## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", message = FALSE, warning = FALSE ) library(CDMConnector) requireEunomia() ## ----message=FALSE, warning = FALSE------------------------------------------- library(duckdb) library(CDMConnector) library(dplyr, warn.conflicts = FALSE) library(CodelistGenerator) library(PatientProfiles) library(CohortCharacteristics) con <- dbConnect(duckdb(), dbdir = eunomiaDir()) cdm <- cdmFromCon( con = con, cdmSchem = "main", writeSchema = "main", cdmName = "Eunomia" ) medsCs <- getDrugIngredientCodes( cdm = cdm, name = c( "acetaminophen", "morphine", "warfarin" ) ) cdm <- generateConceptCohortSet( cdm = cdm, name = "meds", conceptSet = medsCs, end = "event_end_date", limit = "all", overwrite = TRUE ) settings(cdm$meds) cohortCount(cdm$meds) ## ----------------------------------------------------------------------------- medsOverlap <- cdm$meds |> summariseCohortOverlap() medsOverlap |> glimpse() ## ----------------------------------------------------------------------------- tableCohortOverlap(medsOverlap, uniqueCombinations = FALSE) ## ----------------------------------------------------------------------------- plotCohortOverlap(medsOverlap, uniqueCombinations = FALSE) ## ----------------------------------------------------------------------------- cdm$meds <- cdm$meds |> addAge(ageGroup = list(c(0, 49), c(50, 150))) |> compute(temporary = FALSE, name = "meds") |> newCohortTable() medsOverlap <- cdm$meds |> summariseCohortOverlap(strata = list("age_group")) ## ----------------------------------------------------------------------------- tableCohortOverlap(medsOverlap, uniqueCombinations = FALSE) ## ----------------------------------------------------------------------------- plotCohortOverlap( medsOverlap, y = c("cohort_name_reference", "cohort_name_comparator"), facet = c("age_group"), uniqueCombinations = TRUE )