MCMCprecision 0.4.0 =========== * Bug fixes for issues concerning class(matrix(...)) in R 4.0.0 MCMCprecision 0.3.9 =========== * Updated citation and vignette: Paper in Statistics & Computing (doi:10.1007/s11222-018-9828-0) MCMCprecision 0.3.8 =========== * Code refactoring * Renamed functions: table.mc -> transitions; sim.mc -> rmarkov; dirichlet.mle -> fit_dirichlet ; stationary.mle -> stationary_mle ; best.k -> best_models * Added unit tests * Fixed bugs for transitions() of multiple-chain sequences and multiple CPUs in stationary() MCMCprecision 0.3.6 =========== * Fixed WARNING: Found ‘__assert_fail’, possibly from ‘assert’ (C) MCMCprecision 0.3.5 =========== * Registered C++ routines * Improved Description file MCMCprecision 0.3.3 =========== * Alternative method to compute eigenvectors: RcppEigen package * Improved starting values for Dirichlet estimation algorithm * Maximum likelihood estimation of stationary distribution: stationary.mle() * Changed default prior to epsilon=1/M (M= number of sampled models) * Changed default method to compute eigenvalue decomposition to RcppArmadillo (method="arma") MCMCprecision 0.3.0 =========== * Improved estimation of Dirichlet parameters to get effective sample size (C++ version of fixed-point algorithm by Mink, 2000) * New function best.k() to get summary for the k models with highest posterior model probability * Exports function rdirichlet() * Updated licence: GPL-3 (instead of GPL-2) MCMCprecision 0.2.1 =========== * New function best.k() to assess estimation uncertainty for the k models with the highest posterior model probabilities MCMCprecision 0.2.0 =========== * Implementations with RcppArmadillo::eig_gen and base::eigen