&in_multilock); pool_put(&inmulti_pool, inm); } /* * in_next_multi: step through all of the in_multi records, one at a time. * The current position is remembered in "step", which the caller must * provide. in_first_multi(), below, must be called to initialize "step" * and get the first record. Both macros return a NULL "inm" when there * are no remaining records. */ struct in_multi * in_next_multi(struct in_multistep *step) { struct in_multi *inm; KASSERT(rw_lock_held(&in_multilock)); while (step->i_inm == NULL && step->i_n < IN_MULTI_HASH_SIZE) { step->i_inm = LIST_FIRST(&in_multihashtbl[++step->i_n]); } if ((inm = step->i_inm) != NULL) { step->i_inm = LIST_NEXT(inm, inm_list); } return inm; } struct in_multi * in_first_multi(struct in_multistep *step) { KASSERT(rw_lock_held(&in_multilock)); step->i_n = 0; step->i_inm = LIST_FIRST(&in_multihashtbl[0]); return in_next_multi(step); } void in_multi_lock(int op) { rw_enter(&in_multilock, op); } void in_multi_unlock(void) { rw_exit(&in_multilock); } int in_multi_lock_held(void) { return rw_lock_held(&in_multilock); } struct in_ifaddr * in_selectsrc(struct sockaddr_in *sin, struct route *ro, int soopts, struct ip_moptions *mopts, int *errorp, struct psref *psref) { struct rtentry *rt = NULL; struct in_ifaddr *ia = NULL; KASSERT(ISSET(curlwp->l_pflag, LP_BOUND)); /* * If route is known or can be allocated now, take the * source address from the interface. Otherwise, punt. */ if ((soopts & SO_DONTROUTE) != 0) rtcache_free(ro); else { union { struct sockaddr dst; struct sockaddr_in dst4; } u; sockaddr_in_init(&u.dst4, &sin->sin_addr, 0); rt = rtcache_lookup(ro, &u.dst); } /* * If we found a route, use the address * corresponding to the outgoing interface * unless it is the loopback (in case a route * to our address on another net goes to loopback). * * XXX Is this still true? Do we care? */ if (rt != NULL && (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { int s; struct ifaddr *ifa; /* * Just in case. May not need to do this workaround. * Revisit when working on rtentry MP-ification. */ s = pserialize_read_enter(); IFADDR_READER_FOREACH(ifa, rt->rt_ifp) { if (ifa == rt->rt_ifa) break; } if (ifa != NULL) ifa_acquire(ifa, psref); pserialize_read_exit(s); ia = ifatoia(ifa); } if (ia == NULL) { u_int16_t fport = sin->sin_port; struct ifaddr *ifa; int s; sin->sin_port = 0; ifa = ifa_ifwithladdr_psref(sintosa(sin), psref); sin->sin_port = fport; if (ifa == NULL) { /* Find 1st non-loopback AF_INET address */ s = pserialize_read_enter(); IN_ADDRLIST_READER_FOREACH(ia) { if (!(ia->ia_ifp->if_flags & IFF_LOOPBACK)) break; } if (ia != NULL) ia4_acquire(ia, psref); pserialize_read_exit(s); } else { /* ia is already referenced by psref */ ia = ifatoia(ifa); } if (ia == NULL) { *errorp = EADDRNOTAVAIL; goto out; } } /* * If the destination address is multicast and an outgoing * interface has been set as a multicast option, use the * address of that interface as our source address. */ if (IN_MULTICAST(sin->sin_addr.s_addr) && mopts != NULL) { struct ip_moptions *imo; imo = mopts; if (imo->imo_multicast_if_index != 0) { struct ifnet *ifp; int s; if (ia != NULL) ia4_release(ia, psref); s = pserialize_read_enter(); ifp = if_byindex(imo->imo_multicast_if_index); if (ifp != NULL) { /* XXX */ ia = in_get_ia_from_ifp_psref(ifp, psref); } else ia = NULL; if (ia == NULL || ia->ia4_flags & IN_IFF_NOTREADY) { pserialize_read_exit(s); if (ia != NULL) ia4_release(ia, psref); *errorp = EADDRNOTAVAIL; ia = NULL; goto out; } pserialize_read_exit(s); } } if (ia->ia_ifa.ifa_getifa != NULL) { ia = ifatoia((*ia->ia_ifa.ifa_getifa)(&ia->ia_ifa, sintosa(sin))); if (ia == NULL) { *errorp = EADDRNOTAVAIL; goto out; } /* FIXME NOMPSAFE */ ia4_acquire(ia, psref); } #ifdef GETIFA_DEBUG else printf("%s: missing ifa_getifa\n", __func__); #endif out: rtcache_unref(rt, ro); return ia; } int in_tunnel_validate(const struct ip *ip, struct in_addr src, struct in_addr dst) { struct in_ifaddr *ia4; int s; /* check for address match */ if (src.s_addr != ip->ip_dst.s_addr || dst.s_addr != ip->ip_src.s_addr) return 0; /* martian filters on outer source - NOT done in ip_input! */ if (IN_MULTICAST(ip->ip_src.s_addr)) return 0; switch ((ntohl(ip->ip_src.s_addr) & 0xff000000) >> 24) { case 0: case 127: case 255: return 0; } /* reject packets with broadcast on source */ s = pserialize_read_enter(); IN_ADDRLIST_READER_FOREACH(ia4) { if ((ia4->ia_ifa.ifa_ifp->if_flags & IFF_BROADCAST) == 0) continue; if (ip->ip_src.s_addr == ia4->ia_broadaddr.sin_addr.s_addr) { pserialize_read_exit(s); return 0; } } pserialize_read_exit(s); /* NOTE: packet may dropped by uRPF */ /* return valid bytes length */ return sizeof(src) + sizeof(dst); } #if NARP > 0 #define IN_LLTBL_DEFAULT_HSIZE 32 #define IN_LLTBL_HASH(k, h) \ (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1)) /* * Do actual deallocation of @lle. * Called by LLE_FREE_LOCKED when number of references * drops to zero. */ static void in_lltable_destroy_lle(struct llentry *lle) { KASSERT(lle->la_numheld == 0); LLE_WUNLOCK(lle); LLE_LOCK_DESTROY(lle); llentry_pool_put(lle); } static struct llentry * in_lltable_new(struct in_addr addr4, u_int flags) { struct llentry *lle; lle = llentry_pool_get(PR_NOWAIT); if (lle == NULL) /* NB: caller generates msg */ return NULL; /* * For IPv4 this will trigger "arpresolve" to generate * an ARP request. */ lle->la_expire = time_uptime; /* mark expired */ lle->r_l3addr.addr4 = addr4; lle->lle_refcnt = 1; lle->lle_free = in_lltable_destroy_lle; LLE_LOCK_INIT(lle); callout_init(&lle->la_timer, CALLOUT_MPSAFE); return lle; } #define IN_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \ (((ntohl((d).s_addr) ^ (a)->sin_addr.s_addr) & (m)->sin_addr.s_addr)) == 0 ) static int in_lltable_match_prefix(const struct sockaddr *prefix, const struct sockaddr *mask, u_int flags, struct llentry *lle) { const struct sockaddr_in *pfx = (const struct sockaddr_in *)prefix; const struct sockaddr_in *msk = (const struct sockaddr_in *)mask; struct in_addr lle_addr; lle_addr.s_addr = ntohl(lle->r_l3addr.addr4.s_addr); /* * (flags & LLE_STATIC) means deleting all entries * including static ARP entries. */ if (IN_ARE_MASKED_ADDR_EQUAL(lle_addr, pfx, msk) && ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC))) return (1); return (0); } static void in_lltable_free_entry(struct lltable *llt, struct llentry *lle) { size_t pkts_dropped; LLE_WLOCK_ASSERT(lle); KASSERT(llt != NULL); pkts_dropped = llentry_free(lle); arp_stat_add(ARP_STAT_DFRDROPPED, (uint64_t)pkts_dropped); } static int in_lltable_rtcheck(struct ifnet *ifp, u_int flags, const struct sockaddr *l3addr, const struct rtentry *rt) { int error = EINVAL; if (rt == NULL) return error; /* * If the gateway for an existing host route matches the target L3 * address, which is a special route inserted by some implementation * such as MANET, and the interface is of the correct type, then * allow for ARP to proceed. */ if (rt->rt_flags & RTF_GATEWAY) { if (!(rt->rt_flags & RTF_HOST) || !rt->rt_ifp || rt->rt_ifp->if_type != IFT_ETHER || (rt->rt_ifp->if_flags & IFF_NOARP) != 0 || memcmp(rt->rt_gateway->sa_data, l3addr->sa_data, sizeof(in_addr_t)) != 0) { goto error; } } /* * Make sure that at least the destination address is covered * by the route. This is for handling the case where 2 or more * interfaces have the same prefix. An incoming packet arrives * on one interface and the corresponding outgoing packet leaves * another interface. */ if (!(rt->rt_flags & RTF_HOST) && rt->rt_ifp != ifp) { const char *sa, *mask, *addr, *lim; int len; mask = (const char *)rt_mask(rt); /* * Just being extra cautious to avoid some custom * code getting into trouble. */ if (mask == NULL) goto error; sa = (const char *)rt_getkey(rt); addr = (const char *)l3addr; len = ((const struct sockaddr_in *)l3addr)->sin_len; lim = addr + len; for ( ; addr < lim; sa++, mask++, addr++) { if ((*sa ^ *addr) & *mask) { #ifdef DIAGNOSTIC log(LOG_INFO, "IPv4 address: \"%s\" is not on the network\n", inet_ntoa(((const struct sockaddr_in *)l3addr)->sin_addr)); #endif goto error; } } } error = 0; error: return error; } static inline uint32_t in_lltable_hash_dst(const struct in_addr dst, uint32_t hsize) { return (IN_LLTBL_HASH(dst.s_addr, hsize)); } static uint32_t in_lltable_hash(const struct llentry *lle, uint32_t hsize) { return (in_lltable_hash_dst(lle->r_l3addr.addr4, hsize)); } static void in_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)sa; memset(sin, 0, sizeof(*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = lle->r_l3addr.addr4; } static inline struct llentry * in_lltable_find_dst(struct lltable *llt, struct in_addr dst) { struct llentry *lle; struct llentries *lleh; u_int hashidx; hashidx = in_lltable_hash_dst(dst, llt->llt_hsize); lleh = &llt->lle_head[hashidx]; LIST_FOREACH(lle, lleh, lle_next) { if (lle->la_flags & LLE_DELETED) continue; if (lle->r_l3addr.addr4.s_addr == dst.s_addr) break; } return (lle); } static int in_lltable_delete(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr; struct ifnet *ifp __diagused = llt->llt_ifp; struct llentry *lle; IF_AFDATA_WLOCK_ASSERT(ifp); KASSERTMSG(l3addr->sa_family == AF_INET, "sin_family %d", l3addr->sa_family); lle = in_lltable_find_dst(llt, sin->sin_addr); if (lle == NULL) { #ifdef LLTABLE_DEBUG char buf[64]; sockaddr_format(l3addr, buf, sizeof(buf)); log(LOG_INFO, "%s: cache for %s is not found\n", __func__, buf); #endif return (ENOENT); } LLE_WLOCK(lle); #ifdef LLTABLE_DEBUG { char buf[64]; sockaddr_format(l3addr, buf, sizeof(buf)); log(LOG_INFO, "%s: cache for %s (%p) is deleted\n", __func__, buf, lle); } #endif llentry_free(lle); return (0); } static struct llentry * in_lltable_create(struct lltable *llt, u_int flags, const struct sockaddr *l3addr, const struct rtentry *rt) { const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr; struct ifnet *ifp = llt->llt_ifp; struct llentry *lle; IF_AFDATA_WLOCK_ASSERT(ifp); KASSERTMSG(l3addr->sa_family == AF_INET, "sin_family %d", l3addr->sa_family); lle = in_lltable_find_dst(llt, sin->sin_addr); if (lle != NULL) { LLE_WLOCK(lle); return (lle); } /* no existing record, we need to create new one */ /* * A route that covers the given address must have * been installed 1st because we are doing a resolution, * verify this. */ if (!(flags & LLE_IFADDR) && in_lltable_rtcheck(ifp, flags, l3addr, rt) != 0) return (NULL); lle = in_lltable_new(sin->sin_addr, flags); if (lle == NULL) { log(LOG_INFO, "lla_lookup: new lle malloc failed\n"); return (NULL); } lle->la_flags = flags; if ((flags & LLE_IFADDR) == LLE_IFADDR) { memcpy(&lle->ll_addr, CLLADDR(ifp->if_sadl), ifp->if_addrlen); lle->la_flags |= (LLE_VALID | LLE_STATIC); } lltable_link_entry(llt, lle); LLE_WLOCK(lle); return (lle); } /* * Return NULL if not found or marked for deletion. * If found return lle read locked. */ static struct llentry * in_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr; struct llentry *lle; IF_AFDATA_LOCK_ASSERT(llt->llt_ifp); KASSERTMSG(l3addr->sa_family == AF_INET, "sin_family %d", l3addr->sa_family); lle = in_lltable_find_dst(llt, sin->sin_addr); if (lle == NULL) return NULL; if (flags & LLE_EXCLUSIVE) LLE_WLOCK(lle); else LLE_RLOCK(lle); return lle; } static int in_lltable_dump_entry(struct lltable *llt, struct llentry *lle, struct rt_walkarg *w) { struct sockaddr_in sin; LLTABLE_LOCK_ASSERT(); /* skip deleted entries */ if (lle->la_flags & LLE_DELETED) return 0; sockaddr_in_init(&sin, &lle->r_l3addr.addr4, 0); return lltable_dump_entry(llt, lle, w, sintosa(&sin)); } #endif /* NARP > 0 */ static int in_multicast_sysctl(SYSCTLFN_ARGS) { struct ifnet *ifp; struct ifaddr *ifa; struct in_ifaddr *ifa4; struct in_multi *inm; uint32_t tmp; int error; size_t written; struct psref psref; int bound; if (namelen != 1) return EINVAL; bound = curlwp_bind(); ifp = if_get_byindex(name[0], &psref); if (ifp == NULL) { curlwp_bindx(bound); return ENODEV; } if (oldp == NULL) { *oldlenp = 0; IFADDR_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ifa4 = (void *)ifa; LIST_FOREACH(inm, &ifa4->ia_multiaddrs, inm_list) { *oldlenp += 2 * sizeof(struct in_addr) + sizeof(uint32_t); } } if_put(ifp, &psref); curlwp_bindx(bound); return 0; } error = 0; written = 0; IFADDR_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ifa4 = (void *)ifa; LIST_FOREACH(inm, &ifa4->ia_multiaddrs, inm_list) { if (written + 2 * sizeof(struct in_addr) + sizeof(uint32_t) > *oldlenp) goto done; error = sysctl_copyout(l, &ifa4->ia_addr.sin_addr, oldp, sizeof(struct in_addr)); if (error) goto done; oldp = (char *)oldp + sizeof(struct in_addr); written += sizeof(struct in_addr); error = sysctl_copyout(l, &inm->inm_addr, oldp, sizeof(struct in_addr)); if (error) goto done; oldp = (char *)oldp + sizeof(struct in_addr); written += sizeof(struct in_addr); tmp = inm->inm_refcount; error = sysctl_copyout(l, &tmp, oldp, sizeof(tmp)); if (error) goto done; oldp = (char *)oldp + sizeof(tmp); written += sizeof(tmp); } } done: if_put(ifp, &psref); curlwp_bindx(bound); *oldlenp = written; return error; } static void in_sysctl_init(struct sysctllog **clog) { sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "inet", SYSCTL_DESCR("PF_INET related settings"), NULL, 0, NULL, 0, CTL_NET, PF_INET, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "multicast", SYSCTL_DESCR("Multicast information"), in_multicast_sysctl, 0, NULL, 0, CTL_NET, PF_INET, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "ip", SYSCTL_DESCR("IPv4 related settings"), NULL, 0, NULL, 0, CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "subnetsarelocal", SYSCTL_DESCR("Whether logical subnets are considered " "local"), NULL, 0, &subnetsarelocal, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_SUBNETSARELOCAL, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "hostzerobroadcast", SYSCTL_DESCR("All zeroes address is broadcast address"), NULL, 0, &hostzeroisbroadcast, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_HOSTZEROBROADCAST, CTL_EOL); } #if NARP > 0 static struct lltable * in_lltattach(struct ifnet *ifp) { struct lltable *llt; llt = lltable_allocate_htbl(IN_LLTBL_DEFAULT_HSIZE); llt->llt_af = AF_INET; llt->llt_ifp = ifp; llt->llt_lookup = in_lltable_lookup; llt->llt_create = in_lltable_create; llt->llt_delete = in_lltable_delete; llt->llt_dump_entry = in_lltable_dump_entry; llt->llt_hash = in_lltable_hash; llt->llt_fill_sa_entry = in_lltable_fill_sa_entry; llt->llt_free_entry = in_lltable_free_entry; llt->llt_match_prefix = in_lltable_match_prefix; lltable_link(llt); return (llt); } #endif /* NARP > 0 */ void * in_domifattach(struct ifnet *ifp) { struct in_ifinfo *ii; ii = kmem_zalloc(sizeof(struct in_ifinfo), KM_SLEEP); #if NARP > 0 ii->ii_llt = in_lltattach(ifp); #endif #ifdef IPSELSRC ii->ii_selsrc = in_selsrc_domifattach(ifp); KASSERT(ii->ii_selsrc != NULL); #endif return ii; } void in_domifdetach(struct ifnet *ifp, void *aux) { struct in_ifinfo *ii = aux; #ifdef IPSELSRC in_selsrc_domifdetach(ifp, ii->ii_selsrc); #endif #if NARP > 0 lltable_free(ii->ii_llt); #endif kmem_free(ii, sizeof(struct in_ifinfo)); }