## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, include=FALSE----------------------------------------------------- # devtools::load_all(".") # only used in place of dst when testing with R-devel library(dst) # knitr::opts_chunk$set(echo = TRUE) ## ----bpa1 definition, echo = FALSE, warning=FALSE---------------------------- Theta<-matrix(c(1,0,0,0,1,0,0,0,1,1,1,1), nrow = 4, byrow = TRUE) H <- bca(tt=matrix(c(1,0,0,0,1,0,0,0,1), nrow = 3, byrow = TRUE), m = c(0.2, 0.3, 0.5), cnames = c("a", "b", "c"), idvar = 1) cat("The prior distribution H","\n") bcaPrint(H) # round(belplau(H, h=Theta), digits = 3) ## ----bpa2 definition, echo = FALSE, warning=FALSE---------------------------- bpa2 <- bca(tt=rbind(diag(x=1, nrow=3), matrix(c(0,1,1,1,1,1), nrow=2, byrow = TRUE)), m = c(0,0,0,1,0), cnames = c("a", "b", "c"), idvar = 1) Event <- addTobca(bpa2, tt = diag(x=1, nrow = 3)) cat("Setting an Event E = {b,c} with mass = 1","\n") bcaPrint(Event) ## ----H_Event Dempster_rule1, echo = FALSE, warning=FALSE--------------------- H_Event <- dsrwon(H, bpa2) cat("The combination of H and Event E","\n") bcaPrint(H_Event) ## ----H_Event Dempster_rule2, echo = FALSE, warning=FALSE--------------------- H_given_E <- nzdsr(H_Event) cat("The posterior distribution P(H|E)","\n") bcaPrint(H_given_E) ## ----H_Event Dempster_rule3, echo = FALSE, warning=FALSE--------------------- round(belplau(H_given_E, h=Theta), digits = 3) ## ----bpa1_copy, echo = FALSE, warning=FALSE---------------------------------- Theta<-matrix(c(1,0,0,0,1,0,0,0,1,1,1,1), nrow = 4, byrow = TRUE) X <- bca(tt=matrix(c(1,0,0,0,1,0,0,0,1), nrow = 3, byrow = TRUE), m = c(0.2, 0.3, 0.5), cnames = c("a", "b", "c"), idvar = 1, varnames = "x") cat("The prior distribution","\n") bcaPrint(X) ## ----relation, echo = FALSE, warning=FALSE----------------------------------- # bpa4 <- bca(tt=matrix(c(1,0,0,0,1,0,0,0,1), nrow = 3, byrow = TRUE), m = c(1, 0, 0), cnames = c("d", "e", "f"), idvar = 4, varnames = "y") # bcaPrint(bpa4) # cat("Specify information on variables, description matrix and mass vector","\n") inforvar_EX <- matrix(c(1,4,3,3), ncol = 2, dimnames = list(NULL, c("varnb", "size")) ) cat("Identifying variables and frames","\n") inforvar_EX cat("Note that variables numbers must be in increasing order","\n") # tt_EX <- matrix(c(1,0,0,1,0,0, 0,1,0,1,0,0, 0,0,1,1,0,0, 1,1,1,1,1,1), ncol = 6, byrow = TRUE, dimnames = list(NULL, c("a", "b", "c", "d", "e", "f"))) cat("The description matrix of the relation between X and E","\n") tt_EX cat("Note Columns of matrix must follow variables ordering. ","\n") # spec_EX <- matrix(c(1:4, 0.1, 0.2, 0.7, 0 ), ncol = 2, dimnames = list(NULL, c("specnb", "mass"))) cat("Mass specifications","\n") spec_EX # rel_EX <- bcaRel(tt = tt_EX, spec = spec_EX, infovar = inforvar_EX, varnames = c("x", "y"), relnb = 1) cat("The relation between Evidence E and X","\n") bcaPrint(rel_EX) ## ----X_xtnd, echo = FALSE, warning=FALSE------------------------------------- X_xtnd <- extmin(X, relRef = rel_EX) cat("Prior X extended in product space of (X,E","\n") bcaPrint(X_xtnd) ## ----relation2, echo = FALSE, warning=FALSE---------------------------------- comb_X_EX <- dsrwon(X_xtnd, rel_EX) cat("Mass distribution of the combination of X extended and E_X","\n") bcaPrint(comb_X_EX) ## ----relation3, echo = FALSE, warning=FALSE---------------------------------- norm_comb_X_EX <- nzdsr(comb_X_EX) cat("The normalized mass distribution of the combination of X extended and E_X","\n") bcaPrint(norm_comb_X_EX) dist_XgE <- elim(norm_comb_X_EX, xnb = 4) cat("The posterior distribution P(X|E) for (a,d), (b,d), (c,d), after eliminating variable E","\n") bcaPrint(dist_XgE)