## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----install, eval=FALSE------------------------------------------------------ # install.packages("blorr") ## ----libs--------------------------------------------------------------------- library(blorr) library(magrittr) ## ----bivar1------------------------------------------------------------------- blr_bivariate_analysis(bank_marketing, y, job, marital, education, default, housing, loan, contact, poutcome) ## ----woe1--------------------------------------------------------------------- blr_woe_iv(bank_marketing, job, y) ## ----woeplot, fig.align='center', fig.width=7, fig.height=5------------------- k <- blr_woe_iv(bank_marketing, job, y) plot(k) ## ----woe2--------------------------------------------------------------------- blr_woe_iv_stats(bank_marketing, y, job, marital, education) ## ----mod1--------------------------------------------------------------------- model <- glm(y ~ ., data = bank_marketing, family = binomial(link = 'logit')) ## ----stepwise1---------------------------------------------------------------- blr_step_aic_both(model) ## ----stepwise3, fig.align='center', fig.width=7, fig.height=5----------------- model %>% blr_step_aic_both() %>% plot() ## ----model-------------------------------------------------------------------- model <- glm(y ~ age + duration + previous + housing + default + loan + poutcome + job + marital, data = bank_marketing, family = binomial(link = 'logit')) ## ----reg1--------------------------------------------------------------------- blr_regress(model) ## ----reg2--------------------------------------------------------------------- blr_regress(y ~ age + duration + previous + housing + default + loan + poutcome + job + marital, data = bank_marketing) ## ----mfs---------------------------------------------------------------------- blr_model_fit_stats(model) ## ----val5--------------------------------------------------------------------- blr_confusion_matrix(model, cutoff = 0.5) ## ----val6--------------------------------------------------------------------- blr_test_hosmer_lemeshow(model) ## ----val1--------------------------------------------------------------------- blr_gains_table(model) ## ----val7, fig.align='center', fig.width=7, fig.height=5---------------------- model %>% blr_gains_table() %>% plot() ## ----val2, fig.align='center', fig.width=7, fig.height=5---------------------- model %>% blr_gains_table() %>% blr_roc_curve() ## ----val3, fig.align='center', fig.width=7, fig.height=5---------------------- model %>% blr_gains_table() %>% blr_ks_chart() ## ----val9, fig.align='center', fig.width=7, fig.height=5---------------------- model %>% blr_gains_table() %>% blr_decile_lift_chart() ## ----val8, fig.align='center', fig.width=7, fig.height=5---------------------- model %>% blr_gains_table() %>% blr_decile_capture_rate() ## ----val4, fig.align='center', fig.width=7, fig.height=5---------------------- blr_lorenz_curve(model) ## ----infl, fig.align='center', fig.height=10, fig.width=8--------------------- blr_plot_diag_influence(model) ## ----lev, fig.align='center', fig.height=7, fig.width=7----------------------- blr_plot_diag_leverage(model) ## ----fit, fig.align='center', fig.height=7, fig.width=7----------------------- blr_plot_diag_fit(model)