## ----setup, echo = FALSE, message = FALSE------------------------------------- # fig.width=5.5, library(knitr) # opts_chunk$set(fig.align='center', fig.height=5, warning=FALSE, # dev='pdf', prompt=TRUE, comment=NA, highlight=FALSE, tidy=FALSE) library(stepR) savePathRcache <- R.cache::getCacheRootPath() R.cache::setCacheRootPath(path = file.path(R.cache::getCacheRootPath(), "test")) ## ----plotgauss, fig.lp="fig:1", fig.cap = 'Observations (grey points) and underlying function (black line).'---- set.seed(1) n <- 100L x <- seq(1 / n, 1, 1 / n) mu <- stepfit(cost = 0, family = "gauss", value = c(0, 3, 0, -2, 0), param = NULL, leftEnd = x[c(1, 21, 26, 71, 81)], rightEnd = x[c(20, 25, 70, 80, 100)], x0 = 0, leftIndex = c(1, 21, 26, 71, 81), rightIndex = c(20, 25, 70, 80, 100)) sigma0 <- 0.5 epsilon <- rnorm(n, 0, sigma0) y <- fitted(mu) + epsilon plot(x, y, pch = 16, col = "grey30", ylim = c(-3, 4)) lines(mu, lwd = 3) ## ----stepFit, fig.lp="fig:1", fig.cap = 'Observations (grey points), underlying function (black line), fit by the multiscale estimator (red line), its confidence intervals for the change-point locations (red brackets) and its confidence band for the underlying function (darkred lines).'---- fit <- stepFit(y, x = x, alpha = 0.5, jumpint = TRUE, confband = TRUE) plot(x, y, pch = 16, col = "grey30", ylim = c(-3, 4)) lines(mu, lwd = 3) lines(fit, lwd = 3, col = "red", lty = "22") # confidence intervals for the change-point locations points(jumpint(fit), col = "red") # confidence band lines(confband(fit), lty = "22", col = "darkred", lwd = 2) ## ----critVal------------------------------------------------------------------ # was called in stepFit, can be called explicitly, # for instance outside of a for loop to save computation time qVector <- critVal(length(y), alpha = 0.5) identical(stepFit(y, x = x, q = qVector, jumpint = TRUE, confband = TRUE), fit) qValue <- critVal(length(y), alpha = 0.5, output = "value") identical(stepFit(y, x = x, q = qValue, jumpint = TRUE, confband = TRUE), fit) ## ----computeStat-------------------------------------------------------------- # fit satisfies the multiscale contraint, i.e. # the computed penalized multiscale statistic is not larger than the global quantile computeStat(y, signal = fit, output = "maximum") < qValue # multiscale vector of statistics is componentwise not larger than # the vector of critical values all(computeStat(y, signal = fit, output = "vector") < qVector) ## ----computeBounds------------------------------------------------------------ # the multiscale contraint bounds <- computeBounds(y, alpha = 0.5) ## ----monteCarloSimulation----------------------------------------------------- # monteCarloSimulation will be called in critVal, can be called explicitly # object of class MCSimulationVector stat <- monteCarloSimulation(n = length(y)) identical(critVal(n = length(y), alpha = 0.5, stat = stat), critVal(n = length(y), alpha = 0.5, options = list(load = list(), simulation = "matrix"))) # object of class MCSimulationMaximum stat <- monteCarloSimulation(n = length(y), output = "maximum") identical(critVal(n = length(y), alpha = 0.5, stat = stat), critVal(n = length(y), alpha = 0.5, options = list(load = list(), simulation = "vector"))) ## ----cleanup, echo = FALSE, message = FALSE----------------------------------- unlink(R.cache::getCacheRootPath(), force = TRUE, recursive = TRUE) R.cache::setCacheRootPath(savePathRcache)