## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(toxpiR) ## Create a tempfile and download 'format_C.csv' fmtc <- tempfile() ghuc <- "https://raw.githubusercontent.com" fmtcUrl <- file.path(ghuc, "ToxPi", "ToxPi-example-files", "main", "format_C.csv") download.file(url = fmtcUrl, destfile = fmtc, quiet = TRUE) ## ----------------------------------------------------------------------------- ## Import file into R gui <- txpImportGui(fmtc) ## ----------------------------------------------------------------------------- gui$model gui$input gui$fills ## ----------------------------------------------------------------------------- ## Calculate ToxPi scores res <- txpCalculateScores(model = gui$model, input = gui$input, id.var = "Name",negative.value.handling = "missing") ## Overall ToxPi scores txpScores(res) ## Slice scores txpSliceScores(res, adjusted = FALSE) ## ----------------------------------------------------------------------------- out <- as.data.frame(res, adjusted = FALSE) out <- out[order(out$score, decreasing = TRUE), ] out ## ----fig.width = 7------------------------------------------------------------ plot(sort(res), fills = gui$fills) ## ----fig.width = 7, fig.height = 4-------------------------------------------- plot(res, txpRanks(res)) plot(res, txpRanks(res), labels = 1:10, pch = 16, size = grid::unit(0.75, "char")) ## ----fig.width = 7, fig.height = 5-------------------------------------------- ## Hierarchical Clustering hc <- hclust(dist(txpSliceScores(res)), method = 'complete') plot(hc, hang = -1, labels = txpIDs(res), xlab = 'Name', sub = '') ## ----fig.width = 7, fig.height = 5-------------------------------------------- ## K-Means Clustering, plotted using principal components nClusters <- 3 km <- kmeans(txpSliceScores(res), nClusters) pc <- prcomp(txpSliceScores(res)) coord <- predict(pc) * -sum(txpWeights(res)) plot(coord[,1], coord[,2], col = km$cluster, xlab = 'PC1', ylab = 'PC2', pch = 16)