## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>") knitr::opts_chunk$set(fig.align = "center", fig.show = "hold", out.width = "55%", fig.width = 7, fig.height = 6) ## ----setup-------------------------------------------------------------------- library(MSCquartets) ## ----eval=FALSE--------------------------------------------------------------- # # read text file of gene trees and count quartets on them # # gts<-read.tree(file = 'genetreefile') # tableLeopardusLescroart=quartetTable(gts) ## ----------------------------------------------------------------------------- # load data file containing quartet counts for Leopardus data set supplied with MSCquartets package # These counts are will be accessed as `tableLeopardusLescroart`. data(tableLeopardusLescroart) ## ----------------------------------------------------------------------------- # perform TINNIK analysis for gene trees, using defaults output<-TINNIK(tableLeopardusLescroart) # save table of quartet information with p-values pT<-output$pTable ## ----------------------------------------------------------------------------- # perform improved TINNIK analysis to infer the tree of blobs output<-TINNIK(pT, alpha=5e-29,beta = 0.95) ## ----------------------------------------------------------------------------- # run TINNIK to infer the tree of blobs output<-TINNIK(pT, alpha=5e-29,beta = 0.95) ## ----------------------------------------------------------------------------- # rename output pT<-output$pTable #quartet count data with p-values for tests ToB<-output$ToB #the TINNIK tree of blobs ## ----------------------------------------------------------------------------- # perform NANUQ analysis for table of quartet information and p-values D<-NANUQ(pT, alpha = 5e-29,beta = 0.95) # Run the NANUQ routine NN<-neighborNet(D$dist) # Run the NeighborNet algorithm on the NANUQ distance plot(NN) # plot the splits-graph with neighborNet ## ----------------------------------------------------------------------------- #Label internal nodes of the tree of blobs, and plot ToB<-labelIntNodes(ToB) ## ----------------------------------------------------------------------------- # resolve node 18 resC18<-resolveCycle(ToB,18,pT,alpha=5e-29,beta=0.95) ## ----------------------------------------------------------------------------- # resolve node 2O resC20<-resolveCycle(ToB,20,pT,alpha=5e-29,beta=0.95) ## ----------------------------------------------------------------------------- #Fully resolve the tree of blobs to a level-1 network resN<-resolveLevel1(ToB=output$ToB, pTable=output$pTable, alpha=5e-29, beta=0.95, distance="NANUQ")