params <- list(EVAL = FALSE) ## ----eval = FALSE----------------------------------------------------------------------- # # # From CRAN would be # install.packages("ohun") # # #load package # library(ohun) # ## ----eval = FALSE----------------------------------------------------------------------- # # # install package # remotes::install_github("maRce10/ohun") # # #load packages # library(ohun) # library(tuneR) # library(warbleR) ## ----global options, echo = FALSE, message=FALSE, warning=FALSE------------------------- #load packages library(ohun) library(tuneR) library(warbleR) library(ggplot2) data("lbh1", "lbh2", "lbh_reference") # for spectrograms par(mar = c(5, 4, 2, 2) + 0.1) stopifnot(require(knitr)) options(width = 90) opts_chunk$set( comment = NA, # eval = if (isTRUE(exists("params"))) params$EVAL else FALSE, dev = "jpeg", dpi = 100, fig.width=10, out.width = "100%", fig.align = "center" ) ## ----eval = TRUE------------------------------------------------------------------------ # load example data data("lbh1", "lbh2", "lbh_reference") lbh_reference ## --------------------------------------------------------------------------------------- # convert to data frame as.data.frame(lbh_reference) ## ----eval = TRUE, fig.asp=0.4----------------------------------------------------------- # save sound file tuneR::writeWave(lbh1, file.path(tempdir(), "lbh1.wav")) # save sound file tuneR::writeWave(lbh2, file.path(tempdir(), "lbh2.wav")) # print spectrogram label_spectro(wave = lbh1, reference = lbh_reference[lbh_reference$sound.files == "lbh1.wav", ], hop.size = 10, ovlp = 50, flim = c(1, 10)) # print spectrogram label_spectro(wave = lbh2, reference = lbh_reference[lbh_reference$sound.files == "lbh2.wav", ], hop.size = 10, ovlp = 50, flim = c(1, 10)) ## --------------------------------------------------------------------------------------- lbh1_reference <- lbh_reference[lbh_reference$sound.files == "lbh1.wav",] # diagnose diagnose_detection(reference = lbh1_reference, detection = lbh1_reference)[, c(1:3, 7:9)] ## ----fig.asp=0.4------------------------------------------------------------------------ # create new table lbh1_detection <- lbh1_reference[3:9,] # print spectrogram label_spectro( wave = lbh1, reference = lbh1_reference, detection = lbh1_detection, hop.size = 10, ovlp = 50, flim = c(1, 10) ) # diagnose diagnose_detection(reference = lbh1_reference, detection = lbh1_detection)[, c(1:3, 7:9)] ## ----fig.asp=0.4------------------------------------------------------------------------ # print spectrogram label_spectro( wave = lbh1, detection = lbh1_reference, reference = lbh1_detection, hop.size = 10, ovlp = 50, flim = c(1, 10) ) # diagnose diagnose_detection(reference = lbh1_detection, detection = lbh1_reference)[, c(1:3, 7:9)] ## ----fig.asp=0.4------------------------------------------------------------------------ # create new table lbh1_detection <- lbh1_reference # add 'noise' to start set.seed(18) lbh1_detection$start <- lbh1_detection$start + rnorm(nrow(lbh1_detection), mean = 0, sd = 0.1) ## print spectrogram label_spectro( wave = lbh1, reference = lbh1_reference, detection = lbh1_detection, hop.size = 10, ovlp = 50, flim = c(1, 10) ) # diagnose diagnose_detection(reference = lbh1_reference, detection = lbh1_detection) ## --------------------------------------------------------------------------------------- # diagnose with time diagnostics diagnose_detection(reference = lbh1_reference[-1, ], detection = lbh1_detection[-10, ], time.diagnostics = TRUE) ## --------------------------------------------------------------------------------------- # diagnose by sound file diagnostic <- diagnose_detection(reference = lbh1_reference, detection = lbh1_detection, by.sound.file = TRUE) diagnostic ## --------------------------------------------------------------------------------------- # summarize summarize_diagnostic(diagnostic) ## --------------------------------------------------------------------------------------- # ggplot detection and reference plot_detection(reference = lbh1_reference, detection = lbh1_detection) ## --------------------------------------------------------------------------------------- # ggplot detection and reference plot_detection(reference = lbh_reference, detection = lbh_reference) ## ----eval = FALSE, echo=FALSE----------------------------------------------------------- # Observaciones: # # avoid having overlapping selections in reference (check with overlapping_sels()) # # downsample to a freq range just enough for the sound events of interest # # use hop.size instead of wl # # after split_acoustic_data() another function that returns the position in the original unsplit sound file # # count number of detections per unit of time ## ----session info, echo=FALSE----------------------------------------------------------- sessionInfo()