## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5, error = TRUE, # Continue even if there are errors warning = TRUE # Show warnings ) ## ----setup-------------------------------------------------------------------- library(MedDataSets) library(ggplot2) library(dplyr) ## ----tooth,eval=TRUE, message=FALSE, warning=FALSE---------------------------- # Example: Visualizing tooth growth data ggplot(ToothGrowth_df, aes(x = dose, y = len, color = supp)) + geom_point(size = 3, alpha = 0.7) + labs(title = "Tooth Growth by Supplement Type and Dose", x = "Dose", y = "Tooth Length", color = "Supplement Type") + theme_minimal() ## ----transplant,eval=TRUE, message=FALSE, warning=FALSE----------------------- ggplot(transplant_tbl_df, aes(x = outcome)) + geom_bar(fill = "steelblue", alpha = 0.8) + labs(title = "Transplant Outcomes", x = "Outcome", y = "Count") + theme_minimal() ## ----mdeath_ts,eval=TRUE, message=FALSE, warning=FALSE------------------------ # Crear un gráfico de serie de tiempo utilizando ggplot2 # Convertir 'mdeaths_ts' en un data frame mdeaths_df <- data.frame( month = time(mdeaths_ts), # Extrae las fechas de la serie de tiempo deaths = as.numeric(mdeaths_ts) # Convierte la serie de tiempo a numérico ) # Crear gráfico ggplot(mdeaths_df, aes(x = month, y = deaths)) + geom_line(color = "blue", size = 1) + labs(title = "Muertes Masculinas Respiratorias Mensuales (1974-1980)", x = "Mes", y = "Número de Muertes") + theme_minimal() + scale_x_continuous(breaks = seq(1974, 1980, by = 1), labels = seq(1974, 1980, by = 1)) + geom_point(color = "red", size = 1.5, alpha = 0.5) # Añadir puntos para cada mes