FreeBSD Porter’s Handbook

Table of Contents

1. Introduction

2. Making a New Port

3. Quick Porting
3.1. Writing the Makefile
3.2. Writing the Description Files

3.3. Creating the Checksum File

3.4. Testing the Port

3.5. Checking the Port with portlint
3.6. Submitting the New Port

4. Slow Porting
4.1. How Things Work
4.2. Getting the Original Sources
4.3. Modifying the Port
4.4. Patching
4.5. Configuring

4.6. Handling User Input

5. Configuring the Makefile

5.1. The Original Source

5.2. Naming

5.3.

Categorization

5.4. The Distribution Files
5.5. MAINTAINER

3.6.

COMMENT

5.7. Project website

5.8. Licenses

5.9.

PORTSCOUT
5.10.
5.11.
5.12.
5.13.
5.14.
5.15.
5.16.
5.17.
5.18.

Dependencies

Slave Ports and MASTERDIR

Man Pages

Info Files

Makefile Options

Specifying the Working Directory

Conflict Handling

Installing Files

Use BINARY_ALIAS to Rename Commands Instead of Patching the Build

6. Special Considerations

6.1. Splitting long files

6.2. Staging

10
11
11
11
13
13
14
14
16
16
17
18
18
22
22
23
23
23
33
40
64
65
65
66
77
78
84
85
85
85
105
106
108
111
113
113
113

6.3. Bundled Libraries 114

6.4. Shared Libraries 116
6.5. Ports with Distribution Restrictions or Legal Concerns 117
6.6. Building Mechanisms 118
6.7. Using GNU Autotools 135
6.8. Using GNU gettext 135
6.9. Using Perl 137
6.10. Using X11 139
6.11. Using GNOME 141
6.12. GNOME Components 143
6.13. Using Qt 148
6.14. Using KDE 154
6.15. Using LXQt 161
6.16. Using Java 161
6.17. Web Applications, Apache and PHP 165
6.18. Using Python 168
6.19. Using Tcl/Tk 170
6.20. Using SDL 171
6.21. Using wxWidgets 172
6.22. Using Lua 176
6.23. Using Guile 180
6.24. Using iconv 184
6.25. Using Xfce 185
6.26. Using Budgie 187
6.27. Using Databases 187
6.28. Starting and Stopping Services (rc Scripts) 188
6.29. Adding Users and Groups 191
6.30. Ports That Rely on Kernel Sources 192
6.31. Go Libraries 192
6.32. Haskell Libraries 192
6.33. Shell Completion Files 192
7. Flavors 194
7.1. An Introduction to Flavors 194
7.2. Using FLAVORS 194
7.3. USES=php and Flavors 196
7.4. USES=python and Flavors 197
7.5. USES=1ua and Flavors 199
7.6. USES=guile and Flavors 199
8. Advanced pkg-plist Practices 200
8.1. Changing pkg-plist Based on Make Variables 200
8.2. Empty Directories 201

8.3. Configuration Files 202

8.4. Dynamic Versus Static Package List 202
8.5. Automated Package List Creation 203
8.6. Expanding Package List with Keywords 204
9. pkg-* 212
9.1. pkg-message 212
9.2. pkg-install, pkg-pre-install, and pkg-post-install 215
9.3. pkg-deinstall, pkg-pre-deinstall, and pkg-post-deinstall 215
9.4. Changing the Names of pkg-* 216
9.5. Making Use of SUB_FILES and SUB_LIST 216
10. Testing the Port 218
10.1. Running make describe 218
10.2. Running make test 218
10.3. Portclippy / Portfmt 218
10.4. Portlint 219
10.5. Port Tools 219
10.6. PREFIX and DESTDIR 219
10.7. poudriere 220
10.8. Debugging ports 228
11. Upgrading a Port 229
11.1. Using Git to Make Patches 230
11.2. UPDATING and MOVED 232
12. Security 234
12.1. Why Security is So Important 234
12.2. Fixing Security Vulnerabilities 234
12.3. Keeping the Community Informed 235
13. Dos and Don’ts 240
13.1. Introduction 240
13.2. WRKDIR 240
13.3. WRKDIRPREFIX 240
13.4. Differentiating Operating Systems and OS Versions 240
13.5. Writing Something After bsd.port.mk 241
13.6. Use the exec Statement in Wrapper Scripts 241
13.7. Do Things Rationally 242
13.8. Respect Both CC and CXX 242
13.9. Respect CFLAGS 243
13.10. Verbose Build Logs 243
13.11. Feedback 244
13.12. README.html 244
13.13. Marking a Port Not Installable with BROKEN, FORBIDDEN, or IGNORE 244
13.14. Architectural Considerations 245

13.15. Marking a Port for Removal with DEPRECATED or EXPIRATION_DATE = 247

13.16. Avoid Use of the .error CONStruct 247
13.17. Usage of sysCtl. 248
13.18. Rerolling Distfiles. 248
13.19. Use POSIX Standards. 248
13.20. Miscellanea 249
14. A Sample Makefile. 250
15. Order of Variables in Port Makefiles. 252
15.1. PORTNAME BLOCKo oo 252
15.2. PATCHFILES BIOCK oo oo 253
15.3. MAINTAINER BIOCK oo oo 253
15.4. LICENSE BIOCKo 253
15.5. Generic BROKEN/IGNORE/DEPRECATED MeSSAgeS. oo oottt 253
15.6. The Dependencies Block. 254
15.7. FLAVOTS . . o oo 254
15.8. USES and USE_X . . . oo 254
15.9. Standard bsd.port.mk Variables. 255
15.10. Options and Helpers 255
15.11. The Rest of the Variables 256
15.12. The Targets 256
16. Keeping Upo 257
16.1. FreshPOrts 257
16.2. The Web Interface to the Source Repository........... 257
16.3. The FreeBSD Ports Mailing List 257
16.4. The FreeBSD Port Building Cluster 257
16.5. Portscout: the FreeBSD Ports Distfile Scanner 258
17.USING USES MACTOS oot 259
17.1. An Introduction to USES. 259
0 259
17.3. 303 o 260
174, autorecon . © .o 260
17.5.blaslapack.o o 260
17,6, bdD 260
177, DISON 261
17.8.DUAQIE oo 261
17.9. cabal .« 261
L1700, Cargo .o oo 263
1700, charsetfix oo 263
17,02, cmake .o 263
17,08, COmMPI LT o 263
1704, CPe 264

O 264
17.16. desktop-file-utils. .. o 265
17.17.desthack . ..o 265
1708, display ..o 265
17.19. dOSZUNTX .« oo 265
17.20. drupal oo 265
17,20, ebUr T 28 e 266
17,22, 100N oo 266
17,23, et et o 266
17.24. r1ang ..o 266
17.25. fakeroot ... 267
17.26. Fam .« 267
17,27, FArebird .. 267
17,28, fONtS 267
17,20, fortran oo 267
17.30. TUSE « oo 267
17,30 gem o 268
17,32, gettext « . 268
17.33. gettext-runtime. o 268
17.34. gettext-tools. ... o 268
17.35. ghostseript ... 268
17,36, gL o 268
17.37. gmake .. 269
17.38. gOMe . oo 269
17.30. 0 .« oo 272
17.40. gpert o 273
17.40. grantlee ..o 273
1742, groff e 273
1743, 9SSAPT « oo 273
17.44. gSTreamer 274
1745, gUILe « oo 277
17.46. horde ..o 277
L1747, TCONV © oo 278
17.48. TMaKe . 278
17.49. Kde oo 278
17.50. KMOG .« oo 278
1750, 1dap .« oo 279
17,52, Tha 279
17.53. 11barchive ... 279
17.54. Libedit - .o 279
17.55. 1Ibt00L .o 279

17.56.
17.57.
17.58.
17.59.
17.60.
17.61.
17.62.
17.63.
17.64.
17.65.
17.66.
17.67.
17.68.
17.69.
17.70.
17.71.
17.72.
17.73.
17.74.
17.75.
17.76.
17.77.
17.78.
17.79.
17.80.
17.81.
17.82.
17.83.
17.84.
17.85.
17.86.
17.87.
17.88.
17.89.
17.90.
17.91.
17.92.
17.93.
17.94.
17.95.
17.96.

LaNUX 280
LLVM 282
10Calbase ..o 282
LU 282
LU T 283
IXQE o 283
MAGTCK oo 283
MaKeTNTO .« o 284
Makese Lt o 284
MAt e 284
MESOM © o ottt e e e e 285
ML aPOT T . 285
MINTZID oo 285
MYSQL 285
110 3T 285
MOt L 286
MCUT S ottt ettt et e 286
nexteloud 286
MTNJA oottt 286
MOOE TS 286
0D C L 286
OC AV e 286
OPENAL L. 287
PAth T aX L 287
DAL 287
P LD L 287
POSOL 288
PR L 288
PKGCONTIg o 290
DU 290
DY 290
PY St 292
PYLNON 292
AMAT L L 292
MAKE o 293
O o 293
QE-diSt o 293
FEAALTNe o 294
TUDY 294
SAMDA . oo 295
SCOMS ottt et e 295

17.97. shared-mime-info 295

17.98. shebangfix 296
17.99. sqlite .o 298
17000, S .o 298
L7 00, Bar 299
17002, O 299
17103 termingo ..o 299
17 A0, TeX o 300
17005, Tk . 301
17006, UTdfax .o 301
17.007. uniquetiles .. 301
17008, vala . .. 301
17,009, varnish .o 301
17.110. webplugin ... 302
17 00 XTCe 302
17002, XOTG - oo 302
17,013, X0rg-Cat . oo 304
0 s 1 304
18. __FreeBSD_version Values 305
18.1. FreeBSD 15 VEeIrSIONS o 305
18.2. FreeBSD 14 VEIrSIONSo 308
18.3. FreeBSD 13 VEeISIONS oo 318
18.4. FreeBSD 12 VEIrSIONS 340
18.5. FreeBSD 11 VEIrSIONS 356
18.6. FreeBSD 10 VEIrSIONS o 376
18.7. FreeBSD 9 VEIrSIONS 390
18.8. FreeBSD 8 VEISIONS 399
18.9. FreeBSD 7 VEISIONS 415
18.10. FreeBSD 6 VEIrSIONS o 424
18.11. FreeBSD 5 VEIrSIONS o 430
18.12. FreeBSD 4 VEISIONSo 442
18.13. FreeBSD 3 VEISIONS 447
18.14. FreeBSD 2.2 VETISIONIS.ottt 448
18.15. FreeBSD 2 Before 2.2-RELEASE VersSiONS 0 i 449

Chapter 1. Introduction

The FreeBSD Ports Collection is the way almost everyone installs applications ("ports") on FreeBSD.
Like everything else about FreeBSD, it is primarily a volunteer effort. It is important to keep this in
mind when reading this document.

In FreeBSD, anyone may submit a new port, or volunteer to maintain an existing unmaintained
port. No special commit privilege is needed.

Chapter 2. Making a New Port

Interested in making a new port, or upgrading existing ports? Great!

What follows are some guidelines for creating a new port for FreeBSD. To upgrade an existing port,
read this, then read Upgrading a Port.

When this document is not sufficiently detailed, refer to /usr/ports/Mk/bsd.port.mk, which is
included by all port Makefiles. Even those not hacking Makefiles daily can gain much knowledge
from it. Additionally, specific questions can be sent to the FreeBSD ports mailing list.

Only a fraction of the variables (VAR) that can be overridden are mentioned in this
document. Most (@(f not all) are documented at the start of

o [usr/ports/Mk/bsd.port.mk; the others probably ought to be. Note that this file uses
a non-standard tab setting: Emacs and Vim will recognize the setting on loading
the file. Both vi(1) and ex(1) can be set to use the correct value by typing :set
tabstop=4 once the file has been loaded.

Looking for something easy to start with? Take a look at the list of requested ports and see if you
can work on one (or more).

10

https://lists.FreeBSD.org/subscription/freebsd-ports
https://man.freebsd.org/cgi/man.cgi?query=vi&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ex&sektion=1&format=html
https://wiki.freebsd.org/WantedPorts

Chapter 3. Quick Porting

This section describes how to quickly create a new port. For applications where this quick method
is not adequate, the full "Slow Porting" process is described in Slow Porting.

First, get the original tarball and put it into DISTDIR, which defaults to /usr/ports/distfiles.

These steps assume that the software compiled out-of-the-box. In other words,
o absolutely no changes were required for the application to work on a FreeBSD
system. If anything had to be changed, refer to Slow Porting.

It is recommended to set the DEVELOPER make(1) variable in /etc/make.conf before
getting into porting.

o # echo DEVELOPER=yes >> /etc/make.conf

This setting enables the "developer mode" that displays deprecation warnings and
activates some further quality checks on calling make.

3.1. Writing the Makefile

The minimal Makefile would look something like this:

PORTNAME= oneko

DISTVERSION= 1.1b

CATEGORIES= games

MASTER_SITES= ftp://ftp.rediris.es/sites/ftp.freebsd.org/pub/FreeBSD/

MAINTAINER= youremail@example.com
COMMENT= Cat chasing a mouse all over the screen

Www= http://www.daidouji.com/oneko/

.include <bsd.port.mk>

Try to figure it out. A more detailed example is shown in the sample Makefile section.

3.2. Writing the Description Files

There are two description files that are required for any port, whether they actually package or not.
They are pkg-descr and pkg-plist. Their pkg- prefix distinguishes them from other files.

3.2.1. pkg-descr

This is a longer description of the port. One to a few paragraphs concisely explaining what the port
does is sufficient.

11

https://man.freebsd.org/cgi/man.cgi?query=make&sektion=1&format=html

This is not a manual or an in-depth description on how to use or compile the port!
Please be careful when copying from the README or manpage. Too often they are
not a concise description of the port or are in an awkward format. For example,

o manpages have justified spacing, which looks particularly bad with monospaced
fonts.

On the other hand, the content of pkg-descr must be longer than the COMMENT line
from the Makefile. It must explain in more depth what the port is all about.

A well-written pkg-descr describes the port completely enough that users would not have to consult
the documentation or visit the website to understand what the software does, how it can be useful,
or what particularly nice features it has. Mentioning certain requirements like a graphical toolkit,
heavy dependencies, runtime environment, or implementation languages help users decide
whether this port will work for them.

o The URL that used to be included as the last line of the pkg-descr file has been
moved to the Makefile.

3.2.2. pkg-plist

This file lists all the files installed by the port. It is also called the "packing list" because the package
is generated by packing the files listed here. The pathnames are relative to the installation prefix
(usually /usr/local).

Here is a small example:

bin/oneko
man/man1/oneko.1.gz
1ib/X11/app-defaults/Oneko
1ib/X11/0oneko/cat1.xpm
1ib/X11/0oneko/cat2.xpm
1ib/X11/0oneko/mouse.xpm

Refer to the pkg-create(8) manual page for details on the packing list.

It is recommended to keep all the filenames in this file sorted alphabetically. It will

e make verifying changes when upgrading the port much easier. The sorting should
be applied after variable expansion takes place. The framework does this correctly
when the package list is generated automatically.

(r') Creating a packing list manually can be a very tedious task. If the port installs a
- large numbers of files, creating the packing list automatically might save time.

There is only one case when pkg-plist can be omitted from a port. If the port installs just a handful

of files, list them in PLIST_FILES, within the port’s Makefile. For instance, we could get along without
pkg-plist in the above oneko port by adding these lines to the Makefile:

12

https://man.freebsd.org/cgi/man.cgi?query=pkg-create&sektion=8&format=html

PLIST_FILES= bin/oneko \
man/man1/oneko.1.g9z \
1ib/X11/app-defaults/Oneko \
1ib/X11/0oneko/cat1.xpm \
1ib/X11/0oneko/cat2.xpm \
1ib/X11/0oneko/mouse.xpm

Usage of PLIST_FILES should not be abused. When looking for the origin of a file,
o people usually try to grep through the pkg-plist files in the ports tree. Listing files
in PLIST_FILES in the Makefile makes that search more difficult.

If a port needs to create an empty directory, or creates directories outside of
(;) ${PREFIX} during installation, refer to Cleaning Up Empty Directories for more
information.

As PLIST_FILES is a make(1) variable, any entry with spaces must be quoted. For
example, if using keywords described in pkg-create(8) and Expanding Package List
@ with Keywords, the entry must be quoted.

PLIST FILES= "@sample ${ETCDIR}/oneko.conf.sample"

Later we will see how pkg-plist and PLIST_FILES can be used to fulfill more sophisticated tasks.

3.3. Creating the Checksum File

Just type make makesum. The ports framework will automatically generate distinfo. Do not try to
generate the file manually.

3.4. Testing the Port

Make sure that the port rules do exactly what is desired, including packaging up the port. These are
the important points to verify:

» pkg-plist does not contain anything not installed by the port.

* pkg-plist contains everything that is installed by the port.

* The port can be installed using the install target. This verifies that the install script works
correctly.

* The port can be deinstalled properly using the deinstall target. This verifies that the deinstall
script works correctly.

* The port only has access to network resources during the fetch target phase. This is important
for package builders, such as ports-mgmt/poudriere.

* Make sure that make package can be run as a normal user (that is, not as root). If that fails, the
software may need to be patched. See also fakeroot and uidfix.

13

https://man.freebsd.org/cgi/man.cgi?query=make&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=pkg-create&sektion=8&format=html
https://cgit.freebsd.org/ports/tree/ports-mgmt/poudriere/

Procedure: Recommended Test Ordering

1. make stage
2. make stage-qa

3. make package

-~

make install

“

make deinstall

6. make package (as user)
Make certain no warnings are shown in any of the stages.

Thorough automated testing can be done with ports-mgmt/poudriere from the Ports Collection, see
poudriere for more information. It maintains jails where all of the steps shown above can be
tested without affecting the state of the host system.

3.5. Checking the Port with portlint

Please use portlint to see if the port conforms to our guidelines. The ports-mgmt/portlint program
is part of the ports collection. In particular, check that the Makefile is in the right shape and the
package is named appropriately.

o Do not blindly follow the output of portlint. It is a static lint tool and sometimes
gets things wrong.

3.6. Submitting the New Port

Before submitting the new port, read the DOs and DON’Ts section.

Once happy with the port, the only thing remaining is to put it in the main FreeBSD ports tree and
make everybody else happy about it too.

o We do not need the work directory or the pkgname.txz package, so delete them
now.

Next, create a patch(1), file. Assuming the port is called oneko and is in the games category.

Example 1. Creating a .diff for a New Port

Add all the files with git add ., then review the diff with git diff. For example:

9
%

git add .
% git diff --staged

Make sure that all required files are included, then commit the change to your local branch
and generate a patch with git format-patch

14

https://cgit.freebsd.org/ports/tree/ports-mgmt/poudriere/
https://cgit.freebsd.org/ports/tree/ports-mgmt/portlint/
https://man.freebsd.org/cgi/man.cgi?query=patch&sektion=1&format=html

)
°

it commit
it format-patch origin/main

g
%9
Patch generated with git format-patch will include author identity and email addresses,
making it easier for developers to apply (with git am) and give proper credit.

To make it easier for committers to apply the patch on their working copy of the ports
tree, please generate the .diff from the base of your ports tree.

Submit oneko.diff with the bug submission form. Use product "Ports & Packages", component
"Individual Port(s)", and follow the guidelines shown there. Add a short description of the program
to the Description field of the PR (perhaps a short version of COMMENT), and remember to add
oneko.diff as an attachment.

Giving a good description in the summary of the problem report makes the work

o of port committers and triagers a lot easier. The expected format for new ports is
"[NEW PORT] category/portname short description of the port". Using this scheme
makes it easier and faster to begin the work of committing the new port.

After submitting the port, please be patient. The time needed to include a new port in FreeBSD can
vary from a few days to a few months. A simple search form of the Problem Report database can be
searched at https://bugs.freebsd.org/bugzilla/query.cgi.

To get a listing of open port PRs, select Open and Ports & Packages in the search form, then click
[Search].

After looking at the new port, we will reply if necessary, and commit it to the tree. The submitter’s
name will also be added to the list of Additional FreeBSD Contributors and other files.

Previously it was possible to submit patches for new ports using a shar(1) file; this

o is no longer the case with the evolution of git(1). Committers no longer accept
shar(1) files as their use is prone to mistake and does not add the relevant entry in
the category’s Makefile.

15

https://bugs.freebsd.org/submit/
https://bugs.freebsd.org/bugzilla/query.cgi
https://docs.freebsd.org/en/articles/contributors/#contrib-additional
https://man.freebsd.org/cgi/man.cgi?query=shar&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=git&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=shar&sektion=1&format=html

Chapter 4. Slow Porting

Okay, so it was not that simple, and the port required some modifications to get it to work. In this
section, we will explain, step by step, how to modify it to get it to work with the ports paradigm.

4.1. How Things Work

First, this is the sequence of events which occurs when the user first types make in the port’s
directory. Having bsd.port.mk in another window while reading this really helps to understand it.

But do not worry, not many people understand exactly how bsd.port.mk is working... :-)

1.

The fetch target is run. The fetch target is responsible for making sure that the tarball exists
locally in DISTDIR. If fetch cannot find the required files in DISTDIR it will look up the URL
MASTER_SITES, which is set in the Makefile, as well as our FTP mirrors where we put distfiles as
backup. It will then attempt to fetch the named distribution file with FETCH, assuming that the
requesting site has direct access to the Internet. If that succeeds, it will save the file in DISTDIR
for future use and proceed.

The extract target is run. It looks for the port’s distribution file (typically a compressed tarball)
in DISTDIR and unpacks it into a temporary subdirectory specified by WRKDIR (defaults to work).

The patch target is run. First, any patches defined in PATCHFILES are applied. Second, if any patch
files named patch-* are found in PATCHDIR (defaults to the files subdirectory), they are applied at
this time in alphabetical order.

The configure target is run. This can do any one of many different things.
a. If it exists, scripts/configure is run.
b. If HAS_CONFIGURE or GNU_CONFIGURE is set, WRKSRC/configure is run.

The build target is run. This is responsible for descending into the port’s private working
directory (WRKSRC) and building it.

The stage target is run. This puts the final set of built files into a temporary directory (STAGEDIR,
see Staging). The hierarchy of this directory mirrors that of the system on which the package
will be installed.

The package target is run. This creates a package using the files from the temporary directory
created during the stage target and the port’s pkg-plist.

The install target is run. This installs the package created during the package target into the
host system.

The above are the default actions. In addition, define targets pre-something or post-something, or put
scripts with those names, in the scripts subdirectory, and they will be run before or after the default
actions are done.

For example, if there is a post-extract target defined in the Makefile, and a file pre-build in the
scripts subdirectory, the post-extract target will be called after the regular extraction actions, and
pre-build will be executed before the default build rules are done. It is recommended to use
Makefile targets if the actions are simple enough, because it will be easier for someone to figure out

16

what kind of non-default action the port requires.

The default actions are done by the do-something targets from bsd.port.mk. For example, the
commands to extract a port are in the target do-extract. If the default target does not do the job
right, redefine the do-something target in the Makefile.

The "main" targets (for example, extract, configure, etc.) do nothing more than
make sure all the stages up to that one are completed and call the real targets or

o scripts, and they are not intended to be changed. To fix the extraction, fix do-
extract, but never ever change the way extract operates! Additionally, the target
post-deinstall is invalid and is not run by the ports infrastructure.

Now that what goes on when the user types make install is better understood, let us go through the
recommended steps to create the perfect port.

4.2. Getting the Original Sources

Get the original sources (normally) as a compressed tarball (foo.tar.gz or foo.tar.bz2) and copy it
into DISTDIR. Always use mainstream sources when and where possible.

Set the variable MASTER_SITES to reflect where the original tarball resides. Shorthand definitions
exist for most mainstream sites in bsd.sites.mk. Please use these sites-and the associated
definitions-if at all possible, to help avoid the problem of having the same information repeated
over again many times in the source base. As these sites tend to change over time, this becomes a
maintenance nightmare for everyone involved. See MASTER_SITES for details.

If there is no FTP/HTTP site that is well-connected to the net, or can only find sites that have
irritatingly non-standard formats, put a copy on a reliable FTP or HTTP server (for example, a home

page).

If a convenient and reliable place to put the distfile cannot be found, we can "house" it ourselves on
ftp.FreeBSD.org; however, this is the least-preferred solution. The distfile must be placed into
~/public_distfiles/ of someone’s freefall account. Ask the person who commits the port to do this.
This person will also set MASTER_SITES to LOCAL/username where username is their FreeBSD cluster
login.

If the port’s distfile changes all the time without any kind of version update by the author, consider
putting the distfile on a home page and listing it as the first MASTER_SITES. Try to talk the port author
out of doing this; it really does help to establish some kind of source code control. Hosting a specific
version will prevent users from getting checksum mismatch errors, and also reduce the workload of
maintainers of our FTP site. Also, if there is only one master site for the port, it is recommended to
house a backup on a home page and list it as the second MASTER_SITES.

If the port requires additional patches that are available on the Internet, fetch them too and put
them in DISTDIR. Do not worry if they come from a site other than where the main source tarball
comes, we have a way to handle these situations (see the description of PATCHFILES below).

17

4.3. Modifying the Port

Unpack a copy of the tarball in a private directory and make whatever changes are necessary to get
the port to compile properly under the current version of FreeBSD. Keep careful track of steps, as
they will be needed to automate the process shortly. Everything, including the deletion, addition, or
modification of files has to be doable using an automated script or patch file when the port is
finished.

If the port requires significant user interaction/customization to compile or install, take a look at
one of Larry Wall’s classic Configure scripts and perhaps do something similar. The goal of the new
ports collection is to make each port as "plug-and-play" as possible for the end-user while using a
minimum of disk space.

Unless explicitly stated, patch files, scripts, and other files created and contributed
to the FreeBSD ports collection are assumed to be covered by the standard BSD
copyright conditions.

4.4. Patching

In the preparation of the port, files that have been added or changed can be recorded with diff(1)
for later feeding to patch(1). Doing this with a typical file involves saving a copy of the original file
before making any changes using a .orig suffix.

% cp file file.orig

After all changes have been made, cd back to the port directory. Use make makepatch to generate
updated patch files in the files directory.

Use BINARY_ALIAS to substitute hardcoded commands during the build and avoid
(;) patching build files. See Use BINARY_ALIAS to Rename Commands Instead of
et Patching the Build for more information.

4.4.1. General Rules for Patching

Patch files are stored in PATCHDIR, usually files/, from where they will be automatically applied. All
patches must be relative to WRKSRC. Typically WRKSRC is a subdirectory of WRKDIR, the directory where
the distfile is extracted. Use make -V WRKSRC to see the actual path. The patch names are to follow
these rules:

* Avoid having more than one patch modify the same file. For example, having both patch-
foobar.c and patch-foobar.c2 making changes to ${WRKSRC}/foobar.c makes them fragile and
difficult to debug.

* When creating names for patch files, replace each underscore (_) with two underscores (__) and
each slash (/) with one underscore (_). For example, to patch a file named src/freeglut_joystick.c,
name the corresponding patch patch-src_freeglut__joystick.c. Do not name patches like patch-aa
or patch-ab. Always use the path and file name in patch names. Using make makepatch

18

https://man.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=patch&sektion=1&format=html

automatically generates the correct names.

* A patch may modify multiple files if the changes are related and the patch is named
appropriately. For example, patch-add-missing-stdlib.h.

* Only use characters [-+._a-zA-70-9] for naming patches. In particular, do not use :: as a path
separator, use _ instead.

Minimize the amount of non-functional whitespace changes in patches. It is common in the Open
Source world for projects to share large amounts of a code base, but obey different style and
indenting rules. When taking a working piece of functionality from one project to fix similar areas
in another, please be careful: the resulting patch may be full of non-functional changes. It not only
increases the size of the ports repository but makes it hard to find out what exactly caused the
problem and what was changed at all.

If a file must be deleted, do it in the post-extract target rather than as part of the patch.

4.4.2. Manual Patch Generation

Manual patch creation is usually not necessary. Automatic patch generation as
described earlier in this section is the preferred method. However, manual
patching may be required occasionally.

Patches are saved into files named patch-* where * indicates the pathname of the file that is
patched, such as patch-Imakefile or patch-src-config.h. Patches with file names which do not start
with patch- will not be applied automatically.

After the file has been modified, diff(1) is used to record the differences between the original and
the modified version. -u causes diff(1) to produce "unified" diffs, the preferred form.

% diff -u file.orig file > patch-pathname-file

When generating patches for new, added files, -N is used to tell diff(1) to treat the non-existent
original file as if it existed but was empty:

% diff -u -N newfile.orig newfile > patch-pathname-newfile

Using the recurse (-r) option to diff(1) to generate patches is fine, but please look at the resulting
patches to make sure there is no unnecessary junk in there. In particular, diffs between two backup
files, Makefiles when the port uses Imake or GNU confiqgure, etc., are unnecessary and have to be
deleted. If it was necessary to edit configure.in and run autoconf to regenerate configure, do not
take the diffs of configure (it often grows to a few thousand lines!). Instead, define USES=autoreconf
and take the diffs of configure.in.

4.4.3. Simple Automatic Replacements

Simple replacements can be performed directly from the port Makefile using the in-place mode of
sed(1). This is useful when changes use the value of a variable:

19

https://man.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=diff&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=sed&sektion=1&format=html

post-patch:
@${REINPLACE_CMD} -e 's|/usr/local|${PREFIX}|g' ${WRKSRC}/Makefile

o Only use sed(1) to replace variable content. You must use patch files instead of
sed(1) to replace static content.

Quite often, software being ported uses the CR/LF convention in source files. This may cause
problems with further patching, compiler warnings, or script execution (like /bin/sh™M not found.)
To quickly convert all files from CR/LF to just LF, add this entry to the port Makefile:

USES= dos2unix
A list of specific files to convert can be given:

USES= dos2unix
DOS2UNIX FILES= util.c util.h

Use DOS2UNIX_REGEX to convert a group of files across subdirectories. Its argument is a find(1)
-compatible regular expression. More on the format is in re_format(7). This option is useful for
converting all files of a given extension. For example, convert all source code files, leaving binary
files intact:

USES= dos2unix
DOS2UNIX_REGEX= .*\.([ch]|cpp)

A similar option is DOS2UNIX_GLOB, which runs find for each element listed in it.

USES= dos2unix
DOS2UNIX_GLOB= *.c *.cpp *.h

The base directory for the conversion can be set. This is useful when there are multiple distfiles and
several contain files which require line-ending conversion.

USES= dos2unix
DOS2UNIX_WRKSRC= ${WRKDIR}

4.4.4. Patching Conditionally

Some ports need patches that are only applied for specific FreeBSD versions or when a particular
option is enabled or disabled. Conditional patches are specified by placing the full paths to the
patch files in EXTRA_PATCHES. Conditional patch file names usually start with extra- although this is
not necessary. However, their file names must not start with patch-. If they do, they are applied

20

https://man.freebsd.org/cgi/man.cgi?query=sed&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=sed&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=find&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=re_format&sektion=7&format=html

unconditionally by the framework which is undesired for conditional patches.

Example 2. Applying a Patch for a Specific FreeBSD Version

.include <bsd.port.options.mk>

Patch in the iconv const qualifier before this
.if ${OPSYS} == FreeBSD && ${0OSVERSION} < 1100069
EXTRA_PATCHES= ${PATCHDIR}/extra-patch-fbsd10
.endif

.include <bsd.port.mk>

Example 3. Optionally Applying a Patch

When an option requires a patch, use opt_EXTRA_PATCHES and opt_EXTRA_PATCHES_OFF to make
the patch conditional on the opt option. See Generic Variables Replacement for more
information.

OPTIONS DEFINE= FOO BAR

FOO_EXTRA_PATCHES= ${PATCHDIR}/extra-patch-foo

BAR_EXTRA_PATCHES_OFF= ${PATCHDIR}/extra-patch-bar.c \
${PATCHDIR}/extra-patch-bar.h

Example 4. Using EXTRA_PATCHES With a Directory

Sometimes, there are many patches that are needed for a feature, in this case, it is possible to
point EXTRA_PATCHES to a directory, and it will automatically apply all files named patch-* in it.

Create a subdirectory in ${PATCHDIR}, and move the patches in it. For example:

% 1s -1 files/foo-patches
-rw-r--r-- 1 root wheel 350 Jan 16 01:27 patch-Makefile.in
-rw-r--r-- 1 root wheel 3084 Jan 18 15:37 patch-configure.ac

Then add this to the Makefile:

OPTIONS _DEFINE= FOO
FOO_EXTRA_PATCHES= ${PATCHDIR}/foo-patches

The framework will then use all the files named patch-* in that directory.

21

4.5. Configuring

Include any additional customization commands in the configure script and save it in the scripts
subdirectory. As mentioned above, it is also possible do this with Makefile targets and/or scripts
with the name pre-configure or post-configure.

4.6. Handling User Input

If the port requires user input to build, configure, or install, set IS_INTERACTIVE in the Makefile. This
will allow "overnight builds" to skip it. If the user sets the variable BATCH in their environment (and
if the user sets the variable INTERACTIVE, then only those ports requiring interaction are built). This
will save a lot of wasted time on the set of machines that continually build ports (see below).

It is also recommended that if there are reasonable default answers to the questions,
PACKAGE_BUILDING be used to turn off the interactive script when it is set. This will allow us to build
the packages for CDROMs and FTP.

22

Chapter 5. Configuring the Makefile

Configuring the Makefile is pretty simple, and again we suggest looking at existing examples before
starting. Also, there is a sample Makefile in this handbook, so take a look and please follow the
ordering of variables and sections in that template to make the port easier for others to read.

Consider these problems in sequence during the design of the new Makefile:

5.1. The Original Source

Does it live in DISTDIR as a standard gzipped tarball named something like foozolix-1.2.tar.gz? If so,
go on to the next step. If not, the distribution file format might require overriding one or more of
DISTVERSION, DISTNAME, EXTRACT_CMD, EXTRACT_BEFORE_ARGS, EXTRACT_AFTER_ARGS, EXTRACT_SUFX, or
DISTFILES.

In the worst case, create a custom do-extract target to override the default. This is rarely, if ever,
necessary.

5.2. Naming

The first part of the port’s Makefile names the port, describes its version number, and lists it in the
correct category.

5.2.1. PORTNAME

Set PORTNAME to the base name of the software. It is used as the base for the FreeBSD package, and
for DISTNAME.

The package name must be unique across the entire ports tree. Make sure that the
o PORTNAME is not already in use by an existing port, and that no other port already
has the same PKGBASE. If the name has already been used, add either PKGNAMEPREFIX
or PKGNAMESUFFIX.
5.2.2. Versions, DISTVERSION or PORTVERSION

Set DISTVERSION to the version number of the software.

PORTVERSION is the version used for the FreeBSD package. It will be automatically derived from
DISTVERSION to be compatible with FreeBSD’s package versioning scheme. If the version contains
letters, it might be needed to set PORTVERSION and not DISTVERSION.

o Only one of PORTVERSION and DISTVERSION can be set at a time.

From time to time, some software will use a version scheme that is not compatible with how
DISTVERSION translates in PORTVERSION.

O When updating a port, it is possible to use <a

23

href="https://man.freebsd.org/cgi/man.cgi?query=pkg-
version&sektion=8&format=html">pkg-version(8)'s <code>-t</code> argument
to check if the new version is greater or lesser than before. See Using <a
href="https://man.freebsd.org/cgi/man.cgi?query=pkg-version\&sektion=8 to
Compare Versions&format=html">pkg-version\(8] to Compare Versions).

Example 5. Using pkg-version(8) to Compare Versions

pkg version -t takes two versions as arguments, it will respond with <, = or > if the first version
is less, equal, or more than the second version, respectively.

o°
©

kg version -t 1.2 1.3

N

version -t 1.2 1.2

Ve

version -t 1.2 1.2.0

Y]

S® Il e° Il o°

version -t 1.2 1.2.p1

\Y4

o

version -t 1.2.a1 1.2.b1

N
Ya]

o

@R OZ®R @R ORO

version -t 1.2 1.2p1

N
Ya]

.2 is before 1.3.

® ©

.2and 1.2 are equal as they have the same version.

©)

.2and 1.2.0 are equal as nothing equals zero.

®

.2 is after 1.2.p1 as .p1, think "pre-release 1".

©

.2.3a11is before 1.2.b1, think "alpha" and "beta", and a is before b.

©

.2 is before 1.2p1 as 2p1, think "2, patch level 1" which is a version after any 2.X but before

W

In here, the 3, b, and p are used as if meaning "alpha", "beta" or "pre-release" and "patch
level", but they are only letters and are sorted alphabetically, so any letter can be used,
and they will be sorted appropriately.

Table 1. Examples of DISTVERSION and the Derived PORTVERSION

DISTVE PORTVERSION
RSION

0.7.1d 0.7.1.d

10Alpha 10.a3
3

24

https://man.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html

DISTVE PORTVERSION

RSION

3Beta7- 3.b7.p2
pre2

8:1 17 8f.17

Example 6. Using DISTVERSION

When the version only contains numbers separated by dots, dashes or underscores, use
DISTVERSION.

PORTNAME= nekoto
DISTVERSION= 1.2-4

It will generate a PORTVERSION of 1.2.4.

Example 7. Using DISTVERSION When the Version Starts with a Letter or a Prefix

When the version starts or ends with a letter, or a prefix or a suffix that is not part of the
version, use DISTVERSIONPREFIX, DISTVERSION, and DISTVERSIONSU